pybind.cc 186.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
74
#include "paddle/fluid/operators/py_func_op.h"
75
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
76
#include "paddle/fluid/platform/cpu_info.h"
77
#include "paddle/fluid/platform/device/device_wrapper.h"
78
#include "paddle/fluid/platform/device_context.h"
79
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/platform/enforce.h"
81
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
82
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
83 84
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
85 86 87
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
88
#include "paddle/fluid/pybind/cuda_streams_py.h"
89
#include "paddle/fluid/pybind/distributed_py.h"
90
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
91
#include "paddle/fluid/pybind/imperative.h"
92
#include "paddle/fluid/pybind/io.h"
93 94
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
95
#include "paddle/utils/none.h"
96 97 98
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
99
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
100
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
101
#include "paddle/fluid/pybind/box_helper_py.h"
102
#include "paddle/fluid/pybind/communication.h"
103
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
104
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
105
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
107
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
108
#include "paddle/fluid/pybind/generator_py.h"
109
#include "paddle/fluid/pybind/global_value_getter_setter.h"
110
#include "paddle/fluid/pybind/gloo_context_py.h"
111
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
112
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
113
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
114
#include "paddle/fluid/pybind/ir.h"
115
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
117
#include "paddle/fluid/pybind/pybind_boost_headers.h"
118
#include "paddle/phi/backends/device_manager.h"
119

120
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
121
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
122
#endif
123
#include "paddle/fluid/framework/data_type.h"
124 125
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
126
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
127
#include "paddle/fluid/pybind/tensor_py.h"
128
#include "paddle/fluid/string/to_string.h"
129 130
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
131
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
132
#endif
133
#ifndef PADDLE_WITH_HIP
134
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
135
#endif
136
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
137 138
#endif

139
#ifdef PADDLE_WITH_ASCEND_CL
140
#include "paddle/fluid/platform/collective_helper.h"
141 142
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
143 144
#endif

145
#ifdef PADDLE_WITH_XPU
146
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
147
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
148 149
#endif

150 151 152 153
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/capi/capi.h"
#endif

154
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
155

J
jianghaicheng 已提交
156
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
157 158
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
159
#endif
160

161 162 163 164
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
165 166 167 168
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
169
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
170 171 172
#include "paddle/fluid/pybind/fleet_py.h"
#endif

173 174 175 176
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

177
#include "paddle/fluid/eager/api/utils/global_utils.h"
178
#include "paddle/fluid/imperative/layout_autotune.h"
179 180
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
181 182
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
183 184
#include "pybind11/stl.h"

185
DECLARE_bool(use_mkldnn);
186

Q
Qiao Longfei 已提交
187 188
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
189 190 191
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
192

193
namespace paddle {
194
namespace pybind {
195 196

PyTypeObject *g_place_pytype = nullptr;
0
0x45f 已提交
197
PyTypeObject *g_framework_scope_pytype = nullptr;
198 199 200 201 202
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
203
PyTypeObject *g_mluplace_pytype = nullptr;
204
PyTypeObject *g_customplace_pytype = nullptr;
205
PyTypeObject *g_framework_tensor_pytype = nullptr;
206
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
207
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
208

209
bool IsCompiledWithCUDA() {
210 211 212 213 214 215 216
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

217 218 219 220 221 222 223 224
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

225 226
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
227 228 229 230 231 232
  return false;
#else
  return true;
#endif
}

233 234 235 236 237 238 239 240
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

241 242 243 244 245 246 247 248
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

249 250 251 252 253 254 255 256
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
257 258 259 260 261 262 263 264
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

265 266 267 268 269 270 271 272
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

273 274 275 276 277 278 279 280
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

281 282 283 284 285 286 287 288
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

289 290 291 292 293 294 295 296
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

297 298 299 300 301 302 303 304 305 306 307
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

308 309 310 311 312 313 314 315 316 317 318
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

336
bool IsCompiledWithBrpc() {
337
#ifndef PADDLE_WITH_DISTRIBUTE
338 339
  return false;
#endif
340
  return true;
341 342
}

Y
update  
Yancey1989 已提交
343
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
344
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
345 346 347 348 349 350
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
351 352 353 354 355 356 357
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
358
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
359 360
}

H
hong 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
383 384 385
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
399 400
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
401 402
    }
    vec_res.emplace_back(
403
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
404 405 406 407 408 409 410 411 412 413 414 415
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
416 417
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
418 419 420 421 422 423 424 425 426 427 428 429
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
430 431 432
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
433 434 435 436
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
437 438
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
439 440 441 442
  }
  return vec_res;
}

443 444 445 446 447 448 449 450
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
451 452
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
453 454 455 456 457 458 459 460 461 462 463 464 465
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
466 467 468
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
469 470 471 472 473
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
474 475 476 477 478
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
479 480
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
481 482 483
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
484 485 486 487
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
488
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
489 490
        tensor_temp->mutable_data(
            exe->GetPlace(),
491
            framework::TransToPhiDataType(var_desc.GetDataType()));
492 493 494
      }
    }
  } else {
495 496
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
497 498 499 500 501
  }

  return;
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
526 527 528 529
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
530
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
531 532 533 534 535 536 537 538
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
539 540 541 542 543 544 545 546 547 548 549
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

550 551 552 553 554 555
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
556
  BindImperative(&m);
557
  BindEager(&m);
J
Jack Zhou 已提交
558
  BindEagerStringTensor(&m);
559 560
  BindCudaStream(&m);

Y
Yu Yang 已提交
561 562 563
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
564
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
565

566 567
  AssertStaticGraphAndDygraphGradMakerNoDiff();

568
  m.doc() = "C++ core of PaddlePaddle";
569

570 571 572 573
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

574
  BindException(&m);
Y
Yu Yang 已提交
575

576 577
  m.def("set_num_threads", &platform::SetNumThreads);

578 579
  m.def("disable_signal_handler", &DisableSignalHandler);

580 581 582 583 584 585 586 587
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

588
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
589
  m.def("cudnn_version", &platform::DnnVersion);
590 591 592 593 594 595
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
596
#endif
597

Z
Zeng Jinle 已提交
598 599 600 601
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

602 603 604 605 606 607 608 609 610
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
611 612
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
613
      .def("replay", &platform::CUDAGraph::Replay)
614 615
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
616 617
#endif

Z
Zeng Jinle 已提交
618 619 620 621
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
622 623 624
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
625 626 627 628 629 630

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
631 632
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
633
    framework::Tensor tensor;
6
633WHU 已提交
634

S
Siming Dai 已提交
635
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
636 637
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
638
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
639
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
640 641 642 643 644
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
645

646 647 648 649 650 651
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

652 653 654 655 656 657
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
658 659
  });

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
685 686
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
687 688
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
689 690
  });

S
sneaxiy 已提交
691
  m.def(
S
sneaxiy 已提交
692
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
693 694 695 696
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
697 698 699
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
716
            }
717
            all_kernels_info.emplace(op_type, kernel_types);
718
          }
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
735
                }
736 737
              } else {
                kernel_types.emplace_back(kernel_type_str);
738
              }
739
            }
740 741 742
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
743
          }
744
        }
745

746 747 748 749
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
750 751 752
           Return the registered kernels in paddle.

