pybind.cc 131.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
41
#include "paddle/fluid/framework/ir/cost_model.h"
42
#include "paddle/fluid/framework/ir/generate_pass.h"
43
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
44 45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
53
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
54
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
55
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/selected_rows.h"
57
#include "paddle/fluid/framework/tensor_util.h"
58
#include "paddle/fluid/framework/trainer.h"
59
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
60
#include "paddle/fluid/framework/version.h"
H
hong 已提交
61
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
62
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
63
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
64
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
66
#include "paddle/fluid/operators/py_func_op.h"
67
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
68
#include "paddle/fluid/platform/cpu_info.h"
69
#include "paddle/fluid/platform/device_context.h"
70
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/platform/enforce.h"
72
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
73
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
74 75
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
76
#include "paddle/fluid/pybind/cuda_streams_py.h"
77
#include "paddle/fluid/pybind/io.h"
78
#include "paddle/utils/none.h"
79 80 81
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
82
#include "paddle/fluid/pybind/bind_cost_model.h"
H
hutuxian 已提交
83
#include "paddle/fluid/pybind/box_helper_py.h"
84
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
85
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
86
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
89
#include "paddle/fluid/pybind/generator_py.h"
90
#include "paddle/fluid/pybind/global_value_getter_setter.h"
91
#include "paddle/fluid/pybind/gloo_context_py.h"
92
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
93
#include "paddle/fluid/pybind/heter_wrapper_py.h"
94
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
95
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
96
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
97
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
98
#include "paddle/fluid/pybind/pybind_boost_headers.h"
99

100
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
101
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
102
#endif
103
#include "paddle/fluid/framework/data_type.h"
104 105
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
106
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
107
#include "paddle/fluid/pybind/tensor_py.h"
108
#include "paddle/fluid/string/to_string.h"
109 110
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
111
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
112
#endif
113
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
114
#include "paddle/fluid/platform/cuda_profiler.h"
115
#endif
Y
Yi Wang 已提交
116
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
117 118
#endif

119 120
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
121
#include "paddle/fluid/platform/npu_profiler.h"
122 123
#endif

124
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
125
#include "paddle/fluid/platform/xpu/xpu_info.h"
126 127
#endif

128 129
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

Y
Yanghello 已提交
130 131 132 133
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
134
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
135 136 137
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
138 139
#include "pybind11/stl.h"

140
DECLARE_bool(use_mkldnn);
141

Q
Qiao Longfei 已提交
142 143
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
144 145 146
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
147

148
namespace paddle {
149
namespace pybind {
150
bool IsCompiledWithCUDA() {
151 152 153 154 155 156 157 158 159
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
160 161 162 163 164 165
  return false;
#else
  return true;
#endif
}

166 167 168 169 170 171 172 173
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

174 175 176 177 178 179 180 181
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

182 183 184 185 186 187 188 189
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

190 191 192 193 194 195 196 197
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

198 199 200 201 202 203 204 205
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

206 207 208 209 210 211 212 213 214 215 216
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

217 218 219 220 221 222 223 224 225 226 227
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
246 247 248
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
249
      {"NPU", &platform::is_npu_place},
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

289
bool IsCompiledWithBrpc() {
290
#ifndef PADDLE_WITH_DISTRIBUTE
291 292
  return false;
#endif
293
  return true;
294 295
}

Y
update  
Yancey1989 已提交
296
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
297
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
298 299 300 301 302 303
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
304 305 306 307 308 309 310 311 312 313
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
336 337 338
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
352 353
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
354 355
    }
    vec_res.emplace_back(
356
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
357 358 359 360 361 362 363 364 365 366 367 368
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
369 370
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
371 372 373 374 375 376 377 378 379 380 381 382
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
383 384 385
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
386 387 388 389
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
390 391
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
392 393 394 395
  }
  return vec_res;
}

396 397 398 399 400 401 402 403
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
404 405
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
406 407 408 409 410 411 412 413 414 415 416 417 418
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
419 420 421
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
422 423 424 425 426
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
427 428 429 430 431
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
432 433
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
434 435 436
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
437 438 439 440 441 442 443 444 445
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
446 447
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
448 449 450 451 452
  }

  return;
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

490 491 492 493 494 495
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

496 497
  BindCudaStream(&m);

