pybind.cc 150.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
53
#include "paddle/fluid/framework/pten_utils.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
57
#include "paddle/fluid/framework/selected_rows_utils.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/pten/core/compat/convert_utils.h"
79
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
80
#ifndef PADDLE_ON_INFERENCE
81
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
82
#endif
83
#include "paddle/fluid/pybind/io.h"
84
#include "paddle/utils/none.h"
85 86 87
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
88
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
89
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
90
#include "paddle/fluid/pybind/box_helper_py.h"
91
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
92
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
93
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
94
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
95
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
96
#include "paddle/fluid/pybind/generator_py.h"
97
#include "paddle/fluid/pybind/global_value_getter_setter.h"
98
#include "paddle/fluid/pybind/gloo_context_py.h"
99
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
100
#include "paddle/fluid/pybind/heter_wrapper_py.h"
101
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
102
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
103
#include "paddle/fluid/pybind/ir.h"
104
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
105
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
106
#include "paddle/fluid/pybind/pybind_boost_headers.h"
107

108
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
110
#endif
111
#include "paddle/fluid/framework/data_type.h"
112 113
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
114
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
115
#include "paddle/fluid/pybind/tensor_py.h"
116
#include "paddle/fluid/string/to_string.h"
117 118
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
119
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
120
#endif
121
#ifndef PADDLE_WITH_HIP
122
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
123
#endif
124
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
125 126
#endif

127
#ifdef PADDLE_WITH_ASCEND_CL
128
#include "paddle/fluid/platform/collective_helper.h"
129 130
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
131 132
#endif

133
#ifdef PADDLE_WITH_XPU
134
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
135
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
136 137
#endif

138
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
139

J
jianghaicheng 已提交
140
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
141 142
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
143
#endif
144

145 146 147 148
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
149 150 151 152
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
153
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
154 155 156
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
157 158
#include "pybind11/stl.h"

159
DECLARE_bool(use_mkldnn);
160

Q
Qiao Longfei 已提交
161 162
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
163 164 165
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
166

167
namespace paddle {
168
namespace pybind {
169 170 171 172 173 174 175

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
176
PyTypeObject *g_mluplace_pytype = nullptr;
177
PyTypeObject *g_framework_tensor_pytype = nullptr;
178
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
179

180
bool IsCompiledWithCUDA() {
181 182 183 184 185 186 187 188 189
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
190 191 192 193 194 195
  return false;
#else
  return true;
#endif
}

196 197 198 199 200 201 202 203
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

204 205 206 207 208 209 210 211
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

212 213 214 215 216 217 218 219
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
220 221 222 223 224 225 226 227
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

228 229 230 231 232 233 234 235
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

236 237 238 239 240 241 242 243
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

244 245 246 247 248 249 250 251
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

252 253 254 255 256 257 258 259
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

260 261 262 263 264 265 266 267 268 269 270
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

271 272 273 274 275 276 277 278 279 280 281
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
317 318 319
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

359
bool IsCompiledWithBrpc() {
360
#ifndef PADDLE_WITH_DISTRIBUTE
361 362
  return false;
#endif
363
  return true;
364 365
}

Y
update  
Yancey1989 已提交
366
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
367
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
368 369 370 371 372 373
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
374 375 376 377 378 379 380
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
381
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
382 383
}

H
hong 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
406 407 408
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
422 423
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
424 425
    }
    vec_res.emplace_back(
426
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
427 428 429 430 431 432 433 434 435 436 437 438
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
439 440
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
441 442 443 444 445 446 447 448 449 450 451 452
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
453 454 455
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
456 457 458 459
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
460 461
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
462 463 464 465
  }
  return vec_res;
}

466 467 468 469 470 471 472 473
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
474 475
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
476 477 478 479 480 481 482 483 484 485 486 487 488
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
489 490 491
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
492 493 494 495 496
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
497 498 499 500 501
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
502 503
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
504 505 506
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
507 508 509 510 511 512 513 514 515
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
516 517
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
518 519 520 521 522
  }

  return;
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
547 548 549 550
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
551
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
552 553 554 555 556 557 558 559
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
560 561 562 563 564 565 566 567 568 569 570
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

571 572 573 574 575 576
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
577
#ifndef PADDLE_ON_INFERENCE
578
  BindEager(&m);
W
wanghuancoder 已提交
579
#endif
580 581
  BindCudaStream(&m);

Y
Yu Yang 已提交
582 583 584
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
585
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
586

587 588
  AssertStaticGraphAndDygraphGradMakerNoDiff();

589
  m.doc() = "C++ core of PaddlePaddle";
590

591 592 593 594
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

595
  BindException(&m);
Y
Yu Yang 已提交
596

597 598
  m.def("set_num_threads", &platform::SetNumThreads);

599 600
  m.def("disable_signal_handler", &DisableSignalHandler);

