pybind.cc 114.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/operators/py_func_op.h"
59
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/platform/cpu_info.h"
61
#include "paddle/fluid/platform/device_context.h"
62
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/platform/enforce.h"
64
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
65
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
68 69 70
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
71
#include "paddle/fluid/pybind/box_helper_py.h"
72
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
73
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
74
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
76
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
77
#include "paddle/fluid/pybind/generator_py.h"
78
#include "paddle/fluid/pybind/global_value_getter_setter.h"
79
#include "paddle/fluid/pybind/gloo_context_py.h"
80
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
81
#include "paddle/fluid/pybind/heter_wrapper_py.h"
82
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
83
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
84
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
85
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
86
#include "paddle/fluid/pybind/pybind_boost_headers.h"
87

88
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
89
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
90
#endif
91
#include "paddle/fluid/framework/data_type.h"
92 93
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
94
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
95
#include "paddle/fluid/pybind/tensor_py.h"
96
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
97
#ifdef PADDLE_WITH_CUDA
98
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
99
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
100
#endif
Y
Yi Wang 已提交
101 102
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
103 104
#endif

105 106 107 108
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
109 110 111 112
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
113
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
114 115 116
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
117 118
#include "pybind11/stl.h"

119
DECLARE_bool(use_mkldnn);
120

Q
Qiao Longfei 已提交
121 122
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
123 124 125
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
126

127
namespace paddle {
128
namespace pybind {
129
bool IsCompiledWithCUDA() {
130
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
131 132 133 134 135 136
  return false;
#else
  return true;
#endif
}

137 138 139 140 141 142 143 144
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

145 146 147 148 149 150 151 152
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

153 154 155 156 157 158 159 160 161 162 163
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

164 165 166 167 168 169 170 171 172 173 174
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

175
bool IsCompiledWithBrpc() {
176
#ifndef PADDLE_WITH_DISTRIBUTE
177 178
  return false;
#endif
179 180 181 182 183 184

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
185 186
}

Y
update  
Yancey1989 已提交
187
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
188
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
189 190 191 192 193 194
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
195 196 197 198 199 200 201 202 203 204
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
227 228 229
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
243 244
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
245 246
    }
    vec_res.emplace_back(
247
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
248 249 250 251 252 253 254 255 256 257 258 259
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
260 261
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
262 263 264 265 266 267 268 269 270 271 272 273
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
274 275 276
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
277 278 279 280
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
281 282
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
283 284 285 286
  }
  return vec_res;
}

287 288 289 290 291 292 293 294
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
295 296
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
297 298 299 300 301 302 303 304 305 306 307 308 309
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
310 311 312
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
313 314 315 316 317
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
318 319 320 321 322
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
323 324
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
325 326 327
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
328 329 330 331 332 333 334 335 336
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
337 338
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
339 340 341 342 343
  }

  return;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

368 369 370 371 372 373
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
374 375 376
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
377
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
378

379 380
  AssertStaticGraphAndDygraphGradMakerNoDiff();

381
  m.doc() = "C++ core of PaddlePaddle";
382

383 384 385 386
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

387
  BindException(&m);
Y
Yu Yang 已提交
388

389 390
  m.def("set_num_threads", &platform::SetNumThreads);

391 392 393 394
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
413 414 415 416 417 418 419 420 421
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
422
           const Scope &scope, const Executor *executor) {
H
hong 已提交
423
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
424
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
425 426 427
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

428 429 430 431 432 433
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
453

454 455 456 457 458 459
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
460 461
  });

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
487 488 489 490 491 492
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
493
  m.def(
S
sneaxiy 已提交
494
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
495 496 497 498
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
499 500 501
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
518 519 520
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
521
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
522

523
  m.def("_set_fuse_parameter_group_size",
524
        &paddle::framework::ir::SetFuseParameterGroupsSize);
525
  m.def("_set_fuse_parameter_memory_size",
526
        &paddle::framework::ir::SetFuseParameterMemorySize);
527

