pybind.cc 149.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
53
#include "paddle/fluid/framework/pten_utils.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
57
#include "paddle/fluid/framework/selected_rows_utils.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
62
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
63
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
64
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
65
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
66
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
67
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
68
#include "paddle/fluid/operators/py_func_op.h"
69
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
70
#include "paddle/fluid/platform/cpu_info.h"
71
#include "paddle/fluid/platform/device_context.h"
72
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
73
#include "paddle/fluid/platform/enforce.h"
74
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
75
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
76 77
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
78
#include "paddle/fluid/pybind/cuda_streams_py.h"
79
#include "paddle/pten/core/compat/convert_utils.h"
80
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
81
#ifndef PADDLE_ON_INFERENCE
82
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
83
#endif
84
#include "paddle/fluid/pybind/io.h"
85
#include "paddle/utils/none.h"
86 87 88
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
89
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
90
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
91
#include "paddle/fluid/pybind/box_helper_py.h"
92
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
93
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
94
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
95
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
96
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
97
#include "paddle/fluid/pybind/generator_py.h"
98
#include "paddle/fluid/pybind/global_value_getter_setter.h"
99
#include "paddle/fluid/pybind/gloo_context_py.h"
100
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
101
#include "paddle/fluid/pybind/heter_wrapper_py.h"
102
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
103
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
104
#include "paddle/fluid/pybind/ir.h"
105
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
106
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
107
#include "paddle/fluid/pybind/pybind_boost_headers.h"
108

109
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
110
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
111
#endif
112
#include "paddle/fluid/framework/data_type.h"
113 114
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
115
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
116
#include "paddle/fluid/pybind/tensor_py.h"
117
#include "paddle/fluid/string/to_string.h"
118 119
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
120
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
121
#endif
122
#ifndef PADDLE_WITH_HIP
123
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
124
#endif
125
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
126 127
#endif

128
#ifdef PADDLE_WITH_ASCEND_CL
129
#include "paddle/fluid/platform/collective_helper.h"
130 131
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
132 133
#endif

134
#ifdef PADDLE_WITH_XPU
135
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
136
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
137 138
#endif

139
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
140

J
jianghaicheng 已提交
141
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
142 143
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
144
#endif
145

146 147 148 149
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
150 151 152 153
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
154
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
155 156 157
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
158 159
#include "pybind11/stl.h"

160
DECLARE_bool(use_mkldnn);
161

Q
Qiao Longfei 已提交
162 163
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
164 165 166
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
167

168
namespace paddle {
169
namespace pybind {
170 171 172 173 174 175 176

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
177
PyTypeObject *g_mluplace_pytype = nullptr;
178
PyTypeObject *g_framework_tensor_pytype = nullptr;
179
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
180

181
bool IsCompiledWithCUDA() {
182 183 184 185 186 187 188
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

189 190 191 192 193 194 195 196
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

197 198
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
199 200 201 202 203 204
  return false;
#else
  return true;
#endif
}

205 206 207 208 209 210 211 212
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

213 214 215 216 217 218 219 220
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

221 222 223 224 225 226 227 228
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
229 230 231 232 233 234 235 236
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

237 238 239 240 241 242 243 244
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

245 246 247 248 249 250 251 252
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

253 254 255 256 257 258 259 260
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

261 262 263 264 265 266 267 268
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

269 270 271 272 273 274 275 276 277 278 279
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

280 281 282 283 284 285 286 287 288 289 290
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

308
bool IsCompiledWithBrpc() {
309
#ifndef PADDLE_WITH_DISTRIBUTE
310 311
  return false;
#endif
312
  return true;
313 314
}

Y
update  
Yancey1989 已提交
315
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
316
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
317 318 319 320 321 322
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
323 324 325 326 327 328 329
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
330
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
331 332
}

H
hong 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
355 356 357
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
371 372
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
373 374
    }
    vec_res.emplace_back(
375
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
376 377 378 379 380 381 382 383 384 385 386 387
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
388 389
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
390 391 392 393 394 395 396 397 398 399 400 401
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
402 403 404
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
405 406 407 408
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
409 410
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
411 412 413 414
  }
  return vec_res;
}

415 416 417 418 419 420 421 422
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
423 424
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
425 426 427 428 429 430 431 432 433 434 435 436 437
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
438 439 440
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
441 442 443 444 445
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
446 447 448 449 450
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
451 452
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
453 454 455
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
456 457 458 459 460 461 462 463 464
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
465 466
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
467 468 469 470 471
  }

  return;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
496 497 498 499
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
500
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
501 502 503 504 505 506 507 508
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
509 510 511 512 513 514 515 516 517 518 519
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

520 521 522 523 524 525
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
526
#ifndef PADDLE_ON_INFERENCE
527
  BindEager(&m);
W
wanghuancoder 已提交
528
#endif
529 530
  BindCudaStream(&m);