Y
Yu Yang 已提交
498 499 500
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
501
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
502

503 504
  AssertStaticGraphAndDygraphGradMakerNoDiff();

505
  m.doc() = "C++ core of PaddlePaddle";
506

507 508 509 510
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

511
  BindException(&m);
Y
Yu Yang 已提交
512

513 514
  m.def("set_num_threads", &platform::SetNumThreads);

515 516
  m.def("disable_signal_handler", &DisableSignalHandler);

517
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
518 519 520
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
521 522 523 524
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

525 526 527 528 529 530 531 532 533 534 535 536 537
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
      .def("reset", &platform::CUDAGraph::Reset);
#endif

Z
Zeng Jinle 已提交
538 539 540 541
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
542 543 544
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
545 546 547 548 549 550

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
551 552
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
553
    framework::Tensor tensor;
6
633WHU 已提交
554

S
Siming Dai 已提交
555
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
556 557
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
558
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
559
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
560 561 562 563 564
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
565

566 567 568 569 570 571
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

572 573 574 575 576 577
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
578 579
  });

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
605 606 607 608 609 610
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
611
  m.def(
S
sneaxiy 已提交
612
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
613 614 615 616
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
617 618 619
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
636 637 638
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
639
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
640

641
  m.def("_set_fuse_parameter_group_size",
642
        &paddle::framework::ir::SetFuseParameterGroupsSize);
643
  m.def("_set_fuse_parameter_memory_size",
644
        &paddle::framework::ir::SetFuseParameterMemorySize);
645

S
sneaxiy 已提交
646 647 648
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

649 650
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

651 652 653
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

654
  BindImperative(&m);
655

656 657 658
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
659
      .def("_is_initialized",
660
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
661
      .def("_get_dims",
662
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
663
      .def("_set_dims",
664
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
665
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
666
           })
Y
yuyang18 已提交
667
      .def("_set_layout",
668
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
669 670
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
671
      .def("_alloc_float",
672
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
673
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
674
           })
675
      .def("_alloc_float",
676
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
677 678
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
679
      .def("_alloc_float",
680
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
681
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
682
           })
683 684 685 686
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
687
      .def("_alloc_double",
688
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
689 690
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
691
      .def("_alloc_int",
692
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
693
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
694
           })
695
      .def("_alloc_int",
696
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
697 698
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
699
      .def("_alloc_int",
700
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
701
             self.mutable_data<int>(place);
Q
qijun 已提交
702
           })
Y
yuyang18 已提交
703
      .def("_alloc_int",
704 705
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
706 707
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
708
      .def("_alloc_float",
709 710
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
711 712
             self.mutable_data<float>(place);
           })
713
      .def("_mutable_data",
714
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
715 716 717
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
718
      .def("_mutable_data",
719
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
720 721 722
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
723
      .def("_mutable_data",
724
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
725 726 727 728
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
729
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
730 731 732
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
733
      .def("_clear", &framework::Tensor::clear)
734 735 736 737 738
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
739
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
740
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
741 742
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
743
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
744
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
745 746
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
747
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
748 749
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
750 751 752 753
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
754
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
755
          LoDTensor is to be set.
756 757
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
771

772 773 774
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
791
      .def("_to_dlpack",
792
           [](framework::Tensor &self) {
6
633WHU 已提交
793
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
794
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
812 813 814 815
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
816 817
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
818
      .def("_layout",
819 820 821 822
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
823
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
824
      .def("__str__", [](const framework::Tensor &self) {
825 826 827 828
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
829

L
Leo Chen 已提交
830
  // TODO(cql): add reference: en_user_guide_lod_tensor
831
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
906 907 908 909 910 911 912

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
913 914

        )DOC")
915 916
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
917 918 919 920 921 922 923 924 925
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
926 927
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
928 929 930 931
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
932 933
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
934
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
935
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
936 937
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
938 939 940
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
941
      .def("set_lod",
942
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
943
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
944
             LoD new_lod;
945 946
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
947 948
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
949 950
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
951
             self.set_lod(new_lod);
S
sneaxiy 已提交
952 953 954 955 956
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
957 958 959 960
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
961 962 963 964 965 966 967 968 969 970

