pybind.cc 91.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
29
#include "paddle/fluid/framework/io/fs.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
32
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
33 34 35
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
36
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/op_info.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
42
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
45
#include "paddle/fluid/framework/trainer.h"
46
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
47
#include "paddle/fluid/framework/version.h"
H
hong 已提交
48
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
49
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
50
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
53
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/platform/cpu_info.h"
55
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/platform/enforce.h"
57
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
58 59
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
60
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
61
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
62
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
65
#include "paddle/fluid/pybind/global_value_getter_setter.h"
66
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
67
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
68
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
69
#include "paddle/fluid/pybind/ir.h"
70
#include "paddle/fluid/pybind/pybind_boost_headers.h"
71

72
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
73
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
74
#endif
75
#include "paddle/fluid/framework/data_type.h"
76 77
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
78
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
79
#include "paddle/fluid/pybind/tensor_py.h"
80
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
81
#ifdef PADDLE_WITH_CUDA
82
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
83
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
84
#endif
Y
Yi Wang 已提交
85 86
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
87 88
#endif

89 90 91 92
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
93 94
#include "pybind11/stl.h"

95 96 97
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
98
DECLARE_bool(use_mkldnn);
99 100 101
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
102

Q
Qiao Longfei 已提交
103 104 105
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

106
namespace paddle {
107
namespace pybind {
108
bool IsCompiledWithCUDA() {
109
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
110 111 112 113 114 115
  return false;
#else
  return true;
#endif
}

116 117 118 119 120 121 122 123
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

124 125 126 127 128 129 130 131
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

132
bool IsCompiledWithBrpc() {
133
#ifndef PADDLE_WITH_DISTRIBUTE
134 135
  return false;
#endif
136 137 138 139 140 141

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
142 143
}

Y
update  
Yancey1989 已提交
144
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
145
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
146 147 148 149 150 151
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
152 153 154 155 156 157 158 159 160 161
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }
    vec_res.emplace_back(
201
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
        PADDLE_ENFORCE_NE(exe, nullptr,
                          "Parameter not Initialized, "
                          "Please set argument [executor] not None "
                          "or run startup program first");
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
        PADDLE_ENFORCE_NOT_NULL(py_var_desc);
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return;
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

312 313 314 315 316 317
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
318 319 320
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
321
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
322

323 324
  AssertStaticGraphAndDygraphGradMakerNoDiff();

325
  m.doc() = "C++ core of PaddlePaddle";
326

327 328 329 330
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

331
  BindException(&m);
Y
Yu Yang 已提交
332

333 334
  m.def("set_num_threads", &platform::SetNumThreads);

6
633WHU 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
353 354 355 356 357 358 359 360 361
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
362
           const Scope &scope, const Executor *executor) {
H
hong 已提交
363
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
364
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
365 366 367
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

368 369 370 371 372 373
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
393

394 395 396 397 398 399
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
400
  m.def(
S
sneaxiy 已提交
401
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
402 403 404 405
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
406 407 408
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
425 426 427
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
428
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
429

430
  m.def("_set_fuse_parameter_group_size",
431
        &paddle::framework::ir::SetFuseParameterGroupsSize);
432
  m.def("_set_fuse_parameter_memory_size",
433
        &paddle::framework::ir::SetFuseParameterMemorySize);
434

S
sneaxiy 已提交
435 436 437
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

438 439
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

440
  BindImperative(&m);
441

442
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
443
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
444 445
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
446
      .def("_get_dims",
447
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
448
      .def("_set_dims",
Q
qijun 已提交
449
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
450
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
451
           })
Y
yuyang18 已提交
452
      .def("_set_layout",
D
dzhwinter 已提交
453 454 455
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
456
      .def("_alloc_float",
D
dzhwinter 已提交
457
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
458
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
459
           })
Y
yuyang18 已提交
460
      .def("_alloc_float",
Y
Yu Yang 已提交
461
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
462
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
463
           })
464 465 466 467
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
468
      .def("_alloc_int",
Y
Yu Yang 已提交
469
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
470
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
471
           })
Y
yuyang18 已提交
472
      .def("_alloc_int",
D
dzhwinter 已提交
473
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
474
             self.mutable_data<int>(place);
Q
qijun 已提交
475
           })
Y
yuyang18 已提交
476
      .def("_alloc_int",
C
chengduoZH 已提交
477 478 479
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
480
      .def("_alloc_float",
C
chengduoZH 已提交
481 482 483
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
499
      .def("_clear", &Tensor::clear)
500
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
501
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
502
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
503
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
504
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
505 506
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
507 508 509 510 511 512
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.
513 514
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
528

