pybind.cc 69.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
32 33 34
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
37
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
42
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
44
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
47
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
49
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/platform/enforce.h"
51
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
52 53
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
54
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
56
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
58
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
59
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
61
#include "paddle/fluid/pybind/ir.h"
62

W
wopeizl 已提交
63
#ifndef _WIN32
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
65
#endif
66
#include "paddle/fluid/framework/data_type.h"
67 68
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
69
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
70
#include "paddle/fluid/pybind/tensor_py.h"
71
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
72
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
73
#ifndef _WIN32
Y
Yi Wang 已提交
74
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
75
#endif
Y
Yi Wang 已提交
76 77
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
78 79
#endif

80 81 82 83
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
84 85
#include "pybind11/stl.h"

86 87 88
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
89
DECLARE_bool(use_mkldnn);
90 91 92
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
93

Q
Qiao Longfei 已提交
94 95 96
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

97
namespace paddle {
98
namespace pybind {
99
bool IsCompiledWithCUDA() {
100
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
101 102 103 104 105 106
  return false;
#else
  return true;
#endif
}

107 108 109 110 111 112 113 114
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

115 116 117 118 119 120 121 122
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

123
bool IsCompiledWithBrpc() {
124
#ifndef PADDLE_WITH_DISTRIBUTE
125 126
  return false;
#endif
127 128 129 130 131 132

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
133 134
}

Y
update  
Yancey1989 已提交
135
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
136
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
137 138 139 140 141 142
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
143 144 145 146 147 148 149 150 151 152
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

153 154 155 156 157 158
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
159 160 161
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
162
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
163

164
  m.doc() = "C++ core of PaddlePaddle";
165

166 167 168 169
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

170
  BindException(&m);
Y
Yu Yang 已提交
171

172 173
  m.def("set_num_threads", &platform::SetNumThreads);

S
sneaxiy 已提交
174
  m.def(
S
sneaxiy 已提交
175
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
176 177 178 179
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
180 181 182
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
183 184 185
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
186
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
187

188
  m.def("_set_fuse_parameter_group_size",
189
        &paddle::framework::ir::SetFuseParameterGroupsSize);
190
  m.def("_set_fuse_parameter_memory_size",
191
        &paddle::framework::ir::SetFuseParameterMemorySize);
192

S
sneaxiy 已提交
193 194 195
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

196 197
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

198
  BindImperative(&m);
199

200
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
201
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
202 203
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
204
      .def("_get_dims",
205
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
206
      .def("_set_dims",
Q
qijun 已提交
207
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
208
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
209
           })
Y
yuyang18 已提交
210
      .def("_set_layout",
D
dzhwinter 已提交
211 212 213
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
214
      .def("_alloc_float",
D
dzhwinter 已提交
215
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
216
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
217
           })
Y
yuyang18 已提交
218
      .def("_alloc_float",
Y
Yu Yang 已提交
219
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
220
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
221
           })
Y
yuyang18 已提交
222
      .def("_alloc_int",
Y
Yu Yang 已提交
223
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
224
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
225
           })
Y
yuyang18 已提交
226
      .def("_alloc_int",
D
dzhwinter 已提交
227
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
228
             self.mutable_data<int>(place);
Q
qijun 已提交
229
           })
Y
yuyang18 已提交
230
      .def("_alloc_int",
C
chengduoZH 已提交
231 232 233
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
234
      .def("_alloc_float",
C
chengduoZH 已提交
235 236 237
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Z
Zeng Jinle 已提交
238
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
239 240
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
241
      .def("set", PyCPUTensorSetFromArray<double>)
242
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
243
      .def("set", PyCPUTensorSetFromArray<bool>)
244
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
245
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
246
      .def("set", PyCPUTensorSetFromArray<int8_t>)
247
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
248 249
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
250
      .def("set", PyCUDATensorSetFromArray<double>)
251
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
252
      .def("set", PyCUDATensorSetFromArray<bool>)
253
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
254
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
255
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
256 257 258 259 260 261
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
262
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
263
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
264
#endif
265
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
266 267 268 269
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
270
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
271
      .def("_dtype", [](Tensor &self) { return self.type(); })
272 273 274 275 276 277
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
278

