pybind.cc 98.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
27
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
30
#include "paddle/fluid/framework/io/fs.h"
31
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
32
#include "paddle/fluid/framework/ir/pass_builder.h"
33
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
34 35 36
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
37
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/op_info.h"
39
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
42
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
43
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/selected_rows.h"
46
#include "paddle/fluid/framework/trainer.h"
47
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/framework/version.h"
H
hong 已提交
49
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
50
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
51
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
52
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/operators/py_func_op.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/platform/cpu_info.h"
56
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/platform/enforce.h"
58
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
59 60
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
61
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
64
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
65
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
66
#include "paddle/fluid/pybind/global_value_getter_setter.h"
67
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
68
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
69
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
70
#include "paddle/fluid/pybind/ir.h"
71
#include "paddle/fluid/pybind/pybind_boost_headers.h"
72

73
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
74
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
75
#endif
76
#include "paddle/fluid/framework/data_type.h"
77 78
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
79
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/pybind/tensor_py.h"
81
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
82
#ifdef PADDLE_WITH_CUDA
83
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
84
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
85
#endif
Y
Yi Wang 已提交
86 87
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
88 89
#endif

90 91 92 93
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
94 95 96 97
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
98 99
#include "pybind11/stl.h"

100
DECLARE_bool(use_mkldnn);
101

Q
Qiao Longfei 已提交
102 103
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
104 105 106
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
107

108
namespace paddle {
109
namespace pybind {
110
bool IsCompiledWithCUDA() {
111
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
112 113 114 115 116 117
  return false;
#else
  return true;
#endif
}

118 119 120 121 122 123 124 125
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

126
bool IsCompiledWithBrpc() {
127
#ifndef PADDLE_WITH_DISTRIBUTE
128 129
  return false;
#endif
130 131 132 133 134 135

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
136 137
}

Y
update  
Yancey1989 已提交
138
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
139
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
140 141 142 143 144 145
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
146 147 148 149 150 151 152 153 154 155
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }
    vec_res.emplace_back(
195
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
        PADDLE_ENFORCE_NE(exe, nullptr,
                          "Parameter not Initialized, "
                          "Please set argument [executor] not None "
                          "or run startup program first");
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
        PADDLE_ENFORCE_NOT_NULL(py_var_desc);
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

306 307 308 309 310 311
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
312 313 314
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
315
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
316

317 318
  AssertStaticGraphAndDygraphGradMakerNoDiff();

319
  m.doc() = "C++ core of PaddlePaddle";
320

321 322 323 324
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

325
  BindException(&m);
Y
Yu Yang 已提交
326

327 328
  m.def("set_num_threads", &platform::SetNumThreads);

6
633WHU 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
347 348 349 350 351 352 353 354 355
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
356
           const Scope &scope, const Executor *executor) {
H
hong 已提交
357
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
358
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
359 360 361
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

362 363 364 365 366 367
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
387

388 389 390 391 392 393
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
394
  m.def(
S
sneaxiy 已提交
395
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
396 397 398 399
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
400 401 402
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
419 420 421
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
422
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
423

424
  m.def("_set_fuse_parameter_group_size",
425
        &paddle::framework::ir::SetFuseParameterGroupsSize);
426
  m.def("_set_fuse_parameter_memory_size",
427
        &paddle::framework::ir::SetFuseParameterMemorySize);
428