           Args:
753
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
754
           )DOC");
755

756 757 758 759 760 761
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
762 763 764 765 766
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
767

S
sneaxiy 已提交
768 769 770
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
771
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
772

773
  m.def("_set_fuse_parameter_group_size",
774
        &paddle::framework::ir::SetFuseParameterGroupsSize);
775
  m.def("_set_fuse_parameter_memory_size",
776
        &paddle::framework::ir::SetFuseParameterMemorySize);
777

S
sneaxiy 已提交
778 779 780
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

781 782
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

783 784 785
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          bool attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          float attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int64_t attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          const std::vector<std::string> &attr) {
        self.EmplaceBackAttr(attr);
      });

837 838 839 840 841
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
842 843
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
844 845 846 847
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
J
Jiabin Yang 已提交
848 849
      .def("_slice", &framework::Tensor::Slice)
      .def("_numel", &framework::Tensor::numel)
S
sneaxiy 已提交
850
      .def("_is_initialized",
851
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
852
      .def("_get_dims",
853
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
854
      .def("_set_dims",
855
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
856
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
857
           })
Y
yuyang18 已提交
858
      .def("_set_layout",
859
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
860 861
             self.set_layout(StringToDataLayout(layout));
           })
R
ronnywang 已提交
862 863 864 865
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
866
      .def("_alloc_float",
867
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
868
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
869
           })
870
      .def("_alloc_float",
871
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
872 873
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
874
      .def("_alloc_float",
875
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
876
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
877
           })
878 879 880 881
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
882 883 884 885
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
886
      .def("_alloc_double",
887
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
888 889
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
890
      .def("_alloc_int",
891
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
892
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
893
           })
R
ronnywang 已提交
894 895 896 897
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<int>(place);
           })
898
      .def("_alloc_int",
899
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
900 901
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
902
      .def("_alloc_int",
903
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
904
             self.mutable_data<int>(place);
Q
qijun 已提交
905
           })
906 907 908 909
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
910
      .def("_alloc_int",
911 912
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
913 914
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
915
      .def("_alloc_float",
916 917
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
918 919
             self.mutable_data<float>(place);
           })
920
      .def("_mutable_data",
921
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
922
              paddle::framework::proto::VarType::Type type) {
923 924
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
925
           })
R
ronnywang 已提交
926 927 928 929 930 931
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
932
      .def("_mutable_data",
933
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
934
              paddle::framework::proto::VarType::Type type) {
935 936
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
937
           })
938
      .def("_mutable_data",
939
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
940
              paddle::framework::proto::VarType::Type type) {
941 942
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
943 944
           })
      .def("_mutable_data",
945
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
946
              paddle::framework::proto::VarType::Type type) {
947 948
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
949
           })
950 951 952
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
953 954
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
955
           })
956
      .def("_clear", &framework::Tensor::clear)
957 958 959
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
960 961
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
962
           })
Z
Zeng Jinle 已提交
963 964
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
R
ronnywang 已提交
965 966
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CustomPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
967 968 969 970 971 972 973 974
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
975 976
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
977
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
978
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
979
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
980
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
R
ronnywang 已提交
981 982
      .def("set", SetTensorFromPyArray<paddle::platform::CustomPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
983 984
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
985
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
986
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
987 988
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
989 990
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
991 992
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
993
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
994 995
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
996
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
997 998 999
        
        Args:
          lod (numpy.ndarray): The data to set.
1000
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
1001
          Tensor is to be set.
1002 1003
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1014
                t = fluid.Tensor()
L
Leo Chen 已提交
1015 1016
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
1017

1018 1019 1020 1021
      .def(
          "shape",
          [](framework::Tensor &self) { return vectorize(self.dims()); },
          R"DOC(
1022
           Return the shape of Tensor.
L
Leo Chen 已提交
1023 1024

           Returns:
1025
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
1026 1027 1028 1029 1030 1031 1032 1033


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

1034
                  t = fluid.Tensor()
L
Leo Chen 已提交
1035 1036 1037
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
1038
      .def("_to_dlpack",
1039
           [](framework::Tensor &self) {
6
633WHU 已提交
1040
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
1041
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
1059 1060 1061 1062
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
1063
      .def("_place", [](framework::Tensor &self) { return self.place(); })
1064 1065 1066 1067
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
1068
      .def("_layout",
1069 1070 1071 1072
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
1073
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
1093 1094
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
1095 1096 1097 1098
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
1099
      .def("__init__",
1100 1101
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1102
           })
G
gongweibao 已提交
1103
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1104 1105
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1106 1107 1108
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
      .def(
          "set_lod",
          [](framework::Tensor &self,
             const std::vector<std::vector<size_t>> &lod) {
            // the input lod is offset-based level-of-detail info
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                platform::errors::InvalidArgument(
                    "The provided LoD is invalid, the LoD is %s", new_lod));
            self.set_lod(new_lod);
          },
          py::arg("lod"), R"DOC(
1124
           Set LoD of the Tensor.
S
sneaxiy 已提交
1125 1126

           Args:
L
Leo Chen 已提交
1127 1128 1129 1130
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1131 1132 1133 1134 1135 1136 1137

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1138
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1139 1140
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1141
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1142
           )DOC")
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
      .def(
          "set_recursive_sequence_lengths",
          [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                          &recursive_sequence_lengths) {
            // the input recursive_sequence_lengths is length-based
            // level-of-detail info
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
                    "the LoD converted by recursive_sequence_lengths is "
                    "%s",
                    new_lod));
            self.set_lod(new_offset_lod);
          },
          py::arg("recursive_sequence_lengths"), R"DOC(
1166
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1167

L
Leo Chen 已提交
1168
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1169
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1170
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1171 1172

           Args:
L
Leo Chen 已提交
1173 1174 1175 1176
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1177 1178 1179 1180 1181 1182 1183

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1184
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1185 1186
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1187
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1188
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1189
           )DOC")
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
      .def(
          "lod",
          [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
            // output the offset-based lod info
            LoD lod = self.lod();
            std::vector<std::vector<size_t>> new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            return new_lod;
          },
          R"DOC(
1201
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1202 1203