X
Xin Pan 已提交
279 280 281 282 283 284 285 286 287
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

288 289
    For example, a LoDTensor X can look like the example below. It contains
    2 sequences. The first has length 2 and the second has length 3, as
Z
Zeng Jinle 已提交
290
    described by x.lod.
X
Xin Pan 已提交
291

Z
Zeng Jinle 已提交
292 293 294
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
295

Z
Zeng Jinle 已提交
296
    x.lod  = [[2, 3]]
297

Z
Zeng Jinle 已提交
298
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
299

Z
Zeng Jinle 已提交
300
    x.shape = [5, 2]
X
Xin Pan 已提交
301

Z
Zeng Jinle 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
319 320 321 322 323 324 325 326 327 328 329 330

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
331
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
332 333 334 335 336 337 338 339 340
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
341 342
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
343 344 345
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
346
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
347 348 349 350 351
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
352
      .def("set_lod",
353
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
354
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
355
             LoD new_lod;
356 357
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
358 359 360
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
361
             self.set_lod(new_lod);
S
sneaxiy 已提交
362 363 364 365 366 367
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
368 369 370 371 372 373 374 375 376 377

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
378
           )DOC")
379 380 381 382 383 384 385 386 387 388 389
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
390 391
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
392 393
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
394 395 396 397
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
398
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
399 400
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
401 402

           Args:
403
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
404 405 406 407 408 409 410 411 412 413

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
414
           )DOC")
415 416 417 418 419 420 421 422
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
423 424 425 426 427 428
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
429 430 431 432 433 434 435 436 437 438 439

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
440
           )DOC")
G
gongweibao 已提交
441
      // Set above comments of set_lod.
442 443 444 445 446 447 448 449
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
450 451 452 453 454
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
455
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
456 457 458 459 460 461 462 463 464 465 466

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
467 468 469 470 471 472 473 474 475 476 477 478
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
479 480 481 482 483 484 485 486 487 488 489

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
490 491 492 493 494 495 496
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
497
           )DOC")
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
516
      });
D
dangqingqing 已提交
517

Q
qijun 已提交
518 519 520 521 522 523 524 525 526 527 528
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
529 530
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
531 532
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
533 534 535 536 537 538 539 540 541
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
542
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
543
      .def("rows", [](SelectedRows &self) {
544 545 546 547 548
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
549
      });
Q
qijun 已提交
550

551
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
552 553 554

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
555
      .def(py::init<>())
556
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
557
      .def("set_int",
558 559
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
560 561 562 563 564 565 566
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
567
      .def("get_tensor",
568 569
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
570 571
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
572 573 574
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
575 576 577 578 579
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
580 581 582
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
583
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
584 585 586 587 588
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
589
#endif
Y
Refine  
Yu Yang 已提交
590 591
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
592
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
593 594
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
595
           py::return_value_policy::reference);
596

S
sneaxiy 已提交
597
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
598

S
sneaxiy 已提交
599 600 601 602
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
603

S
sneaxiy 已提交
604 605
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
606
      .def("push",
S
sneaxiy 已提交
607
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
608
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
609
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
610
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
611
           })
S
sneaxiy 已提交
612 613 614 615
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
616

S
sneaxiy 已提交
617
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
618 619
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
620
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
621 622 623 624
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
625
        py::return_value_policy::copy);
S
sneaxiy 已提交
626

S
sneaxiy 已提交
627
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

641
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
642 643 644 645 646 647
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
648 649
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
650
      .def("var",
651
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
652
             return self.Var(name);
Y
Yu Yang 已提交
653
           },
S
sneaxiy 已提交
654 655
           py::arg("name"),
           R"DOC(
656
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
657

658
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
659
           current scope, the variable would be created. Otherwise,
660
           return the existing variable.
S
sneaxiy 已提交
661 662

           Args:
663 664
               name (str): the variable name.

