pybind.cc 115.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/custom_operator.h"
28
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
31
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
36 37 38
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/op_info.h"
40
#include "paddle/fluid/framework/op_registry.h"
41
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
42
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
44
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
45
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/selected_rows.h"
48
#include "paddle/fluid/framework/tensor_util.h"
49
#include "paddle/fluid/framework/trainer.h"
50
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
51
#include "paddle/fluid/framework/version.h"
H
hong 已提交
52
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
53
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
54
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
55
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
56
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/operators/py_func_op.h"
58
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
59
#include "paddle/fluid/platform/cpu_info.h"
60
#include "paddle/fluid/platform/device_context.h"
61
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/platform/enforce.h"
63
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
64
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
67 68 69
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
70
#include "paddle/fluid/pybind/box_helper_py.h"
71
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
73
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
74
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
75
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
76
#include "paddle/fluid/pybind/generator_py.h"
77
#include "paddle/fluid/pybind/global_value_getter_setter.h"
78
#include "paddle/fluid/pybind/gloo_context_py.h"
79
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
80
#include "paddle/fluid/pybind/heter_wrapper_py.h"
81
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
82
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
83
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
84
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
85
#include "paddle/fluid/pybind/pybind_boost_headers.h"
86

87
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
89
#endif
90
#include "paddle/fluid/framework/data_type.h"
91 92
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
93
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
94
#include "paddle/fluid/pybind/tensor_py.h"
95
#include "paddle/fluid/string/to_string.h"
96 97
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
98
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
99
#endif
100
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
101
#include "paddle/fluid/platform/cuda_profiler.h"
102
#endif
Y
Yi Wang 已提交
103
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
104 105
#endif

106 107 108 109
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
110 111 112 113
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
114
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
115 116 117
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
118 119
#include "pybind11/stl.h"

120
DECLARE_bool(use_mkldnn);
121

Q
Qiao Longfei 已提交
122 123
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
124 125 126
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
127

128
namespace paddle {
129
namespace pybind {
130
bool IsCompiledWithCUDA() {
131 132 133 134 135 136 137 138 139
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
140 141 142 143 144 145
  return false;
#else
  return true;
#endif
}

146 147 148 149 150 151 152 153
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

154 155 156 157 158 159 160 161
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

162 163 164 165 166 167 168 169
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

170 171 172 173 174 175 176 177 178 179 180
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

181 182 183 184 185 186 187 188 189 190 191
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

192
bool IsCompiledWithBrpc() {
193
#ifndef PADDLE_WITH_DISTRIBUTE
194 195
  return false;
#endif
196 197 198 199 200 201

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
202 203
}

Y
update  
Yancey1989 已提交
204
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
205
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
206 207 208 209 210 211
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
212 213 214 215 216 217 218 219 220 221
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
244 245 246
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
260 261
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
262 263
    }
    vec_res.emplace_back(
264
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
265 266 267 268 269 270 271 272 273 274 275 276
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
277 278
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
279 280 281 282 283 284 285 286 287 288 289 290
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
291 292 293
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
294 295 296 297
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
298 299
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
300 301 302 303
  }
  return vec_res;
}

304 305 306 307 308 309 310 311
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
312 313
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
314 315 316 317 318 319 320 321 322 323 324 325 326
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
327 328 329
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
330 331 332 333 334
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
335 336 337 338 339
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
340 341
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
342 343 344
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
345 346 347 348 349 350 351 352 353
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
354 355
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
356 357 358 359 360
  }

  return;
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

385 386 387 388 389 390
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
391 392 393
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
394
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
395

396 397
  AssertStaticGraphAndDygraphGradMakerNoDiff();

398
  m.doc() = "C++ core of PaddlePaddle";
399

400 401 402 403
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

404
  BindException(&m);
Y
Yu Yang 已提交
405

406 407
  m.def("set_num_threads", &platform::SetNumThreads);

408
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
409 410 411
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
412 413 414 415 416
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
417
    framework::Tensor tensor;
6
633WHU 已提交
418 419 420 421