601 602 603 604 605 606 607 608
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

609
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
610
  m.def("cudnn_version", &platform::DnnVersion);
611 612 613 614 615 616
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
617
#endif
618

Z
Zeng Jinle 已提交
619 620 621 622
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

623 624 625 626 627 628 629 630 631 632
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
633 634
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
635 636
#endif

Z
Zeng Jinle 已提交
637 638 639 640
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
641 642 643
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
644 645 646 647 648 649

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
650 651
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
652
    framework::Tensor tensor;
6
633WHU 已提交
653

S
Siming Dai 已提交
654
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
655 656
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
657
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
658
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
659 660 661 662 663
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
664

665 666 667 668 669 670
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

671 672 673 674 675 676
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
677 678
  });

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
704 705 706 707 708 709
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
710
  m.def(
S
sneaxiy 已提交
711
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
712 713 714 715
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
716 717 718
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
            }
            all_kernels_info.emplace(op_type, kernel_types);
          }
        }
        if (lib == "pten" || lib == "all") {
          auto pten_kernels = pten::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : pten_kernels) {
            auto op_type = pten::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPtenKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
                }
              } else {
                kernel_types.emplace_back(kernel_type_str);
              }
            }
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
          }
        }

        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
           Return the registered kernels in paddle.

           Args:
               lib[string]: the libarary, could be 'pten', 'fluid' and 'all'.
           )DOC");
774

S
sneaxiy 已提交
775 776 777
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
778
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
779

780
  m.def("_set_fuse_parameter_group_size",
781
        &paddle::framework::ir::SetFuseParameterGroupsSize);
782
  m.def("_set_fuse_parameter_memory_size",
783
        &paddle::framework::ir::SetFuseParameterMemorySize);
784

S
sneaxiy 已提交
785 786 787
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

788 789
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

790 791 792
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

793
  BindImperative(&m);
794

795 796 797 798 799
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
800 801
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
802
      .def("_is_initialized",
803
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
804
      .def("_get_dims",
805
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
806
      .def("_set_dims",
807
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
808
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
809
           })
Y
yuyang18 已提交
810
      .def("_set_layout",
811
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
812 813
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
814
      .def("_alloc_float",
815
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
816
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
817
           })
818
      .def("_alloc_float",
819
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
820 821
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
822
      .def("_alloc_float",
823
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
824
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
825
           })
826 827 828 829
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
830 831 832 833
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
834
      .def("_alloc_double",
835
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
836 837
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
838
      .def("_alloc_int",
839
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
840
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
841
           })
842
      .def("_alloc_int",
843
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
844 845
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
846
      .def("_alloc_int",
847
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
848
             self.mutable_data<int>(place);
Q
qijun 已提交
849
           })
850 851 852 853
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
854
      .def("_alloc_int",
855 856
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
857 858
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
859
      .def("_alloc_float",
860 861
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
862 863
             self.mutable_data<float>(place);
           })
864
      .def("_mutable_data",
865
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
866 867 868
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
869
      .def("_mutable_data",
870
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
871 872 873
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
874
      .def("_mutable_data",
875
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
876 877 878 879
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
880
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
881 882 883
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
884 885 886 887 888
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
889
      .def("_clear", &framework::Tensor::clear)
890 891 892 893 894
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
895 896 897 898 899 900 901 902 903 904
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
905 906
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
907
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
908
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
909
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
910
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
911 912
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
913
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
914
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
915 916
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
917 918
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
919 920
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
921
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
922 923
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
924
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
925 926 927
        
        Args:
          lod (numpy.ndarray): The data to set.
928
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
929
          Tensor is to be set.
930 931
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
932 933 934 935 936 937 938 939 940 941

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

942
                t = fluid.Tensor()
L
Leo Chen 已提交
943 944
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
945

946 947 948
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
949
           Return the shape of Tensor.
L
Leo Chen 已提交
950 951

           Returns:
952
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
953 954 955 956 957 958 959 960


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

961
                  t = fluid.Tensor()
L
Leo Chen 已提交
962 963 964
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
965
      .def("_to_dlpack",
966
           [](framework::Tensor &self) {
6
633WHU 已提交
967
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
968
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
986 987 988 989
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
990 991
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
992
      .def("_layout",
993 994 995 996
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
997
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
1017 1018
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
1019 1020 1021 1022
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
1023
      .def("__init__",
1024 1025
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1026
           })
G
gongweibao 已提交
1027
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1028 1029
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1030 1031 1032
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1033
      .def("set_lod",
1034 1035
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1036
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1037
             LoD new_lod;
1038 1039
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1040 1041
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1042 1043
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1044
             self.set_lod(new_lod);
S
sneaxiy 已提交
1045 1046
           },
           py::arg("lod"), R"DOC(
1047
           Set LoD of the Tensor.
S
sneaxiy 已提交
1048 1049