Y
Yu Yang 已提交
531 532 533
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
534
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
535

536 537
  AssertStaticGraphAndDygraphGradMakerNoDiff();

538
  m.doc() = "C++ core of PaddlePaddle";
539

540 541 542 543
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

544
  BindException(&m);
Y
Yu Yang 已提交
545

546 547
  m.def("set_num_threads", &platform::SetNumThreads);

548 549
  m.def("disable_signal_handler", &DisableSignalHandler);

550 551 552 553 554 555 556 557
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

558
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
559
  m.def("cudnn_version", &platform::DnnVersion);
560 561 562 563 564 565
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
566
#endif
567

Z
Zeng Jinle 已提交
568 569 570 571
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

572 573 574 575 576 577 578 579 580 581
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
582 583
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
584 585
#endif

Z
Zeng Jinle 已提交
586 587 588 589
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
590 591 592
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
593 594 595 596 597 598

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
599 600
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
601
    framework::Tensor tensor;
6
633WHU 已提交
602

S
Siming Dai 已提交
603
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
604 605
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
606
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
607
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
608 609 610 611 612
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
613

614 615 616 617 618 619
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

620 621 622 623 624 625
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
626 627
  });

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
653 654 655 656 657 658
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
659
  m.def(
S
sneaxiy 已提交
660
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
661 662 663 664
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
665 666 667
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
            }
            all_kernels_info.emplace(op_type, kernel_types);
          }
        }
        if (lib == "pten" || lib == "all") {
          auto pten_kernels = pten::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : pten_kernels) {
            auto op_type = pten::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPtenKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
                }
              } else {
                kernel_types.emplace_back(kernel_type_str);
              }
            }
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
          }
        }

        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
           Return the registered kernels in paddle.

           Args:
               lib[string]: the libarary, could be 'pten', 'fluid' and 'all'.
           )DOC");
723

S
sneaxiy 已提交
724 725 726
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
727
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
728

729
  m.def("_set_fuse_parameter_group_size",
730
        &paddle::framework::ir::SetFuseParameterGroupsSize);
731
  m.def("_set_fuse_parameter_memory_size",
732
        &paddle::framework::ir::SetFuseParameterMemorySize);
733

S
sneaxiy 已提交
734 735 736
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

737 738
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

739 740 741
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

742
  BindImperative(&m);
743

744 745 746 747 748
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
749 750
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
751 752 753 754
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
755
      .def("_is_initialized",
756
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
757
      .def("_get_dims",
758
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
759
      .def("_set_dims",
760
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
761
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
762
           })
Y
yuyang18 已提交
763
      .def("_set_layout",
764
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
765 766
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
767
      .def("_alloc_float",
768
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
769
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
770
           })
771
      .def("_alloc_float",
772
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
773 774
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
775
      .def("_alloc_float",
776
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
777
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
778
           })
779 780 781 782
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
783 784 785 786
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
787
      .def("_alloc_double",
788
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
789 790
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
791
      .def("_alloc_int",
792
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
793
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
794
           })
795
      .def("_alloc_int",
796
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
797 798
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
799
      .def("_alloc_int",
800
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
801
             self.mutable_data<int>(place);
Q
qijun 已提交
802
           })
803 804 805 806
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
807
      .def("_alloc_int",
808 809
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
810 811
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
812
      .def("_alloc_float",
813 814
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
815 816
             self.mutable_data<float>(place);
           })
817
      .def("_mutable_data",
818
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
819 820 821
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
822
      .def("_mutable_data",
823
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
824 825 826
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
827
      .def("_mutable_data",
828
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
829 830 831 832
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
833
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
834 835 836
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
837 838 839 840 841
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
842
      .def("_clear", &framework::Tensor::clear)
843 844 845 846 847
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
848 849 850 851 852 853 854 855 856 857
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
858 859
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
860
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
861
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
862
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
863
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
864 865
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
866
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
867
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
868 869
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
870 871
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
872 873
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
874
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
875 876
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
877
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
878 879 880
        
        Args:
          lod (numpy.ndarray): The data to set.
881
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
882
          Tensor is to be set.
883 884
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
885 886 887 888 889 890 891 892 893 894

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

895
                t = fluid.Tensor()
L
Leo Chen 已提交
896 897
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
898

899 900 901
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
902
           Return the shape of Tensor.
L
Leo Chen 已提交
903 904

           Returns:
905
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
906 907 908 909 910 911 912 913