L
Leo Chen 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
568 569 570 571
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
572
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
573
      .def("_dtype", [](Tensor &self) { return self.type(); })
574
      .def("_share_data_with", &Tensor::ShareDataWith)
575 576 577 578 579 580
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
581

L
Leo Chen 已提交
582
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
583
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
658 659 660 661 662 663 664

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
665 666

        )DOC")
667
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
668 669 670 671 672 673 674 675 676
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
677 678
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
679 680 681
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
682
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
683
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
684 685
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
686 687 688
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
689
      .def("set_lod",
690
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
691
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
692
             LoD new_lod;
693 694
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
695 696 697
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
698
             self.set_lod(new_lod);
S
sneaxiy 已提交
699 700 701 702 703
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
704 705 706 707
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
708 709 710 711 712 713 714 715 716 717

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
718
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
719
           )DOC")
720 721 722 723 724 725 726 727 728 729 730
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
731 732
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
733 734
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
735 736
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
737
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
738

L
Leo Chen 已提交
739
           For example, if recursive_sequence_lengths=[[2, 3]], which means
740
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
741
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
742 743

           Args:
L
Leo Chen 已提交
744 745 746 747
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
748 749 750 751 752 753 754 755 756 757

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
758 759
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
760
           )DOC")
761 762 763 764 765 766 767 768
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
769 770 771 772 773
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
774 775
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
776 777 778 779 780 781 782 783 784 785
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
786
           )DOC")
G
gongweibao 已提交
787
      // Set above comments of set_lod.
788 789 790 791 792 793 794 795
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
796 797
           },
           R"DOC(
L
Leo Chen 已提交
798 799
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
800 801

           Returns:
L
Leo Chen 已提交
802
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
803 804 805 806 807 808 809 810 811 812 813

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
814 815 816 817 818 819 820 821
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
822
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
823 824

           Returns:
L
Leo Chen 已提交
825
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
826 827 828 829 830 831 832 833 834 835 836

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
837 838 839 840 841 842 843
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
844
           )DOC")
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
863
      });
D
dangqingqing 已提交
864

Q
qijun 已提交
865 866 867 868 869 870 871 872 873 874 875
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
876 877
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
878 879
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
880 881 882 883 884 885 886 887 888
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
889
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
890
      .def("rows", [](SelectedRows &self) {
891 892 893 894 895
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
896
      });
Q
qijun 已提交
897

898
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
899 900 901

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
902
      .def(py::init<>())
903
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
904
      .def("set_int",
905 906
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
907 908 909 910 911 912 913
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
914
      .def("get_tensor",
915 916
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
917 918
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
919 920 921
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
922 923 924 925 926
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
927 928 929
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
930
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
931 932 933 934 935
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
936
#endif
Y
Refine  
Yu Yang 已提交
937 938
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
939
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
940 941
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
942
           py::return_value_policy::reference);
943

S
sneaxiy 已提交
944
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
945

S
sneaxiy 已提交
946 947 948 949
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
950

S
sneaxiy 已提交
951 952
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
953
      .def("push",
S
sneaxiy 已提交
954
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
955
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
956
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
957
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
958
           })
S
sneaxiy 已提交
959 960 961
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
Z
Zeng Jinle 已提交
962
      .def("kill", &LoDTensorBlockingQueue::Kill)
S
sneaxiy 已提交
963
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
964

S
sneaxiy 已提交
965
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
966 967
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
968
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
969 970 971 972
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
973
        py::return_value_policy::copy);
S
sneaxiy 已提交
974

S
sneaxiy 已提交
975
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

989
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
990 991 992 993 994 995
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
996 997
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
998
      .def("var",
999
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1000
             return self.Var(name);
Y
Yu Yang 已提交
1001
           },
S
sneaxiy 已提交
1002 1003
           py::arg("name"),
           R"DOC(
1004
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1005

1006
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1007
           current scope, the variable would be created. Otherwise,
1008
           return the existing variable.
S
sneaxiy 已提交
1009 1010

           Args:
1011 1012
               name (str): the variable name.

