pybind.cc 165.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
49
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/op_info.h"
51
#include "paddle/fluid/framework/op_registry.h"
52
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/framework/parallel_executor.h"
54
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
56
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
57
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/framework/scope_pool.h"
59
#include "paddle/fluid/framework/selected_rows_utils.h"
60
#include "paddle/fluid/framework/tensor_util.h"
61
#include "paddle/fluid/framework/trainer.h"
62
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
63
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
64
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
65
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
66
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
67
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
68
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
69
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
70
#include "paddle/fluid/operators/py_func_op.h"
71
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
72
#include "paddle/fluid/platform/cpu_info.h"
73
#include "paddle/fluid/platform/device/device_wrapper.h"
74
#include "paddle/fluid/platform/device_context.h"
75
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/platform/enforce.h"
77
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
78
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
79 80
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
81 82 83
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
84
#include "paddle/fluid/pybind/cuda_streams_py.h"
85
#include "paddle/fluid/pybind/distributed_py.h"
86
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
87
#include "paddle/fluid/pybind/imperative.h"
88
#include "paddle/fluid/pybind/io.h"
89 90
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
91
#include "paddle/utils/none.h"
92 93 94
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
95
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
96
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
97
#include "paddle/fluid/pybind/box_helper_py.h"
98
#include "paddle/fluid/pybind/communication.h"
99
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
100
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
101
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
102
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
103
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
104
#include "paddle/fluid/pybind/generator_py.h"
105
#include "paddle/fluid/pybind/global_value_getter_setter.h"
106
#include "paddle/fluid/pybind/gloo_context_py.h"
107
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
108
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
109
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
110
#include "paddle/fluid/pybind/ir.h"
111
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
112
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
113
#include "paddle/fluid/pybind/pybind_boost_headers.h"
114

115
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
116
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
117
#endif
118
#include "paddle/fluid/framework/data_type.h"
119 120
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
121
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
122
#include "paddle/fluid/pybind/tensor_py.h"
123
#include "paddle/fluid/string/to_string.h"
124 125
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
126
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
127
#endif
128
#ifndef PADDLE_WITH_HIP
129
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
130
#endif
131
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
132 133
#endif

134
#ifdef PADDLE_WITH_ASCEND_CL
135
#include "paddle/fluid/platform/collective_helper.h"
136 137
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
138 139
#endif

140
#ifdef PADDLE_WITH_XPU
141
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
142
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
143 144
#endif

145
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
146

J
jianghaicheng 已提交
147
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
148 149
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
150
#endif
151

152 153 154 155
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
156 157 158 159
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
160
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
161 162 163
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
164 165
#include "pybind11/stl.h"

166
DECLARE_bool(use_mkldnn);
167

Q
Qiao Longfei 已提交
168 169
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
170 171 172
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
173

174
namespace paddle {
175
namespace pybind {
176 177

PyTypeObject *g_place_pytype = nullptr;
0
0x45f 已提交
178
PyTypeObject *g_framework_scope_pytype = nullptr;
179 180 181 182 183
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
184
PyTypeObject *g_mluplace_pytype = nullptr;
185
PyTypeObject *g_framework_tensor_pytype = nullptr;
186
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
187

188
bool IsCompiledWithCUDA() {
189 190 191 192 193 194 195
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

196 197 198 199 200 201 202 203
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

204 205
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
206 207 208 209 210 211
  return false;
#else
  return true;
#endif
}

212 213 214 215 216 217 218 219
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

220 221 222 223 224 225 226 227
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

228 229 230 231 232 233 234 235
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
236 237 238 239 240 241 242 243
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

244 245 246 247 248 249 250 251
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

252 253 254 255 256 257 258 259
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

260 261 262 263 264 265 266 267
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

268 269 270 271 272 273 274 275
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

276 277 278 279 280 281 282 283 284 285 286
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

287 288 289 290 291 292 293 294 295 296 297
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

315
bool IsCompiledWithBrpc() {
316
#ifndef PADDLE_WITH_DISTRIBUTE
317 318
  return false;
#endif
319
  return true;
320 321
}

Y
update  
Yancey1989 已提交
322
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
323
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
324 325 326 327 328 329
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
330 331 332 333 334 335 336
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
337
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
338 339
}

H
hong 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
362 363 364
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
378 379
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
380 381
    }
    vec_res.emplace_back(
382
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
383 384 385 386 387 388 389 390 391 392 393 394
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
395 396
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
397 398 399 400 401 402 403 404 405 406 407 408
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
409 410 411
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
412 413 414 415
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
416 417
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
418 419 420 421
  }
  return vec_res;
}

422 423 424 425 426 427 428 429
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
430 431
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
432 433 434 435 436 437 438 439 440 441 442 443 444
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
445 446 447
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
448 449 450 451 452
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
453 454 455 456 457
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
458 459
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
460 461 462
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
463 464 465 466
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
467
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
468 469
        tensor_temp->mutable_data(
            exe->GetPlace(),
470
            framework::TransToPhiDataType(var_desc.GetDataType()));
471 472 473
      }
    }
  } else {
474 475
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
476 477 478 479 480
  }

  return;
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
505 506 507 508
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
509
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
510 511 512 513 514 515 516 517
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
518 519 520 521 522 523 524 525 526 527 528
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