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

914
                  t = fluid.Tensor()
L
Leo Chen 已提交
915 916 917
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
918
      .def("_to_dlpack",
919
           [](framework::Tensor &self) {
6
633WHU 已提交
920
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
921
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
939 940 941 942
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
943 944
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
945
      .def("_layout",
946 947 948 949
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
950
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
970 971
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
972 973 974 975
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
976
      .def("__init__",
977 978
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
979
           })
G
gongweibao 已提交
980
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
981 982
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
983 984 985
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
986
      .def("set_lod",
987 988
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
989
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
990
             LoD new_lod;
991 992
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
993 994
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
995 996
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
997
             self.set_lod(new_lod);
S
sneaxiy 已提交
998 999
           },
           py::arg("lod"), R"DOC(
1000
           Set LoD of the Tensor.
S
sneaxiy 已提交
1001 1002

           Args:
L
Leo Chen 已提交
1003 1004 1005 1006
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1007 1008 1009 1010 1011 1012 1013

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1014
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1015 1016
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1017
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1018
           )DOC")
1019
      .def("set_recursive_sequence_lengths",
1020 1021
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1022 1023 1024 1025 1026 1027 1028 1029
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1030 1031
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1032
                 platform::errors::InvalidArgument(
1033 1034
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1035 1036 1037
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1038
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1039 1040
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1041
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1042

L
Leo Chen 已提交
1043
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1044
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1045
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1046 1047

           Args:
L
Leo Chen 已提交
1048 1049 1050 1051
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1052 1053 1054 1055 1056 1057 1058

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1059
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1060 1061
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1062
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1063
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1064
           )DOC")
1065
      .def("lod",
1066
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1067 1068 1069 1070 1071 1072
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1073 1074
           },
           R"DOC(
1075
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1076 1077

           Returns:
1078
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1079
           
Z
Zeng Jinle 已提交
1080 1081 1082 1083 1084 1085
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1086
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1087 1088 1089
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1090
           )DOC")
G
gongweibao 已提交
1091
      // Set above comments of set_lod.
1092
      .def("recursive_sequence_lengths",
1093
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1094
             // output the length-based lod info
1095
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1096 1097 1098 1099
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1100 1101
           },
           R"DOC(
L
Leo Chen 已提交
1102
           Return the recursive sequence lengths corresponding to of the LodD 
1103
           of the Tensor.
S
sneaxiy 已提交
1104 1105

           Returns:
L
Leo Chen 已提交
1106
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1107 1108 1109 1110 1111 1112 1113

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1114
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1115 1116 1117
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1118 1119
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1120
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1121
             // Check that the lod info is valid and match the outermost
1122
             // dimension of the Tensor data
S
sneaxiy 已提交
1123 1124 1125
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1126
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1127 1128

           Returns:
L
Leo Chen 已提交
1129
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1130 1131 1132 1133 1134 1135 1136

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1137
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1138 1139 1140
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1141
           )DOC")
L
Leo Chen 已提交
1142
      .def("_as_type",
1143
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1144
              paddle::framework::proto::VarType::Type type) {
1145
             framework::Tensor dst;
L
Leo Chen 已提交
1146 1147 1148 1149 1150
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1164
#ifdef _WIN32
1165
           });
1166 1167 1168
#else
           })
      .def(py::pickle(
1169
          [](const framework::Tensor &t) {  // __getstate__
1170
            auto holder = t.Holder();
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1183 1184 1185
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1186 1187
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1188 1189 1190
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1191
              throw std::runtime_error("Invalid Tensor state!");
1192 1193

            // 1. Create a new C++ instance
1194
            framework::Tensor tensor;
1195 1196 1197 1198 1199

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1200 1201
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1202 1203

            // 3. Maintain global fd set
1204
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1205 1206
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1207 1208 1209 1210
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1211 1212 1213 1214 1215 1216
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1217

1218
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1219
      .def("__init__",
1220 1221 1222
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1223
      .def("__init__",
1224
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1225
              const int64_t &height) {
1226
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1227 1228
           })
      .def("get_tensor",
1229
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1230
           py::return_value_policy::reference)
1231
      .def("numel",
1232 1233 1234 1235 1236
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1237
      .def("set_rows",
1238
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1239
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1240 1241 1242 1243 1244 1245
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1246 1247 1248
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1249 1250 1251 1252 1253
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1254
      });
Q
qijun 已提交
1255

1256
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1257 1258 1259

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1260
      .def(py::init<>())
1261
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1262
      .def("set_int",
1263 1264
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1265 1266 1267 1268 1269 1270 1271
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1272
      .def("get_tensor",
1273 1274
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1275 1276
           },
           py::return_value_policy::reference)
1277 1278 1279 1280
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1293 1294 1295
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1296
      .def("get_selected_rows",
1297 1298
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1299 1300
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1301 1302 1303
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1304 1305 1306
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1307
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1308 1309 1310 1311 1312
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1313
#endif
Y
Refine  
Yu Yang 已提交
1314 1315
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1316 1317 1318 1319
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1320 1321
             return self.GetMutable<framework::ReaderHolder>();
           },
1322
           py::return_value_policy::reference)
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1334 1335 1336 1337
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1338

S
sneaxiy 已提交
1339
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1340

S
sneaxiy 已提交
1341
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1355
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1356 1357 1358 1359 1360 1361
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1362 1363
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1364
      .def("var",
1365
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1366
             return self.Var(name);
Y
Yu Yang 已提交
1367
           },
S
sneaxiy 已提交
1368 1369
           py::arg("name"),
           R"DOC(
1370
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1371

1372
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1373
           current scope, the variable would be created. Otherwise,
1374
           return the existing variable.
S
sneaxiy 已提交
1375 1376

           Args:
1377 1378
               name (str): the variable name.