S
sneaxiy 已提交
528 529 530
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

531 532
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

533 534 535
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

536
  BindImperative(&m);
537

538
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
539
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
540 541
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
542
      .def("_get_dims",
543
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
544
      .def("_set_dims",
Q
qijun 已提交
545
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
546
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
547
           })
Y
yuyang18 已提交
548
      .def("_set_layout",
D
dzhwinter 已提交
549 550 551
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
552
      .def("_alloc_float",
D
dzhwinter 已提交
553
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
554
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
555
           })
556 557 558 559
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
560
      .def("_alloc_float",
Y
Yu Yang 已提交
561
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
562
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
563
           })
564 565 566 567
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
568
      .def("_alloc_int",
Y
Yu Yang 已提交
569
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
570
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
571
           })
572 573 574 575
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
576
      .def("_alloc_int",
D
dzhwinter 已提交
577
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
578
             self.mutable_data<int>(place);
Q
qijun 已提交
579
           })
Y
yuyang18 已提交
580
      .def("_alloc_int",
C
chengduoZH 已提交
581 582 583
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
584
      .def("_alloc_float",
C
chengduoZH 已提交
585 586 587
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
588 589 590 591 592
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
593 594 595 596 597
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
598 599 600 601 602 603 604 605 606 607
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
608
      .def("_clear", &Tensor::clear)
609
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
610
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
611 612
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
613
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
614
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
615
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
616 617
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
618 619 620 621
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
622
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
623
          LoDTensor is to be set.
624 625
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
639

L
Leo Chen 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
679 680 681 682
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
683
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
684
      .def("_dtype", [](Tensor &self) { return self.type(); })
685 686
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
687
      .def("_share_data_with", &Tensor::ShareDataWith)
688 689 690 691 692 693
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
694

L
Leo Chen 已提交
695
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
696
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
771 772 773 774 775 776 777

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
778 779

        )DOC")
780
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
781 782 783 784 785 786 787 788 789
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
790 791
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
792 793 794 795
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
796 797
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
798
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
799
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
800 801
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
802 803 804
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
805
      .def("set_lod",
806
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
807
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
808
             LoD new_lod;
809 810
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
811 812
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
813 814
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
815
             self.set_lod(new_lod);
S
sneaxiy 已提交
816 817 818 819 820
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
821 822 823 824
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
825 826 827 828 829 830 831 832 833 834

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
835
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
836
           )DOC")
837 838 839 840 841 842 843 844 845 846 847
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
848 849
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
850 851 852 853 854
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
855
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
856 857
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
858
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
859

L
Leo Chen 已提交
860
           For example, if recursive_sequence_lengths=[[2, 3]], which means
861
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
862
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
863 864

           Args:
L
Leo Chen 已提交
865 866 867 868
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
869 870 871 872 873 874 875 876 877 878

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
879 880
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
881
           )DOC")
882 883 884 885 886 887 888 889
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
890 891 892 893 894
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
895 896
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
897 898 899 900 901 902 903 904 905 906
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
907
           )DOC")
G
gongweibao 已提交
908
      // Set above comments of set_lod.
909 910 911 912 913 914 915 916
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
917 918
           },
           R"DOC(
L
Leo Chen 已提交
919 920
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
921 922

           Returns:
L
Leo Chen 已提交
923
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
924 925 926 927 928 929 930 931 932 933 934

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
935 936 937 938 939 940 941 942
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
943
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
944 945

           Returns:
L
Leo Chen 已提交
946
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
947 948 949 950 951 952 953 954 955 956 957

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
958 959 960 961 962 963 964
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
965
           )DOC")
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
984
#ifdef _WIN32
985
      });
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1036

Q
qijun 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1048 1049
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1050 1051
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1061
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1062
      .def("rows", [](SelectedRows &self) {
1063 1064 1065 1066 1067
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1068
      });
Q
qijun 已提交
1069