S
sneaxiy 已提交
1013
           Returns:
1014
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1015 1016 1017 1018
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1019
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
1020
           its parent scope. Return None if not found.
1021

S
sneaxiy 已提交
1022 1023
           Args:
               name (str): the variable name.
1024

S
sneaxiy 已提交
1025
           Returns:
1026
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1027
           )DOC",
1028
           py::return_value_policy::reference)
1029
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1030 1031 1032 1033 1034 1035
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1036
           py::return_value_policy::reference)
S
sneaxiy 已提交
1037 1038 1039
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1040 1041
           )DOC")
      .def("_kids", &Scope::kids);
1042

S
sneaxiy 已提交
1043 1044 1045 1046 1047 1048
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1049 1050
        R"DOC(
        Create a new scope.
1051

S
sneaxiy 已提交
1052 1053 1054
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1055 1056
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1057 1058
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1059 1060
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1061 1062 1063 1064
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1065 1066
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1067 1068 1069 1070
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1071 1072
    return ret_values;
  });
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1102 1103 1104
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1105 1106 1107 1108 1109
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1110 1111 1112
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1127
  m.def("prune", [](const ProgramDesc &origin,
1128
                    const std::set<std::string> &feeded_var_names,
1129
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1130
    ProgramDesc prog_with_targets(origin);
1131

1132
    for (const auto &t : targets) {
1133
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1134
    }
1135
    proto::ProgramDesc pruned_desc;
1136
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
1137
    return new ProgramDesc(pruned_desc);
1138
  });
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1156 1157 1158 1159
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1160 1161 1162
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1163 1164
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1165
  // clang-format off
Y
Yu Yang 已提交
1166
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1167 1168
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1169
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1170 1171 1172
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1173
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1174
                      -> paddle::platform::DeviceContext* {
1175
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1176
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1177
#else
Q
qijun 已提交
1178
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1179
#endif
C
chengduoZH 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1191
// clang-format on
1192
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1193 1194
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1195
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1196 1197 1198 1199 1200 1201 1202 1203
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1204
    The memory of CUDAPlace with different dev_id is not accessible.
1205 1206 1207 1208 1209 1210 1211 1212
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1213 1214 1215 1216

    Examples:
        .. code-block:: python

1217
          import paddle.fluid as fluid
L
lujun 已提交
1218 1219
          gpu_place = fluid.CUDAPlace(0)

1220
        )DOC")
S
sneaxiy 已提交
1221 1222 1223
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1248 1249
             new (&self) platform::CUDAPlace(dev_id);
#else
1250 1251 1252 1253 1254 1255 1256 1257 1258
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1259 1260
#endif
           })
S
sneaxiy 已提交
1261 1262 1263 1264 1265 1266
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1267
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1268

1269
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1270 1271
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1272 1273 1274 1275

    Examples:
        .. code-block:: python

1276
          import paddle.fluid as fluid
1277
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
1278

1279
        )DOC")
1280
      .def(py::init<>())
S
sneaxiy 已提交
1281 1282 1283 1284 1285 1286
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1287
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1288

1289
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1290 1291 1292 1293 1294 1295
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1296 1297 1298 1299

    Examples:
        .. code-block:: python

1300
          import paddle.fluid as fluid
L
lujun 已提交
1301 1302
          place = fluid.CUDAPinnedPlace()

1303
        )DOC")
S
sneaxiy 已提交
1304
      .def("__init__",
S
sneaxiy 已提交
1305
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1306 1307 1308
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1309
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1310
           })
S
sneaxiy 已提交
1311 1312 1313 1314 1315 1316 1317 1318
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1319 1320
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1321 1322
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1323 1324 1325 1326 1327
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1328 1329
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1330 1331 1332 1333 1334 1335
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1336 1337 1338 1339
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
1340 1341
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1342 1343 1344 1345 1346
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1347
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1348
             self = gpu_place;
C
chengduoZH 已提交
1349 1350
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1351 1352
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1353
      });
Y
Yu Yang 已提交
1354

Y
Yu Yang 已提交
1355
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1367
      .def("run",
1368
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1369 1370 1371
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1372
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1373 1374 1375 1376 1377
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1378 1379 1380 1381 1382 1383 1384
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1385 1386
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1387
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1388
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1389 1390 1391 1392
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1393