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
971
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
972
           )DOC")
973 974 975 976 977 978 979 980 981 982 983
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
984 985
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
986 987 988 989 990
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
991
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
992 993
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
994
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
995

L
Leo Chen 已提交
996
           For example, if recursive_sequence_lengths=[[2, 3]], which means
997
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
998
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
999 1000

           Args:
L
Leo Chen 已提交
1001 1002 1003 1004
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1015 1016
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1017
           )DOC")
1018 1019 1020 1021 1022 1023 1024 1025
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1026 1027 1028 1029 1030
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1031 1032
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1043
           )DOC")
G
gongweibao 已提交
1044
      // Set above comments of set_lod.
1045 1046 1047 1048 1049 1050 1051 1052
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1053 1054
           },
           R"DOC(
L
Leo Chen 已提交
1055 1056
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1057 1058

           Returns:
L
Leo Chen 已提交
1059
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1071 1072 1073 1074 1075 1076 1077 1078
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1079
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1080 1081

           Returns:
L
Leo Chen 已提交
1082
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1094 1095 1096 1097 1098 1099 1100
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1101
           )DOC")
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1120
#ifdef _WIN32
1121
      });
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1172

Q
qijun 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1184 1185
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1186 1187
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1188 1189
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1190
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1191 1192 1193 1194 1195 1196
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1197
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1198
      .def("rows", [](SelectedRows &self) {
1199 1200 1201 1202 1203
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1204
      });
Q
qijun 已提交
1205

1206
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1207 1208 1209

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1210
      .def(py::init<>())
1211
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1212
      .def("set_int",
1213 1214
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1215 1216 1217 1218 1219 1220 1221
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1222
      .def("get_tensor",
1223 1224
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1225 1226
           },
           py::return_value_policy::reference)
1227 1228 1229 1230
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1231 1232 1233
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1234 1235 1236 1237 1238
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1239 1240 1241
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1242 1243 1244
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1245
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1246 1247 1248 1249 1250
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1251
#endif
Y
Refine  
Yu Yang 已提交
1252 1253
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1254 1255 1256 1257
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1258 1259
             return self.GetMutable<framework::ReaderHolder>();
           },
1260
           py::return_value_policy::reference)
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1272 1273 1274 1275
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1276

S
sneaxiy 已提交
1277
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1278

S
sneaxiy 已提交
1279
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1293
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1294 1295 1296 1297 1298 1299
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1300 1301
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1302
      .def("var",
1303
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1304
             return self.Var(name);
Y
Yu Yang 已提交
1305
           },
S
sneaxiy 已提交
1306 1307
           py::arg("name"),
           R"DOC(
1308
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1309

1310
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1311
           current scope, the variable would be created. Otherwise,
1312
           return the existing variable.
S
sneaxiy 已提交
1313 1314

           Args:
1315 1316
               name (str): the variable name.

S
sneaxiy 已提交
1317
           Returns:
1318
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1319 1320 1321 1322
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1323
           Find variable named :code:`name` in the current scope or
1324
           its parent scope. Return None if not found. 
1325

S
sneaxiy 已提交
1326 1327
           Args:
               name (str): the variable name.
1328

S
sneaxiy 已提交
1329
           Returns:
1330
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1331
           )DOC",
1332
           py::return_value_policy::reference)
1333
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1334 1335 1336 1337 1338 1339
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1340
           py::return_value_policy::reference)
S
sneaxiy 已提交
1341 1342 1343
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1344 1345
           )DOC")
      .def("_kids", &Scope::kids);
1346

S
sneaxiy 已提交
1347 1348 1349 1350 1351 1352
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1353 1354
        R"DOC(
        Create a new scope.
1355

S
sneaxiy 已提交
1356 1357 1358
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1359 1360
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1361 1362
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1363 1364
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1365 1366 1367 1368
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1369 1370
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1371 1372
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1373 1374 1375
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1376 1377
    return ret_values;
  });
1378 1379 1380 1381 1382 1383 1384 1385
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1386
              res = op_checker->GetDefaultAttrsMap();
1387 1388 1389 1390
            }
          }
          return res;
        });
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1407 1408 1409
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1410 1411 1412 1413 1414
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1415 1416 1417
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1432
  m.def("prune", [](const ProgramDesc &origin,
1433
                    const std::set<std::string> &feeded_var_names,
1434
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1435
    ProgramDesc prog_with_targets(origin);
1436