1070
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1071 1072 1073

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1074
      .def(py::init<>())
1075
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1076
      .def("set_int",
1077 1078
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1079 1080 1081 1082 1083 1084 1085
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1086
      .def("get_tensor",
1087 1088
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1089 1090
           },
           py::return_value_policy::reference)
1091 1092 1093 1094
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1095 1096 1097
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1098 1099 1100 1101 1102
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1103 1104 1105
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1106 1107 1108
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1109
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1110 1111 1112 1113 1114
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1115
#endif
Y
Refine  
Yu Yang 已提交
1116 1117
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1118 1119 1120 1121
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1122 1123
             return self.GetMutable<framework::ReaderHolder>();
           },
1124 1125 1126 1127 1128
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1129

S
sneaxiy 已提交
1130
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1131

S
sneaxiy 已提交
1132
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1146
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1147 1148 1149 1150 1151 1152
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1153 1154
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1155
      .def("var",
1156
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1157
             return self.Var(name);
Y
Yu Yang 已提交
1158
           },
S
sneaxiy 已提交
1159 1160
           py::arg("name"),
           R"DOC(
1161
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1162

1163
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1164
           current scope, the variable would be created. Otherwise,
1165
           return the existing variable.
S
sneaxiy 已提交
1166 1167

           Args:
1168 1169
               name (str): the variable name.

S
sneaxiy 已提交
1170
           Returns:
1171
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1172 1173 1174 1175
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1176
           Find variable named :code:`name` in the current scope or
1177
           its parent scope. Return None if not found. 
1178

S
sneaxiy 已提交
1179 1180
           Args:
               name (str): the variable name.
1181

S
sneaxiy 已提交
1182
           Returns:
1183
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1184
           )DOC",
1185
           py::return_value_policy::reference)
1186
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1187 1188 1189 1190 1191 1192
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1193
           py::return_value_policy::reference)
S
sneaxiy 已提交
1194 1195 1196
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1197 1198
           )DOC")
      .def("_kids", &Scope::kids);
1199

S
sneaxiy 已提交
1200 1201 1202 1203 1204 1205
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1206 1207
        R"DOC(
        Create a new scope.
1208

S
sneaxiy 已提交
1209 1210 1211
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1212 1213
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1214 1215
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1216 1217
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1218 1219 1220 1221
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1222 1223
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1224 1225
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1226 1227 1228
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1229 1230
    return ret_values;
  });
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1260 1261 1262
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1263 1264 1265 1266 1267
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1268 1269 1270
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1285
  m.def("prune", [](const ProgramDesc &origin,
1286
                    const std::set<std::string> &feeded_var_names,
1287
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1288
    ProgramDesc prog_with_targets(origin);
1289

1290
    for (const auto &t : targets) {
1291
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1292
    }
1293
    proto::ProgramDesc pruned_desc;
1294 1295 1296 1297
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1298
  });
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1316 1317 1318 1319
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1320 1321 1322
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1323 1324
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1325

Q
qijun 已提交
1326
  // clang-format off
Y
Yu Yang 已提交
1327
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1328 1329
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1330
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1331 1332
                    return new paddle::platform::CPUDeviceContext();
                  })
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1345
      .def_static("create",
D
dzhwinter 已提交
1346
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1347
                      -> paddle::platform::DeviceContext* {
1348
#ifndef PADDLE_WITH_CUDA
1349 1350 1351 1352
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1353
#else
Q
qijun 已提交
1354
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1355
#endif
C
chengduoZH 已提交
1356 1357 1358 1359 1360
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1361 1362 1363 1364
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1365 1366 1367 1368
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1369
// clang-format on
1370
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1371 1372
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1373
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1374 1375 1376 1377 1378

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1379
    The memory of CUDAPlace with different dev_id is not accessible.
1380 1381 1382 1383 1384 1385 1386 1387
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1388 1389 1390 1391