S
sneaxiy 已提交
429 430 431
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

432 433
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

434
  BindImperative(&m);
435

436
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
437
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
438 439
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
440
      .def("_get_dims",
441
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
442
      .def("_set_dims",
Q
qijun 已提交
443
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
444
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
445
           })
Y
yuyang18 已提交
446
      .def("_set_layout",
D
dzhwinter 已提交
447 448 449
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
450
      .def("_alloc_float",
D
dzhwinter 已提交
451
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
452
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
453
           })
Y
yuyang18 已提交
454
      .def("_alloc_float",
Y
Yu Yang 已提交
455
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
456
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
457
           })
458 459 460 461
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
462
      .def("_alloc_int",
Y
Yu Yang 已提交
463
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
464
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
465
           })
Y
yuyang18 已提交
466
      .def("_alloc_int",
D
dzhwinter 已提交
467
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
468
             self.mutable_data<int>(place);
Q
qijun 已提交
469
           })
Y
yuyang18 已提交
470
      .def("_alloc_int",
C
chengduoZH 已提交
471 472 473
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
474
      .def("_alloc_float",
C
chengduoZH 已提交
475 476 477
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
493
      .def("_clear", &Tensor::clear)
494
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
495
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
496
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
497
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
498
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
499 500
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
501 502 503 504 505 506
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.
507 508
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
522

L
Leo Chen 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
562 563 564 565
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
566
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
567
      .def("_dtype", [](Tensor &self) { return self.type(); })
568
      .def("_share_data_with", &Tensor::ShareDataWith)
569 570 571 572 573 574
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
575

L
Leo Chen 已提交
576
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
577
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
652 653 654 655 656 657 658

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
659 660

        )DOC")
661
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
662 663 664 665 666 667 668 669 670
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
671 672
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
673 674 675
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
676
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
677
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
678 679
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
680 681 682
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
683
      .def("set_lod",
684
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
685
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
686
             LoD new_lod;
687 688
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
689 690 691
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
692
             self.set_lod(new_lod);
S
sneaxiy 已提交
693 694 695 696 697
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
698 699 700 701
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
702 703 704 705 706 707 708 709 710 711

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
712
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
713
           )DOC")
714 715 716 717 718 719 720 721 722 723 724
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
725 726
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
727 728
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
729 730
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
731
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
732

L
Leo Chen 已提交
733
           For example, if recursive_sequence_lengths=[[2, 3]], which means
734
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
735
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
736 737

           Args:
L
Leo Chen 已提交
738 739 740 741
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
742 743 744 745 746 747 748 749 750 751

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
752 753
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
754
           )DOC")
755 756 757 758 759 760 761 762
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
763 764 765 766 767
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
768 769
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
770 771 772 773 774 775 776 777 778 779
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
780
           )DOC")
G
gongweibao 已提交
781
      // Set above comments of set_lod.
782 783 784 785 786 787 788 789
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
790 791
           },
           R"DOC(
L
Leo Chen 已提交
792 793
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
794 795

           Returns:
L
Leo Chen 已提交
796
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
797 798 799 800 801 802 803 804 805 806 807

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
808 809 810 811 812 813 814 815
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
816
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
817 818

           Returns:
L
Leo Chen 已提交
819
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
820 821 822 823 824 825 826 827 828 829 830

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
831 832 833 834 835 836 837
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
838
           )DOC")
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
857
#ifdef _WIN32
858
      });
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
909

Q
qijun 已提交
910 911 912 913 914 915 916 917 918 919 920
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
921 922
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
923 924
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
925 926 927 928 929 930 931 932 933
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
934
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
935
      .def("rows", [](SelectedRows &self) {
936 937 938 939 940
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
941
      });
Q
qijun 已提交
942

943
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
944 945 946

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
947
      .def(py::init<>())
948
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
949
      .def("set_int",
950 951
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
952 953 954 955 956 957 958
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
959
      .def("get_tensor",
960 961
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
962 963
           },
           py::return_value_policy::reference)
964 965 966 967
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
968 969 970
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
971 972 973 974 975
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
976 977 978
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
979 980 981
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
982
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
983 984 985 986 987
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
988
#endif
Y
Refine  
Yu Yang 已提交
989 990
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
991
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
992 993
             return self.GetMutable<framework::ReaderHolder>();
           },
994 995 996 997 998
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
999

S
sneaxiy 已提交
1000
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1001

S
sneaxiy 已提交
1002
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1016
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1017 1018 1019 1020 1021 1022
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1023 1024
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1025
      .def("var",
1026
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1027
             return self.Var(name);
Y
Yu Yang 已提交
1028
           },
S
sneaxiy 已提交
1029 1030
           py::arg("name"),
           R"DOC(
1031
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1032

1033
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1034
           current scope, the variable would be created. Otherwise,
1035
           return the existing variable.
S
sneaxiy 已提交
1036 1037

           Args:
1038 1039
               name (str): the variable name.