1394 1395 1396
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1397 1398 1399 1400 1401 1402 1403 1404 1405
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1406
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1407
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1408
      .def("close", &Executor::Close)
1409 1410
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1411 1412
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1413 1414 1415 1416
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1417
             pybind11::gil_scoped_release release;
1418 1419 1420 1421 1422 1423 1424
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1437
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1438 1439 1440 1441 1442 1443 1444
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1455
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1456 1457
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1458
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1459 1460
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1461
      });
S
sneaxiy 已提交
1462

D
dzhwinter 已提交
1463
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1464
  m.def("init_glog", framework::InitGLOG);
1465
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1466 1467
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1468

1469
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1470
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1471
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1472
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1473
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
H
hutuxian 已提交
1474 1475 1476
  m.def("run_cmd", [](const std::string &cmd) -> const std::string {
    return paddle::framework::shell_get_command_output(cmd);
  });
1477 1478 1479 1480 1481 1482
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1483

1484
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1485
  m.def("get_fetch_variable", framework::GetFetchVariable);
1486
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1487

X
Xin Pan 已提交
1488 1489
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1490 1491 1492 1493 1494
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1495
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1496

Y
Yu Yang 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1506
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1507
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1508 1509 1510

    Examples:
        .. code-block:: python
1511

Z
Zeng Jinle 已提交
1512 1513 1514 1515
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1516 1517
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1528 1529 1530 1531 1532 1533
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1534 1535
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1536 1537 1538 1539 1540 1541
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1564

Y
Yu Yang 已提交
1565
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1566
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1567
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1568

P
peizhilin 已提交
1569
#ifndef _WIN32
D
dangqingqing 已提交
1570 1571 1572
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1573
#endif
P
peizhilin 已提交
1574
#endif
Y
Yu Yang 已提交
1575

1576 1577 1578 1579 1580 1581
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1582 1583 1584 1585
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1586
      .value("kAll", platform::ProfilerState::kAll)
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1598
  m.def("set_tracer_option", platform::SetTracerOption);
1599 1600
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1601
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1602
  m.def("reset_profiler", platform::ResetProfiler);
1603
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1604 1605 1606
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1607

1608 1609
  m.def("size_of_dtype", framework::SizeOfType);

1610 1611 1612
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1613 1614
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1615
      .def("has", &ir::Pass::Has)
1616 1617 1618
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1619
           })
1620
      .def(
1621
          "set",
1622 1623 1624
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1625 1626
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1627 1628
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1643 1644
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1645
        self.Apply(graph.get());
F
flame 已提交
1646
      });
1647

X
fix  
Xin Pan 已提交
1648 1649
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1664
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1665

Y
yuyang18 已提交
1666
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1667 1668 1669 1670
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1671 1672 1673
    Examples:
        .. code-block:: python

1674
          import paddle.fluid as fluid
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1685 1686 1687
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1688 1689
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1690 1691
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1692 1693
        )DOC");

Y
yuyang18 已提交
1694
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1695 1696 1697 1698 1699
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1710
      .def_property(
1711 1712 1713 1714
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1715 1716 1717 1718
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1719 1720 1721 1722 1723
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1724 1725 1726
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1727 1728
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1729 1730 1731 1732 1733 1734 1735
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1736 1737 1738 1739
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1740 1741
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1742 1743 1744 1745 1746 1747

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1748
              )DOC")
Q
Qiao Longfei 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1758
                user call exe.run() in python
Q
Qiao Longfei 已提交
1759
              )DOC")
1760 1761 1762 1763 1764 1765 1766 1767
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
1768 1769 1770 1771 1772
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1773

Y
yuyang18 已提交
1774
  exec_strategy.def_property(
Y
yuyang18 已提交
1775 1776 1777 1778 1779 1780 1781
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1782 1783
      });

C
chengduo 已提交
1784 1785 1786 1787
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1788 1789 1790
    Examples:
        .. code-block:: python

1791 1792
            import os
            import numpy as np
F
flame 已提交
1793
            import paddle.fluid as fluid
1794 1795 1796 1797 1798 1799 1800 1801 1802

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1803
            build_strategy = fluid.BuildStrategy()
1804 1805
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1806
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1807 1808 1809 1810
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1811
)DOC");
Y
yuyang18 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1828 1829
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1830
            self.reduce_ = strategy;
C
chengduo 已提交
1831
          },
1832
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
1833 1834
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
1835
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
1836 1837
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
1838
                Default is 'AllReduce'.
F
flame 已提交
1839 1840 1841 1842 1843 1844 1845 1846