    Examples:
        .. code-block:: python

1392 1393 1394
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1395

1396
        )DOC")
S
sneaxiy 已提交
1397 1398 1399
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1424 1425
             new (&self) platform::CUDAPlace(dev_id);
#else
1426 1427 1428 1429 1430 1431 1432 1433 1434
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1435 1436
#endif
           })
1437
#ifdef PADDLE_WITH_CUDA
1438 1439
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1440 1441 1442 1443
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1444
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1445 1446
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1447 1448 1449
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1450
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1451
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1498
#ifdef PADDLE_WITH_XPU
1499 1500 1501 1502 1503 1504 1505
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1506 1507 1508
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1509
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1510
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1511 1512 1513
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1514
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1515
    CPUPlace is a descriptor of a device.
1516
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1517 1518 1519 1520

    Examples:
        .. code-block:: python

1521 1522
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1523

1524
        )DOC")
1525
      .def(py::init<>())
S
sneaxiy 已提交
1526 1527
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1528
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1529 1530 1531 1532
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1533
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1534
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1535

1536
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1537 1538 1539 1540 1541 1542
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1543 1544 1545 1546

    Examples:
        .. code-block:: python

1547 1548
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1549

1550
        )DOC")
S
sneaxiy 已提交
1551
      .def("__init__",
S
sneaxiy 已提交
1552
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1553
#ifndef PADDLE_WITH_CUDA
1554 1555 1556
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1557
#endif
S
sneaxiy 已提交
1558
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1559
           })
S
sneaxiy 已提交
1560 1561 1562 1563
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1564 1565
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1566 1567 1568 1569
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1570
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1571 1572
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1573 1574
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1575 1576 1577 1578
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1579
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1580
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1581 1582
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1583 1584
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1585 1586
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1587 1588 1589 1590
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1591 1592
      .def("gpu_device_id",
           [](platform::Place &self) {
1593
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1594
           })
1595 1596 1597 1598
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1599 1600
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1601 1602 1603 1604
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1605 1606 1607 1608
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1609
      .def("set_place",
D
dzhwinter 已提交
1610
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1611
             self = gpu_place;
C
chengduoZH 已提交
1612
           })
1613 1614 1615 1616 1617 1618 1619
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1620

Y
Yu Yang 已提交
1621
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1622 1623 1624 1625 1626
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1627 1628 1629 1630 1631 1632 1633
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1634 1635
            return OpRegistry::CreateOp(desc);
          })
1636
      .def("run",
1637
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1638
              const platform::CPUPlace &place) { self.Run(scope, place); })
1639 1640 1641
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1642 1643
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1644
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1645 1646 1647 1648 1649
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1650 1651 1652 1653 1654 1655 1656
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1657 1658
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1659
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1660
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1661 1662 1663 1664
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1665

1666 1667 1668
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1669 1670 1671 1672 1673 1674 1675 1676 1677
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1678
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1679
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1680
      .def("close", &Executor::Close)
1681 1682
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1683 1684
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1685 1686 1687 1688
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1689
             pybind11::gil_scoped_release release;
1690 1691 1692 1693 1694 1695 1696
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1697 1698 1699
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1700
              std::map<std::string, FetchType *> *fetch_targets,
1701 1702 1703 1704 1705 1706 1707 1708
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1709
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1710 1711 1712 1713 1714 1715 1716
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1727
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1728 1729
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1730
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1731 1732
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1733
      });
S
sneaxiy 已提交
1734

D
dzhwinter 已提交
1735
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1736
  m.def("init_glog", framework::InitGLOG);
1737
  m.def("load_op_library", framework::LoadOpLib);
1738
  m.def("init_devices", []() { framework::InitDevices(); });
1739

1740
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1741
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1742
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1743
  m.def("supports_bfloat16", SupportsBfloat16);
1744
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1745
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1746
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1747 1748 1749
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1769 1770 1771 1772 1773 1774 1775
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1785 1786 1787 1788 1789 1790
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1791

1792
  m.def("set_feed_variable", framework::SetFeedVariable);
1793 1794 1795 1796 1797
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1798
            return py::cast(BOOST_GET(LoDTensor, var));
1799
          } else {
1800
            return py::cast(BOOST_GET(LoDTensorArray, var));
1801 1802
          }
        });
1803
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1804