529 530 531 532 533 534
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
535
  BindImperative(&m);
536
  BindEager(&m);
537 538
  BindCudaStream(&m);

Y
Yu Yang 已提交
539 540 541
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
542
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
543

544 545
  AssertStaticGraphAndDygraphGradMakerNoDiff();

546
  m.doc() = "C++ core of PaddlePaddle";
547

548 549 550 551
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

552
  BindException(&m);
Y
Yu Yang 已提交
553

554 555
  m.def("set_num_threads", &platform::SetNumThreads);

556 557
  m.def("disable_signal_handler", &DisableSignalHandler);

558 559 560 561 562 563 564 565
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

566
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
567
  m.def("cudnn_version", &platform::DnnVersion);
568 569 570 571 572 573
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
574
#endif
575

Z
Zeng Jinle 已提交
576 577 578 579
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

580 581 582 583 584 585 586 587 588 589
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
590 591
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
592 593
#endif

Z
Zeng Jinle 已提交
594 595 596 597
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
598 599 600
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
601 602 603 604 605 606

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
607 608
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
609
    framework::Tensor tensor;
6
633WHU 已提交
610

S
Siming Dai 已提交
611
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
612 613
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
614
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
615
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
616 617 618 619 620
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
621

622 623 624 625 626 627
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

628 629 630 631 632 633
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
634 635
  });

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
661 662
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
663 664
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
665 666
  });

S
sneaxiy 已提交
667
  m.def(
S
sneaxiy 已提交
668
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
669 670 671 672
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
673 674 675
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
  m.def("_get_all_register_op_kernels",
        [](const std::string &lib) {
          std::unordered_map<std::string, std::vector<std::string>>
              all_kernels_info;
          if (lib == "fluid" || lib == "all") {
            auto &all_kernels =
                paddle::framework::OperatorWithKernel::AllOpKernels();

            for (auto &kernel_pair : all_kernels) {
              auto op_type = kernel_pair.first;
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                paddle::framework::OpKernelType kernel_type = info_pair.first;
                kernel_types.emplace_back(
                    paddle::framework::KernelTypeToString(kernel_type));
              }
              all_kernels_info.emplace(op_type, kernel_types);
693 694
            }
          }
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
          if (lib == "phi" || lib == "all") {
            auto phi_kernels = phi::KernelFactory::Instance().kernels();
            for (auto &kernel_pair : phi_kernels) {
              auto op_type = phi::TransToFluidOpName(kernel_pair.first);
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                framework::OpKernelType kernel_type =
                    framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
                auto kernel_type_str =
                    framework::KernelTypeToString(kernel_type);
                if (all_kernels_info.count(op_type)) {
                  if (std::find(all_kernels_info[op_type].begin(),
                                all_kernels_info[op_type].end(),
                                kernel_type_str) ==
                      all_kernels_info[op_type].end()) {
                    all_kernels_info[op_type].emplace_back(kernel_type_str);
                  }
                } else {
                  kernel_types.emplace_back(kernel_type_str);
714 715
                }
              }
716 717 718
              if (!kernel_types.empty()) {
                all_kernels_info.emplace(op_type, kernel_types);
              }
719 720 721
            }
          }

722 723 724 725
          return all_kernels_info;
        },
        py::arg("lib") = "all",
        R"DOC(
726 727 728
           Return the registered kernels in paddle.

           Args:
729
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
730
           )DOC");
731

S
sneaxiy 已提交
732 733 734
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
735
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
736

737
  m.def("_set_fuse_parameter_group_size",
738
        &paddle::framework::ir::SetFuseParameterGroupsSize);
739
  m.def("_set_fuse_parameter_memory_size",
740
        &paddle::framework::ir::SetFuseParameterMemorySize);
741

S
sneaxiy 已提交
742 743 744
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

745 746
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

747 748 749
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

750 751 752 753 754
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
755 756
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
757 758 759 760
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
761
      .def("_is_initialized",
762
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
763
      .def("_get_dims",
764
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
765
      .def("_set_dims",
766
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
767
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
768
           })
Y
yuyang18 已提交
769
      .def("_set_layout",
770
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
771 772
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
773
      .def("_alloc_float",
774
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
775
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
776
           })
777
      .def("_alloc_float",
778
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
779 780
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
781
      .def("_alloc_float",
782
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
783
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
784
           })
785 786 787 788
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
789 790 791 792
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
793
      .def("_alloc_double",
794
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
795 796
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
797
      .def("_alloc_int",
798
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
799
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
800
           })
801
      .def("_alloc_int",
802
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
803 804
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
805
      .def("_alloc_int",
806
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
807
             self.mutable_data<int>(place);
Q
qijun 已提交
808
           })
809 810 811 812
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
813
      .def("_alloc_int",
814 815
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
816 817
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
818
      .def("_alloc_float",
819 820
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
821 822
             self.mutable_data<float>(place);
           })
823
      .def("_mutable_data",
824
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
825
              paddle::framework::proto::VarType::Type type) {
826 827
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
828
           })
829
      .def("_mutable_data",
830
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
831
              paddle::framework::proto::VarType::Type type) {
832 833
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
834
           })
835
      .def("_mutable_data",
836
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
837
              paddle::framework::proto::VarType::Type type) {
838 839
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
840 841
           })
      .def("_mutable_data",
842
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
843
              paddle::framework::proto::VarType::Type type) {
844 845
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
846
           })
847 848 849
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
850 851
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
852
           })
853
      .def("_clear", &framework::Tensor::clear)
854 855 856
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
857 858
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
859
           })
Z
Zeng Jinle 已提交
860 861 862 863 864 865 866 867 868 869
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
870 871
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
872
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
873
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
874
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
875
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
876 877
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
878
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
879
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
880 881
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
882 883
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
884 885
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
886
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
887 888
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
889
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
890 891 892
        