1437
    for (const auto &t : targets) {
1438
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1439
    }
1440
    proto::ProgramDesc pruned_desc;
1441 1442 1443 1444
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1445
  });
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1463 1464 1465 1466
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1467 1468 1469
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1470 1471
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1472

Q
qijun 已提交
1473
  // clang-format off
Y
Yu Yang 已提交
1474
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1475 1476
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1477
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1478 1479
                    return new paddle::platform::CPUDeviceContext();
                  })
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1504
      .def_static("create",
D
dzhwinter 已提交
1505
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1506
                      -> paddle::platform::DeviceContext* {
1507
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1508 1509 1510 1511
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1512
#else
Q
qijun 已提交
1513
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1514
#endif
C
chengduoZH 已提交
1515 1516 1517 1518
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1519
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1520 1521 1522 1523
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1524 1525 1526 1527
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1528
// clang-format on
1529
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1530 1531
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1532
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1533 1534 1535 1536 1537

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1538
    The memory of CUDAPlace with different dev_id is not accessible.
1539 1540 1541 1542 1543 1544 1545 1546
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1547 1548 1549 1550

    Examples:
        .. code-block:: python

1551 1552 1553
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1554

1555
        )DOC")
S
sneaxiy 已提交
1556 1557
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1558
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1583 1584
             new (&self) platform::CUDAPlace(dev_id);
#else
1585 1586 1587 1588 1589 1590 1591 1592 1593
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1594 1595
#endif
           })
1596
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1597 1598
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1599 1600 1601 1602
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1603
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1604
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1605 1606
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1607 1608 1609
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1610
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1611
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1658
#ifdef PADDLE_WITH_XPU
1659 1660 1661 1662 1663 1664 1665
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1666 1667 1668
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1669
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1670
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1671
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1672 1673 1674 1675
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1676
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1677 1678
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1679
#endif
1680

1681
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1682
    CPUPlace is a descriptor of a device.
1683
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1684 1685 1686 1687

    Examples:
        .. code-block:: python

1688 1689
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1690

1691
        )DOC")
1692
      .def(py::init<>())
S
sneaxiy 已提交
1693 1694
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1695
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1696
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1697 1698 1699 1700
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1701
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1702
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1703

1704
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1705 1706 1707 1708 1709 1710
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1711 1712 1713 1714

    Examples:
        .. code-block:: python

1715 1716
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1717

1718
        )DOC")
S
sneaxiy 已提交
1719
      .def("__init__",
S
sneaxiy 已提交
1720
           [](platform::CUDAPinnedPlace &self) {
1721
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1722 1723 1724
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1725
#endif
S
sneaxiy 已提交
1726
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1727
           })
S
sneaxiy 已提交
1728 1729 1730 1731
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1732 1733
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1734 1735
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1736 1737 1738 1739
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1740
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1741 1742
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1785
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1800 1801
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1802 1803
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1804 1805
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1806 1807 1808 1809
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1810
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1811
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1812
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1813 1814
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1815 1816
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1817 1818
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1819 1820
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1821 1822 1823 1824
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1825 1826
      .def("gpu_device_id",
           [](platform::Place &self) {
1827
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1828
           })
1829 1830 1831 1832
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1833 1834 1835 1836
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1837 1838
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1839 1840 1841 1842
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1843 1844 1845 1846
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1847
      .def("set_place",
D
dzhwinter 已提交
1848
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1849
             self = gpu_place;
C
chengduoZH 已提交
1850
           })
1851 1852 1853 1854 1855
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1856 1857 1858 1859
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1860 1861
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1862

Y
Yu Yang 已提交
1863
  py::class_<OperatorBase>(m, "Operator")
Z
Zeng Jinle 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1878
      .def("run",
1879
           [](OperatorBase &self, const Scope &scope,
1880 1881 1882 1883
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1884 1885
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1886 1887 1888 1889
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1890 1891
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1892 1893 1894 1895
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1896 1897
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1898 1899 1900 1901
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1902 1903 1904
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
1905
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1906 1907
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1908 1909 1910 1911 1912 1913 1914
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1915 1916
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1917
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1918
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1919 1920 1921 1922
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1923