X
Xin Pan 已提交
1805 1806
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1807 1808 1809 1810 1811
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1812
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1813

Y
Yu Yang 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1823
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1824
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1825 1826 1827

    Examples:
        .. code-block:: python
1828

Z
Zeng Jinle 已提交
1829 1830 1831 1832
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1833 1834
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1835 1836 1837 1838 1839 1840
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1841 1842 1843 1844
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1845 1846 1847
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1848 1849 1850 1851 1852 1853
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1854 1855
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1856 1857 1858 1859 1860 1861
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1884

1885 1886 1887 1888 1889 1890 1891 1892
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1893
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1894 1895
                 res[i] = py::cast(std::move(data));
               } else {
1896
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1912
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1913 1914 1915 1916 1917 1918 1919 1920
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1921
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1922 1923 1924 1925 1926 1927 1928 1929 1930
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1931 1932
        )DOC")
      .def("_move_to_list",
1933
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1934 1935 1936 1937
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1938
                 if (data_is_lod_tensor(self[i][j])) {
1939
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1940 1941
                   tmp[j] = py::cast(std::move(var));
                 } else {
1942
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1943 1944 1945 1946 1947 1948
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1958
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1959
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1960
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1961

P
peizhilin 已提交
1962
#ifndef _WIN32
D
dangqingqing 已提交
1963 1964 1965
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
1966 1967 1968 1969
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
1970
#endif
P
peizhilin 已提交
1971
#endif
Y
Yu Yang 已提交
1972

1973 1974 1975 1976 1977 1978
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1979 1980 1981 1982
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1983
      .value("kAll", platform::ProfilerState::kAll)
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1995
  m.def("set_tracer_option", platform::SetTracerOption);
1996 1997
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1998
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1999
  m.def("reset_profiler", platform::ResetProfiler);
2000
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2001 2002 2003
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2004

2005 2006
  m.def("size_of_dtype", framework::SizeOfType);

2007 2008 2009
#ifdef PADDLE_WITH_CUDA
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2010 2011
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2012 2013
#endif  // PADDLE_WITH_CUDA

2014 2015 2016
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2017 2018
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2019
      .def("has", &ir::Pass::Has)
2020 2021 2022
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2023
           })
2024
      .def(
2025
          "set",
2026 2027 2028
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2029 2030
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2031 2032
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2047 2048
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2049
        self.Apply(graph.get());
F
flame 已提交
2050
      });
2051

X
fix  
Xin Pan 已提交
2052 2053
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2068
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2069

Y
yuyang18 已提交
2070
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2071 2072 2073 2074
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2075 2076 2077
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2078 2079 2080
    Examples:
        .. code-block:: python

2081 2082 2083 2084 2085 2086 2087 2088 2089
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2090

2091 2092
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2093

2094
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2095 2096
          sgd_optimizer.minimize(avg_loss)

2097
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2098 2099
          exec_strategy.num_threads = 4

2100 2101 2102
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2103 2104
        )DOC");

2105 2106 2107 2108
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2109

Y
yuyang18 已提交
2110
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2111 2112 2113 2114 2115
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2116
          },
2117 2118
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2119 2120 2121 2122 2123 2124 2125
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2139
      .def_property(
2140 2141
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2142
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2143 2144 2145
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2146 2147 2148 2149 2150
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2151 2152 2153
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2154 2155
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2156 2157 2158 2159 2160 2161 2162
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2163 2164 2165 2166
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2167
                because the temp variable's shape maybe the same between two iterations.
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2178

2179 2180 2181 2182 2183 2184 2185
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2186
              )DOC")
Q
Qiao Longfei 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2208
              )DOC")
2209 2210 2211 2212 2213 2214 2215 2216
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2217 2218 2219 2220 2221
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2222