S
sneaxiy 已提交
1379
           Returns:
1380
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1381 1382 1383 1384
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1385
           Find variable named :code:`name` in the current scope or
1386
           its parent scope. Return None if not found. 
1387

S
sneaxiy 已提交
1388 1389
           Args:
               name (str): the variable name.
1390

S
sneaxiy 已提交
1391
           Returns:
1392
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1393
           )DOC",
1394
           py::return_value_policy::reference)
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1407
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1408 1409 1410 1411 1412 1413
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1414
           py::return_value_policy::reference)
S
sneaxiy 已提交
1415 1416 1417
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1418 1419
           )DOC")
      .def("_kids", &Scope::kids);
1420

S
sneaxiy 已提交
1421 1422 1423 1424 1425 1426
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1427 1428
        R"DOC(
        Create a new scope.
1429

S
sneaxiy 已提交
1430 1431 1432
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1433 1434
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1435 1436
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1437 1438
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1439 1440 1441 1442
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1443 1444
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1445 1446
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1447 1448 1449
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1450 1451
    return ret_values;
  });
1452 1453 1454 1455 1456 1457 1458 1459
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1460
              res = op_checker->GetDefaultAttrsMap();
1461 1462 1463 1464
            }
          }
          return res;
        });
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1481 1482 1483
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1484 1485 1486 1487 1488
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1489 1490 1491
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1506
  m.def("prune", [](const ProgramDesc &origin,
1507
                    const std::set<std::string> &feeded_var_names,
1508
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1509
    ProgramDesc prog_with_targets(origin);
1510

1511
    for (const auto &t : targets) {
1512
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1513
    }
1514
    proto::ProgramDesc pruned_desc;
1515 1516 1517 1518
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1519
  });
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1537 1538 1539 1540
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1541 1542 1543
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1544 1545
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1546

Q
qijun 已提交
1547
  // clang-format off
Y
Yu Yang 已提交
1548
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1549 1550
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1551
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1566
                  })
1567 1568 1569 1570 1571 1572 1573 1574 1575
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1602 1603
#endif
                  })
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1616
      .def_static("create",
D
dzhwinter 已提交
1617
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1618
                      -> paddle::platform::DeviceContext* {
1619
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1620 1621 1622 1623
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1624
#else
W
Wilber 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1640
#endif
C
chengduoZH 已提交
1641 1642 1643 1644
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1645
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1646 1647 1648 1649
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1650 1651 1652 1653
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1654
// clang-format on
1655
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1656 1657
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1658
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1659 1660 1661 1662 1663

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1664
    The memory of CUDAPlace with different dev_id is not accessible.
1665 1666 1667 1668 1669 1670 1671 1672
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1673 1674 1675 1676

    Examples:
        .. code-block:: python

1677 1678 1679
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1680

1681 1682 1683
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1684 1685
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1686
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1687 1688 1689 1690 1691 1692 1693 1694
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1695 1696
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1697 1698 1699 1700 1701 1702 1703 1704
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1705 1706
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1707 1708 1709 1710
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1711 1712
             new (&self) platform::CUDAPlace(dev_id);
#else
1713 1714 1715 1716 1717 1718 1719 1720 1721
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1722 1723
#endif
           })
1724
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1725 1726
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1727 1728 1729 1730
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1731
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1732
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1733
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1734 1735
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1736 1737 1738
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1739
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1740
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1741

1742
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1743 1744 1745 1746 1747
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1748 1749 1750
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1789
#ifdef PADDLE_WITH_XPU
1790 1791 1792 1793 1794 1795 1796
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1797 1798 1799
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1800
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1801
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1802
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1803 1804 1805
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1806
      .export_values();
1807
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1808 1809
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1810 1811 1812 1813 1814 1815
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1816 1817
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1818 1819
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1820 1821
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1822 1823 1824
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1825 1826
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1827
  });
1828
#endif
1829

1830
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1831
    CPUPlace is a descriptor of a device.
1832
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1833 1834 1835 1836

    Examples:
        .. code-block:: python

1837 1838
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1839

1840 1841 1842
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1843 1844
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1845
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1846
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1847 1848 1849 1850
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1851
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1852
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1853

1854 1855
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1856 1857 1858 1859 1860 1861
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1862 1863 1864 1865