S
sneaxiy 已提交
665
           Returns:
666
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
667 668 669 670
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
671
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
672
           its parent scope. Return None if not found.
673

S
sneaxiy 已提交
674 675
           Args:
               name (str): the variable name.
676

S
sneaxiy 已提交
677
           Returns:
678
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
679
           )DOC",
680
           py::return_value_policy::reference)
681
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
682 683 684 685 686 687
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
688
           py::return_value_policy::reference)
S
sneaxiy 已提交
689 690 691
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
692 693
           )DOC")
      .def("_kids", &Scope::kids);
694

S
sneaxiy 已提交
695 696 697 698 699 700
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
701 702
        R"DOC(
        Create a new scope.
703

S
sneaxiy 已提交
704 705 706
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
707 708
        py::return_value_policy::reference);

Y
Yu Yang 已提交
709 710
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
711 712
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
713 714 715 716
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
717 718
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
719 720 721 722
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
723 724
    return ret_values;
  });
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
741 742 743 744 745 746 747
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
748 749 750
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
751

Y
Yu Yang 已提交
752
  m.def("prune", [](const ProgramDesc &origin,
753
                    const std::set<std::string> &feeded_var_names,
754
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
755
    ProgramDesc prog_with_targets(origin);
756

757
    for (const auto &t : targets) {
758
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
759
    }
760
    proto::ProgramDesc pruned_desc;
761
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
762
    return new ProgramDesc(pruned_desc);
763
  });
764 765 766
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
767 768 769 770
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
771 772 773
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
774 775
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
776
  // clang-format off
Y
Yu Yang 已提交
777
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
778 779
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
780
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
781 782 783
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
784
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
785
                      -> paddle::platform::DeviceContext* {
786
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
787
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
788
#else
Q
qijun 已提交
789
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
790
#endif
C
chengduoZH 已提交
791 792 793 794 795 796 797 798 799 800 801
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
802
// clang-format on
P
peizhilin 已提交
803
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
804 805
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
806 807 808 809
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
810 811 812 813

    Examples:
        .. code-block:: python

814
          import paddle.fluid as fluid
L
lujun 已提交
815 816
          gpu_place = fluid.CUDAPlace(0)

817
        )DOC")
S
sneaxiy 已提交
818 819 820
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
845 846
             new (&self) platform::CUDAPlace(dev_id);
#else
847 848 849 850 851 852 853 854 855
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
856 857
#endif
           })
S
sneaxiy 已提交
858 859 860 861 862 863
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
864
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
865

866 867 868
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
869 870 871 872

    Examples:
        .. code-block:: python

873
          import paddle.fluid as fluid
L
lujun 已提交
874 875
          cpu_place = fluid.CPUPlace()

876
        )DOC")
877
      .def(py::init<>())
S
sneaxiy 已提交
878 879 880 881 882 883
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
884
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
885

886 887 888
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
889 890 891 892

    Examples:
        .. code-block:: python

893
          import paddle.fluid as fluid
L
lujun 已提交
894 895
          place = fluid.CUDAPinnedPlace()

896
        )DOC")
S
sneaxiy 已提交
897
      .def("__init__",
S
sneaxiy 已提交
898
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
899 900 901
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
902
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
903
           })
S
sneaxiy 已提交
904 905 906 907 908 909 910 911
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
912 913
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
914 915
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
916 917 918 919 920
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
921 922
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
923 924 925 926 927 928
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
929 930 931 932
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
933 934
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
935 936 937 938 939
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
940
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
941
             self = gpu_place;
C
chengduoZH 已提交
942 943
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
944 945
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
946
      });
Y
Yu Yang 已提交
947