           Returns:
1204
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1205
           
Z
Zeng Jinle 已提交
1206 1207 1208 1209 1210 1211
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1212
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1213 1214 1215
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1216
           )DOC")
G
gongweibao 已提交
1217
      // Set above comments of set_lod.
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
      .def(
          "recursive_sequence_lengths",
          [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
            // output the length-based lod info
            LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
            std::vector<std::vector<size_t>> new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            return new_lod;
          },
          R"DOC(
L
Leo Chen 已提交
1229
           Return the recursive sequence lengths corresponding to of the LodD 
1230
           of the Tensor.
S
sneaxiy 已提交
1231 1232

           Returns:
L
Leo Chen 已提交
1233
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1234 1235 1236 1237 1238 1239 1240

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1241
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1242 1243 1244
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1245
           )DOC")
1246 1247 1248 1249 1250 1251 1252 1253
      .def(
          "has_valid_recursive_sequence_lengths",
          [](framework::Tensor &self) -> bool {
            // Check that the lod info is valid and match the outermost
            // dimension of the Tensor data
            return CheckLoD(self.lod(), vectorize(self.dims()).front());
          },
          R"DOC(
1254
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1255 1256

           Returns:
L
Leo Chen 已提交
1257
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1258 1259 1260 1261 1262 1263 1264

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1265
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1266 1267 1268
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1269
           )DOC")
L
Leo Chen 已提交
1270
      .def("_as_type",
1271
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1272
              paddle::framework::proto::VarType::Type type) {
1273
             framework::Tensor dst;
L
Leo Chen 已提交
1274 1275 1276 1277 1278
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1292
#ifdef _WIN32
1293
           });
1294 1295
#else
           })
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
#ifdef PADDLE_WITH_CUDA
      .def("_share_buffer_with",
           [](framework::Tensor &self, const framework::Tensor src,
              py::tuple t) {
             auto *cuda_ipc_allocation =
                 dynamic_cast<memory::allocation::CudaIpcAllocation *>(
                     src.Holder().get());

             PADDLE_ENFORCE_NOT_NULL(
                 cuda_ipc_allocation,
                 platform::errors::PreconditionNotMet(
                     "Tensor is not Cuda IPC shared tensor. "
                     "Now only Tensor shared by cuda ipc could use this "
                     "api."));

             size_t size = t[0].cast<size_t>();
             auto dtype =
                 static_cast<paddle::experimental::DataType>(t[1].cast<int>());
             auto dims = phi::make_ddim(t[2].cast<std::vector<int>>());
             auto lod_info = t[3].cast<framework::LoD>();
             auto device_id = t[4].cast<int>();

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_ipc_allocation->ptr(),
                     cuda_ipc_allocation->base_ptr(), size,
                     platform::CUDAPlace(device_id));

             self.ResetHolderWithType(shared_reader_holder, dtype);
             self.Resize(dims);
             self.set_lod(lod_info);

             VLOG(6) << "Reconstructed tensor with buffer shared!";
           },
           R"DOC(
           Deserialize GPU Tensor for existed shared Cuda IPC tensor.

           Params:
               tensor: Shared Cuda IPC tensor.
               tuple: contrains data size, data type,
                      tensor dims, lod information, device index.

       )DOC")
      .def("_share_cuda",
           [](framework::Tensor self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0.  could not pass "
                   "to shared memory. ");

             auto *holder = dynamic_cast<memory::allocation::Allocation *>(
                 self.Holder().get());
             PADDLE_ENFORCE_EQ(
                 platform::is_gpu_place(holder->place()), true,
                 platform::errors::InvalidArgument(
                     "Tensor is not on GPU. share_cuda only support GPU "
                     "Tensor, share_filename is for CPU tensor."));

             void *base_ptr = holder->base_ptr();
             ptrdiff_t offset_bytes = reinterpret_cast<char *>(holder->ptr()) -
                                      reinterpret_cast<char *>(base_ptr);

             cudaIpcMemHandle_t handle;
             PADDLE_ENFORCE_GPU_SUCCESS(cudaIpcGetMemHandle(&handle, base_ptr));

             auto _handle = py::bytes(reinterpret_cast<char *>(&handle),
                                      (py::ssize_t)CUDA_IPC_HANDLE_SIZE);

             // TODO(ZHUI): use cuda event, to avoid sync.
             const auto &device_id = paddle::platform::GetCurrentDeviceId();
             auto stream =
                 paddle::platform::stream::get_current_stream(device_id);
             stream->Synchronize();

             int type_idx = static_cast<int>(self.type());
             size_t data_size =
                 self.numel() *
                 framework::SizeOfType(
                     framework::TransToProtoVarType(self.type()));

             return py::make_tuple(_handle, (py::size_t)offset_bytes, data_size,
                                   type_idx, vectorize(self.dims()), self.lod(),
                                   device_id);
           },
           R"DOC(
           Serialize GPU Tensor by cudaIpcMemHandle.

           Returns:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()

      )DOC")
      .def("_new_shared_cuda",
           [](py::tuple t) {
             if (t.size() != 7)
               throw std::runtime_error(
                   "Invalid Tensor meta info for shared cuda tensor!");

             // 1. Create a new C++ instance
             framework::Tensor tensor;

             // 2. Rebuild Allocation from handle
             const std::string &handle = t[0].cast<std::string>();
             ptrdiff_t offset_bytes = (ptrdiff_t)t[1].cast<int64_t>();
             auto device_id = t[6].cast<int>();
             auto base_ptr = memory::allocation::GetIpcBasePtr(handle);
             size_t size = t[2].cast<size_t>();
             void *dev = base_ptr.get();
             dev = reinterpret_cast<char *>(dev) + offset_bytes;

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::CudaIpcAllocation>(
                     dev, size, device_id, std::move(base_ptr));

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_reader_holder,
                 static_cast<paddle::experimental::DataType>(t[3].cast<int>()));
             tensor.Resize(phi::make_ddim(t[4].cast<std::vector<int>>()));
             tensor.set_lod(t[5].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize GPU lod tensor from cudaIpcMemHandle.

           Params:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_cuda(metainfo))

        )DOC")
#endif
      .def("_share_filename",
           [](framework::Tensor &self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0. could not pass to "
                   "shared memory. ");

             auto holder = self.Holder();
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(holder->place()) ||
                     platform::is_cuda_pinned_place(holder->place()),
                 true, platform::errors::InvalidArgument(
                           "Tensor is not on CPU. share_filename only "
                           "support CPU Tensor."));

             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 holder.get());
             // If the tensor is not shared, allocate memory map allocation.
             if (mmap_allocation == nullptr) {
               void *data_ptr = self.data();
               size_t data_size =
                   self.numel() *
                   framework::SizeOfType(
                       framework::TransToProtoVarType(self.type()));

               int flags = memory::allocation::MAPPED_SHAREDMEM |
                           memory::allocation::MAPPED_EXCLUSIVE;
               std::string handle = memory::allocation::GetIPCName();
               auto shared_holder =
                   memory::allocation::AllocateRefcountedMemoryMapAllocation(
                       handle, flags, data_size);

               // copy data & reset holder
               if (platform::is_cuda_pinned_place(holder->place())) {
#ifdef PADDLE_WITH_CUDA
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CUDAPinnedPlace(), data_ptr, data_size);
#endif
               } else {
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CPUPlace(), data_ptr, data_size);
               }
               self.ResetHolder(shared_holder);
               mmap_allocation = shared_holder.get();
             }
             int type_idx = static_cast<int>(self.type());

             return py::make_tuple(mmap_allocation->ipc_name(),
                                   mmap_allocation->size(), type_idx,
                                   vectorize(self.dims()), self.lod());
           },
           R"DOC(
           Serialize CPU lod tensor in shared memory to tuple.
           If the tensor is not in shared memory, we will copy it first.