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
422
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
423 424 425 426 427 428 429
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
430 431 432 433 434 435 436 437 438
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
439
           const Scope &scope, const Executor *executor) {
H
hong 已提交
440
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
441
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
442 443 444
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

445 446 447 448 449 450
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
470

471 472 473 474 475 476
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
477 478
  });

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
504 505 506 507 508 509
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
510
  m.def(
S
sneaxiy 已提交
511
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
512 513 514 515
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
516 517 518
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
535 536 537
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
538
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
539

540
  m.def("_set_fuse_parameter_group_size",
541
        &paddle::framework::ir::SetFuseParameterGroupsSize);
542
  m.def("_set_fuse_parameter_memory_size",
543
        &paddle::framework::ir::SetFuseParameterMemorySize);
544

S
sneaxiy 已提交
545 546 547
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

548 549
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

550 551 552
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

553
  BindImperative(&m);
554

555 556 557
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
558
      .def("_is_initialized",
559
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
560
      .def("_get_dims",
561
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
562
      .def("_set_dims",
563
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
564
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
565
           })
Y
yuyang18 已提交
566
      .def("_set_layout",
567
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
568 569
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
570
      .def("_alloc_float",
571
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
572
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
573
           })
574
      .def("_alloc_float",
575
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
576 577
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
578
      .def("_alloc_float",
579
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
580
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
581
           })
582
      .def("_alloc_double",
583
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
584 585
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
586
      .def("_alloc_int",
587
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
588
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
589
           })
590
      .def("_alloc_int",
591
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
592 593
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
594
      .def("_alloc_int",
595
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
596
             self.mutable_data<int>(place);
Q
qijun 已提交
597
           })
Y
yuyang18 已提交
598
      .def("_alloc_int",
599 600
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
601 602
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
603
      .def("_alloc_float",
604 605
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
606 607
             self.mutable_data<float>(place);
           })
608
      .def("_mutable_data",
609
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
610 611 612
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
613
      .def("_mutable_data",
614
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
615 616 617
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
618
      .def("_mutable_data",
619
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
620 621 622 623
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
624
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
625 626 627
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
628
      .def("_clear", &framework::Tensor::clear)
629
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
630
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
631 632
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
633
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
634
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
635
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
636 637
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
638 639 640 641
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
642
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
643
          LoDTensor is to be set.
644 645
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
659

660 661 662
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
679
      .def("_to_dlpack",
680
           [](framework::Tensor &self) {
6
633WHU 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
701 702 703 704
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
705 706
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
707
      .def("_layout",
708 709 710 711
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
712
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
713
      .def("__str__", [](const framework::Tensor &self) {
714 715 716 717
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
718

L
Leo Chen 已提交
719
  // TODO(cql): add reference: en_user_guide_lod_tensor
720
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
795 796 797 798 799 800 801

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
802 803

        )DOC")
804 805
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
806 807 808 809 810 811 812 813 814
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
815 816
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
817 818 819 820
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
821 822
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
823
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
824
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
825 826
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
827 828 829
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
830
      .def("set_lod",
831
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
832
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
833
             LoD new_lod;
834 835
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
836 837
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
838 839
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
840
             self.set_lod(new_lod);
S
sneaxiy 已提交
841 842 843 844 845
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
846 847 848 849
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
850 851 852 853 854 855 856 857 858 859

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
860
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
861
           )DOC")
862 863 864 865 866 867 868 869 870 871 872
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
873 874
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
875 876 877 878 879
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
880
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
881 882
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
883
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
884

L
Leo Chen 已提交
885
           For example, if recursive_sequence_lengths=[[2, 3]], which means
886
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
887
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
888 889

           Args:
L
Leo Chen 已提交
890 891 892 893
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
894 895 896 897 898 899 900 901 902 903

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
904 905
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
906
           )DOC")
907 908 909 910 911 912 913 914
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
915 916 917 918 919
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
920 921
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
922 923 924 925 926 927 928 929 930 931
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
932
           )DOC")
G
gongweibao 已提交
933
      // Set above comments of set_lod.
934 935 936 937 938 939 940 941
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
942 943
           },
           R"DOC(
L
Leo Chen 已提交
944 945
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
946 947