1924 1925 1926
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1927 1928 1929 1930 1931 1932 1933 1934 1935
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1936 1937
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1938
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1939
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1940
      .def("close", &Executor::Close)
1941 1942
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1943 1944
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1945 1946 1947 1948
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1949
             pybind11::gil_scoped_release release;
1950 1951 1952 1953 1954 1955 1956
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1957 1958 1959
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1960
              std::map<std::string, FetchType *> *fetch_targets,
1961 1962 1963 1964 1965 1966 1967 1968
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1969
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1970 1971 1972 1973 1974 1975 1976
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1987
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1988 1989
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1990
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1991 1992
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1993
      });
S
sneaxiy 已提交
1994

1995 1996 1997 1998
  py::class_<framework::CostInfo>(m, "CostInfo")
      .def(py::init<>())
      .def("total_time", [](CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes",
1999
           [](CostInfo &self) { return self.device_memory_bytes; });
2000

2001
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2002 2003 2004
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2005
           [](StandaloneExecutor &self,
H
hong 已提交
2006
              const std::unordered_map<std::string, py::array> &input_dict,
2007 2008 2009
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;
H
hong 已提交
2010 2011 2012 2013 2014

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2015 2016
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2017 2018
             }

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, framework::Tensor>
                  &input_dict,
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2039 2040 2041 2042
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2043
             }
W
wanghuancoder 已提交
2044
             return py::cast(std::move(ret));
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
           })
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

             CostInfo cost_info;
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2066 2067
           });

D
dzhwinter 已提交
2068
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2069
  m.def("init_glog", framework::InitGLOG);
2070 2071
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2072
  m.def("init_devices", []() { framework::InitDevices(); });
2073

2074
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2075
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2076
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2077
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2078
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2079
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2080
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2081
  m.def("supports_bfloat16", SupportsBfloat16);
2082
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2083
  m.def("op_supported_infos", OpSupportedInfos);
2084
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2085
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2086 2087 2088
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2108 2109 2110 2111 2112 2113 2114
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2124
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2125 2126 2127 2128 2129
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2130

2131
  m.def("set_feed_variable", framework::SetFeedVariable);
2132 2133 2134 2135 2136
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2137
            return py::cast(BOOST_GET(LoDTensor, var));
2138
          } else {
2139
            return py::cast(BOOST_GET(LoDTensorArray, var));
2140 2141
          }
        });
2142
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2143

X
Xin Pan 已提交
2144 2145
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2146 2147 2148 2149
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2150
  BindCostModel(&m);
2151
  BindConstValue(&m);
2152
  BindGlobalValueGetterSetter(&m);
2153
  BindProcessMeshDesc(&m);
Y
Yu Yang 已提交
2154

Y
Yu Yang 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2164
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2165
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2166 2167 2168

    Examples:
        .. code-block:: python
2169

Z
Zeng Jinle 已提交
2170 2171 2172 2173
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2174 2175
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2176 2177 2178 2179 2180 2181
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2182 2183 2184 2185
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2186 2187 2188
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2189 2190 2191 2192 2193 2194
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2195 2196
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2197 2198 2199 2200 2201 2202
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2225