           Args:
L
Leo Chen 已提交
1050 1051 1052 1053
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1054 1055 1056 1057 1058 1059 1060

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1061
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1062 1063
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1064
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1065
           )DOC")
1066
      .def("set_recursive_sequence_lengths",
1067 1068
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1069 1070 1071 1072 1073 1074 1075 1076
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1077 1078
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1079
                 platform::errors::InvalidArgument(
1080 1081
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1082 1083 1084
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1085
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1086 1087
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1088
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1089

L
Leo Chen 已提交
1090
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1091
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1092
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1093 1094

           Args:
L
Leo Chen 已提交
1095 1096 1097 1098
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1099 1100 1101 1102 1103 1104 1105

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1106
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1107 1108
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1109
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1110
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1111
           )DOC")
1112
      .def("lod",
1113
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1114 1115 1116 1117 1118 1119
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1120 1121
           },
           R"DOC(
1122
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1123 1124

           Returns:
1125
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1126
           
Z
Zeng Jinle 已提交
1127 1128 1129 1130 1131 1132
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1133
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1134 1135 1136
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1137
           )DOC")
G
gongweibao 已提交
1138
      // Set above comments of set_lod.
1139
      .def("recursive_sequence_lengths",
1140
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1141
             // output the length-based lod info
1142
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1143 1144 1145 1146
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1147 1148
           },
           R"DOC(
L
Leo Chen 已提交
1149
           Return the recursive sequence lengths corresponding to of the LodD 
1150
           of the Tensor.
S
sneaxiy 已提交
1151 1152

           Returns:
L
Leo Chen 已提交
1153
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1154 1155 1156 1157 1158 1159 1160

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1161
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1162 1163 1164
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1165 1166
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1167
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1168
             // Check that the lod info is valid and match the outermost
1169
             // dimension of the Tensor data
S
sneaxiy 已提交
1170 1171 1172
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1173
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1174 1175

           Returns:
L
Leo Chen 已提交
1176
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1177 1178 1179 1180 1181 1182 1183

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1184
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1185 1186 1187
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1188
           )DOC")
L
Leo Chen 已提交
1189
      .def("_as_type",
1190
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1191
              paddle::framework::proto::VarType::Type type) {
1192
             framework::Tensor dst;
L
Leo Chen 已提交
1193 1194 1195 1196 1197
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1211
#ifdef _WIN32
1212
           });
1213 1214 1215
#else
           })
      .def(py::pickle(
1216
          [](const framework::Tensor &t) {  // __getstate__
1217
            auto holder = t.Holder();
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1230 1231 1232
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1233 1234
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1235 1236 1237
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1238
              throw std::runtime_error("Invalid Tensor state!");
1239 1240

            // 1. Create a new C++ instance
1241
            framework::Tensor tensor;
1242 1243 1244 1245 1246

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1247 1248
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1249 1250

            // 3. Maintain global fd set
1251
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1252 1253
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1254 1255 1256 1257
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1258 1259 1260 1261 1262 1263
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1264

1265
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1266
      .def("__init__",
1267 1268 1269
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1270
      .def("__init__",
1271
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1272
              const int64_t &height) {
1273
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1274 1275
           })
      .def("get_tensor",
1276
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1277
           py::return_value_policy::reference)
1278
      .def("numel",
1279 1280 1281 1282 1283
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1284
      .def("set_rows",
1285
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1286
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1287 1288 1289 1290 1291 1292
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1293 1294 1295
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1296 1297 1298 1299 1300
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1301
      });
Q
qijun 已提交
1302

1303
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1304 1305 1306

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1307
      .def(py::init<>())
1308
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1309
      .def("set_int",
1310 1311
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1312 1313 1314 1315 1316 1317 1318
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1319
      .def("get_tensor",
1320 1321
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1322 1323
           },
           py::return_value_policy::reference)
1324 1325 1326 1327
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1340 1341 1342
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1343
      .def("get_selected_rows",
1344 1345
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1346 1347
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1348 1349 1350
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1351 1352 1353
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1354
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1355 1356 1357 1358 1359
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1360
#endif
Y
Refine  
Yu Yang 已提交
1361 1362
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1363 1364 1365 1366
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1367 1368
             return self.GetMutable<framework::ReaderHolder>();
           },
1369
           py::return_value_policy::reference)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1381 1382 1383 1384
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1385

S
sneaxiy 已提交
1386
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1387

S
sneaxiy 已提交
1388
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1402
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1403 1404 1405 1406 1407 1408
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1409 1410
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1411
      .def("var",
1412
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1413
             return self.Var(name);
Y
Yu Yang 已提交
1414
           },
S
sneaxiy 已提交
1415 1416
           py::arg("name"),
           R"DOC(
1417
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1418

1419
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1420
           current scope, the variable would be created. Otherwise,
1421
           return the existing variable.
S
sneaxiy 已提交
1422 1423

           Args:
1424 1425
               name (str): the variable name.