    Examples:
        .. code-block:: python

1866 1867
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1868

1869 1870 1871 1872
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1873
      .def("__init__",
S
sneaxiy 已提交
1874
           [](platform::CUDAPinnedPlace &self) {
1875
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1876 1877 1878
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1879
#endif
S
sneaxiy 已提交
1880
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1881
           })
S
sneaxiy 已提交
1882 1883 1884 1885
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1886 1887
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1888 1889
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1890 1891 1892 1893
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1894
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1895 1896
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1897
  // NPUPlace
1898
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1899 1900 1901 1902 1903 1904 1905 1906
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1907 1908 1909
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1941
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1956 1957
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1958 1959
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2081 2082 2083
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2084 2085 2086 2087
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2088
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2089
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2090
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2091
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2092
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2093 2094
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2095 2096
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2097 2098
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2099 2100
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2101 2102
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2103 2104 2105 2106
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2107 2108
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2109 2110 2111 2112 2113
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2114 2115
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2116 2117 2118 2119
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2120 2121 2122 2123
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2124
      .def("set_place",
D
dzhwinter 已提交
2125
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2126
             self = gpu_place;
C
chengduoZH 已提交
2127
           })
2128 2129 2130 2131 2132
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2133 2134 2135 2136
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2137 2138 2139 2140
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2141 2142 2143 2144
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2145 2146
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2147

Y
Yu Yang 已提交
2148
  py::class_<OperatorBase>(m, "Operator")
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2163
      .def("run",
2164
           [](OperatorBase &self, const Scope &scope,
2165 2166 2167 2168
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2169 2170
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2171 2172 2173 2174
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2175 2176
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2177 2178 2179 2180
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2181 2182
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2183 2184 2185 2186
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2187 2188 2189
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2190
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2191 2192
             self.Run(scope, place);
           })
2193 2194 2195 2196 2197 2198
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2199 2200 2201 2202 2203 2204 2205
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2206 2207
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2208
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2209
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2210 2211 2212 2213
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2214

2215 2216 2217
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2218 2219 2220 2221 2222 2223 2224
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2225 2226
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2227

2228 2229
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2230
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2231
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2232
      .def("close", &Executor::Close)
2233 2234
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2235 2236
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2237 2238 2239 2240
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2241
             pybind11::gil_scoped_release release;
2242 2243 2244 2245 2246 2247 2248
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2249 2250 2251
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2252
              std::map<std::string, FetchType *> *fetch_targets,
2253 2254 2255 2256 2257 2258 2259 2260
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2261
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2262 2263 2264 2265 2266 2267 2268
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2279
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2280 2281
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2282
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2283 2284
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2285
      });
S
sneaxiy 已提交
2286

2287
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2288
      .def(py::init<>())
2289 2290 2291 2292 2293
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2294

2295
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2296 2297 2298
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2299
           [](StandaloneExecutor &self,
H
hong 已提交
2300
              const std::unordered_map<std::string, py::array> &input_dict,
2301
              std::vector<std::string> fetch_names) {
2302
             std::vector<framework::LoDTensor> feed_tensors;
2303
             std::vector<std::string> feed_names;
H
hong 已提交
2304 2305 2306 2307 2308

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2309 2310
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2311 2312
             }

2313 2314 2315 2316 2317 2318 2319 2320 2321
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2322
              const std::unordered_map<std::string, framework::LoDTensor>
2323 2324
                  &input_dict,
              std::vector<std::string> fetch_names) {
2325
             std::vector<framework::LoDTensor> feed_tensors;
2326 2327 2328 2329 2330 2331 2332
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2333 2334 2335 2336
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2337
             }
W
wanghuancoder 已提交
2338
             return py::cast(std::move(ret));
2339
           })
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2350 2351 2352
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2353
             std::vector<framework::LoDTensor> feed_tensors;
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2364
             framework::interpreter::CostInfo cost_info;
2365 2366 2367 2368 2369
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2370 2371
           });

D
dzhwinter 已提交
2372
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2373
  m.def("init_glog", framework::InitGLOG);
2374 2375
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2376
  m.def("init_devices", []() { framework::InitDevices(); });
2377

2378
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2379
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2380
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2381
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2382
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2383
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2384
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2385
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2386
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2387
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2388
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2389
  m.def("supports_bfloat16", SupportsBfloat16);
2390
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2391 2392
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2393
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2394
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2395
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2396 2397 2398
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2418 2419 2420 2421 2422 2423 2424
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2434
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2435 2436
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2437
    return platform::GetGPUComputeCapability(place.device) >= 53;
2438 2439
  });
#endif
2440

S
Steffy-zxf 已提交
2441 2442 2443 2444 2445 2446
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2447 2448 2449 2450 2451
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2452
            return py::cast(BOOST_GET(LoDTensor, var));
2453
          } else {
2454
            return py::cast(BOOST_GET(LoDTensorArray, var));
2455 2456
          }
        });
2457
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2458