        Args:
          lod (numpy.ndarray): The data to set.
893
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
894
          Tensor is to be set.
895 896
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
897 898 899 900 901 902 903 904 905 906

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

907
                t = fluid.Tensor()
L
Leo Chen 已提交
908 909
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
910

911 912 913
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
914
           Return the shape of Tensor.
L
Leo Chen 已提交
915 916

           Returns:
917
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
918 919 920 921 922 923 924 925


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

926
                  t = fluid.Tensor()
L
Leo Chen 已提交
927 928 929
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
930
      .def("_to_dlpack",
931
           [](framework::Tensor &self) {
6
633WHU 已提交
932
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
933
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
951 952 953 954
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
955
      .def("_place", [](framework::Tensor &self) { return self.place(); })
956 957 958 959
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
960
      .def("_layout",
961 962 963 964
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
965
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
985 986
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
987 988 989 990
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
991
      .def("__init__",
992 993
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
994
           })
G
gongweibao 已提交
995
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
996 997
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
998 999 1000
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1001
      .def("set_lod",
1002 1003
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1004
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1005
             LoD new_lod;
1006 1007
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1008 1009
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1010 1011
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1012
             self.set_lod(new_lod);
S
sneaxiy 已提交
1013 1014
           },
           py::arg("lod"), R"DOC(
1015
           Set LoD of the Tensor.
S
sneaxiy 已提交
1016 1017

           Args:
L
Leo Chen 已提交
1018 1019 1020 1021
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1022 1023 1024 1025 1026 1027 1028

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1029
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1030 1031
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1032
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1033
           )DOC")
1034
      .def("set_recursive_sequence_lengths",
1035 1036
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1037 1038 1039 1040 1041 1042 1043 1044
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1045 1046
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1047
                 platform::errors::InvalidArgument(
1048 1049
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1050 1051 1052
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1053
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1054 1055
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1056
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1057

L
Leo Chen 已提交
1058
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1059
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1060
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1061 1062

           Args:
L
Leo Chen 已提交
1063 1064 1065 1066
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1067 1068 1069 1070 1071 1072 1073

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1074
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1075 1076
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1077
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1078
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1079
           )DOC")
1080
      .def("lod",
1081
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1082 1083 1084 1085 1086 1087
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1088 1089
           },
           R"DOC(
1090
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1091 1092

           Returns:
1093
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1094
           
Z
Zeng Jinle 已提交
1095 1096 1097 1098 1099 1100
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1101
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1102 1103 1104
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1105
           )DOC")
G
gongweibao 已提交
1106
      // Set above comments of set_lod.
1107
      .def("recursive_sequence_lengths",
1108
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1109
             // output the length-based lod info
1110
             LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
1111 1112 1113 1114
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1115 1116
           },
           R"DOC(
L
Leo Chen 已提交
1117
           Return the recursive sequence lengths corresponding to of the LodD 
1118
           of the Tensor.
S
sneaxiy 已提交
1119 1120

           Returns:
L
Leo Chen 已提交
1121
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1122 1123 1124 1125 1126 1127 1128

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1129
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1130 1131 1132
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1133 1134
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1135
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1136
             // Check that the lod info is valid and match the outermost
1137
             // dimension of the Tensor data
S
sneaxiy 已提交
1138 1139 1140
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1141
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1142 1143

           Returns:
L
Leo Chen 已提交
1144
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1145 1146 1147 1148 1149 1150 1151

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1152
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1153 1154 1155
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1156
           )DOC")
L
Leo Chen 已提交
1157
      .def("_as_type",
1158
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1159
              paddle::framework::proto::VarType::Type type) {
1160
             framework::Tensor dst;
L
Leo Chen 已提交
1161 1162 1163 1164 1165
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1179
#ifdef _WIN32
1180
           });
1181 1182 1183
#else
           })
      .def(py::pickle(
1184
          [](const framework::Tensor &t) {  // __getstate__
1185
            auto holder = t.Holder();
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1198 1199 1200
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1201 1202
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1203 1204 1205
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1206
              throw std::runtime_error("Invalid Tensor state!");
1207 1208

            // 1. Create a new C++ instance
1209
            framework::Tensor tensor;
1210 1211 1212 1213 1214

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1215 1216
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1217 1218

            // 3. Maintain global fd set
1219
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1220 1221
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1222 1223 1224
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1225
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1226
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1227 1228 1229 1230 1231
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1232