Y
Yu Yang 已提交
948
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
949 950 951 952 953 954 955 956 957 958 959
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
960
      .def("run",
961
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
962 963 964
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
965
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
966 967 968 969 970
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
971 972 973 974 975 976 977
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
978 979
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
980
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
981
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
982 983 984 985
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
986

987 988 989
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
990
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
991
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
992
      .def("close", &Executor::Close)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
1007 1008 1009 1010 1011 1012 1013 1014
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1015 1016
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
1017 1018
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1019
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1020 1021
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1022
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1023 1024
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1025
      });
S
sneaxiy 已提交
1026

D
dzhwinter 已提交
1027
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1028
  m.def("init_glog", framework::InitGLOG);
1029
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1030 1031
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1032

1033
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1034
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1035
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1036
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1037
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1038 1039 1040 1041 1042 1043
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1044

1045
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1046
  m.def("get_fetch_variable", framework::GetFetchVariable);
1047
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1048

X
Xin Pan 已提交
1049 1050
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1051 1052 1053 1054 1055
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1056

Y
Yu Yang 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1066 1067 1068 1069 1070
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
1071

Z
Zeng Jinle 已提交
1072 1073 1074 1075
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1076 1077
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1088 1089 1090 1091 1092 1093
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1118

Y
Yu Yang 已提交
1119
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1120
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1121
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1122

P
peizhilin 已提交
1123
#ifndef _WIN32
D
dangqingqing 已提交
1124 1125 1126
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1127
#endif
P
peizhilin 已提交
1128
#endif
Y
Yu Yang 已提交
1129

1130 1131 1132 1133
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1134
      .value("kAll", platform::ProfilerState::kAll)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1148
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1149
  m.def("reset_profiler", platform::ResetProfiler);
1150
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1151 1152 1153
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1154

1155 1156
  m.def("size_of_dtype", framework::SizeOfType);

1157 1158
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1159
      .def("has", &ir::Pass::Has)
1160 1161 1162
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1163
           })
1164
      .def(
1165
          "set",
1166 1167 1168
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1169 1170
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1171 1172
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1173
        self.Apply(graph.get());
F
flame 已提交
1174
      });
1175

X
fix  
Xin Pan 已提交
1176 1177
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1192
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1193

Y
yuyang18 已提交
1194
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1195 1196 1197 1198
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1199 1200 1201
    Examples:
        .. code-block:: python

1202
          import paddle.fluid as fluid
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1213 1214 1215
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1216 1217
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1218 1219
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1220 1221
        )DOC");

Y
yuyang18 已提交
1222
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1223 1224 1225 1226 1227
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1238
      .def_property(
1239 1240 1241 1242
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1243 1244 1245 1246
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1247 1248 1249 1250 1251
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1252 1253 1254
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1255 1256
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1257 1258 1259 1260 1261 1262 1263
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1264 1265 1266 1267
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1268 1269
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1270 1271 1272 1273 1274 1275

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1276
              )DOC")
Q
Qiao Longfei 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1288 1289 1290 1291 1292
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1293

Y
yuyang18 已提交
1294
  exec_strategy.def_property(
Y
yuyang18 已提交
1295 1296 1297 1298 1299 1300 1301
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1302 1303
      });

C
chengduo 已提交
1304 1305 1306 1307
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1308 1309 1310
    Examples:
        .. code-block:: python

F
flame 已提交
1311 1312 1313
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1314
)DOC");
Y
yuyang18 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1331 1332
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1333
            self.reduce_ = strategy;
C
chengduo 已提交
1334
          },
C
chengduo 已提交
1335 1336 1337 1338 1339 1340 1341
          R"DOC(The type is fluid.BuildStrategy.ReduceStrategy, there are two reduce
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
                you should choose AllReduce; if you choose Reduce, all the parameters'
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
                Default 'AllReduce'.
F
flame 已提交
1342 1343 1344 1345 1346 1347 1348 1349