           Returns:
               tuple: contrains ipc name, data size, data type,
                      tensor dims and lod imformation.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()

       )DOC")
      .def("_new_shared_filename",
           [](py::tuple t) {  // __setstate__
             if (t.size() != 5)
               throw std::runtime_error("Invalid Tensor meta info state!");

             framework::Tensor tensor;

             // 2. Rebuild Allocation
             const std::string &ipc_name = t[0].cast<std::string>();
             size_t size = t[1].cast<size_t>();
             int flags = memory::allocation::MAPPED_SHAREDMEM |
                         memory::allocation::MAPPED_NOCREATE;

             auto shared_holder =
                 memory::allocation::AllocateRefcountedMemoryMapAllocation(
                     ipc_name, flags, size);

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_holder,
                 static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
             tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
             tensor.set_lod(t[4].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize CPU lod tensor from shared memory.

           Params:
               tuple: contrains ipc file name, data size, data type,
                      tensor dims and lod information.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_filename(metainfo))

        )DOC")
      .def("_shared_incref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->incref();
             }
           },
           R"DOC(
            Increase reference count of share_filename tensor.
      )DOC")
      .def("_shared_decref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->decref();
             }
           },
           R"DOC(
            Decrease reference count of share_filename tensor.
      )DOC")
1577
      .def(py::pickle(
1578
          [](const framework::Tensor &t) {  // __getstate__
1579
            auto holder = t.Holder();
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1592 1593 1594
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1595 1596
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1597 1598 1599
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1600
              throw std::runtime_error("Invalid Tensor state!");
1601 1602

            // 1. Create a new C++ instance
1603
            framework::Tensor tensor;
1604 1605 1606 1607 1608

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1609 1610
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1611 1612

            // 3. Maintain global fd set
1613
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1614 1615
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1616 1617 1618
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1619
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1620
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1621 1622 1623 1624 1625
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1626

1627
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1628
      .def("__init__",
1629 1630
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1631
           })
Q
qijun 已提交
1632
      .def("__init__",
1633
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1634
              const int64_t &height) {
1635
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1636
           })
1637 1638 1639 1640
      .def(
          "get_tensor",
          [](phi::SelectedRows &self) { return self.mutable_value(); },
          py::return_value_policy::reference)
1641
      .def("numel",
1642
           [](phi::SelectedRows &self) -> int64_t {
1643 1644
             return self.value().numel();
           })
1645 1646
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1647
      .def("set_rows",
1648
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1649
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1650 1651 1652 1653 1654 1655
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1656
      .def("sync_index",
1657 1658
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1659 1660 1661 1662 1663
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1664
      });
Q
qijun 已提交
1665

1666
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1667 1668 1669

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1670
      .def(py::init<>())
1671
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1672
      .def("set_int",
1673 1674
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1675 1676 1677 1678 1679 1680 1681
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1682 1683 1684 1685 1686 1687
      .def(
          "get_tensor",
          [](Variable &self) -> LoDTensor * {
            return self.GetMutable<LoDTensor>();
          },
          py::return_value_policy::reference)
1688 1689 1690 1691
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1692 1693 1694 1695 1696 1697
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1724
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1725 1726 1727 1728 1729 1730
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1731
#endif
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true,
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
                scope_vec->size(), 0,
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1752 1753 1754 1755
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1756

S
sneaxiy 已提交
1757
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1758

0
0x45f 已提交
1759
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1773
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1774 1775 1776 1777 1778
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1779 1780 1781
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1782 1783
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1784 1785 1786 1787 1788 1789 1790
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1791
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1792

1793
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1794
           current scope, the variable would be created. Otherwise,
1795
           return the existing variable.
S
sneaxiy 已提交
1796 1797

           Args:
1798 1799
               name (str): the variable name.

S
sneaxiy 已提交
1800
           Returns:
1801
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1802
           )DOC",
1803
          py::return_value_policy::reference)
S
sneaxiy 已提交
1804 1805
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1806
           Find variable named :code:`name` in the current scope or
1807
           its parent scope. Return None if not found. 
1808

S
sneaxiy 已提交
1809 1810
           Args:
               name (str): the variable name.
1811

S
sneaxiy 已提交
1812
           Returns:
1813
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1814
           )DOC",
1815
           py::return_value_policy::reference)
1816
      .def("size", &Scope::Size)
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1829 1830 1831
      .def(
          "new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
          R"DOC(
S
sneaxiy 已提交
1832 1833 1834 1835 1836
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1837
          py::return_value_policy::reference)
S
sneaxiy 已提交
1838 1839 1840
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1841 1842
           )DOC")
      .def("_kids", &Scope::kids);
1843

1844 1845 1846 1847 1848 1849 1850 1851
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1852
        Create a new scope.
1853

S
sneaxiy 已提交
1854 1855 1856
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1857
      py::return_value_policy::reference);
S
sneaxiy 已提交
1858

Y
Yu Yang 已提交
1859 1860
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1861 1862
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1863 1864 1865 1866
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1867 1868
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1869 1870
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1871 1872 1873
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1874 1875
    return ret_values;
  });
1876 1877 1878 1879 1880 1881 1882 1883
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1884
              res = op_checker->GetDefaultAttrsMap();
1885 1886 1887 1888
            }
          }
          return res;
        });
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1905 1906 1907
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1908 1909 1910 1911 1912
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1913 1914 1915
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1930
  m.def("prune", [](const ProgramDesc &origin,
1931
                    const std::set<std::string> &feeded_var_names,
1932
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1933
    ProgramDesc prog_with_targets(origin);
1934

1935
    for (const auto &t : targets) {
1936
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1937
    }
1938
    proto::ProgramDesc pruned_desc;
1939 1940 1941 1942
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1943
  });
1944 1945 1946 1947 1948 1949
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1950 1951 1952
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
1953
            Args:
1954 1955 1956 1957 1958 1959 1960 1961
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1962 1963 1964 1965
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1966 1967
    VLOG(4) << s;
    return s;
1968 1969 1970 1971 1972 1973
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1974
  });
1975 1976 1977 1978
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1979 1980 1981
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1982 1983
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1984