1233
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1234
      .def("__init__",
1235 1236
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1237
           })
Q
qijun 已提交
1238
      .def("__init__",
1239
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1240
              const int64_t &height) {
1241
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1242 1243
           })
      .def("get_tensor",
1244
           [](phi::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1245
           py::return_value_policy::reference)
1246
      .def("numel",
1247
           [](phi::SelectedRows &self) -> int64_t {
1248 1249
             return self.value().numel();
           })
1250 1251
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1252
      .def("set_rows",
1253
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1254
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1255 1256 1257 1258 1259 1260
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1261
      .def("sync_index",
1262 1263
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1264 1265 1266 1267 1268
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1269
      });
Q
qijun 已提交
1270

1271
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1272 1273 1274

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1275
      .def(py::init<>())
1276
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1277
      .def("set_int",
1278 1279
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1280 1281 1282 1283 1284 1285 1286
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1287
      .def("get_tensor",
1288 1289
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1290 1291
           },
           py::return_value_policy::reference)
1292 1293 1294 1295
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1308 1309 1310
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1311
      .def("get_selected_rows",
1312 1313
           [](Variable &self) -> phi::SelectedRows * {
             return self.GetMutable<phi::SelectedRows>();
Q
qijun 已提交
1314 1315
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1316 1317 1318
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1319 1320 1321
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1322
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1323 1324 1325 1326 1327
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1328
#endif
Y
Refine  
Yu Yang 已提交
1329 1330
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1331 1332 1333 1334
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1335 1336
             return self.GetMutable<framework::ReaderHolder>();
           },
1337
           py::return_value_policy::reference)
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1349 1350 1351 1352
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1353

S
sneaxiy 已提交
1354
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1355

0
0x45f 已提交
1356
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1370
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1371 1372 1373 1374 1375
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1376 1377 1378
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1379 1380
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1381
      .def("var",
1382
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1383
             return self.Var(name);
Y
Yu Yang 已提交
1384
           },
S
sneaxiy 已提交
1385 1386
           py::arg("name"),
           R"DOC(
1387
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1388

1389
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1390
           current scope, the variable would be created. Otherwise,
1391
           return the existing variable.
S
sneaxiy 已提交
1392 1393

           Args:
1394 1395
               name (str): the variable name.

S
sneaxiy 已提交
1396
           Returns:
1397
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1398 1399 1400 1401
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1402
           Find variable named :code:`name` in the current scope or
1403
           its parent scope. Return None if not found. 
1404

S
sneaxiy 已提交
1405 1406
           Args:
               name (str): the variable name.
1407

S
sneaxiy 已提交
1408
           Returns:
1409
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1410
           )DOC",
1411
           py::return_value_policy::reference)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1424
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1425 1426 1427 1428 1429 1430
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1431
           py::return_value_policy::reference)
S
sneaxiy 已提交
1432 1433 1434
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1435 1436
           )DOC")
      .def("_kids", &Scope::kids);
1437

S
sneaxiy 已提交
1438 1439 1440 1441 1442 1443
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1444 1445
        R"DOC(
        Create a new scope.
1446

S
sneaxiy 已提交
1447 1448 1449
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1450 1451
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1452 1453
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1454 1455
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1456 1457 1458 1459
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1460 1461
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1462 1463
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1464 1465 1466
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1467 1468
    return ret_values;
  });
1469 1470 1471 1472 1473 1474 1475 1476
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1477
              res = op_checker->GetDefaultAttrsMap();
1478 1479 1480 1481
            }
          }
          return res;
        });
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1498 1499 1500
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1501 1502 1503 1504 1505
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1506 1507 1508
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1523
  m.def("prune", [](const ProgramDesc &origin,
1524
                    const std::set<std::string> &feeded_var_names,
1525
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1526
    ProgramDesc prog_with_targets(origin);
1527

1528
    for (const auto &t : targets) {
1529
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1530
    }
1531
    proto::ProgramDesc pruned_desc;
1532 1533 1534 1535
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1536
  });
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1554 1555 1556 1557
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1558 1559 1560
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1561 1562
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1563

Q
qijun 已提交
1564
  // clang-format off
Y
Yu Yang 已提交
1565
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1566 1567
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1568
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1583
                  })
1584 1585 1586 1587 1588 1589 1590 1591 1592
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1619 1620
#endif
                  })
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1633
      .def_static("create",
D
dzhwinter 已提交
1634
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1635
                      -> paddle::platform::DeviceContext* {
1636
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1637 1638 1639 1640
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1641
#else
W
Wilber 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1657
#endif
C
chengduoZH 已提交
1658 1659 1660 1661
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1662
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1663 1664 1665 1666
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1667 1668 1669 1670
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1671
// clang-format on
1672
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1673 1674
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1675 1676 1677
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1678
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1692
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1706
    devices = phi::DeviceManager::GetAllDeviceList();
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1720
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  py::class_<platform::CustomPlace>(m, "CustomPlace",
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

1757 1758
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
1759
               int dev_count = static_cast<int>(
1760
                   phi::DeviceManager::GetDeviceCount(device_type));
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
1808
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1809 1810 1811 1812 1813

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1814
    The memory of CUDAPlace with different dev_id is not accessible.
1815 1816 1817 1818 1819 1820 1821 1822
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1823 1824 1825 1826