Y
yuyang18 已提交
2223
  exec_strategy.def_property(
Y
yuyang18 已提交
2224 2225 2226 2227 2228 2229 2230
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2231 2232
      });

C
chengduo 已提交
2233 2234 2235 2236
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2237 2238 2239
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2240 2241 2242
    Examples:
        .. code-block:: python

2243
            import os
2244 2245 2246 2247
            import paddle
            import paddle.static as static

            paddle.enable_static()
2248

2249 2250
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2251

2252 2253 2254 2255
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2256

2257
            build_strategy = static.BuildStrategy()
2258 2259
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2260 2261
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2262
            program = program.with_data_parallel(loss_name=loss.name,
2263 2264
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2265
)DOC");
Y
yuyang18 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2282 2283 2284 2285
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2286
            self.reduce_ = strategy;
C
chengduo 已提交
2287
          },
2288
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2289 2290
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2291
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2292 2293
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2294
                Default is 'AllReduce'.
F
flame 已提交
2295 2296 2297 2298

                Examples:
                    .. code-block:: python

2299 2300 2301 2302 2303 2304 2305
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2306
                  )DOC")
Y
yuyang18 已提交
2307 2308 2309 2310 2311
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2312 2313 2314 2315
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2316
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2317
          },
2318
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2319
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2320 2321
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2322
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2323 2324 2325 2326

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2327 2328
                        import numpy
                        import os
2329 2330 2331 2332
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2333 2334

                        use_cuda = True
2335 2336
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2337 2338

                        # NOTE: If you use CPU to run the program, you need
2339
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2340 2341 2342 2343 2344 2345
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2346
                            places = static.cpu_places()
C
chengduo 已提交
2347
                        else:
2348
                            places = static.cuda_places()
C
chengduo 已提交
2349

2350 2351 2352 2353
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2354

2355
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2356

2357
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2358
                        build_strategy.gradient_scale_strategy = \
2359 2360 2361
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2362
                                          loss_name=loss.name, build_strategy=build_strategy,
2363
                                          places=places)
C
chengduo 已提交
2364 2365 2366 2367 2368 2369

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2370 2371
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2372
                   )DOC")
Y
yuyang18 已提交
2373 2374 2375 2376
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2377 2378 2379 2380
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2381
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2382
          },
2383
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2384
                writing the SSA Graph to file in the form of graphviz.
2385
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2386 2387 2388 2389

                Examples:
                    .. code-block:: python

2390 2391 2392 2393
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2394

2395 2396
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2397
                    )DOC")
S
sneaxiy 已提交
2398 2399 2400 2401 2402 2403
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2404 2405 2406 2407
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2408 2409
            self.enable_sequential_execution_ = b;
          },
2410 2411
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2412 2413 2414 2415

                Examples:
                    .. code-block:: python

2416 2417 2418 2419 2420 2421
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2422 2423
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2424 2425 2426 2427 2428 2429
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2430 2431 2432 2433
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2434 2435
            self.remove_unnecessary_lock_ = b;
          },
2436 2437
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2438 2439 2440 2441

                Examples:
                    .. code-block:: python

2442 2443 2444 2445 2446 2447
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2448 2449
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2450 2451 2452 2453
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2454
#ifdef WIN32
2455
            PADDLE_THROW(platform::errors::Unavailable(
2456
                "Distribution mode is not supported on Windows platform."));
2457
#endif
2458 2459
            self.num_trainers_ = num_trainers;
          })
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2472 2473 2474 2475 2476 2477
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2478
      .def_property("use_hierarchical_allreduce",
2479 2480 2481 2482 2483 2484
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2485
      .def_property("hierarchical_allreduce_inter_nranks",
2486 2487 2488 2489 2490 2491 2492
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2493 2494 2495 2496 2497 2498
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2499 2500 2501 2502
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2503 2504
            self.fuse_elewise_add_act_ops_ = b;
          },
2505
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2506
                to fuse elementwise_add_op and activation_op,
2507
                it may make the execution faster. Default is False.
F
flame 已提交
2508 2509 2510 2511