S
sneaxiy 已提交
1426
           Returns:
1427
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1428 1429 1430 1431
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1432
           Find variable named :code:`name` in the current scope or
1433
           its parent scope. Return None if not found. 
1434

S
sneaxiy 已提交
1435 1436
           Args:
               name (str): the variable name.
1437

S
sneaxiy 已提交
1438
           Returns:
1439
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1440
           )DOC",
1441
           py::return_value_policy::reference)
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1454
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1455 1456 1457 1458 1459 1460
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1461
           py::return_value_policy::reference)
S
sneaxiy 已提交
1462 1463 1464
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1465 1466
           )DOC")
      .def("_kids", &Scope::kids);
1467

S
sneaxiy 已提交
1468 1469 1470 1471 1472 1473
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1474 1475
        R"DOC(
        Create a new scope.
1476

S
sneaxiy 已提交
1477 1478 1479
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1480 1481
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1482 1483
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1484 1485
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1486 1487 1488 1489
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1490 1491
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1492 1493
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1494 1495 1496
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1497 1498
    return ret_values;
  });
1499 1500 1501 1502 1503 1504 1505 1506
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1507
              res = op_checker->GetDefaultAttrsMap();
1508 1509 1510 1511
            }
          }
          return res;
        });
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1528 1529 1530
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1531 1532 1533 1534 1535
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1536 1537 1538
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1553
  m.def("prune", [](const ProgramDesc &origin,
1554
                    const std::set<std::string> &feeded_var_names,
1555
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1556
    ProgramDesc prog_with_targets(origin);
1557

1558
    for (const auto &t : targets) {
1559
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1560
    }
1561
    proto::ProgramDesc pruned_desc;
1562 1563 1564 1565
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1566
  });
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1584 1585 1586 1587
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1588 1589 1590
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1591 1592
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1593

Q
qijun 已提交
1594
  // clang-format off
Y
Yu Yang 已提交
1595
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1596 1597
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1598
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1599 1600
                    return new paddle::platform::CPUDeviceContext();
                  })
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1623 1624
#endif
                  })
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1637
      .def_static("create",
D
dzhwinter 已提交
1638
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1639
                      -> paddle::platform::DeviceContext* {
1640
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1641 1642 1643 1644
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1645
#else
Q
qijun 已提交
1646
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1647
#endif
C
chengduoZH 已提交
1648 1649 1650 1651
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1652
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1653 1654 1655 1656
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1657 1658 1659 1660
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1661
// clang-format on
1662
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1663 1664
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1665
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1666 1667 1668 1669 1670

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1671
    The memory of CUDAPlace with different dev_id is not accessible.
1672 1673 1674 1675 1676 1677 1678 1679
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1680 1681 1682 1683

    Examples:
        .. code-block:: python

1684 1685 1686
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1687

1688 1689 1690
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1691 1692
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1693
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1694 1695 1696 1697 1698 1699 1700 1701
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1702 1703
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1704 1705 1706 1707 1708 1709 1710 1711
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1712 1713
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1714 1715 1716 1717
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1718 1719
             new (&self) platform::CUDAPlace(dev_id);
#else
1720 1721 1722 1723 1724 1725 1726 1727 1728
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1729 1730
#endif
           })
1731
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1732 1733
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1734 1735 1736 1737
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1738
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1739
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1740
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1741 1742
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1743 1744 1745
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1746
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1747
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1748

1749
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1750 1751 1752 1753 1754
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1755 1756 1757
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1796
#ifdef PADDLE_WITH_XPU
1797 1798 1799 1800 1801 1802 1803
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1804 1805 1806
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1807
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1808
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1809
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1810 1811 1812
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1813
      .export_values();
1814
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1815 1816
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1817 1818 1819 1820 1821 1822
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1823 1824
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1825 1826
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1827 1828
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1829 1830 1831
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1832 1833
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1834
  });
1835
#endif
1836

1837
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1838
    CPUPlace is a descriptor of a device.
1839
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1840 1841 1842 1843

    Examples:
        .. code-block:: python

1844 1845
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1846

1847 1848 1849
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1850 1851
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1852
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1853
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1854 1855 1856 1857
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1858
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1859
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1860

1861 1862
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1863 1864 1865 1866 1867 1868
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1869 1870 1871 1872