    Examples:
        .. code-block:: python

1827 1828 1829
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1830

1831 1832 1833
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1834 1835
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1836
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1837 1838 1839 1840 1841 1842 1843 1844
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1845 1846
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1847 1848 1849 1850 1851 1852 1853 1854
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1855 1856
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1857 1858 1859 1860
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1861 1862
             new (&self) platform::CUDAPlace(dev_id);
#else
1863 1864 1865 1866 1867 1868 1869 1870 1871
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1872 1873
#endif
           })
1874
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1875 1876
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1877 1878 1879 1880
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1881
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1882
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1883
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1884 1885
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1886 1887 1888
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1889
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1890
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1891

1892
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1893 1894 1895 1896 1897
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1898 1899 1900
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1939
#ifdef PADDLE_WITH_XPU
1940 1941 1942 1943 1944 1945 1946
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1947 1948 1949
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1950
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1951
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1952
#ifdef PADDLE_WITH_XPU
1953 1954 1955
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1956
      .export_values();
1957
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1958 1959
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1960 1961 1962 1963 1964
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1965 1966
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1967 1968
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1969
    return platform::get_xpu_version(place.device) >
1970
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1971 1972 1973
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1974
    return platform::get_xpu_version(place.device) >
1975
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1976
  });
1977
#endif
1978

1979
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1980
    CPUPlace is a descriptor of a device.
1981
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1982 1983 1984 1985

    Examples:
        .. code-block:: python

1986 1987
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1988

1989 1990 1991
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1992 1993
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1994
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1995
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1996 1997 1998 1999
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
2000
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
2001
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
2002

2003 2004
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2005 2006 2007 2008 2009 2010
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2011 2012 2013 2014

    Examples:
        .. code-block:: python

2015 2016
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2017

2018 2019 2020 2021
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2022
      .def("__init__",
S
sneaxiy 已提交
2023
           [](platform::CUDAPinnedPlace &self) {
2024
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2025 2026 2027
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2028
#endif
S
sneaxiy 已提交
2029
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2030
           })
S
sneaxiy 已提交
2031 2032 2033 2034
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2035 2036
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2037 2038
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2039 2040 2041 2042
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2043
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2044 2045
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2046
  // NPUPlace
2047
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2048 2049 2050 2051 2052 2053 2054 2055
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2056 2057 2058
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2090
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2105 2106
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2107 2108
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2230 2231 2232
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2233 2234 2235 2236
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2237
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2238
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2239
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2240
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2241
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2242 2243
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2244 2245
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2246 2247
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2248 2249
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2250 2251
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2252 2253 2254 2255
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2256 2257
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2258 2259 2260
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2261 2262 2263 2264 2265
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2266 2267
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2268 2269
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2270 2271 2272 2273
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2274 2275 2276 2277
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2278
      .def("set_place",
D
dzhwinter 已提交
2279
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2280
             self = gpu_place;
C
chengduoZH 已提交
2281
           })
2282 2283 2284 2285 2286
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2287 2288 2289 2290
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2291 2292 2293 2294
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2295 2296 2297 2298
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2299 2300 2301 2302
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2303 2304
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2305

Y
Yu Yang 已提交
2306
  py::class_<OperatorBase>(m, "Operator")
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2321
      .def("run",
2322
           [](OperatorBase &self, const Scope &scope,
2323 2324 2325 2326
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2327 2328
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2329 2330 2331 2332
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2333 2334
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2335 2336 2337 2338
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2339 2340
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2341 2342 2343 2344
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2345 2346 2347
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2348
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2349 2350
             self.Run(scope, place);
           })
2351 2352 2353 2354 2355 2356
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2357 2358 2359 2360 2361 2362 2363
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2364 2365
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2366
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2367
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2368 2369 2370 2371
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2372

2373 2374 2375
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2376 2377 2378 2379 2380 2381 2382
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2383 2384
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2385

2386 2387
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2388
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2389
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2390
      .def("close", &Executor::Close)
2391 2392
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2393 2394
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2395 2396 2397 2398
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2399
             pybind11::gil_scoped_release release;
2400 2401 2402 2403 2404 2405 2406
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2407 2408 2409
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2410
              std::map<std::string, FetchType *> *fetch_targets,
2411 2412 2413 2414 2415 2416 2417 2418
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2419
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2420 2421 2422 2423 2424 2425 2426
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2437
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2438 2439
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2440
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2441 2442
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2443
      });
S
sneaxiy 已提交
2444

2445
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2446
      .def(py::init<>())
2447 2448 2449 2450 2451
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2452

2453
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2454 2455 2456
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2457
           [](StandaloneExecutor &self,
H
hong 已提交
2458
              const std::unordered_map<std::string, py::array> &input_dict,
2459
              std::vector<std::string> fetch_names) {
2460
             std::vector<framework::LoDTensor> feed_tensors;
2461
             std::vector<std::string> feed_names;
H
hong 已提交
2462 2463 2464 2465 2466

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2467 2468
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2469 2470
             }

2471 2472 2473 2474 2475 2476 2477 2478 2479
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2480
              const std::unordered_map<std::string, framework::LoDTensor>
2481 2482
                  &input_dict,
              std::vector<std::string> fetch_names) {
2483
             std::vector<framework::LoDTensor> feed_tensors;
2484 2485 2486 2487 2488 2489 2490
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2491 2492 2493 2494
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2495
             }
W
wanghuancoder 已提交
2496
             return py::cast(std::move(ret));
2497
           })
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2508 2509 2510
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2511
             std::vector<framework::LoDTensor> feed_tensors;
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2522
             framework::interpreter::CostInfo cost_info;
2523 2524 2525 2526 2527
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2528 2529
           });