S
sneaxiy 已提交
1040
           Returns:
1041
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1042 1043 1044 1045
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1046
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
1047
           its parent scope. Return None if not found.
1048

S
sneaxiy 已提交
1049 1050
           Args:
               name (str): the variable name.
1051

S
sneaxiy 已提交
1052
           Returns:
1053
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1054
           )DOC",
1055
           py::return_value_policy::reference)
1056
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1057 1058 1059 1060 1061 1062
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1063
           py::return_value_policy::reference)
S
sneaxiy 已提交
1064 1065 1066
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1067 1068
           )DOC")
      .def("_kids", &Scope::kids);
1069

S
sneaxiy 已提交
1070 1071 1072 1073 1074 1075
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1076 1077
        R"DOC(
        Create a new scope.
1078

S
sneaxiy 已提交
1079 1080 1081
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1082 1083
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1084 1085
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1086 1087
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1088 1089 1090 1091
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1092 1093
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1094 1095 1096 1097
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1098 1099
    return ret_values;
  });
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1129 1130 1131
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1132 1133 1134 1135 1136
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1137 1138 1139
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1154
  m.def("prune", [](const ProgramDesc &origin,
1155
                    const std::set<std::string> &feeded_var_names,
1156
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1157
    ProgramDesc prog_with_targets(origin);
1158

1159
    for (const auto &t : targets) {
1160
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1161
    }
1162
    proto::ProgramDesc pruned_desc;
1163 1164 1165 1166
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1167
  });
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1185 1186 1187 1188
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1189 1190
  m.def("loaded_var_suffix",
        []() { return std::string(framework::kLoadedVarSuffix); });
1191 1192 1193
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1194 1195
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1196
  // clang-format off
Y
Yu Yang 已提交
1197
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1198 1199
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1200
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1201 1202 1203
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1204
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1205
                      -> paddle::platform::DeviceContext* {
1206
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1207
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1208
#else
Q
qijun 已提交
1209
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1210
#endif
C
chengduoZH 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1222
// clang-format on
1223
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1224 1225
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1226
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1227 1228 1229 1230 1231 1232 1233 1234
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1235
    The memory of CUDAPlace with different dev_id is not accessible.
1236 1237 1238 1239 1240 1241 1242 1243
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1244 1245 1246 1247

    Examples:
        .. code-block:: python

1248
          import paddle.fluid as fluid
L
lujun 已提交
1249 1250
          gpu_place = fluid.CUDAPlace(0)

1251
        )DOC")
S
sneaxiy 已提交
1252 1253 1254
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1279 1280
             new (&self) platform::CUDAPlace(dev_id);
#else
1281 1282 1283 1284 1285 1286 1287 1288 1289
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1290 1291
#endif
           })
S
sneaxiy 已提交
1292 1293 1294 1295 1296 1297
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1298
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1299

1300
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1301 1302
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1303 1304 1305 1306

    Examples:
        .. code-block:: python

1307
          import paddle.fluid as fluid
1308
          cpu_place = fluid.CPUPlace()
L
lujun 已提交
1309

1310
        )DOC")
1311
      .def(py::init<>())
S
sneaxiy 已提交
1312 1313 1314 1315 1316 1317
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1318
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1319

1320
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1321 1322 1323 1324 1325 1326
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1327 1328 1329 1330

    Examples:
        .. code-block:: python

1331
          import paddle.fluid as fluid
L
lujun 已提交
1332 1333
          place = fluid.CUDAPinnedPlace()