                Examples:
                    .. code-block:: python

2512 2513 2514 2515 2516 2517
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2518 2519
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2520 2521 2522 2523
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2524
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2525
                              platform::errors::PreconditionNotMet(
2526 2527
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2537 2538 2539 2540 2541 2542
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2543 2544
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2570 2571 2572 2573
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2574
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2575
                              platform::errors::PreconditionNotMet(
2576 2577
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2588 2589 2590 2591 2592 2593
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2594 2595
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2596 2597 2598 2599 2600 2601
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2602 2603 2604 2605
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2606 2607
            self.fuse_relu_depthwise_conv_ = b;
          },
2608
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2609 2610 2611
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2612
                Default is False.
F
flame 已提交
2613 2614 2615 2616

                Examples:
                    .. code-block:: python

2617 2618 2619 2620 2621 2622
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2623 2624
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2625 2626 2627 2628 2629 2630
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2631 2632 2633 2634
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2635 2636
                      self.fuse_broadcast_ops_ = b;
                    },
2637
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2638 2639 2640 2641
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2642 2643 2644 2645 2646
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2647 2648 2649 2650 2651 2652
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2653 2654
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2655 2656
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2657 2658
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2659 2660
                    },
                    [](BuildStrategy &self, bool b) {
2661 2662 2663 2664
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2665 2666
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2667 2668 2669 2670
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2671 2672 2673 2674
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2675 2676
            self.sync_batch_norm_ = b;
          },
2677
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2678 2679 2680
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2681 2682
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2683 2684 2685 2686

                Examples:
                    .. code-block:: python

2687 2688 2689 2690 2691 2692
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2693 2694
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2695 2696
      .def_property(
          "memory_optimize",
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2711 2712 2713
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2714 2715
            }
          },
2716
          R"DOC((bool, optional): memory opitimize aims to save total memory
2717
                consumption, set to True to enable it.
2718

2719 2720 2721
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2736 2737 2738
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2739 2740 2741
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2742
              PADDLE_THROW(platform::errors::Unavailable(
2743
                  "Distribution mode is not supported on Windows platform."));
2744 2745 2746 2747 2748
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2749 2750 2751
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2752
      .def_property(
D
dzhwinter 已提交
2753 2754 2755
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2756 2757 2758 2759
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2760 2761
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2762 2763 2764 2765
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2766
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2767 2768 2769 2770 2771 2772 2773
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2774 2775 2776 2777
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2778 2779 2780 2781 2782 2783 2784 2785 2786
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2787
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2788
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2789 2790 2791 2792 2793
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2794 2795

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2796
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2797
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2798
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2799 2800 2801 2802
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2803 2804 2805 2806 2807
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2808 2809 2810
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2811 2812 2813 2814
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2815 2816
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2817 2818 2819 2820 2821 2822 2823 2824
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2825
               return py::cast(
2826
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2827 2828
             } else {
               return py::cast(std::move(
2829
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2830
             }
2831 2832
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2833

D
dongdaxiang 已提交
2834
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2835

T
Thunderbrook 已提交
2836 2837
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2838 2839 2840
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2841
#endif
2842
  BindGlooWrapper(&m);
H
hutuxian 已提交
2843
  BindBoxHelper(&m);
H
hutuxian 已提交
2844 2845 2846
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2847
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2848
  BindNCCLWrapper(&m);
2849 2850 2851
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2852
#endif
F
flame 已提交
2853 2854
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2855
  BindInferenceApi(&m);
2856
  BindCompatible(&m);
2857
  BindDataset(&m);
Y
yaoxuefeng 已提交
2858
  BindGenerator(&m);
2859 2860 2861 2862
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
#endif
Y
Yanghello 已提交
2863 2864 2865
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2866

T
tangwei12 已提交
2867
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2868 2869
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2870
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2871 2872
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2873
#endif
L
Luo Tao 已提交
2874
}
2875
}  // namespace pybind
2876
}  // namespace paddle