X
Xin Pan 已提交
2459 2460
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2461 2462 2463 2464
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2465
  BindCostModel(&m);
2466
  BindConstValue(&m);
2467
  BindGlobalValueGetterSetter(&m);
2468
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2469
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2470

Y
Yu Yang 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2480
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2481
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2482 2483 2484

    Examples:
        .. code-block:: python
2485

Z
Zeng Jinle 已提交
2486 2487 2488
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2489 2490 2491 2492
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2493 2494
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2495 2496 2497 2498 2499 2500
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2501 2502 2503 2504
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2505 2506 2507
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2508 2509 2510 2511 2512 2513
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2514 2515
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2516 2517 2518 2519 2520 2521
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2544

2545 2546 2547 2548 2549 2550 2551 2552
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2553
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2554 2555
                 res[i] = py::cast(std::move(data));
               } else {
2556
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2572
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2573 2574 2575 2576 2577 2578 2579 2580
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2581
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2582 2583 2584 2585 2586 2587 2588 2589 2590
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2591 2592
        )DOC")
      .def("_move_to_list",
2593
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2594 2595 2596 2597
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2598
                 if (data_is_lod_tensor(self[i][j])) {
2599
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2600 2601
                   tmp[j] = py::cast(std::move(var));
                 } else {
2602
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2603 2604 2605 2606 2607 2608
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2618
  m.def("op_support_gpu", OpSupportGPU);
2619
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2620
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2621 2622 2623 2624 2625 2626 2627 2628
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2629 2630 2631 2632 2633 2634 2635
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2661
      });
D
dangqingqing 已提交
2662

2663
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2664 2665 2666
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2667 2668 2669 2670
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2671
#endif
P
peizhilin 已提交
2672
#endif
Y
Yu Yang 已提交
2673

2674 2675
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2676
  m.def("npu_finalize", []() {
2677 2678
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2679 2680 2681
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2682
      platform::NPUDeviceGuard guard(devices[i]);
2683 2684 2685 2686
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2707 2708 2709 2710
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2711 2712 2713 2714
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2715 2716 2717 2718 2719 2720
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2721 2722 2723 2724
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2725
      .value("kAll", platform::ProfilerState::kAll)
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2737
  m.def("set_tracer_option", platform::SetTracerOption);
2738 2739
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2740
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2741
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2742
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2743 2744
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2745 2746 2747
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2748
    callable.inc_ref();
2749 2750 2751 2752 2753 2754 2755 2756
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2757
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2758 2759 2760
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2761

2762 2763
  m.def("size_of_dtype", framework::SizeOfType);

2764
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2765 2766
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2767 2768
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2769
#endif  // PADDLE_WITH_CUDA
2770 2771
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2772

2773 2774 2775
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2776 2777
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2778
      .def("has", &ir::Pass::Has)
2779 2780 2781
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2782
           })
2783
      .def(
2784
          "set",
2785 2786 2787
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2788 2789
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2790 2791
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2792 2793 2794 2795 2796
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2811 2812
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2813
        self.Apply(graph.get());
F
flame 已提交
2814
      });
2815

X
fix  
Xin Pan 已提交
2816 2817
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2832
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2833
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2834 2835 2836 2837
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2838 2839 2840
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2841 2842 2843
    Examples:
        .. code-block:: python

2844 2845 2846 2847 2848 2849 2850 2851 2852
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2853

2854 2855
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2856

2857
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2858 2859
          sgd_optimizer.minimize(avg_loss)

2860
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2861 2862
          exec_strategy.num_threads = 4

2863 2864 2865
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2866 2867
        )DOC");

2868 2869 2870 2871
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2872

Y
yuyang18 已提交
2873
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2874 2875 2876 2877 2878
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2879
          },
2880 2881
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2882 2883 2884 2885 2886 2887 2888
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2902
      .def_property(
2903 2904
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2905
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2906 2907 2908
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2909 2910 2911 2912 2913
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2914 2915 2916
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2917 2918
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2919 2920 2921 2922 2923 2924 2925
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2926 2927 2928 2929
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2930
                because the temp variable's shape maybe the same between two iterations.
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2941

2942 2943 2944 2945 2946 2947 2948
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2949
              )DOC")
Q
Qiao Longfei 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2971
              )DOC")
2972 2973 2974 2975 2976 2977 2978 2979
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2980 2981 2982 2983 2984
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2985

Y
yuyang18 已提交
2986
  exec_strategy.def_property(
Y
yuyang18 已提交
2987 2988 2989 2990 2991 2992 2993
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2994 2995
      });

C
chengduo 已提交
2996 2997 2998 2999
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3000 3001 3002
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3003 3004 3005
    Examples:
        .. code-block:: python