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1350 1351 1352 1353 1354
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1355 1356
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1357
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1358
          },
C
chengduo 已提交
1359 1360 1361 1362 1363
          R"DOC(The type is fluid.BuildStrategy.GradientScaleStrategy, there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, CoeffNumDevice,
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
                you can choose Customized. Default 'CoeffNumDevice'.
F
flame 已提交
1364 1365 1366 1367 1368

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1397
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1412
                   )DOC")
Y
yuyang18 已提交
1413 1414 1415 1416
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1417 1418
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1419
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1420
          },
C
chengduo 已提交
1421
          R"DOC(The type is STR, debug_graphviz_path indicates the path that
F
flame 已提交
1422 1423 1424 1425 1426 1427 1428 1429
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1430 1431
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1432
                    )DOC")
S
sneaxiy 已提交
1433 1434 1435 1436 1437 1438
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1439 1440
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1441 1442
            self.enable_sequential_execution_ = b;
          },
C
chengduo 已提交
1443 1444
          R"DOC(The type is BOOL. If set True, the execution order of ops would
                be the same as what is in the program. Default False.
F
flame 已提交
1445 1446 1447 1448 1449 1450 1451 1452

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1453 1454 1455 1456 1457 1458
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1459 1460
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1461 1462
            self.remove_unnecessary_lock_ = b;
          },
C
chengduo 已提交
1463 1464
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default True.
F
flame 已提交
1465 1466 1467 1468 1469 1470 1471 1472

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1473 1474 1475 1476
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1477 1478 1479
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1480 1481
            self.num_trainers_ = num_trainers;
          })
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1494 1495 1496 1497 1498 1499
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1500
      .def_property("use_hierarchical_allreduce",
1501 1502 1503 1504 1505 1506
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1507
      .def_property("hierarchical_allreduce_inter_nranks",
1508 1509 1510 1511 1512 1513 1514
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1515 1516 1517 1518 1519 1520
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1521 1522
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1523 1524 1525
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1536 1537 1538 1539 1540 1541
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1542 1543
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1544 1545 1546
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
                    R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
1570 1571 1572 1573 1574
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1575 1576
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1577 1578
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1579 1580
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1581 1582
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1583 1584
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1585 1586 1587 1588
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1589 1590
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1609 1610
      .def_property(
          "memory_optimize",
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
                  "BuildStrategy.memory_optimize must be None, False or True");
            }
          },
          R"DOC(The type is BOOL or None, memory opitimize aims to save total memory
1630
                consumption, set to True to enable it.
1631

1632 1633 1634 1635
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
                True means enabling and False means disabling. Default None.)DOC")
1636 1637 1638
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1639 1640 1641 1642 1643 1644 1645 1646 1647
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1648 1649 1650
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1651
      .def_property(
D
dzhwinter 已提交
1652 1653 1654
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1655 1656
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
1657 1658 1659 1660
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
1661
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1662 1663 1664 1665 1666 1667 1668
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1669 1670 1671 1672
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1673 1674 1675 1676 1677 1678 1679 1680 1681
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1682
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1683
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1684 1685 1686 1687 1688
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1689 1690

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1691
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1692
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1693
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1694 1695 1696 1697
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1698 1699 1700 1701 1702
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1703 1704 1705
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1706 1707 1708 1709
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1710
      .def("run", [](ParallelExecutor &self,
1711
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
1712
        pybind11::gil_scoped_release release;
1713
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
1714
      });
Y
Yu Yang 已提交
1715

D
dongdaxiang 已提交
1716
  BindFleetWrapper(&m);
H
hutuxian 已提交
1717
  BindBoxHelper(&m);
W
wopeizl 已提交
1718
#ifndef _WIN32
D
dongdaxiang 已提交
1719
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1720
#endif
F
flame 已提交
1721 1722
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1723
  BindInferenceApi(&m);
1724
  BindDataset(&m);
1725 1726 1727
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1728
}
1729
}  // namespace pybind
1730
}  // namespace paddle