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1847 1848 1849 1850 1851
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1852 1853
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1854
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1855
          },
1856 1857
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
1858 1859
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
1860
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
1861 1862 1863 1864 1865

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1894
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1909
                   )DOC")
Y
yuyang18 已提交
1910 1911 1912 1913
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1914 1915
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1916
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1917
          },
1918
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
1919
                writing the SSA Graph to file in the form of graphviz.
1920
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
1921 1922 1923 1924 1925 1926

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1927 1928
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1929
                    )DOC")
S
sneaxiy 已提交
1930 1931 1932 1933 1934 1935
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1936 1937
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1938 1939
            self.enable_sequential_execution_ = b;
          },
1940 1941
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
1942 1943 1944 1945 1946 1947 1948 1949

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1950 1951 1952 1953 1954 1955
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1956 1957
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1958 1959
            self.remove_unnecessary_lock_ = b;
          },
1960 1961
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
1962 1963 1964 1965 1966 1967 1968 1969

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1970 1971 1972 1973
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1974 1975 1976
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1977 1978
            self.num_trainers_ = num_trainers;
          })
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1991 1992 1993 1994 1995 1996
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1997
      .def_property("use_hierarchical_allreduce",
1998 1999 2000 2001 2002 2003
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2004
      .def_property("hierarchical_allreduce_inter_nranks",
2005 2006 2007 2008 2009 2010 2011
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2012 2013 2014 2015 2016 2017
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2018 2019
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
2020 2021
            self.fuse_elewise_add_act_ops_ = b;
          },
2022
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2023
                to fuse elementwise_add_op and activation_op,
2024
                it may make the execution faster. Default is False.
F
flame 已提交
2025 2026 2027 2028 2029 2030 2031 2032

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy is finlaized."));
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy is finlaized."));
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2074 2075 2076 2077 2078 2079
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2080 2081
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
2082 2083
            self.fuse_relu_depthwise_conv_ = b;
          },
2084
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2085 2086 2087
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2088
                Default is False.
F
flame 已提交
2089 2090 2091 2092 2093 2094 2095 2096

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
2107
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2108 2109 2110 2111
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2112 2113 2114 2115 2116 2117 2118 2119 2120
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2121 2122
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2123 2124
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2125 2126
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2127 2128
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
2129 2130
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2131 2132 2133 2134
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2135 2136
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
2137 2138
            self.sync_batch_norm_ = b;
          },
2139
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2140 2141 2142
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2143 2144
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2145 2146 2147 2148 2149 2150 2151 2152

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2153 2154
      .def_property(
          "memory_optimize",
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
H
hong 已提交
2170 2171
                  "BuildStrategy.memory_optimize must be None, False or "
                  "True");
2172 2173
            }
          },
2174
          R"DOC((bool, optional): memory opitimize aims to save total memory
2175
                consumption, set to True to enable it.
2176

2177 2178 2179
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2180
                True means enabling and False means disabling. Default is None.)DOC")
2181 2182 2183
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2184 2185 2186 2187 2188 2189 2190 2191 2192
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2193 2194 2195
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2196
      .def_property(
D
dzhwinter 已提交
2197 2198 2199
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2200 2201
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2202 2203 2204 2205
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2206
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2207 2208 2209 2210 2211 2212 2213
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2214 2215 2216 2217
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2218 2219 2220 2221 2222 2223 2224 2225 2226
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2227
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2228
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2229 2230 2231 2232 2233
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2234 2235

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2236
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2237
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2238
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2239 2240 2241 2242
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2243 2244 2245 2246 2247
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2248 2249 2250
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2251 2252 2253 2254
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2255 2256 2257 2258 2259 2260 2261
      .def("run",
           [](ParallelExecutor &self,
              const std::vector<std::string> &fetch_tensors) {
             pybind11::gil_scoped_release release;
             return self.Run(fetch_tensors);
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2262

D
dongdaxiang 已提交
2263
  BindFleetWrapper(&m);
2264
  BindGlooWrapper(&m);
H
hutuxian 已提交
2265
  BindBoxHelper(&m);
H
hutuxian 已提交
2266 2267 2268
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2269
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2270
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2271
#endif
F
flame 已提交
2272 2273
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2274
  BindInferenceApi(&m);
2275
  BindDataset(&m);
2276 2277 2278
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2279
}
2280
}  // namespace pybind
2281
}  // namespace paddle