1334
        )DOC")
S
sneaxiy 已提交
1335
      .def("__init__",
S
sneaxiy 已提交
1336
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1337 1338 1339
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1340
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1341
           })
S
sneaxiy 已提交
1342 1343 1344 1345 1346 1347 1348 1349
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1350 1351
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1352 1353
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1354 1355 1356 1357 1358
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1359 1360
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1361 1362 1363 1364 1365 1366
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1367 1368
      .def("gpu_device_id",
           [](platform::Place &self) {
1369
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1370
           })
S
sneaxiy 已提交
1371 1372
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1373 1374 1375 1376 1377
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1378
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1379
             self = gpu_place;
C
chengduoZH 已提交
1380 1381
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1382 1383
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1384
      });
Y
Yu Yang 已提交
1385

Y
Yu Yang 已提交
1386
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1398
      .def("run",
1399
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1400 1401 1402
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1403
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1404 1405 1406 1407 1408
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1409 1410 1411 1412 1413 1414 1415
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1416 1417
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1418
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1419
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1420 1421 1422 1423
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1424

1425 1426 1427
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1428 1429 1430 1431 1432 1433 1434 1435 1436
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1437
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1438
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1439
      .def("close", &Executor::Close)
1440 1441
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1442 1443
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1444 1445 1446 1447
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1448
             pybind11::gil_scoped_release release;
1449 1450 1451 1452 1453 1454 1455
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1456 1457 1458
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1459
              std::map<std::string, FetchType *> *fetch_targets,
1460 1461 1462 1463 1464 1465 1466 1467
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1468
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1469 1470 1471 1472 1473 1474 1475
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1486
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1487 1488
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1489
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1490 1491
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1492
      });
S
sneaxiy 已提交
1493

D
dzhwinter 已提交
1494
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1495
  m.def("init_glog", framework::InitGLOG);
1496
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1497 1498
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1499

1500
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1501
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1502
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1503
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
H
hutuxian 已提交
1504 1505 1506 1507 1508 1509 1510
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
1511 1512 1513 1514 1515 1516
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1517

1518
  m.def("set_feed_variable", framework::SetFeedVariable);
1519 1520 1521 1522 1523
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1524
            return py::cast(BOOST_GET(LoDTensor, var));
1525
          } else {
1526
            return py::cast(BOOST_GET(LoDTensorArray, var));
1527 1528
          }
        });
1529
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1530

X
Xin Pan 已提交
1531 1532
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1533 1534 1535 1536 1537
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1538
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1539

Y
Yu Yang 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1549
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1550
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1551 1552 1553

    Examples:
        .. code-block:: python
1554

Z
Zeng Jinle 已提交
1555 1556 1557 1558
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1559 1560
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1571 1572 1573 1574 1575 1576
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1577 1578
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1579 1580 1581 1582 1583 1584
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1607

1608 1609 1610 1611 1612 1613 1614 1615
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1616
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1617 1618
                 res[i] = py::cast(std::move(data));
               } else {
1619
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1635
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1636 1637 1638 1639 1640 1641 1642 1643
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1644
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1645 1646 1647 1648 1649 1650 1651 1652 1653
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1654 1655
        )DOC")
      .def("_move_to_list",
1656
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1657 1658 1659 1660
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1661
                 if (data_is_lod_tensor(self[i][j])) {
1662
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1663 1664
                   tmp[j] = py::cast(std::move(var));
                 } else {
1665
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1666 1667 1668 1669 1670 1671
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1681
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1682
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1683
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1684

P
peizhilin 已提交
1685
#ifndef _WIN32
D
dangqingqing 已提交
1686 1687 1688
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1689
#endif
P
peizhilin 已提交
1690
#endif
Y
Yu Yang 已提交
1691