Q
qijun 已提交
1985
  // clang-format off
Y
Yu Yang 已提交
1986
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1987 1988
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1989
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
2004
                  })
2005 2006 2007 2008 2009 2010 2011 2012 2013
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
2040 2041
#endif
                  })
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
#endif
        })
        .def_static("create",
                    [](paddle::platform::CustomPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CustomPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with "
                 "CustomDevice support."));
#else
                return new paddle::platform::CustomDeviceContext(place);
2065 2066
#endif
        })
Q
qijun 已提交
2067
      .def_static("create",
D
dzhwinter 已提交
2068
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
2069
                      -> paddle::platform::DeviceContext* {
2070
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2071 2072 2073 2074
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
2075
#else
W
Wilber 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
2089 2090 2091 2092
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
2093 2094
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
2095
#endif
C
chengduoZH 已提交
2096 2097 2098 2099
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
2100
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2101 2102 2103 2104
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
2105 2106 2107 2108
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
2109
// clang-format on
2110
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
2111 2112
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
2113 2114 2115
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2116
    device_types = phi::DeviceManager::GetAllDeviceTypes();
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2130
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2144
    devices = phi::DeviceManager::GetAllDeviceList();
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2158
    devices = phi::DeviceManager::GetAllCustomDeviceList();
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
2171 2172
  py::class_<platform::CustomPlace> customplace(m, "CustomPlace",
                                                R"DOC(
2173 2174 2175 2176 2177 2178 2179 2180
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
2181 2182 2183
                                             )DOC");
  g_customplace_pytype = reinterpret_cast<PyTypeObject *>(customplace.ptr());
  customplace
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

2197 2198
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
2199
               int dev_count = static_cast<int>(
2200
                   phi::DeviceManager::GetDeviceCount(device_type));
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
2240
      .def("_type", &PlaceIndex<platform::CustomPlace>)
2241 2242 2243 2244 2245 2246 2247 2248
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
2249
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
2250 2251 2252 2253 2254

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
2255
    The memory of CUDAPlace with different dev_id is not accessible.
2256 2257 2258 2259 2260 2261 2262 2263
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
2264 2265 2266 2267

    Examples:
        .. code-block:: python

2268 2269 2270
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
2271

2272 2273 2274
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
2275 2276
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
2277
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2278 2279 2280 2281 2282 2283 2284 2285
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

2286 2287
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
2288 2289 2290 2291 2292 2293 2294 2295
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
2296 2297
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
2298 2299 2300 2301
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
2302 2303
             new (&self) platform::CUDAPlace(dev_id);
#else
2304 2305 2306 2307 2308 2309 2310 2311 2312
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
2313 2314
#endif
           })
2315
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2316 2317
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
2318 2319 2320 2321
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
2322
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
2323
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
2324
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
2325 2326
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
2327 2328 2329
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
2330
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
2331
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
2332

2333
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
2334 2335 2336 2337 2338
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
2339 2340 2341
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
2380
#ifdef PADDLE_WITH_XPU
2381 2382 2383 2384 2385 2386 2387
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
2388 2389 2390
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
2391
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
2392
      .def("__str__", string::to_string<const platform::XPUPlace &>);
2393
#ifdef PADDLE_WITH_XPU
2394 2395 2396
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
2397
      .export_values();
2398
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
2399 2400
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
L
Lijunhui 已提交
2401 2402 2403 2404 2405 2406
#ifdef PADDLE_WITH_XPU_KP
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_kp_op_support_type(op_name, version);
        });
#else
2407 2408 2409 2410
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
L
Lijunhui 已提交
2411
#endif
2412
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
2413 2414
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
2415 2416
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2417
    return platform::get_xpu_version(place.device) >
2418
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2419 2420 2421
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2422
    return platform::get_xpu_version(place.device) >
2423
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2424
  });
2425
#endif
2426

2427
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
2428
    CPUPlace is a descriptor of a device.
2429
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
2430 2431 2432 2433

    Examples:
        .. code-block:: python

2434 2435
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
2436

2437 2438 2439
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
2440 2441
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
2442
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
2443
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2444 2445 2446 2447
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
2448
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
2449
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
2450

2451 2452
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2453 2454 2455 2456 2457 2458
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2459 2460 2461 2462

    Examples:
        .. code-block:: python

2463 2464
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2465

2466 2467 2468 2469
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2470
      .def("__init__",
S
sneaxiy 已提交
2471
           [](platform::CUDAPinnedPlace &self) {
2472
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2473 2474 2475
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2476
#endif
S
sneaxiy 已提交
2477
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2478
           })
S
sneaxiy 已提交
2479 2480 2481 2482
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2483 2484
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2485 2486
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2487 2488 2489 2490
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2491
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2492 2493
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2494
  // NPUPlace
2495
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2496 2497 2498 2499 2500 2501 2502 2503
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2504 2505 2506
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2538
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2553 2554
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2555 2556
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2678 2679 2680
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2681 2682 2683 2684
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2685
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2686
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2687
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2688
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2689
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2690 2691
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2692 2693
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2694 2695
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2696 2697
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2698 2699
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2700 2701 2702 2703
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2704 2705
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2706 2707 2708
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2709 2710 2711 2712 2713
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2714 2715
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2716 2717
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2718 2719 2720 2721
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2722 2723 2724 2725
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2726
      .def("set_place",
D
dzhwinter 已提交
2727
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2728
             self = gpu_place;
C
chengduoZH 已提交
2729
           })
2730 2731 2732 2733 2734
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2735 2736 2737 2738
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2739 2740 2741 2742
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2743 2744 2745 2746
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2747 2748 2749 2750
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2751 2752
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2753

Y
Yu Yang 已提交
2754
  py::class_<OperatorBase>(m, "Operator")
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2769
      .def("run",
2770
           [](OperatorBase &self, const Scope &scope,
2771 2772 2773 2774
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2775 2776
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2777 2778 2779 2780
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2781 2782
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2783 2784 2785 2786
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2787 2788
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2789 2790 2791 2792
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2793 2794 2795
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2796
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2797 2798
             self.Run(scope, place);
           })
2799 2800 2801 2802 2803 2804
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
2805 2806 2807 2808 2809 2810
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2811 2812 2813 2814 2815
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
2816 2817
             return op.Outputs();
           })
Q
qijun 已提交
2818 2819
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2820
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2821
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2822 2823 2824 2825
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2826

2827 2828 2829
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2830 2831
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
2832 2833 2834 2835 2836 2837
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
2838 2839
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2840

2841 2842
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2843
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2844
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2845
      .def("close", &Executor::Close)
2846 2847
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2848 2849
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2850 2851 2852 2853
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2854
             pybind11::gil_scoped_release release;
2855 2856 2857 2858 2859 2860 2861
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2862 2863 2864
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2865
              std::map<std::string, FetchType *> *fetch_targets,
2866 2867 2868 2869 2870 2871 2872 2873
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2874
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2875 2876 2877 2878 2879 2880 2881
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2892
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2893 2894
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2895
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2896 2897
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2898
      });
S
sneaxiy 已提交
2899