           Returns:
L
Leo Chen 已提交
948
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
949 950 951 952 953 954 955 956 957 958 959

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
960 961 962 963 964 965 966 967
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
968
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
969 970

           Returns:
L
Leo Chen 已提交
971
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
972 973 974 975 976 977 978 979 980 981 982

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
983 984 985 986 987 988 989
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
990
           )DOC")
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1009
#ifdef _WIN32
1010
      });
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1061

Q
qijun 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1073 1074
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1075 1076
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1077 1078
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1079
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1080 1081 1082 1083 1084 1085
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1086
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1087
      .def("rows", [](SelectedRows &self) {
1088 1089 1090 1091 1092
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1093
      });
Q
qijun 已提交
1094

1095
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1096 1097 1098

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1099
      .def(py::init<>())
1100
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1101
      .def("set_int",
1102 1103
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1104 1105 1106 1107 1108 1109 1110
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1111
      .def("get_tensor",
1112 1113
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1114 1115
           },
           py::return_value_policy::reference)
1116 1117 1118 1119
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1120 1121 1122
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1123 1124 1125 1126 1127
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1128 1129 1130
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1131 1132 1133
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1134
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1135 1136 1137 1138 1139
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1140
#endif
Y
Refine  
Yu Yang 已提交
1141 1142
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1143 1144 1145 1146
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1147 1148
             return self.GetMutable<framework::ReaderHolder>();
           },
1149 1150 1151 1152 1153
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1154

S
sneaxiy 已提交
1155
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1156

S
sneaxiy 已提交
1157
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1171
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1172 1173 1174 1175 1176 1177
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1178 1179
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1180
      .def("var",
1181
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1182
             return self.Var(name);
Y
Yu Yang 已提交
1183
           },
S
sneaxiy 已提交
1184 1185
           py::arg("name"),
           R"DOC(
1186
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1187

1188
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1189
           current scope, the variable would be created. Otherwise,
1190
           return the existing variable.
S
sneaxiy 已提交
1191 1192

           Args:
1193 1194
               name (str): the variable name.

S
sneaxiy 已提交
1195
           Returns:
1196
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1197 1198 1199 1200
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1201
           Find variable named :code:`name` in the current scope or
1202
           its parent scope. Return None if not found. 
1203

S
sneaxiy 已提交
1204 1205
           Args:
               name (str): the variable name.
1206

S
sneaxiy 已提交
1207
           Returns:
1208
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1209
           )DOC",
1210
           py::return_value_policy::reference)
1211
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1212 1213 1214 1215 1216 1217
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1218
           py::return_value_policy::reference)
S
sneaxiy 已提交
1219 1220 1221
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1222 1223
           )DOC")
      .def("_kids", &Scope::kids);
1224

S
sneaxiy 已提交
1225 1226 1227 1228 1229 1230
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1231 1232
        R"DOC(
        Create a new scope.
1233

S
sneaxiy 已提交
1234 1235 1236
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1237 1238
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1239 1240
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1241 1242
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1243 1244 1245 1246
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1247 1248
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1249 1250
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1251 1252 1253
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1254 1255
    return ret_values;
  });
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1285 1286 1287
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1288 1289 1290 1291 1292
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1293 1294 1295
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1310
  m.def("prune", [](const ProgramDesc &origin,
1311
                    const std::set<std::string> &feeded_var_names,
1312
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1313
    ProgramDesc prog_with_targets(origin);
1314

1315
    for (const auto &t : targets) {
1316
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1317
    }
1318
    proto::ProgramDesc pruned_desc;
1319 1320 1321 1322
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1323
  });
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1341 1342 1343 1344
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1345 1346 1347
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1348 1349
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1350

Q
qijun 已提交
1351
  // clang-format off
Y
Yu Yang 已提交
1352
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1353 1354
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1355
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1356 1357
                    return new paddle::platform::CPUDeviceContext();
                  })
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1370
      .def_static("create",
D
dzhwinter 已提交
1371
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1372
                      -> paddle::platform::DeviceContext* {
1373
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1374 1375 1376 1377
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1378
#else
Q
qijun 已提交
1379
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1380
#endif
C
chengduoZH 已提交
1381 1382 1383 1384
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1385
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1386 1387 1388 1389
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1390 1391 1392 1393
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1394
// clang-format on
1395
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1396 1397
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1398
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1399 1400 1401 1402 1403