1692 1693 1694 1695 1696 1697
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1698 1699 1700 1701
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1702
      .value("kAll", platform::ProfilerState::kAll)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1714
  m.def("set_tracer_option", platform::SetTracerOption);
1715 1716
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1717
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1718
  m.def("reset_profiler", platform::ResetProfiler);
1719
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1720 1721 1722
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1723

1724 1725
  m.def("size_of_dtype", framework::SizeOfType);

1726 1727 1728
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1729 1730
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1731
      .def("has", &ir::Pass::Has)
1732 1733 1734
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1735
           })
1736
      .def(
1737
          "set",
1738 1739 1740
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1741 1742
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1743 1744
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1759 1760
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1761
        self.Apply(graph.get());
F
flame 已提交
1762
      });
1763

X
fix  
Xin Pan 已提交
1764 1765
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1780
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1781

Y
yuyang18 已提交
1782
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1783 1784 1785 1786
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1787 1788 1789
    Examples:
        .. code-block:: python

1790
          import paddle.fluid as fluid
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1801 1802 1803
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1804 1805
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1806 1807
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1808 1809
        )DOC");

Y
yuyang18 已提交
1810
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1811 1812 1813 1814 1815
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1826
      .def_property(
1827 1828 1829 1830
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1831 1832 1833 1834
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1835 1836 1837 1838 1839
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1840 1841 1842
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1843 1844
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1845 1846 1847 1848 1849 1850 1851
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1852 1853 1854 1855
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1856 1857
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1858 1859 1860 1861 1862 1863

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1864
              )DOC")
Q
Qiao Longfei 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1874
                user call exe.run() in python
Q
Qiao Longfei 已提交
1875
              )DOC")
1876 1877 1878 1879 1880 1881 1882 1883
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
1884 1885 1886 1887 1888
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1889

Y
yuyang18 已提交
1890
  exec_strategy.def_property(
Y
yuyang18 已提交
1891 1892 1893 1894 1895 1896 1897
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1898 1899
      });

C
chengduo 已提交
1900 1901 1902 1903
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1904 1905 1906
    Examples:
        .. code-block:: python

1907 1908
            import os
            import numpy as np
F
flame 已提交
1909
            import paddle.fluid as fluid
1910 1911 1912 1913 1914 1915 1916 1917 1918

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1919
            build_strategy = fluid.BuildStrategy()
1920 1921
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1922
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1923 1924 1925 1926
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1927
)DOC");
Y
yuyang18 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
1944 1945 1946 1947
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
1948
            self.reduce_ = strategy;
C
chengduo 已提交
1949
          },
1950
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
1951 1952
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
1953
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
1954 1955
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
1956
                Default is 'AllReduce'.
F
flame 已提交
1957 1958 1959 1960 1961 1962 1963 1964

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1965 1966 1967 1968 1969
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
1970 1971 1972 1973
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
1974
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1975
          },
1976 1977
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
1978 1979
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
1980
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
1981 1982 1983 1984 1985

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
2014
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2029
                   )DOC")
Y
yuyang18 已提交
2030 2031 2032 2033
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2034 2035 2036 2037
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2038
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2039
          },
2040
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2041
                writing the SSA Graph to file in the form of graphviz.
2042
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2043 2044 2045 2046 2047 2048

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2049 2050
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
2051
                    )DOC")
S
sneaxiy 已提交
2052 2053 2054 2055 2056 2057
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2058 2059 2060 2061
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2062 2063
            self.enable_sequential_execution_ = b;
          },
2064 2065
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2066 2067 2068 2069 2070 2071 2072 2073

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2074 2075 2076 2077 2078 2079
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2080 2081 2082 2083
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2084 2085
            self.remove_unnecessary_lock_ = b;
          },
2086 2087
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2088 2089 2090 2091 2092 2093 2094 2095