    Examples:
        .. code-block:: python

1873 1874
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1875

1876 1877 1878 1879
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1880
      .def("__init__",
S
sneaxiy 已提交
1881
           [](platform::CUDAPinnedPlace &self) {
1882
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1883 1884 1885
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1886
#endif
S
sneaxiy 已提交
1887
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1888
           })
S
sneaxiy 已提交
1889 1890 1891 1892
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1893 1894
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1895 1896
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1897 1898 1899 1900
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1901
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1902 1903
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1904
  // NPUPlace
1905
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1906 1907 1908 1909 1910 1911 1912 1913
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1914 1915 1916
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1948
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1963 1964
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1965 1966
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2088 2089 2090
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2091 2092 2093 2094
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2095
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2096
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2097
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2098
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2099
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2100 2101
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2102 2103
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2104 2105
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2106 2107
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2108 2109
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2110 2111 2112 2113
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2114 2115
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2116 2117 2118 2119 2120
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2121 2122
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2123 2124 2125 2126
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2127 2128 2129 2130
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2131
      .def("set_place",
D
dzhwinter 已提交
2132
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2133
             self = gpu_place;
C
chengduoZH 已提交
2134
           })
2135 2136 2137 2138 2139
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2140 2141 2142 2143
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2144 2145 2146 2147
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2148 2149 2150 2151
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2152 2153
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2154

Y
Yu Yang 已提交
2155
  py::class_<OperatorBase>(m, "Operator")
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2170
      .def("run",
2171
           [](OperatorBase &self, const Scope &scope,
2172 2173 2174 2175
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2176 2177
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2178 2179 2180 2181
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2182 2183
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2184 2185 2186 2187
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2188 2189
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2190 2191 2192 2193
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2194 2195 2196
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2197
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2198 2199
             self.Run(scope, place);
           })
2200 2201 2202 2203 2204 2205
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2206 2207 2208 2209 2210 2211 2212
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2213 2214
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2215
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2216
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2217 2218 2219 2220
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2221

2222 2223 2224
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2225 2226 2227 2228 2229 2230 2231
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2232 2233
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2234

2235 2236
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2237
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2238
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2239
      .def("close", &Executor::Close)
2240 2241
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2242 2243
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2244 2245 2246 2247
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2248
             pybind11::gil_scoped_release release;
2249 2250 2251 2252 2253 2254 2255
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2256 2257 2258
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2259
              std::map<std::string, FetchType *> *fetch_targets,
2260 2261 2262 2263 2264 2265 2266 2267
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2268
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2269 2270 2271 2272 2273 2274 2275
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2286
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2287 2288
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2289
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2290 2291
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2292
      });
S
sneaxiy 已提交
2293

2294
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2295
      .def(py::init<>())
2296 2297 2298 2299 2300
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2301

2302
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2303 2304 2305
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2306
           [](StandaloneExecutor &self,
H
hong 已提交
2307
              const std::unordered_map<std::string, py::array> &input_dict,
2308
              std::vector<std::string> fetch_names) {
2309
             std::vector<framework::LoDTensor> feed_tensors;
2310
             std::vector<std::string> feed_names;
H
hong 已提交
2311 2312 2313 2314 2315

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2316 2317
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2318 2319
             }

2320 2321 2322 2323 2324 2325 2326 2327 2328
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2329
              const std::unordered_map<std::string, framework::LoDTensor>
2330 2331
                  &input_dict,
              std::vector<std::string> fetch_names) {
2332
             std::vector<framework::LoDTensor> feed_tensors;
2333 2334 2335 2336 2337 2338 2339
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2340 2341 2342 2343
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2344
             }
W
wanghuancoder 已提交
2345
             return py::cast(std::move(ret));
2346
           })
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2357 2358 2359
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2360
             std::vector<framework::LoDTensor> feed_tensors;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2371
             framework::interpreter::CostInfo cost_info;
2372 2373 2374 2375 2376
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2377 2378
           });

D
dzhwinter 已提交
2379
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2380
  m.def("init_glog", framework::InitGLOG);
2381 2382
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2383
  m.def("init_devices", []() { framework::InitDevices(); });
2384

2385
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2386
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2387
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2388
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2389
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2390
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2391
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2392
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2393
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2394
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2395
  m.def("supports_bfloat16", SupportsBfloat16);
2396
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2397 2398
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2399
  m.def("op_supported_infos", OpSupportedInfos);
2400
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2401
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2402 2403 2404
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2424 2425 2426 2427 2428 2429 2430
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2440
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2441 2442
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2443
    return platform::GetGPUComputeCapability(place.device) >= 53;
2444 2445
  });
#endif
2446

S
Steffy-zxf 已提交
2447 2448 2449 2450 2451 2452
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2453 2454 2455 2456 2457
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2458
            return py::cast(BOOST_GET(LoDTensor, var));
2459
          } else {
2460
            return py::cast(BOOST_GET(LoDTensorArray, var));
2461 2462
          }
        });
2463
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2464

X
Xin Pan 已提交
2465 2466
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2467 2468 2469 2470
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2471
  BindCostModel(&m);
2472
  BindConstValue(&m);
2473
  BindGlobalValueGetterSetter(&m);
2474
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2475
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2476