2226 2227 2228 2229 2230 2231 2232 2233
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2234
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2235 2236
                 res[i] = py::cast(std::move(data));
               } else {
2237
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2253
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2254 2255 2256 2257 2258 2259 2260 2261
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2262
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2263 2264 2265 2266 2267 2268 2269 2270 2271
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2272 2273
        )DOC")
      .def("_move_to_list",
2274
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2275 2276 2277 2278
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2279
                 if (data_is_lod_tensor(self[i][j])) {
2280
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2281 2282
                   tmp[j] = py::cast(std::move(var));
                 } else {
2283
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2284 2285 2286 2287 2288 2289
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2299
  m.def("op_support_gpu", OpSupportGPU);
2300
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2301
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2302
  m.def("cuda_empty_cache", platform::EmptyCache);
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
      .def_readonly("name", &gpuDeviceProp::name)
      .def_readonly("major", &gpuDeviceProp::major)
      .def_readonly("minor", &gpuDeviceProp::minor)
      .def_readonly("is_multi_gpu_board", &gpuDeviceProp::isMultiGpuBoard)
      .def_readonly("is_integrated", &gpuDeviceProp::integrated)
      .def_readonly("multi_processor_count",
                    &gpuDeviceProp::multiProcessorCount)
      .def_readonly("total_memory", &gpuDeviceProp::totalGlobalMem)
      .def("__repr__", [](const gpuDeviceProp &gpu_device_prop) {
        std::ostringstream stream;
        stream << "_gpuDeviceProperties(name='" << gpu_device_prop.name
               << "', major=" << gpu_device_prop.major
               << ", minor=" << gpu_device_prop.minor << ", total_memory="
               << gpu_device_prop.totalGlobalMem / (1024 * 1024)
               << "MB, multi_processor_count="
               << gpu_device_prop.multiProcessorCount << ")";
        return stream.str();
      });
D
dangqingqing 已提交
2328

2329
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2330 2331 2332
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2333 2334 2335 2336
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2337
#endif
P
peizhilin 已提交
2338
#endif
Y
Yu Yang 已提交
2339

2340 2341
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2342 2343 2344 2345
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2346
      platform::NPUDeviceGuard guard(devices[i]);
2347 2348 2349 2350
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2371 2372 2373 2374 2375 2376
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2377 2378 2379 2380
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2381
      .value("kAll", platform::ProfilerState::kAll)
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2393
  m.def("set_tracer_option", platform::SetTracerOption);
2394 2395
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2396
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2397
  m.def("reset_profiler", platform::ResetProfiler);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
  m.def("register_pass", [](const std::string &pass_type,
                            const py::object &callable) {
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2413
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2414 2415 2416
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2417

2418 2419
  m.def("size_of_dtype", framework::SizeOfType);

2420
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2421 2422
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2423 2424
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2425
#endif  // PADDLE_WITH_CUDA
2426 2427
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2428

2429 2430 2431
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2432 2433
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2434
      .def("has", &ir::Pass::Has)
2435 2436 2437
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2438
           })
2439
      .def(
2440
          "set",
2441 2442 2443
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2444 2445
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2446 2447
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2462 2463
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2464
        self.Apply(graph.get());
F
flame 已提交
2465
      });
2466

X
fix  
Xin Pan 已提交
2467 2468
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2483
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2484
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2485 2486 2487 2488
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2489 2490 2491
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2492 2493 2494
    Examples:
        .. code-block:: python

2495 2496 2497 2498 2499 2500 2501 2502 2503
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2504

2505 2506
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2507

2508
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2509 2510
          sgd_optimizer.minimize(avg_loss)

2511
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2512 2513
          exec_strategy.num_threads = 4

2514 2515 2516
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2517 2518
        )DOC");

2519 2520 2521 2522
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2523

Y
yuyang18 已提交
2524
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2525 2526 2527 2528 2529
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2530
          },
2531 2532
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2533 2534 2535 2536 2537 2538 2539
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2553
      .def_property(
2554 2555
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2556
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2557 2558 2559
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2560 2561 2562 2563 2564
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2565 2566 2567
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2568 2569
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2570 2571 2572 2573 2574 2575 2576
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2577 2578 2579 2580
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2581
                because the temp variable's shape maybe the same between two iterations.
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2592

2593 2594 2595 2596 2597 2598 2599
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2600
              )DOC")
Q
Qiao Longfei 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2622
              )DOC")
2623 2624 2625 2626 2627 2628 2629 2630
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2631 2632 2633 2634 2635
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2636

Y
yuyang18 已提交
2637
  exec_strategy.def_property(
Y
yuyang18 已提交
2638 2639 2640 2641 2642 2643 2644
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2645 2646
      });

C
chengduo 已提交
2647 2648 2649 2650
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2651 2652 2653
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2654 2655 2656
    Examples:
        .. code-block:: python