3006
            import os
3007 3008 3009 3010
            import paddle
            import paddle.static as static

            paddle.enable_static()
3011

3012 3013
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3014

3015 3016 3017 3018
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3019

3020
            build_strategy = static.BuildStrategy()
3021 3022
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3023 3024
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3025
            program = program.with_data_parallel(loss_name=loss.name,
3026 3027
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3028
)DOC");
Y
yuyang18 已提交
3029 3030 3031

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3032 3033
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3034 3035 3036 3037 3038 3039 3040 3041
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3042
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3043 3044 3045 3046
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3047 3048 3049 3050
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3051
            self.reduce_ = strategy;
C
chengduo 已提交
3052
          },
3053
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3054 3055
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3056
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3057 3058
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3059
                Default is 'AllReduce'.
F
flame 已提交
3060 3061 3062 3063

                Examples:
                    .. code-block:: python

3064 3065 3066 3067 3068 3069 3070
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3071
                  )DOC")
Y
yuyang18 已提交
3072 3073 3074 3075 3076
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3077 3078 3079 3080
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3081
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3082
          },
3083
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3084
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3085 3086
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3087
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3088 3089 3090 3091

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3092 3093
                        import numpy
                        import os
3094 3095 3096 3097
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3098 3099

                        use_cuda = True
3100 3101
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3102 3103

                        # NOTE: If you use CPU to run the program, you need
3104
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3105 3106 3107 3108 3109 3110
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3111
                            places = static.cpu_places()
C
chengduo 已提交
3112
                        else:
3113
                            places = static.cuda_places()
C
chengduo 已提交
3114

3115 3116 3117 3118
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3119

3120
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3121

3122
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3123
                        build_strategy.gradient_scale_strategy = \
3124 3125 3126
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3127
                                          loss_name=loss.name, build_strategy=build_strategy,
3128
                                          places=places)
C
chengduo 已提交
3129 3130 3131 3132 3133 3134

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3135 3136
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3137
                   )DOC")
Y
yuyang18 已提交
3138 3139 3140 3141
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3142 3143 3144 3145
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3146
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3147
          },
3148
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3149
                writing the SSA Graph to file in the form of graphviz.
3150
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3151 3152 3153 3154

                Examples:
                    .. code-block:: python

3155 3156 3157 3158
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3159

3160 3161
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3162
                    )DOC")
S
sneaxiy 已提交
3163 3164 3165 3166 3167 3168
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3169 3170 3171 3172
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3173 3174
            self.enable_sequential_execution_ = b;
          },
3175 3176
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3177 3178 3179 3180

                Examples:
                    .. code-block:: python

3181 3182 3183 3184 3185 3186
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3187 3188
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3189 3190 3191 3192 3193 3194
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3195 3196 3197 3198
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3199 3200
            self.remove_unnecessary_lock_ = b;
          },
3201 3202
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3203 3204 3205 3206

                Examples:
                    .. code-block:: python

3207 3208 3209 3210 3211 3212
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3213 3214
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3215 3216 3217 3218
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3219
#ifdef WIN32
3220
            PADDLE_THROW(platform::errors::Unavailable(
3221
                "Distribution mode is not supported on Windows platform."));
3222
#endif
3223 3224
            self.num_trainers_ = num_trainers;
          })
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3237 3238 3239 3240 3241 3242
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3243 3244 3245 3246 3247 3248
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3249
      .def_property("use_hierarchical_allreduce",
3250 3251 3252 3253 3254 3255
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3256
      .def_property("hierarchical_allreduce_inter_nranks",
3257 3258 3259 3260 3261 3262 3263
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3264 3265 3266 3267 3268 3269
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3270 3271 3272 3273
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3274 3275
            self.fuse_elewise_add_act_ops_ = b;
          },
3276
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3277
                to fuse elementwise_add_op and activation_op,
3278
                it may make the execution faster. Default is False.
F
flame 已提交
3279 3280 3281 3282

                Examples:
                    .. code-block:: python

3283 3284 3285 3286 3287 3288
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3289 3290
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3291 3292 3293 3294
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3295
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3296
                              platform::errors::PreconditionNotMet(
3297 3298
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3308 3309 3310 3311 3312 3313
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3314 3315
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3341 3342 3343 3344
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3345
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3346
                              platform::errors::PreconditionNotMet(
3347 3348
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3359 3360 3361 3362 3363 3364
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3365 3366
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3367 3368 3369 3370 3371 3372
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3373 3374 3375 3376
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3377 3378
            self.fuse_relu_depthwise_conv_ = b;
          },
3379
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3380 3381 3382
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3383
                Default is False.
F
flame 已提交
3384 3385 3386 3387