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1404
    The memory of CUDAPlace with different dev_id is not accessible.
1405 1406 1407 1408 1409 1410 1411 1412
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1413 1414 1415 1416

    Examples:
        .. code-block:: python

1417 1418 1419
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1420

1421
        )DOC")
S
sneaxiy 已提交
1422 1423
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1424
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1449 1450
             new (&self) platform::CUDAPlace(dev_id);
#else
1451 1452 1453 1454 1455 1456 1457 1458 1459
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1460 1461
#endif
           })
1462
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1463 1464
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1465 1466 1467 1468
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1469
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1470 1471
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1472 1473 1474
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1475
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1476
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1523
#ifdef PADDLE_WITH_XPU
1524 1525 1526 1527 1528 1529 1530
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1531 1532 1533
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1534
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1535
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1536 1537 1538
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1539
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1540
    CPUPlace is a descriptor of a device.
1541
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1542 1543 1544 1545

    Examples:
        .. code-block:: python

1546 1547
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1548

1549
        )DOC")
1550
      .def(py::init<>())
S
sneaxiy 已提交
1551 1552
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1553
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1554 1555 1556 1557
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1558
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1559
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1560

1561
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1562 1563 1564 1565 1566 1567
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1568 1569 1570 1571

    Examples:
        .. code-block:: python

1572 1573
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1574

1575
        )DOC")
S
sneaxiy 已提交
1576
      .def("__init__",
S
sneaxiy 已提交
1577
           [](platform::CUDAPinnedPlace &self) {
1578
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1579 1580 1581
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1582
#endif
S
sneaxiy 已提交
1583
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1584
           })
S
sneaxiy 已提交
1585 1586 1587 1588
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1589 1590
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1591 1592 1593 1594
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1595
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1596 1597
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1598 1599
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1600 1601 1602 1603
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1604
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1605
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1606 1607
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1608 1609
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1610 1611
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1612 1613 1614 1615
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1616 1617
      .def("gpu_device_id",
           [](platform::Place &self) {
1618
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1619
           })
1620 1621 1622 1623
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1624 1625
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1626 1627 1628 1629
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1630 1631 1632 1633
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1634
      .def("set_place",
D
dzhwinter 已提交
1635
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1636
             self = gpu_place;
C
chengduoZH 已提交
1637
           })
1638 1639 1640 1641 1642 1643 1644
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1645

Y
Yu Yang 已提交
1646
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1647 1648 1649 1650 1651
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1652 1653 1654 1655 1656 1657 1658
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1659 1660
            return OpRegistry::CreateOp(desc);
          })
1661
      .def("run",
1662
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1663
              const platform::CPUPlace &place) { self.Run(scope, place); })
1664 1665 1666
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1667 1668
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1669
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1670 1671 1672 1673 1674
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1675 1676 1677 1678 1679 1680 1681
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1682 1683
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1684
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1685
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1686 1687 1688 1689
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1690

1691 1692 1693
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1694 1695 1696 1697 1698 1699 1700 1701 1702
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1703
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1704
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1705
      .def("close", &Executor::Close)
1706 1707
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1708 1709
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1710 1711 1712 1713
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1714
             pybind11::gil_scoped_release release;
1715 1716 1717 1718 1719 1720 1721
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1722 1723 1724
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1725
              std::map<std::string, FetchType *> *fetch_targets,
1726 1727 1728 1729 1730 1731 1732 1733
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1734
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1735 1736 1737 1738 1739 1740 1741
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1752
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1753 1754
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1755
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1756 1757
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1758
      });
S
sneaxiy 已提交
1759

D
dzhwinter 已提交
1760
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1761
  m.def("init_glog", framework::InitGLOG);
1762 1763
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1764
  m.def("init_devices", []() { framework::InitDevices(); });
1765