Y
Yu Yang 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2486
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2487
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2488 2489 2490

    Examples:
        .. code-block:: python
2491

Z
Zeng Jinle 已提交
2492 2493 2494
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2495 2496 2497 2498
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2499 2500
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2501 2502 2503 2504 2505 2506
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2507 2508 2509 2510
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2511 2512 2513
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2514 2515 2516 2517 2518 2519
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2520 2521
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2522 2523 2524 2525 2526 2527
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2550

2551 2552 2553 2554 2555 2556 2557 2558
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2559
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2560 2561
                 res[i] = py::cast(std::move(data));
               } else {
2562
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2578
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2579 2580 2581 2582 2583 2584 2585 2586
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2587
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2588 2589 2590 2591 2592 2593 2594 2595 2596
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2597 2598
        )DOC")
      .def("_move_to_list",
2599
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2600 2601 2602 2603
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2604
                 if (data_is_lod_tensor(self[i][j])) {
2605
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2606 2607
                   tmp[j] = py::cast(std::move(var));
                 } else {
2608
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2609 2610 2611 2612 2613 2614
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2624
  m.def("op_support_gpu", OpSupportGPU);
2625
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2626
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2627 2628 2629 2630 2631 2632 2633 2634
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2635 2636 2637 2638 2639 2640 2641
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2667
      });
D
dangqingqing 已提交
2668

2669
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2670 2671 2672
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2673 2674 2675 2676
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2677
#endif
P
peizhilin 已提交
2678
#endif
Y
Yu Yang 已提交
2679

2680 2681
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2682
  m.def("npu_finalize", []() {
2683 2684
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2685 2686 2687
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2688
      platform::NPUDeviceGuard guard(devices[i]);
2689 2690 2691 2692
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2713 2714 2715 2716
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2717 2718 2719 2720
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2721 2722 2723 2724 2725 2726
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2727 2728 2729 2730
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2731
      .value("kAll", platform::ProfilerState::kAll)
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2743
  m.def("set_tracer_option", platform::SetTracerOption);
2744 2745
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2746
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2747
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2748
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2749 2750
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2751 2752 2753
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2754
    callable.inc_ref();
2755 2756 2757 2758 2759 2760 2761 2762
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2763
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2764 2765 2766
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2767

2768 2769
  m.def("size_of_dtype", framework::SizeOfType);

2770
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2771 2772
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2773 2774
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2775
#endif  // PADDLE_WITH_CUDA
2776 2777
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2778

2779 2780 2781
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2782 2783
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2784
      .def("has", &ir::Pass::Has)
2785 2786 2787
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2788
           })
2789
      .def(
2790
          "set",
2791 2792 2793
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2794 2795
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2796 2797
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2798 2799 2800 2801 2802
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2817 2818
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2819
        self.Apply(graph.get());
F
flame 已提交
2820
      });
2821

X
fix  
Xin Pan 已提交
2822 2823
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2838
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2839
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2840 2841 2842 2843
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2844 2845 2846
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2847 2848 2849
    Examples:
        .. code-block:: python

2850 2851 2852 2853 2854 2855 2856 2857 2858
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2859

2860 2861
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2862

2863
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2864 2865
          sgd_optimizer.minimize(avg_loss)

2866
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2867 2868
          exec_strategy.num_threads = 4

2869 2870 2871
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2872 2873
        )DOC");

2874 2875 2876 2877
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2878

Y
yuyang18 已提交
2879
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2880 2881 2882 2883 2884
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2885
          },
2886 2887
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2888 2889 2890 2891 2892 2893 2894
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2908
      .def_property(
2909 2910
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2911
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2912 2913 2914
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2915 2916 2917 2918 2919
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2920 2921 2922
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2923 2924
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2925 2926 2927 2928 2929 2930 2931
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2932 2933 2934 2935
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2936
                because the temp variable's shape maybe the same between two iterations.
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2947

2948 2949 2950 2951 2952 2953 2954
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2955
              )DOC")
Q
Qiao Longfei 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2977
              )DOC")
2978 2979 2980 2981 2982 2983 2984 2985
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2986 2987 2988 2989 2990
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2991

Y
yuyang18 已提交
2992
  exec_strategy.def_property(
Y
yuyang18 已提交
2993 2994 2995 2996 2997 2998 2999
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3000 3001
      });

C
chengduo 已提交
3002 3003 3004 3005
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3006 3007 3008
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3009 3010 3011
    Examples:
        .. code-block:: python

3012
            import os
3013 3014 3015 3016
            import paddle
            import paddle.static as static

            paddle.enable_static()
3017

3018 3019
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3020

3021 3022 3023 3024
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3025

3026
            build_strategy = static.BuildStrategy()
3027 3028
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3029 3030
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3031
            program = program.with_data_parallel(loss_name=loss.name,
3032 3033
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3034
)DOC");
Y
yuyang18 已提交
3035 3036 3037