D
dzhwinter 已提交
2530
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2531
  m.def("init_glog", framework::InitGLOG);
2532 2533
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2534
  m.def("init_devices", []() { framework::InitDevices(); });
2535

2536
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2537
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2538
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2539
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2540
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2541
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2542
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2543
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2544
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2545
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2546
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2547
  m.def("supports_bfloat16", SupportsBfloat16);
2548
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2549 2550
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2551
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2552
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2553
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2554 2555 2556
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2576 2577 2578 2579 2580 2581 2582
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2592
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2593 2594
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2595
    return platform::GetGPUComputeCapability(place.device) >= 53;
2596 2597
  });
#endif
2598

S
Steffy-zxf 已提交
2599 2600 2601 2602 2603 2604
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2605 2606 2607 2608 2609
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2610
            return py::cast(BOOST_GET(LoDTensor, var));
2611
          } else {
2612
            return py::cast(BOOST_GET(LoDTensorArray, var));
2613 2614
          }
        });
2615
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2616

X
Xin Pan 已提交
2617 2618
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2619 2620 2621 2622
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2623
  BindCostModel(&m);
2624
  BindConstValue(&m);
2625
  BindGlobalValueGetterSetter(&m);
2626
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2627
  BindFleetExecutor(&m);
2628
  BindTCPStore(&m);
Y
Yu Yang 已提交
2629

Y
Yu Yang 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2639
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2640
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2641 2642 2643

    Examples:
        .. code-block:: python
2644

Z
Zeng Jinle 已提交
2645 2646 2647
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2648 2649 2650 2651
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2652 2653
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2654 2655 2656 2657 2658 2659
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2660 2661 2662 2663
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2664 2665 2666
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2667 2668 2669 2670 2671 2672
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2673 2674
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2675 2676 2677 2678 2679 2680
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2703

2704 2705 2706 2707 2708 2709 2710 2711
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2712
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2713 2714
                 res[i] = py::cast(std::move(data));
               } else {
2715
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2731
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2732 2733 2734 2735 2736 2737 2738 2739
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2740
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2741 2742 2743 2744 2745 2746 2747 2748 2749
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2750 2751
        )DOC")
      .def("_move_to_list",
2752
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2753 2754 2755 2756
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2757
                 if (data_is_lod_tensor(self[i][j])) {
2758
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2759 2760
                   tmp[j] = py::cast(std::move(var));
                 } else {
2761
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2762 2763 2764 2765 2766 2767
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2777
  m.def("op_support_gpu", OpSupportGPU);
2778
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2779
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2780 2781 2782 2783 2784 2785 2786 2787
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2788 2789 2790 2791 2792 2793 2794
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2820
      });
D
dangqingqing 已提交
2821

2822
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2823 2824 2825
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2826 2827 2828 2829
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2830
#endif
P
peizhilin 已提交
2831
#endif
Y
Yu Yang 已提交
2832

2833 2834
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2835
  m.def("npu_finalize", []() {
2836 2837
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2838 2839 2840
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2841
      platform::NPUDeviceGuard guard(devices[i]);
2842 2843 2844 2845
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2866 2867 2868 2869
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2870 2871 2872 2873
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2874 2875 2876 2877 2878 2879
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2880 2881 2882 2883
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2884
      .value("kAll", platform::ProfilerState::kAll)
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2896
  m.def("set_tracer_option", platform::SetTracerOption);
2897 2898
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2899
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2900
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2901
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2902 2903
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2904 2905 2906
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2907
    callable.inc_ref();
2908 2909 2910 2911 2912 2913 2914 2915
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2916
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2917 2918 2919
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2920

2921
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
      .def("get_data", &paddle::platform::ProfilerResult::GetData,
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
                     &paddle::platform::HostPythonNode::device_node_ptrs);

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
      .def("create", &paddle::platform::Profiler::Create,
           py::return_value_policy::take_ownership)
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
      .def("stop",
           [](paddle::platform::Profiler *profiler) {
             platform::DisableHostEventRecorder();
             return profiler->Stop();
           },
           py::return_value_policy::automatic_reference);

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3004

3005
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3006 3007
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3008 3009
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3010
#endif  // PADDLE_WITH_CUDA
3011 3012
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3013

3014 3015 3016
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3017 3018
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3019
      .def("has", &ir::Pass::Has)
3020 3021 3022
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3023
           })
3024
      .def(
3025
          "set",
3026 3027 3028
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
3029 3030
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
3031 3032
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
3033 3034 3035 3036 3037
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3052 3053
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3054
        self.Apply(graph.get());
F
flame 已提交
3055
      });
3056

X
fix  
Xin Pan 已提交
3057 3058
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3073
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3074
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3075 3076 3077 3078
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3079 3080 3081
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3082 3083 3084
    Examples:
        .. code-block:: python

3085 3086 3087 3088 3089 3090 3091 3092 3093
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3094