1766
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1767
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1768
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1769
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1770
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1771
  m.def("supports_bfloat16", SupportsBfloat16);
1772
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1773
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1774
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1775 1776 1777
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1797 1798 1799 1800 1801 1802 1803
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1813
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1814 1815 1816 1817 1818
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1819

1820
  m.def("set_feed_variable", framework::SetFeedVariable);
1821 1822 1823 1824 1825
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1826
            return py::cast(BOOST_GET(LoDTensor, var));
1827
          } else {
1828
            return py::cast(BOOST_GET(LoDTensorArray, var));
1829 1830
          }
        });
1831
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1832

X
Xin Pan 已提交
1833 1834
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1835 1836 1837 1838 1839
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1840
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1841

Y
Yu Yang 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1851
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1852
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1853 1854 1855

    Examples:
        .. code-block:: python
1856

Z
Zeng Jinle 已提交
1857 1858 1859 1860
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1861 1862
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1863 1864 1865 1866 1867 1868
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1869 1870 1871 1872
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1873 1874 1875
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1876 1877 1878 1879 1880 1881
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1882 1883
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1884 1885 1886 1887 1888 1889
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1912

1913 1914 1915 1916 1917 1918 1919 1920
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1921
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1922 1923
                 res[i] = py::cast(std::move(data));
               } else {
1924
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1940
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1941 1942 1943 1944 1945 1946 1947 1948
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1949
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1950 1951 1952 1953 1954 1955 1956 1957 1958
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1959 1960
        )DOC")
      .def("_move_to_list",
1961
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1962 1963 1964 1965
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1966
                 if (data_is_lod_tensor(self[i][j])) {
1967
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1968 1969
                   tmp[j] = py::cast(std::move(var));
                 } else {
1970
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1971 1972 1973 1974 1975 1976
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1986
  m.def("op_support_gpu", OpSupportGPU);
1987
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
1988
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1989

1990
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
1991 1992 1993
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
1994 1995 1996 1997
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
1998
#endif
P
peizhilin 已提交
1999
#endif
Y
Yu Yang 已提交
2000

2001 2002 2003 2004 2005 2006
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2007 2008 2009 2010
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2011
      .value("kAll", platform::ProfilerState::kAll)
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2023
  m.def("set_tracer_option", platform::SetTracerOption);
2024 2025
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2026
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2027
  m.def("reset_profiler", platform::ResetProfiler);
2028
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2029 2030 2031
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2032

2033 2034
  m.def("size_of_dtype", framework::SizeOfType);

2035
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2036 2037
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2038 2039
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2040 2041
#endif  // PADDLE_WITH_CUDA

2042 2043 2044
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2045 2046
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2047
      .def("has", &ir::Pass::Has)
2048 2049 2050
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2051
           })
2052
      .def(
2053
          "set",
2054 2055 2056
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2057 2058
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2059 2060
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2075 2076
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2077
        self.Apply(graph.get());
F
flame 已提交
2078
      });
2079

X
fix  
Xin Pan 已提交
2080 2081
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2096
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2097

Y
yuyang18 已提交
2098
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2099 2100 2101 2102
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2103 2104 2105
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2106 2107 2108
    Examples:
        .. code-block:: python

2109 2110 2111 2112 2113 2114 2115 2116 2117
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2118

2119 2120
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2121

2122
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2123 2124
          sgd_optimizer.minimize(avg_loss)

2125
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2126 2127
          exec_strategy.num_threads = 4

2128 2129 2130
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2131 2132
        )DOC");

2133 2134 2135 2136
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2137

Y
yuyang18 已提交
2138
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2139 2140 2141 2142 2143
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2144
          },
2145 2146
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2147 2148 2149 2150 2151 2152 2153
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2167
      .def_property(
2168 2169
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2170
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2171 2172 2173
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2174 2175 2176 2177 2178
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2179 2180 2181
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2182 2183
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2184 2185 2186 2187 2188 2189 2190
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2191 2192 2193 2194
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2195
                because the temp variable's shape maybe the same between two iterations.
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2206

2207 2208 2209 2210 2211 2212 2213
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2214
              )DOC")
Q
Qiao Longfei 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2236
              )DOC")
2237 2238 2239 2240 2241 2242 2243 2244
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2245 2246 2247 2248 2249
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2250