2900
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2901
      .def(py::init<>())
2902 2903 2904 2905 2906
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2907

2908
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2909 2910 2911
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2912
           [](StandaloneExecutor &self,
H
hong 已提交
2913
              const std::unordered_map<std::string, py::array> &input_dict,
2914
              std::vector<std::string> fetch_names) {
2915
             std::vector<framework::LoDTensor> feed_tensors;
2916
             std::vector<std::string> feed_names;
H
hong 已提交
2917 2918 2919 2920 2921

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2922 2923
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2924 2925
             }

2926 2927 2928 2929 2930 2931 2932 2933 2934
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2935
              const std::unordered_map<std::string, framework::LoDTensor>
2936 2937
                  &input_dict,
              std::vector<std::string> fetch_names) {
2938
             std::vector<framework::LoDTensor> feed_tensors;
2939 2940 2941 2942 2943 2944 2945
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2946 2947 2948 2949
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2950
             }
W
wanghuancoder 已提交
2951
             return py::cast(std::move(ret));
2952
           })
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2963 2964 2965
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2966
             std::vector<framework::LoDTensor> feed_tensors;
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2977
             framework::interpreter::CostInfo cost_info;
2978 2979 2980 2981 2982
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2983 2984
           });

D
dzhwinter 已提交
2985
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2986
  m.def("init_glog", framework::InitGLOG);
2987 2988 2989 2990
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
2991
  m.def("init_devices", []() { framework::InitDevices(); });
2992 2993
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
2994
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2995
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2996
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2997
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2998
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2999
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
3000
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
3001
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
3002
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
3003
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
3004
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
3005
  m.def("supports_bfloat16", SupportsBfloat16);
3006
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
3007 3008
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
3009
  m.def("op_supported_infos", imperative::OpSupportedInfos);
3010
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
3011
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
3012 3013 3014
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
3034 3035 3036
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
  m.def(
      "run_cmd",
      [](const std::string &cmd, int time_out = -1,
         int sleep_inter = -1) -> const std::string {
        return paddle::framework::shell_get_command_output(cmd, time_out,
                                                           sleep_inter);
      },
      py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
  m.def(
      "shell_execute_cmd",
      [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
         bool redirect_stderr = false) -> std::vector<std::string> {
        return paddle::framework::shell_execute_cmd(cmd, time_out, sleep_inter,
                                                    redirect_stderr);
      },
      py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
3054

3055
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3056 3057
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
3058
    return platform::GetGPUComputeCapability(place.device) >= 53;
3059
  });
3060 3061 3062 3063
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
3064
#endif
3065

S
Steffy-zxf 已提交
3066 3067 3068 3069 3070 3071
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
3072 3073 3074 3075 3076
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
3077
            return py::cast(BOOST_GET(LoDTensor, var));
3078
          } else {
3079
            return py::cast(BOOST_GET(LoDTensorArray, var));
3080 3081
          }
        });
3082
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
3083

X
Xin Pan 已提交
3084 3085
  m.def("_is_program_version_supported", IsProgramVersionSupported);

3086 3087 3088 3089
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
3090
  BindCostModel(&m);
3091
  BindConstValue(&m);
3092
  BindGlobalValueGetterSetter(&m);
3093
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
3094
  BindFleetExecutor(&m);
3095
  BindTCPStore(&m);
Y
Yu Yang 已提交
3096

Y
Yu Yang 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

3106
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
3107
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
3108 3109 3110

    Examples:
        .. code-block:: python
3111

Z
Zeng Jinle 已提交
3112 3113 3114
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
3115 3116 3117 3118
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
3119 3120
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
3121 3122 3123 3124
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
3125 3126 3127
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
3128 3129 3130 3131
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
3132 3133 3134
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
3135 3136 3137 3138 3139 3140 3141 3142
      .def(
          "append",
          [](LoDTensorArray &self, const LoDTensor &t) {
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
          py::arg("tensor"), R"DOC(
Z
Zeng Jinle 已提交
3143
             Append a LoDensor to LoDTensorArray.
3144 3145 3146 3147 3148 3149
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
3161
           )DOC")
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
3173

3174 3175 3176
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
                auto &data = BOOST_GET(LoDTensor, self[i]);
                res[i] = py::cast(std::move(data));
              } else {
                auto &data = BOOST_GET(LoDTensorArray, self[i]);
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
3198

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
      .def(
          "append",
          [](FetchList &self, const LoDTensor &t) {
            self.emplace_back();
            auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
            auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
3220 3221 3222

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
3223
        )DOC")
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
                  auto &var = BOOST_GET(LoDTensor, self[i][j]);
                  tmp[j] = py::cast(std::move(var));
                } else {
                  auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
3250

Y
Yu Yang 已提交
3251
  m.def("op_support_gpu", OpSupportGPU);
3252
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3253
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
3254
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
3255 3256 3257 3258 3259 3260 3261 3262
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
3263 3264 3265 3266 3267 3268
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
3269 3270

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
3296
      });
D
dangqingqing 已提交
3297

3298
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
3299 3300 3301
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
3302 3303 3304 3305
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
3306
#endif
P
peizhilin 已提交
3307
#endif
Y
Yu Yang 已提交
3308

3309 3310
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
3311
  m.def("npu_finalize", []() {
3312 3313
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

3314 3315 3316
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
3317
      platform::NPUDeviceGuard guard(devices[i]);
3318 3319 3320 3321
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
3342 3343 3344 3345
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

3346 3347 3348 3349
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

3350 3351 3352 3353 3354 3355
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

3356 3357 3358 3359
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
3360
      .value("kAll", platform::ProfilerState::kAll)
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

3372
  m.def("set_tracer_option", platform::SetTracerOption);
3373 3374
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
3375
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
3376
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
3377
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
3378 3379
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
3380 3381 3382
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
3383
    callable.inc_ref();
3384 3385 3386 3387 3388 3389 3390 3391
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
3392
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
3393 3394 3395
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
3396

3397
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
      .def("get_data", &paddle::platform::ProfilerResult::GetData,
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
                     &paddle::platform::HostPythonNode::device_node_ptrs);

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
      .def("create", &paddle::platform::Profiler::Create,
           py::return_value_policy::take_ownership)
C
chenjian 已提交
3437
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
3438 3439
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
3440 3441 3442 3443 3444 3445
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3487

3488
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3489 3490
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3491 3492
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3493
#endif  // PADDLE_WITH_CUDA
3494 3495
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3496