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2096 2097 2098 2099
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2100
#ifdef WIN32
2101 2102
            PADDLE_THROW(platform::errors::Unavailable(
                "Windows has NO support to distribute mode."));
2103
#endif
2104 2105
            self.num_trainers_ = num_trainers;
          })
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2118 2119 2120 2121 2122 2123
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2124
      .def_property("use_hierarchical_allreduce",
2125 2126 2127 2128 2129 2130
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2131
      .def_property("hierarchical_allreduce_inter_nranks",
2132 2133 2134 2135 2136 2137 2138
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2139 2140 2141 2142 2143 2144
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2145 2146 2147 2148
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2149 2150
            self.fuse_elewise_add_act_ops_ = b;
          },
2151
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2152
                to fuse elementwise_add_op and activation_op,
2153
                it may make the execution faster. Default is False.
F
flame 已提交
2154 2155 2156 2157 2158 2159 2160 2161

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2162 2163 2164 2165
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2166
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2167
                              platform::errors::PreconditionNotMet(
2168 2169
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2183 2184 2185 2186
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2187
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2188
                              platform::errors::PreconditionNotMet(
2189 2190
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2205 2206 2207 2208 2209 2210
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2211 2212 2213 2214
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2215 2216
            self.fuse_relu_depthwise_conv_ = b;
          },
2217
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2218 2219 2220
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2221
                Default is False.
F
flame 已提交
2222 2223 2224 2225 2226 2227 2228 2229

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2230 2231 2232 2233 2234 2235
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2236 2237 2238 2239
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2240 2241
                      self.fuse_broadcast_ops_ = b;
                    },
2242
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2243 2244 2245 2246
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2247 2248 2249 2250 2251 2252 2253 2254 2255
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2256 2257
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2258 2259
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2260 2261
                    },
                    [](BuildStrategy &self, bool b) {
2262 2263 2264 2265
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2266 2267
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2268 2269 2270 2271
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2272 2273 2274 2275
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2276 2277
            self.sync_batch_norm_ = b;
          },
2278
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2279 2280 2281
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2282 2283
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2284 2285 2286 2287 2288 2289 2290 2291

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2292 2293
      .def_property(
          "memory_optimize",
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2308 2309 2310
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2311 2312
            }
          },
2313
          R"DOC((bool, optional): memory opitimize aims to save total memory
2314
                consumption, set to True to enable it.
2315

2316 2317 2318
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2319
                True means enabling and False means disabling. Default is None.)DOC")
2320 2321 2322
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2323 2324 2325
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2326 2327
              PADDLE_THROW(platform::errors::Unavailable(
                  "Windows has NO support to distribute mode."));
2328 2329 2330 2331 2332
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2333 2334 2335
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2336
      .def_property(
D
dzhwinter 已提交
2337 2338 2339
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2340 2341
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2342 2343 2344 2345
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2346
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2347 2348 2349 2350 2351 2352 2353
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2354 2355 2356 2357
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2358 2359 2360 2361 2362 2363 2364 2365 2366
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2367
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2368
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2369 2370 2371 2372 2373
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2374 2375

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2376
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2377
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2378
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2379 2380 2381 2382
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2383 2384 2385 2386 2387
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2388 2389 2390
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2391 2392 2393 2394
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2395 2396
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2397 2398 2399 2400 2401 2402 2403 2404
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2405
               return py::cast(
2406
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2407 2408
             } else {
               return py::cast(std::move(
2409
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2410
             }
2411 2412
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2413

D
dongdaxiang 已提交
2414
  BindFleetWrapper(&m);
2415
  BindGlooWrapper(&m);
H
hutuxian 已提交
2416
  BindBoxHelper(&m);
H
hutuxian 已提交
2417 2418 2419
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2420
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2421
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2422
#endif
F
flame 已提交
2423 2424
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2425
  BindInferenceApi(&m);
2426
  BindDataset(&m);
Y
Yanghello 已提交
2427 2428 2429
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2430 2431 2432
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2433
}
2434
}  // namespace pybind
2435
}  // namespace paddle