Y
yuyang18 已提交
2251
  exec_strategy.def_property(
Y
yuyang18 已提交
2252 2253 2254 2255 2256 2257 2258
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2259 2260
      });

C
chengduo 已提交
2261 2262 2263 2264
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2265 2266 2267
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2268 2269 2270
    Examples:
        .. code-block:: python

2271
            import os
2272 2273 2274 2275
            import paddle
            import paddle.static as static

            paddle.enable_static()
2276

2277 2278
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2279

2280 2281 2282 2283
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2284

2285
            build_strategy = static.BuildStrategy()
2286 2287
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2288 2289
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2290
            program = program.with_data_parallel(loss_name=loss.name,
2291 2292
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2293
)DOC");
Y
yuyang18 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2310 2311 2312 2313
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2314
            self.reduce_ = strategy;
C
chengduo 已提交
2315
          },
2316
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2317 2318
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2319
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2320 2321
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2322
                Default is 'AllReduce'.
F
flame 已提交
2323 2324 2325 2326

                Examples:
                    .. code-block:: python

2327 2328 2329 2330 2331 2332 2333
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2334
                  )DOC")
Y
yuyang18 已提交
2335 2336 2337 2338 2339
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2340 2341 2342 2343
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2344
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2345
          },
2346
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2347
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2348 2349
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2350
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2351 2352 2353 2354

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2355 2356
                        import numpy
                        import os
2357 2358 2359 2360
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2361 2362

                        use_cuda = True
2363 2364
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2365 2366

                        # NOTE: If you use CPU to run the program, you need
2367
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2368 2369 2370 2371 2372 2373
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2374
                            places = static.cpu_places()
C
chengduo 已提交
2375
                        else:
2376
                            places = static.cuda_places()
C
chengduo 已提交
2377

2378 2379 2380 2381
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2382

2383
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2384

2385
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2386
                        build_strategy.gradient_scale_strategy = \
2387 2388 2389
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2390
                                          loss_name=loss.name, build_strategy=build_strategy,
2391
                                          places=places)
C
chengduo 已提交
2392 2393 2394 2395 2396 2397

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2398 2399
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2400
                   )DOC")
Y
yuyang18 已提交
2401 2402 2403 2404
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2405 2406 2407 2408
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2409
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2410
          },
2411
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2412
                writing the SSA Graph to file in the form of graphviz.
2413
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2414 2415 2416 2417

                Examples:
                    .. code-block:: python

2418 2419 2420 2421
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2422

2423 2424
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2425
                    )DOC")
S
sneaxiy 已提交
2426 2427 2428 2429 2430 2431
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2432 2433 2434 2435
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2436 2437
            self.enable_sequential_execution_ = b;
          },
2438 2439
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2440 2441 2442 2443

                Examples:
                    .. code-block:: python

2444 2445 2446 2447 2448 2449
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2450 2451
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2452 2453 2454 2455 2456 2457
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2458 2459 2460 2461
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2462 2463
            self.remove_unnecessary_lock_ = b;
          },
2464 2465
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2466 2467 2468 2469

                Examples:
                    .. code-block:: python

2470 2471 2472 2473 2474 2475
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2476 2477
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2478 2479 2480 2481
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2482
#ifdef WIN32
2483
            PADDLE_THROW(platform::errors::Unavailable(
2484
                "Distribution mode is not supported on Windows platform."));
2485
#endif
2486 2487
            self.num_trainers_ = num_trainers;
          })
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2500 2501 2502 2503 2504 2505
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2506 2507 2508 2509 2510 2511
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2512
      .def_property("use_hierarchical_allreduce",
2513 2514 2515 2516 2517 2518
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2519
      .def_property("hierarchical_allreduce_inter_nranks",
2520 2521 2522 2523 2524 2525 2526
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2527 2528 2529 2530 2531 2532
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2533 2534 2535 2536
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2537 2538
            self.fuse_elewise_add_act_ops_ = b;
          },
2539
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2540
                to fuse elementwise_add_op and activation_op,
2541
                it may make the execution faster. Default is False.
F
flame 已提交
2542 2543 2544 2545