3497 3498 3499
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3500 3501
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3502
      .def("has", &ir::Pass::Has)
3503 3504 3505
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3506
           })
3507
      .def(
3508
          "set",
3509 3510 3511
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
3512 3513
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
3514 3515
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
3516 3517 3518 3519 3520
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3535 3536
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3537
        self.Apply(graph.get());
F
flame 已提交
3538
      });
3539

X
fix  
Xin Pan 已提交
3540 3541
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3556
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3557
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3558 3559 3560 3561
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3562 3563 3564
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3565 3566 3567
    Examples:
        .. code-block:: python

3568 3569 3570 3571 3572 3573 3574 3575 3576
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3577

3578 3579
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3580

3581
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3582 3583
          sgd_optimizer.minimize(avg_loss)

3584
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3585 3586
          exec_strategy.num_threads = 4

3587 3588 3589
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3590 3591
        )DOC");

3592 3593 3594 3595
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3596

Y
yuyang18 已提交
3597
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3598 3599 3600 3601 3602
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3603
          },
3604 3605
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3606 3607 3608 3609 3610 3611 3612
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3626
      .def_property(
3627 3628
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3629
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3630 3631 3632
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3633 3634 3635 3636 3637
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3638 3639 3640
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3641 3642
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3643 3644 3645 3646 3647 3648 3649
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3650 3651 3652 3653
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3654
                because the temp variable's shape maybe the same between two iterations.
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3665

3666 3667 3668 3669 3670 3671 3672
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3673
              )DOC")
Q
Qiao Longfei 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3695
              )DOC")
3696 3697 3698 3699 3700 3701 3702 3703
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3704 3705 3706 3707 3708 3709
      .def_property(
          "_dry_run",
          [](const ExecutionStrategy &self) { return self.dry_run_; },
          [](ExecutionStrategy &self, bool dry_run) {
            self.dry_run_ = dry_run;
          });
C
chengduo 已提交
3710

Y
yuyang18 已提交
3711
  exec_strategy.def_property(
Y
yuyang18 已提交
3712 3713 3714 3715 3716 3717 3718
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3719 3720
      });

C
chengduo 已提交
3721 3722 3723 3724
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3725 3726 3727
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3728 3729 3730
    Examples:
        .. code-block:: python

3731
            import os
3732 3733 3734 3735
            import paddle
            import paddle.static as static

            paddle.enable_static()
3736

3737 3738
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3739

3740 3741 3742 3743
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3744

3745
            build_strategy = static.BuildStrategy()
3746 3747
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3748 3749
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3750
            program = program.with_data_parallel(loss_name=loss.name,
3751 3752
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3753
)DOC");
Y
yuyang18 已提交
3754 3755 3756

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3757 3758
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3759 3760 3761 3762 3763 3764 3765 3766
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3767
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3768 3769 3770 3771
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3772 3773 3774 3775
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3776
            self.reduce_ = strategy;
C
chengduo 已提交
3777
          },
3778
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3779 3780
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3781
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3782 3783
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3784
                Default is 'AllReduce'.
F
flame 已提交
3785 3786 3787 3788

                Examples:
                    .. code-block:: python

3789 3790 3791 3792 3793 3794 3795
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3796
                  )DOC")
Y
yuyang18 已提交
3797 3798 3799 3800 3801
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3802 3803 3804 3805
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3806
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3807
          },
3808
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3809
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3810 3811
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3812
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3813 3814 3815 3816

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3817 3818
                        import numpy
                        import os
3819 3820 3821 3822
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3823 3824

                        use_cuda = True
3825 3826
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3827 3828

                        # NOTE: If you use CPU to run the program, you need
3829
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3830 3831 3832 3833 3834 3835
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3836
                            places = static.cpu_places()
C
chengduo 已提交
3837
                        else:
3838
                            places = static.cuda_places()
C
chengduo 已提交
3839

3840 3841 3842 3843
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3844

3845
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3846

3847
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3848
                        build_strategy.gradient_scale_strategy = \
3849 3850 3851
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3852
                                          loss_name=loss.name, build_strategy=build_strategy,
3853
                                          places=places)
C
chengduo 已提交
3854 3855 3856 3857 3858 3859

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3860 3861
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3862
                   )DOC")
Y
yuyang18 已提交
3863 3864 3865 3866
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3867 3868 3869 3870
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3871
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3872
          },
3873
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3874
                writing the SSA Graph to file in the form of graphviz.
3875
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3876 3877 3878 3879

                Examples:
                    .. code-block:: python

3880 3881 3882 3883
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3884

3885 3886
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3887
                    )DOC")
S
sneaxiy 已提交
3888 3889 3890 3891 3892 3893
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3894 3895 3896 3897
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3898 3899
            self.enable_sequential_execution_ = b;
          },
3900 3901
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3902 3903 3904 3905

                Examples:
                    .. code-block:: python

3906 3907 3908 3909 3910 3911
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3912 3913
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3914 3915 3916 3917 3918 3919
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3920 3921 3922 3923
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3924 3925
            self.remove_unnecessary_lock_ = b;
          },
3926 3927
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3928 3929 3930 3931

                Examples:
                    .. code-block:: python

3932 3933 3934 3935 3936 3937
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3938 3939
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3940 3941 3942 3943
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3944
#ifdef WIN32
3945
            PADDLE_THROW(platform::errors::Unavailable(
3946
                "Distribution mode is not supported on Windows platform."));
3947
#endif
3948 3949
            self.num_trainers_ = num_trainers;
          })
3950 3951 3952 3953 3954 3955 3956
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
3957 3958 3959 3960 3961 3962
      .def_property(
          "trainer_id",
          [](const BuildStrategy &self) { return self.trainer_id_; },
          [](BuildStrategy &self, int trainer_id) {
            self.trainer_id_ = trainer_id;
          })
3963 3964 3965 3966 3967 3968
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3969 3970 3971 3972 3973 3974
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
      .def_property(
          "use_hierarchical_allreduce",
          [](const BuildStrategy &self) {
            return self.use_hierarchical_allreduce_;
          },
          [](BuildStrategy &self, bool use) {
            self.use_hierarchical_allreduce_ = use;
          })
      .def_property(
          "hierarchical_allreduce_inter_nranks",
          [](const BuildStrategy &self) {
            return self.hierarchical_allreduce_inter_nranks_;
          },
          [](BuildStrategy &self, int nranks) {
            self.hierarchical_allreduce_inter_nranks_ = nranks;
          })
3991

C
chengduo 已提交
3992 3993 3994 3995 3996 3997
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3998 3999 4000 4001
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
4002 4003
            self.fuse_elewise_add_act_ops_ = b;
          },
4004
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
4005
                to fuse elementwise_add_op and activation_op,
4006
                it may make the execution faster. Default is False.
F
flame 已提交
4007 4008 4009 4010

                Examples:
                    .. code-block:: python

4011 4012 4013 4014 4015 4016
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4017 4018
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
4044 4045 4046 4047
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
4048
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
4049
                              platform::errors::PreconditionNotMet(
4050 4051
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