2657
            import os
2658 2659 2660 2661
            import paddle
            import paddle.static as static

            paddle.enable_static()
2662

2663 2664
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2665

2666 2667 2668 2669
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2670

2671
            build_strategy = static.BuildStrategy()
2672 2673
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2674 2675
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2676
            program = program.with_data_parallel(loss_name=loss.name,
2677 2678
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2679
)DOC");
Y
yuyang18 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2692
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2693 2694 2695 2696
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2697 2698 2699 2700
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2701
            self.reduce_ = strategy;
C
chengduo 已提交
2702
          },
2703
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2704 2705
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2706
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2707 2708
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2709
                Default is 'AllReduce'.
F
flame 已提交
2710 2711 2712 2713

                Examples:
                    .. code-block:: python

2714 2715 2716 2717 2718 2719 2720
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2721
                  )DOC")
Y
yuyang18 已提交
2722 2723 2724 2725 2726
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2727 2728 2729 2730
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2731
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2732
          },
2733
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2734
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2735 2736
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2737
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2738 2739 2740 2741

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2742 2743
                        import numpy
                        import os
2744 2745 2746 2747
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2748 2749

                        use_cuda = True
2750 2751
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2752 2753

                        # NOTE: If you use CPU to run the program, you need
2754
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2755 2756 2757 2758 2759 2760
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2761
                            places = static.cpu_places()
C
chengduo 已提交
2762
                        else:
2763
                            places = static.cuda_places()
C
chengduo 已提交
2764

2765 2766 2767 2768
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2769

2770
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2771

2772
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2773
                        build_strategy.gradient_scale_strategy = \
2774 2775 2776
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2777
                                          loss_name=loss.name, build_strategy=build_strategy,
2778
                                          places=places)
C
chengduo 已提交
2779 2780 2781 2782 2783 2784

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2785 2786
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2787
                   )DOC")
Y
yuyang18 已提交
2788 2789 2790 2791
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2792 2793 2794 2795
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2796
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2797
          },
2798
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2799
                writing the SSA Graph to file in the form of graphviz.
2800
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2801 2802 2803 2804

                Examples:
                    .. code-block:: python

2805 2806 2807 2808
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2809

2810 2811
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2812
                    )DOC")
S
sneaxiy 已提交
2813 2814 2815 2816 2817 2818
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2819 2820 2821 2822
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2823 2824
            self.enable_sequential_execution_ = b;
          },
2825 2826
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2827 2828 2829 2830

                Examples:
                    .. code-block:: python

2831 2832 2833 2834 2835 2836
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2837 2838
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2839 2840 2841 2842 2843 2844
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2845 2846 2847 2848
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2849 2850
            self.remove_unnecessary_lock_ = b;
          },
2851 2852
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2853 2854 2855 2856

                Examples:
                    .. code-block:: python

2857 2858 2859 2860 2861 2862
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2863 2864
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2865 2866 2867 2868
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2869
#ifdef WIN32
2870
            PADDLE_THROW(platform::errors::Unavailable(
2871
                "Distribution mode is not supported on Windows platform."));
2872
#endif
2873 2874
            self.num_trainers_ = num_trainers;
          })
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2887 2888 2889 2890 2891 2892
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2893 2894 2895 2896 2897 2898
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2899
      .def_property("use_hierarchical_allreduce",
2900 2901 2902 2903 2904 2905
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2906
      .def_property("hierarchical_allreduce_inter_nranks",
2907 2908 2909 2910 2911 2912 2913
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2914 2915 2916 2917 2918 2919
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2920 2921 2922 2923
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2924 2925
            self.fuse_elewise_add_act_ops_ = b;
          },
2926
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2927
                to fuse elementwise_add_op and activation_op,
2928
                it may make the execution faster. Default is False.
F
flame 已提交
2929 2930 2931 2932

                Examples:
                    .. code-block:: python

2933 2934 2935 2936 2937 2938
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2939 2940
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2941 2942 2943 2944
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2945
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2946
                              platform::errors::PreconditionNotMet(
2947 2948
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2958 2959 2960 2961 2962 2963
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2964 2965
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2991 2992 2993 2994
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2995
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2996
                              platform::errors::PreconditionNotMet(
2997 2998
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3009 3010 3011 3012 3013 3014
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3015 3016
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3017 3018 3019 3020 3021 3022
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3023 3024 3025 3026
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3027 3028
            self.fuse_relu_depthwise_conv_ = b;
          },
3029
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3030 3031 3032
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3033
                Default is False.
F
flame 已提交
3034 3035 3036 3037