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3038 3039
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3040 3041 3042 3043 3044 3045 3046 3047
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3048
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3049 3050 3051 3052
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3053 3054 3055 3056
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3057
            self.reduce_ = strategy;
C
chengduo 已提交
3058
          },
3059
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3060 3061
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3062
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3063 3064
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3065
                Default is 'AllReduce'.
F
flame 已提交
3066 3067 3068 3069

                Examples:
                    .. code-block:: python

3070 3071 3072 3073 3074 3075 3076
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3077
                  )DOC")
Y
yuyang18 已提交
3078 3079 3080 3081 3082
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3083 3084 3085 3086
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3087
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3088
          },
3089
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3090
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3091 3092
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3093
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3094 3095 3096 3097

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3098 3099
                        import numpy
                        import os
3100 3101 3102 3103
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3104 3105

                        use_cuda = True
3106 3107
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3108 3109

                        # NOTE: If you use CPU to run the program, you need
3110
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3111 3112 3113 3114 3115 3116
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3117
                            places = static.cpu_places()
C
chengduo 已提交
3118
                        else:
3119
                            places = static.cuda_places()
C
chengduo 已提交
3120

3121 3122 3123 3124
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3125

3126
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3127

3128
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3129
                        build_strategy.gradient_scale_strategy = \
3130 3131 3132
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3133
                                          loss_name=loss.name, build_strategy=build_strategy,
3134
                                          places=places)
C
chengduo 已提交
3135 3136 3137 3138 3139 3140

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3141 3142
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3143
                   )DOC")
Y
yuyang18 已提交
3144 3145 3146 3147
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3148 3149 3150 3151
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3152
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3153
          },
3154
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3155
                writing the SSA Graph to file in the form of graphviz.
3156
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3157 3158 3159 3160

                Examples:
                    .. code-block:: python

3161 3162 3163 3164
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3165

3166 3167
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3168
                    )DOC")
S
sneaxiy 已提交
3169 3170 3171 3172 3173 3174
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3175 3176 3177 3178
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3179 3180
            self.enable_sequential_execution_ = b;
          },
3181 3182
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3183 3184 3185 3186

                Examples:
                    .. code-block:: python

3187 3188 3189 3190 3191 3192
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3193 3194
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3195 3196 3197 3198 3199 3200
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3201 3202 3203 3204
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3205 3206
            self.remove_unnecessary_lock_ = b;
          },
3207 3208
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3209 3210 3211 3212

                Examples:
                    .. code-block:: python

3213 3214 3215 3216 3217 3218
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3219 3220
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3221 3222 3223 3224
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3225
#ifdef WIN32
3226
            PADDLE_THROW(platform::errors::Unavailable(
3227
                "Distribution mode is not supported on Windows platform."));
3228
#endif
3229 3230
            self.num_trainers_ = num_trainers;
          })
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3243 3244 3245 3246 3247 3248
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3249 3250 3251 3252 3253 3254
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3255
      .def_property("use_hierarchical_allreduce",
3256 3257 3258 3259 3260 3261
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3262
      .def_property("hierarchical_allreduce_inter_nranks",
3263 3264 3265 3266 3267 3268 3269
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3270 3271 3272 3273 3274 3275
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3276 3277 3278 3279
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3280 3281
            self.fuse_elewise_add_act_ops_ = b;
          },
3282
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3283
                to fuse elementwise_add_op and activation_op,
3284
                it may make the execution faster. Default is False.
F
flame 已提交
3285 3286 3287 3288

                Examples:
                    .. code-block:: python

3289 3290 3291 3292 3293 3294
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3295 3296
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3297 3298 3299 3300
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3301
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3302
                              platform::errors::PreconditionNotMet(
3303 3304
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3314 3315 3316 3317 3318 3319
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3320 3321
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3347 3348 3349 3350
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3351
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3352
                              platform::errors::PreconditionNotMet(
3353 3354
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3365 3366 3367 3368 3369 3370
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3371 3372
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3373 3374 3375 3376 3377 3378
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3379 3380 3381 3382
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3383 3384
            self.fuse_relu_depthwise_conv_ = b;
          },
3385
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3386 3387 3388
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3389
                Default is False.
F
flame 已提交
3390 3391 3392 3393