                Examples:
                    .. code-block:: python

2546 2547 2548 2549 2550 2551
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2552 2553
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2554 2555 2556 2557
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2558
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2559
                              platform::errors::PreconditionNotMet(
2560 2561
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2571 2572 2573 2574 2575 2576
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2577 2578
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2604 2605 2606 2607
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2608
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2609
                              platform::errors::PreconditionNotMet(
2610 2611
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2622 2623 2624 2625 2626 2627
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2628 2629
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2630 2631 2632 2633 2634 2635
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2636 2637 2638 2639
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2640 2641
            self.fuse_relu_depthwise_conv_ = b;
          },
2642
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2643 2644 2645
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2646
                Default is False.
F
flame 已提交
2647 2648 2649 2650

                Examples:
                    .. code-block:: python

2651 2652 2653 2654 2655 2656
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2657 2658
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2659 2660 2661 2662 2663 2664
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2665 2666 2667 2668
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2669 2670
                      self.fuse_broadcast_ops_ = b;
                    },
2671
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2672 2673 2674 2675
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2676 2677 2678 2679 2680
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2681 2682 2683 2684 2685 2686
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2687 2688
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2689 2690
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2691 2692
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2693 2694
                    },
                    [](BuildStrategy &self, bool b) {
2695 2696 2697 2698
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2699 2700
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2701 2702 2703 2704
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2705 2706 2707 2708
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2709 2710
            self.sync_batch_norm_ = b;
          },
2711
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2712 2713 2714
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2715 2716
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2717 2718 2719 2720

                Examples:
                    .. code-block:: python

2721 2722 2723 2724 2725 2726
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2727 2728
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2729 2730
      .def_property(
          "memory_optimize",
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2745 2746 2747
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2748 2749
            }
          },
2750
          R"DOC((bool, optional): memory opitimize aims to save total memory
2751
                consumption, set to True to enable it.
2752

2753 2754 2755
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2770 2771 2772
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2773 2774 2775
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2776
              PADDLE_THROW(platform::errors::Unavailable(
2777
                  "Distribution mode is not supported on Windows platform."));
2778 2779 2780 2781 2782
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2783 2784 2785
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2786
      .def_property(
D
dzhwinter 已提交
2787 2788 2789
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2790 2791 2792 2793
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2794 2795
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2796 2797 2798 2799
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2800
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2801 2802 2803 2804 2805 2806 2807
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2808 2809 2810 2811
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2812 2813 2814 2815 2816 2817 2818 2819 2820
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2821
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2822
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2823 2824 2825 2826 2827
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2828 2829

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2830
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2831
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2832
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2833 2834 2835 2836
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2837 2838 2839 2840 2841
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2842 2843 2844
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2845 2846 2847 2848
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2849 2850
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2851 2852 2853 2854 2855 2856 2857 2858
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2859
               return py::cast(
2860
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2861 2862
             } else {
               return py::cast(std::move(
2863
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2864
             }
2865 2866
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2867

D
dongdaxiang 已提交
2868
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2869

T
Thunderbrook 已提交
2870 2871
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2872
#endif
2873 2874
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
2875
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2876
#endif
2877
  BindGlooWrapper(&m);
H
hutuxian 已提交
2878
  BindBoxHelper(&m);
H
hutuxian 已提交
2879 2880 2881
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2882
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2883
  BindNCCLWrapper(&m);
2884 2885 2886
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2887
#endif
F
flame 已提交
2888 2889
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2890
  BindInferenceApi(&m);
2891
  BindCompatible(&m);
2892
  BindDataset(&m);
Y
yaoxuefeng 已提交
2893
  BindGenerator(&m);
2894 2895 2896
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2897
  BindAscendDevice(&m);
2898
#endif
Y
Yanghello 已提交
2899 2900 2901
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2902

T
tangwei12 已提交
2903
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2904 2905
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2906
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2907 2908
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2909 2910 2911 2912 2913
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
2914
#endif
L
Luo Tao 已提交
2915
}
2916
}  // namespace pybind
2917
}  // namespace paddle