                Examples:
                    .. code-block:: python

3038 3039 3040 3041 3042 3043
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3044 3045
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3046 3047 3048
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3049
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3050 3051
                    },
                    [](BuildStrategy &self, bool b) {
3052 3053 3054 3055
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3056 3057
                      self.fuse_broadcast_ops_ = b;
                    },
3058
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3059 3060 3061 3062
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3063 3064 3065 3066 3067
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3068 3069 3070 3071 3072 3073
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3074 3075
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3076 3077
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3078
                      return self.fuse_all_optimizer_ops_ == true ||
3079
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3080 3081
                    },
                    [](BuildStrategy &self, bool b) {
3082 3083 3084 3085
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3086 3087
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3088 3089 3090 3091
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3092 3093 3094 3095
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3096 3097
            self.sync_batch_norm_ = b;
          },
3098
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3099 3100 3101
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3102 3103
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3104 3105 3106 3107

                Examples:
                    .. code-block:: python

3108 3109 3110 3111 3112 3113
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3114 3115
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3116 3117
      .def_property(
          "memory_optimize",
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3128
              self.memory_optimize_ = paddle::none;
3129 3130 3131
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3132
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3133 3134
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3135 3136
            }
          },
3137
          R"DOC((bool, optional): memory opitimize aims to save total memory
3138
                consumption, set to True to enable it.
3139

3140 3141 3142
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3157 3158 3159
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3160 3161 3162
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3163
              PADDLE_THROW(platform::errors::Unavailable(
3164
                  "Distribution mode is not supported on Windows platform."));
3165 3166 3167 3168 3169
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3170 3171 3172
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3173
      .def_property(
D
dzhwinter 已提交
3174 3175 3176
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3177 3178 3179 3180
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3181 3182
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3183 3184
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3185
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3186
          },
C
chengduo 已提交
3187
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3188 3189 3190 3191 3192 3193 3194
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3195 3196 3197 3198
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3199 3200 3201 3202 3203 3204 3205 3206 3207
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3208 3209 3210 3211 3212 3213
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3214 3215 3216 3217 3218 3219
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3220
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3221
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3222 3223 3224 3225 3226
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3227

3228 3229 3230 3231 3232 3233
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3234
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3235
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3236
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3237
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3238 3239 3240 3241
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3242 3243 3244 3245 3246
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3247 3248 3249
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3250 3251 3252 3253
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3254 3255
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3256 3257 3258 3259 3260 3261 3262 3263
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3264
               return py::cast(
3265
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3266 3267
             } else {
               return py::cast(std::move(
3268
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3269
             }
3270 3271
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3272

D
dongdaxiang 已提交
3273
  BindFleetWrapper(&m);
3274
  BindIO(&m);
T
Thunderbrook 已提交
3275

T
Thunderbrook 已提交
3276 3277
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3278
#endif
T
Thunderbrook 已提交
3279
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3280
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3281
#endif
3282
  BindGlooWrapper(&m);
H
hutuxian 已提交
3283
  BindBoxHelper(&m);
H
hutuxian 已提交
3284 3285 3286
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3287
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3288
  BindNCCLWrapper(&m);
3289 3290 3291
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3292
#endif
F
flame 已提交
3293 3294
  BindGraph(&m);
  BindNode(&m);
3295
  BindPass(&m);
F
flame 已提交
3296
  BindInferenceApi(&m);
3297
  BindCompatible(&m);
3298
  BindDataset(&m);
Y
yaoxuefeng 已提交
3299
  BindGenerator(&m);
3300 3301 3302
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3303
  BindAscendDevice(&m);
3304
#endif
Y
Yanghello 已提交
3305 3306 3307
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3308

T
tangwei12 已提交
3309
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3310 3311
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3312
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3313 3314
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3315 3316 3317 3318 3319
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3320 3321 3322 3323
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3324
  BindSparseShardingTools(&m);
3325
#endif
L
Luo Tao 已提交
3326
}
3327
}  // namespace pybind
3328
}  // namespace paddle