3095 3096
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3097

3098
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3099 3100
          sgd_optimizer.minimize(avg_loss)

3101
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3102 3103
          exec_strategy.num_threads = 4

3104 3105 3106
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3107 3108
        )DOC");

3109 3110 3111 3112
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3113

Y
yuyang18 已提交
3114
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3115 3116 3117 3118 3119
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3120
          },
3121 3122
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3123 3124 3125 3126 3127 3128 3129
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3143
      .def_property(
3144 3145
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3146
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3147 3148 3149
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3150 3151 3152 3153 3154
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3155 3156 3157
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3158 3159
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3160 3161 3162 3163 3164 3165 3166
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3167 3168 3169 3170
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3171
                because the temp variable's shape maybe the same between two iterations.
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3182

3183 3184 3185 3186 3187 3188 3189
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3190
              )DOC")
Q
Qiao Longfei 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3212
              )DOC")
3213 3214 3215 3216 3217 3218 3219 3220
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3221 3222 3223 3224 3225
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3226

Y
yuyang18 已提交
3227
  exec_strategy.def_property(
Y
yuyang18 已提交
3228 3229 3230 3231 3232 3233 3234
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3235 3236
      });

C
chengduo 已提交
3237 3238 3239 3240
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3241 3242 3243
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3244 3245 3246
    Examples:
        .. code-block:: python

3247
            import os
3248 3249 3250 3251
            import paddle
            import paddle.static as static

            paddle.enable_static()
3252

3253 3254
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3255

3256 3257 3258 3259
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3260

3261
            build_strategy = static.BuildStrategy()
3262 3263
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3264 3265
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3266
            program = program.with_data_parallel(loss_name=loss.name,
3267 3268
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3269
)DOC");
Y
yuyang18 已提交
3270 3271 3272

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3273 3274
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3275 3276 3277 3278 3279 3280 3281 3282
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3283
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3284 3285 3286 3287
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3288 3289 3290 3291
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3292
            self.reduce_ = strategy;
C
chengduo 已提交
3293
          },
3294
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3295 3296
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3297
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3298 3299
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3300
                Default is 'AllReduce'.
F
flame 已提交
3301 3302 3303 3304

                Examples:
                    .. code-block:: python

3305 3306 3307 3308 3309 3310 3311
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3312
                  )DOC")
Y
yuyang18 已提交
3313 3314 3315 3316 3317
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3318 3319 3320 3321
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3322
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3323
          },
3324
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3325
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3326 3327
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3328
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3329 3330 3331 3332

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3333 3334
                        import numpy
                        import os
3335 3336 3337 3338
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3339 3340

                        use_cuda = True
3341 3342
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3343 3344

                        # NOTE: If you use CPU to run the program, you need
3345
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3346 3347 3348 3349 3350 3351
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3352
                            places = static.cpu_places()
C
chengduo 已提交
3353
                        else:
3354
                            places = static.cuda_places()
C
chengduo 已提交
3355

3356 3357 3358 3359
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3360

3361
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3362

3363
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3364
                        build_strategy.gradient_scale_strategy = \
3365 3366 3367
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3368
                                          loss_name=loss.name, build_strategy=build_strategy,
3369
                                          places=places)
C
chengduo 已提交
3370 3371 3372 3373 3374 3375

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3376 3377
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3378
                   )DOC")
Y
yuyang18 已提交
3379 3380 3381 3382
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3383 3384 3385 3386
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3387
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3388
          },
3389
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3390
                writing the SSA Graph to file in the form of graphviz.
3391
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3392 3393 3394 3395

                Examples:
                    .. code-block:: python

3396 3397 3398 3399
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3400

3401 3402
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3403
                    )DOC")
S
sneaxiy 已提交
3404 3405 3406 3407 3408 3409
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3410 3411 3412 3413
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3414 3415
            self.enable_sequential_execution_ = b;
          },
3416 3417
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3418 3419 3420 3421

                Examples:
                    .. code-block:: python

3422 3423 3424 3425 3426 3427
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3428 3429
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3430 3431 3432 3433 3434 3435
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3436 3437 3438 3439
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3440 3441
            self.remove_unnecessary_lock_ = b;
          },
3442 3443
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3444 3445 3446 3447

                Examples:
                    .. code-block:: python

3448 3449 3450 3451 3452 3453
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3454 3455
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3456 3457 3458 3459
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3460
#ifdef WIN32
3461
            PADDLE_THROW(platform::errors::Unavailable(
3462
                "Distribution mode is not supported on Windows platform."));
3463
#endif
3464 3465
            self.num_trainers_ = num_trainers;
          })
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3478 3479 3480 3481 3482 3483
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3484 3485 3486 3487 3488 3489
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3490
      .def_property("use_hierarchical_allreduce",
3491 3492 3493 3494 3495 3496
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3497
      .def_property("hierarchical_allreduce_inter_nranks",
3498 3499 3500 3501 3502 3503 3504
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3505 3506 3507 3508 3509 3510
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3511 3512 3513 3514
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3515 3516
            self.fuse_elewise_add_act_ops_ = b;
          },
3517
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3518
                to fuse elementwise_add_op and activation_op,
3519
                it may make the execution faster. Default is False.
F
flame 已提交
3520 3521 3522 3523