                Examples:
                    .. code-block:: python

3394 3395 3396 3397 3398 3399
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3400 3401
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3402 3403 3404
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3405
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3406 3407
                    },
                    [](BuildStrategy &self, bool b) {
3408 3409 3410 3411
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3412 3413
                      self.fuse_broadcast_ops_ = b;
                    },
3414
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3415 3416 3417 3418
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3419 3420 3421 3422 3423
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3424 3425 3426 3427 3428 3429
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3430 3431
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3432 3433
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3434
                      return self.fuse_all_optimizer_ops_ == true ||
3435
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3436 3437
                    },
                    [](BuildStrategy &self, bool b) {
3438 3439 3440 3441
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3442 3443
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3444 3445 3446 3447
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3448 3449 3450 3451
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3452 3453
            self.sync_batch_norm_ = b;
          },
3454
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3455 3456 3457
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3458 3459
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3460 3461 3462 3463

                Examples:
                    .. code-block:: python

3464 3465 3466 3467 3468 3469
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3470 3471
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3472 3473
      .def_property(
          "memory_optimize",
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3484
              self.memory_optimize_ = paddle::none;
3485 3486 3487
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3488
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3489 3490
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3491 3492
            }
          },
3493
          R"DOC((bool, optional): memory opitimize aims to save total memory
3494
                consumption, set to True to enable it.
3495

3496 3497 3498
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3513 3514 3515
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3516 3517 3518
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3519
              PADDLE_THROW(platform::errors::Unavailable(
3520
                  "Distribution mode is not supported on Windows platform."));
3521 3522 3523 3524 3525
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3526 3527 3528
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3529
      .def_property(
D
dzhwinter 已提交
3530 3531 3532
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3533 3534 3535 3536
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3537 3538
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3539 3540
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3541
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3542
          },
C
chengduo 已提交
3543
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3544 3545 3546 3547 3548 3549 3550
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3551 3552 3553 3554
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3555 3556 3557 3558 3559 3560 3561 3562 3563
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3564 3565 3566 3567 3568 3569
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3570 3571 3572 3573 3574 3575 3576
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3577 3578 3579 3580 3581 3582
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3583
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3584
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3585 3586 3587 3588 3589
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3590

3591 3592 3593 3594 3595 3596
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3597
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3598
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3599
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3600
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3601 3602 3603 3604
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3605 3606 3607 3608 3609
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3610 3611 3612
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3613 3614 3615 3616
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3617 3618
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3619 3620 3621 3622 3623 3624 3625 3626
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3627
               return py::cast(
3628
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3629 3630
             } else {
               return py::cast(std::move(
3631
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3632
             }
3633 3634
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3635

J
jianghaicheng 已提交
3636 3637 3638 3639 3640 3641 3642 3643
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3644 3645
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3646 3647 3648 3649 3650
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3651
          })
J
jianghaicheng 已提交
3652 3653 3654 3655 3656 3657 3658
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3659
          })
J
jianghaicheng 已提交
3660 3661 3662 3663 3664 3665
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3666
                    })
J
jianghaicheng 已提交
3667 3668 3669 3670 3671 3672
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3673
                    })
J
jianghaicheng 已提交
3674 3675 3676 3677 3678 3679 3680
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3681
          })
J
jianghaicheng 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3696
          })
J
jianghaicheng 已提交
3697 3698 3699 3700 3701 3702
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3703
                    })
J
jianghaicheng 已提交
3704 3705 3706 3707 3708 3709
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3710
                    })
J
jianghaicheng 已提交
3711 3712 3713 3714 3715 3716
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3717
                    });
J
jianghaicheng 已提交
3718 3719
#endif

D
dongdaxiang 已提交
3720
  BindFleetWrapper(&m);
3721
  BindIO(&m);
T
Thunderbrook 已提交
3722

T
Thunderbrook 已提交
3723
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
3724
  BindHeterWrapper(&m);
3725
  BindMetrics(&m);
T
Thunderbrook 已提交
3726
#endif
T
Thunderbrook 已提交
3727
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3728
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3729
#endif
3730
  BindGlooWrapper(&m);
H
hutuxian 已提交
3731
  BindBoxHelper(&m);
H
hutuxian 已提交
3732 3733 3734
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3735
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3736
  BindNCCLWrapper(&m);
3737 3738 3739
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3740
#endif
F
flame 已提交
3741 3742
  BindGraph(&m);
  BindNode(&m);
3743
  BindPass(&m);
F
flame 已提交
3744
  BindInferenceApi(&m);
3745
  BindCompatible(&m);
3746
  BindDataset(&m);
Y
yaoxuefeng 已提交
3747
  BindGenerator(&m);
3748 3749 3750
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3751
  BindAscendDevice(&m);
3752
#endif
Y
Yanghello 已提交
3753 3754 3755
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3756

T
tangwei12 已提交
3757
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3758 3759
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3760
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3761 3762
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3763 3764 3765 3766 3767
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3768 3769 3770 3771
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3772
  BindSparseShardingTools(&m);
3773
#endif
L
Luo Tao 已提交
3774
}
3775
}  // namespace pybind
3776
}  // namespace paddle