                Examples:
                    .. code-block:: python

3388 3389 3390 3391 3392 3393
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3394 3395
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3396 3397 3398
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3399
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3400 3401
                    },
                    [](BuildStrategy &self, bool b) {
3402 3403 3404 3405
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3406 3407
                      self.fuse_broadcast_ops_ = b;
                    },
3408
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3409 3410 3411 3412
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3413 3414 3415 3416 3417
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3418 3419 3420 3421 3422 3423
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3424 3425
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3426 3427
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3428
                      return self.fuse_all_optimizer_ops_ == true ||
3429
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3430 3431
                    },
                    [](BuildStrategy &self, bool b) {
3432 3433 3434 3435
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3436 3437
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3438 3439 3440 3441
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3442 3443 3444 3445
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3446 3447
            self.sync_batch_norm_ = b;
          },
3448
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3449 3450 3451
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3452 3453
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3454 3455 3456 3457

                Examples:
                    .. code-block:: python

3458 3459 3460 3461 3462 3463
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3464 3465
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3466 3467
      .def_property(
          "memory_optimize",
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3478
              self.memory_optimize_ = paddle::none;
3479 3480 3481
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3482
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3483 3484
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3485 3486
            }
          },
3487
          R"DOC((bool, optional): memory opitimize aims to save total memory
3488
                consumption, set to True to enable it.
3489

3490 3491 3492
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3507 3508 3509
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3510 3511 3512
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3513
              PADDLE_THROW(platform::errors::Unavailable(
3514
                  "Distribution mode is not supported on Windows platform."));
3515 3516 3517 3518 3519
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3520 3521 3522
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3523
      .def_property(
D
dzhwinter 已提交
3524 3525 3526
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3527 3528 3529 3530
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3531 3532
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3533 3534
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3535
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3536
          },
C
chengduo 已提交
3537
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3538 3539 3540 3541 3542 3543 3544
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3545 3546 3547 3548
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3549 3550 3551 3552 3553 3554 3555 3556 3557
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3558 3559 3560 3561 3562 3563
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3564 3565 3566 3567 3568 3569 3570
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3571 3572 3573 3574 3575 3576
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3577
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3578
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3579 3580 3581 3582 3583
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3584

3585 3586 3587 3588 3589 3590
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3591
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3592
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3593
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3594
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3595 3596 3597 3598
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3599 3600 3601 3602 3603
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3604 3605 3606
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3607 3608 3609 3610
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3611 3612
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3613 3614 3615 3616 3617 3618 3619 3620
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3621
               return py::cast(
3622
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3623 3624
             } else {
               return py::cast(std::move(
3625
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3626
             }
3627 3628
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3629

J
jianghaicheng 已提交
3630 3631 3632 3633 3634 3635 3636 3637
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3638 3639
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3640 3641 3642 3643 3644
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3645
          })
J
jianghaicheng 已提交
3646 3647 3648 3649 3650 3651 3652
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3653
          })
J
jianghaicheng 已提交
3654 3655 3656 3657 3658 3659
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3660
                    })
J
jianghaicheng 已提交
3661 3662 3663 3664 3665 3666
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3667
                    })
J
jianghaicheng 已提交
3668 3669 3670 3671 3672 3673 3674
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3675
          })
J
jianghaicheng 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3690
          })
J
jianghaicheng 已提交
3691 3692 3693 3694 3695 3696
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3697
                    })
J
jianghaicheng 已提交
3698 3699 3700 3701 3702 3703
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3704
                    })
J
jianghaicheng 已提交
3705 3706 3707 3708 3709 3710
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3711
                    });
J
jianghaicheng 已提交
3712 3713
#endif

D
dongdaxiang 已提交
3714
  BindFleetWrapper(&m);
3715
  BindIO(&m);
T
Thunderbrook 已提交
3716

T
Thunderbrook 已提交
3717
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
3718
  BindHeterWrapper(&m);
3719
  BindMetrics(&m);
T
Thunderbrook 已提交
3720
#endif
T
Thunderbrook 已提交
3721
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3722
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3723
#endif
3724
  BindGlooWrapper(&m);
H
hutuxian 已提交
3725
  BindBoxHelper(&m);
H
hutuxian 已提交
3726 3727 3728
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3729
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3730
  BindNCCLWrapper(&m);
3731 3732 3733
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3734
#endif
F
flame 已提交
3735 3736
  BindGraph(&m);
  BindNode(&m);
3737
  BindPass(&m);
F
flame 已提交
3738
  BindInferenceApi(&m);
3739
  BindCompatible(&m);
3740
  BindDataset(&m);
Y
yaoxuefeng 已提交
3741
  BindGenerator(&m);
3742 3743 3744
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3745
  BindAscendDevice(&m);
3746
#endif
Y
Yanghello 已提交
3747 3748 3749
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3750

T
tangwei12 已提交
3751
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3752 3753
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3754
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3755 3756
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3757 3758 3759 3760 3761
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3762 3763 3764 3765
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3766
  BindSparseShardingTools(&m);
3767
#endif
L
Luo Tao 已提交
3768
}
3769
}  // namespace pybind
3770
}  // namespace paddle