                Examples:
                    .. code-block:: python

3524 3525 3526 3527 3528 3529
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3530 3531
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
3557 3558 3559 3560
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3561
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3562
                              platform::errors::PreconditionNotMet(
3563 3564
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3574 3575 3576 3577 3578 3579
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3580 3581
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3607 3608 3609 3610
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3611
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3612
                              platform::errors::PreconditionNotMet(
3613 3614
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3625 3626 3627 3628 3629 3630
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3631 3632
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3633 3634 3635 3636 3637 3638
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3639 3640 3641 3642
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3643 3644
            self.fuse_relu_depthwise_conv_ = b;
          },
3645
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3646 3647 3648
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3649
                Default is False.
F
flame 已提交
3650 3651 3652 3653

                Examples:
                    .. code-block:: python

3654 3655 3656 3657 3658 3659
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3660 3661
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3662 3663 3664
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3665
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3666 3667
                    },
                    [](BuildStrategy &self, bool b) {
3668 3669 3670 3671
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3672 3673
                      self.fuse_broadcast_ops_ = b;
                    },
3674
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3675 3676 3677 3678
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3679 3680 3681 3682 3683
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3684 3685 3686 3687 3688 3689
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3690 3691
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3692 3693
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3694
                      return self.fuse_all_optimizer_ops_ == true ||
3695
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3696 3697
                    },
                    [](BuildStrategy &self, bool b) {
3698 3699 3700 3701
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3702 3703
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3704 3705 3706 3707
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3708 3709 3710 3711
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3712 3713
            self.sync_batch_norm_ = b;
          },
3714
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3715 3716 3717
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3718 3719
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3720 3721 3722 3723

                Examples:
                    .. code-block:: python

3724 3725 3726 3727 3728 3729
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3730 3731
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3732 3733
      .def_property(
          "memory_optimize",
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3744
              self.memory_optimize_ = paddle::none;
3745 3746 3747
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3748
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3749 3750
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3751 3752
            }
          },
3753
          R"DOC((bool, optional): memory opitimize aims to save total memory
3754
                consumption, set to True to enable it.
3755

3756 3757 3758
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3773 3774 3775
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3776 3777 3778
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3779
              PADDLE_THROW(platform::errors::Unavailable(
3780
                  "Distribution mode is not supported on Windows platform."));
3781 3782 3783 3784 3785
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3786 3787 3788
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3789
      .def_property(
D
dzhwinter 已提交
3790 3791 3792
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3793 3794 3795 3796
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3797 3798
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3799 3800
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3801
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3802
          },
C
chengduo 已提交
3803
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3804 3805 3806 3807 3808 3809 3810
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3811 3812 3813 3814
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3815 3816 3817 3818 3819 3820 3821 3822 3823
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3824 3825 3826 3827 3828 3829
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3830 3831 3832 3833 3834 3835 3836
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3837 3838 3839 3840 3841 3842
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3843
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3844
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3845 3846 3847 3848 3849
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3850

3851 3852 3853 3854 3855 3856
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3857
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3858
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3859
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3860
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3861 3862 3863 3864
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3865 3866 3867 3868 3869
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3870 3871 3872
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3873 3874 3875 3876
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3877 3878
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3879 3880 3881 3882 3883 3884 3885 3886
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3887
               return py::cast(
3888
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3889 3890
             } else {
               return py::cast(std::move(
3891
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3892
             }
3893 3894
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3895

J
jianghaicheng 已提交
3896 3897
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
      .def("get_instance",
           []() {
             return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                 platform::ipu::IpuBackend::GetInstance());
           },
           py::return_value_policy::reference)
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
3909
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
               if (py::isinstance<py::bool_>(element.second)) {
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4031 4032
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4033 4034 4035
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4036 4037
#endif

D
dongdaxiang 已提交
4038
  BindFleetWrapper(&m);
4039
  BindIO(&m);
T
Thunderbrook 已提交
4040

T
Thunderbrook 已提交
4041
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4042
  BindHeterWrapper(&m);
4043
  BindMetrics(&m);
T
Thunderbrook 已提交
4044
#endif
T
Thunderbrook 已提交
4045
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4046
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4047
#endif
4048
  BindGlooWrapper(&m);
H
hutuxian 已提交
4049
  BindBoxHelper(&m);
H
hutuxian 已提交
4050 4051 4052
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4053
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4054
  BindNCCLWrapper(&m);
4055 4056 4057
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4058
#endif
F
flame 已提交
4059 4060
  BindGraph(&m);
  BindNode(&m);
4061
  BindPass(&m);
F
flame 已提交
4062
  BindInferenceApi(&m);
4063
  BindCompatible(&m);
4064
  BindDataset(&m);
Y
yaoxuefeng 已提交
4065
  BindGenerator(&m);
4066 4067 4068
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4069 4070 4071
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4072
  BindAscendDevice(&m);
4073
#endif
Y
Yanghello 已提交
4074 4075 4076
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4077

T
tangwei12 已提交
4078
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4079 4080
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4081
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4082 4083
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4084 4085 4086 4087 4088
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4089 4090 4091 4092
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4093
  BindSparseShardingTools(&m);
4094
#endif
L
Luo Tao 已提交
4095
}
4096
}  // namespace pybind
4097
}  // namespace paddle