4061 4062 4063 4064 4065 4066
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
4067 4068
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
4094 4095 4096 4097
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
4098
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
4099
                              platform::errors::PreconditionNotMet(
4100 4101
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

4112 4113 4114 4115 4116 4117
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
4118 4119
                        build_strategy.enable_auto_fusion = True
                    )DOC")
4120 4121 4122 4123 4124 4125
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
4126 4127 4128 4129
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4130 4131
            self.fuse_relu_depthwise_conv_ = b;
          },
4132
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
4133 4134 4135
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
4136
                Default is False.
F
flame 已提交
4137 4138 4139 4140

                Examples:
                    .. code-block:: python

4141 4142 4143 4144 4145 4146
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4147 4148
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) {
            return self.fuse_broadcast_ops_ == true ||
                   self.fuse_broadcast_ops_ == paddle::none;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, "
                                  "cannot be configured again."));
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC((bool, optional): fuse_broadcast_op indicates whether
4163 4164 4165 4166
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
4167 4168 4169 4170 4171
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

4172 4173 4174 4175 4176 4177
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
4178 4179
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
      .def_property(
          "fuse_all_optimizer_ops",
          [](const BuildStrategy &self) {
            return self.fuse_all_optimizer_ops_ == true ||
                   self.fuse_all_optimizer_ops_ == paddle::none;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, "
                                  "cannot be configured again."));
            self.fuse_all_optimizer_ops_ = b;
          })
Q
qingqing01 已提交
4193 4194 4195 4196
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
4197 4198 4199 4200
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
4201 4202
            self.sync_batch_norm_ = b;
          },
4203
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
4204 4205 4206
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
4207 4208
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
4209 4210 4211 4212

                Examples:
                    .. code-block:: python

4213 4214 4215 4216 4217 4218
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4219 4220
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
4221 4222
      .def_property(
          "memory_optimize",
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
4233
              self.memory_optimize_ = paddle::none;
4234 4235 4236
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
4237
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
4238 4239
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
4240 4241
            }
          },
4242
          R"DOC((bool, optional): memory opitimize aims to save total memory
4243
                consumption, set to True to enable it.
4244

4245 4246 4247
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
4262 4263 4264
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
4265 4266 4267
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
4268
              PADDLE_THROW(platform::errors::Unavailable(
4269
                  "Distribution mode is not supported on Windows platform."));
4270 4271 4272 4273 4274
            }
#else
            self.is_distribution_ = b;
#endif
          })
4275 4276 4277 4278
      .def_property(
          "async_mode",
          [](const BuildStrategy &self) { return self.async_mode_; },
          [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
4279
      .def_property(
D
dzhwinter 已提交
4280 4281 4282
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
4283 4284 4285 4286
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
4287 4288
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
4289 4290
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
4291
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
4292
          },
C
chengduo 已提交
4293
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
4294 4295 4296 4297 4298 4299 4300 4301
      .def_property(
          "enable_backward_optimizer_op_deps",
          [](const BuildStrategy &self) {
            return self.enable_backward_optimizer_op_deps_;
          },
          [](BuildStrategy &self, bool b) {
            self.enable_backward_optimizer_op_deps_ = b;
          })
4302 4303 4304 4305
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
4306 4307 4308 4309 4310 4311 4312 4313 4314
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
4315 4316 4317 4318 4319 4320
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
4321 4322 4323 4324 4325 4326 4327 4328
      .def_property(
          "allow_cuda_graph_capture",
          [](const BuildStrategy &self) {
            return self.allow_cuda_graph_capture_;
          },
          [](BuildStrategy &self, bool allow_cuda_graph_capture) {
            self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
          })
4329 4330 4331 4332 4333 4334
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
4335 4336 4337 4338 4339 4340
      .def(
          "_finalize_strategy_and_create_passes",
          [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
            return self.CreatePassesFromStrategy(true);
          },
          R"DOC(Allow user to customized passes. Normally model-specific
4341 4342
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
4343

4344 4345 4346 4347 4348 4349
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
4350
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
4351
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
4352
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
4353
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
4354 4355 4356 4357
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
4358 4359 4360 4361 4362 4363
      .def(
          "local_scopes",
          [](ParallelExecutor &self) -> std::vector<Scope *> * {
            return &self.GetLocalScopes();
          },
          py::return_value_policy::reference)
4364 4365 4366
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
4367 4368 4369 4370
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
4371 4372
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
4373 4374 4375 4376 4377 4378 4379 4380
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
4381
               return py::cast(
4382
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
4383 4384
             } else {
               return py::cast(std::move(
4385
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
4386
             }
4387 4388
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
4389

J
jianghaicheng 已提交
4390 4391
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
4392 4393 4394
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
4395 4396 4397 4398 4399 4400 4401
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
4402
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
4403 4404
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
4405
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
4416 4417 4418 4419
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
4453 4454 4455 4456 4457 4458
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4545 4546
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4547 4548 4549
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4550 4551
#endif

4552 4553 4554 4555 4556 4557 4558 4559
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

4560
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
4561 4562 4563 4564 4565 4566 4567 4568 4569
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
4570
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
4571 4572 4573 4574 4575 4576 4577
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
4592
  BindFleetWrapper(&m);
4593
  BindIO(&m);
T
Thunderbrook 已提交
4594

T
Thunderbrook 已提交
4595
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4596
  BindHeterWrapper(&m);
4597
  BindMetrics(&m);
T
Thunderbrook 已提交
4598
#endif
T
Thunderbrook 已提交
4599
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4600
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4601 4602 4603
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
4604
#endif
4605
  BindGlooWrapper(&m);
H
hutuxian 已提交
4606
  BindBoxHelper(&m);
H
hutuxian 已提交
4607 4608 4609
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4610
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4611
  BindNCCLWrapper(&m);
4612 4613 4614
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4615
#endif
F
flame 已提交
4616 4617
  BindGraph(&m);
  BindNode(&m);
4618
  BindPass(&m);
F
flame 已提交
4619
  BindInferenceApi(&m);
4620
  BindCompatible(&m);
4621
  BindDataset(&m);
Y
yaoxuefeng 已提交
4622
  BindGenerator(&m);
4623 4624 4625
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4626 4627 4628
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4629
  BindAscendDevice(&m);
4630
#endif
Y
Yanghello 已提交
4631 4632 4633
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4634

T
tangwei12 已提交
4635
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4636 4637
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4638
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4639 4640
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4641 4642 4643 4644 4645
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4646 4647 4648 4649
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4650
#ifdef PADDLE_WITH_HETERPS
4651 4652
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
4653 4654 4655
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
4656
#endif
L
Luo Tao 已提交
4657
}
4658
}  // namespace pybind
4659
}  // namespace paddle