pybind.cc 126.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
41
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
42 43 44
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
H
hong 已提交
45
#include "paddle/fluid/framework/new_exec.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/framework/op_info.h"
47
#include "paddle/fluid/framework/op_registry.h"
48
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
51
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
52
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/framework/selected_rows.h"
55
#include "paddle/fluid/framework/tensor_util.h"
56
#include "paddle/fluid/framework/trainer.h"
57
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
58
#include "paddle/fluid/framework/version.h"
H
hong 已提交
59
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
60
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
61
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
62
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
63
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
64
#include "paddle/fluid/operators/py_func_op.h"
65
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
66
#include "paddle/fluid/platform/cpu_info.h"
67
#include "paddle/fluid/platform/device_context.h"
68
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/platform/enforce.h"
70
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
71
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
72 73
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
74
#include "paddle/fluid/pybind/cuda_streams_py.h"
75
#include "paddle/fluid/pybind/io.h"
76 77 78
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
79
#include "paddle/fluid/pybind/box_helper_py.h"
80
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
81
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
82
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
83
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
84
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
85
#include "paddle/fluid/pybind/generator_py.h"
86
#include "paddle/fluid/pybind/global_value_getter_setter.h"
87
#include "paddle/fluid/pybind/gloo_context_py.h"
88
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
89
#include "paddle/fluid/pybind/heter_wrapper_py.h"
90
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
91
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
92
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
93
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
94
#include "paddle/fluid/pybind/pybind_boost_headers.h"
95

96
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
97
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
98
#endif
99
#include "paddle/fluid/framework/data_type.h"
100 101
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
102
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
103
#include "paddle/fluid/pybind/tensor_py.h"
104
#include "paddle/fluid/string/to_string.h"
105 106
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
107
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
108
#endif
109
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
110
#include "paddle/fluid/platform/cuda_profiler.h"
111
#endif
Y
Yi Wang 已提交
112
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
113 114
#endif

115 116
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
117
#include "paddle/fluid/platform/npu_profiler.h"
118 119
#endif

120
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
121
#include "paddle/fluid/platform/xpu/xpu_info.h"
122 123
#endif

Y
Yanghello 已提交
124 125 126 127
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
128
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
129 130 131
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
132 133
#include "pybind11/stl.h"

134
DECLARE_bool(use_mkldnn);
135

Q
Qiao Longfei 已提交
136 137
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
138 139 140
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
141

142
namespace paddle {
143
namespace pybind {
144
bool IsCompiledWithCUDA() {
145 146 147 148 149 150 151 152 153
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
154 155 156 157 158 159
  return false;
#else
  return true;
#endif
}

160 161 162 163 164 165 166 167
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

168 169 170 171 172 173 174 175
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

176 177 178 179 180 181 182 183
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

184 185 186 187 188 189 190 191
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

192 193 194 195 196 197 198 199
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

200 201 202 203 204 205 206 207 208 209 210
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

211 212 213 214 215 216 217 218 219 220 221
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
240 241 242
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
243
      {"NPU", &platform::is_npu_place},
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

283
bool IsCompiledWithBrpc() {
284
#ifndef PADDLE_WITH_DISTRIBUTE
285 286
  return false;
#endif
287
  return true;
288 289
}

Y
update  
Yancey1989 已提交
290
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
291
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
292 293 294 295 296 297
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
298 299 300 301 302 303 304 305 306 307
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
330 331 332
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
346 347
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
348 349
    }
    vec_res.emplace_back(
350
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
351 352 353 354 355 356 357 358 359 360 361 362
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
363 364
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
365 366 367 368 369 370 371 372 373 374 375 376
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
377 378 379
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
380 381 382 383
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
384 385
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
386 387 388 389
  }
  return vec_res;
}

390 391 392 393 394 395 396 397
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
398 399
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
400 401 402 403 404 405 406 407 408 409 410 411 412
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
413 414 415
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
416 417 418 419 420
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
421 422 423 424 425
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
426 427
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
428 429 430
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
431 432 433 434 435 436 437 438 439
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
440 441
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
442 443 444 445 446
  }

  return;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

484 485 486 487 488 489
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

490 491
  BindCudaStream(&m);

Y
Yu Yang 已提交
492 493 494
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
495
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
496

497 498
  AssertStaticGraphAndDygraphGradMakerNoDiff();

499
  m.doc() = "C++ core of PaddlePaddle";
500

501 502 503 504
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

505
  BindException(&m);
Y
Yu Yang 已提交
506

507 508
  m.def("set_num_threads", &platform::SetNumThreads);

509
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
510 511 512
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
513 514 515 516 517 518 519 520
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
521 522 523 524 525
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
526
    framework::Tensor tensor;
6
633WHU 已提交
527 528 529 530

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
531
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
532 533 534 535 536 537
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
538

539 540 541 542 543 544
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

545 546 547 548 549 550
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
551 552
  });

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
578 579 580 581 582 583
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
584
  m.def(
S
sneaxiy 已提交
585
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
586 587 588 589
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
590 591 592
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
609 610 611
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
612
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
613

614
  m.def("_set_fuse_parameter_group_size",
615
        &paddle::framework::ir::SetFuseParameterGroupsSize);
616
  m.def("_set_fuse_parameter_memory_size",
617
        &paddle::framework::ir::SetFuseParameterMemorySize);
618

S
sneaxiy 已提交
619 620 621
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

622 623
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

624 625 626
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

627
  BindImperative(&m);
628

629 630 631
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
632
      .def("_is_initialized",
633
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
634
      .def("_get_dims",
635
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
636
      .def("_set_dims",
637
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
638
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
639
           })
Y
yuyang18 已提交
640
      .def("_set_layout",
641
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
642 643
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
644
      .def("_alloc_float",
645
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
646
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
647
           })
648
      .def("_alloc_float",
649
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
650 651
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
652
      .def("_alloc_float",
653
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
654
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
655
           })
656 657 658 659
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
660
      .def("_alloc_double",
661
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
662 663
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
664
      .def("_alloc_int",
665
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
666
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
667
           })
668
      .def("_alloc_int",
669
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
670 671
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
672
      .def("_alloc_int",
673
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
674
             self.mutable_data<int>(place);
Q
qijun 已提交
675
           })
Y
yuyang18 已提交
676
      .def("_alloc_int",
677 678
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
679 680
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
681
      .def("_alloc_float",
682 683
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
684 685
             self.mutable_data<float>(place);
           })
686
      .def("_mutable_data",
687
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
688 689 690
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
691
      .def("_mutable_data",
692
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
693 694 695
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
696
      .def("_mutable_data",
697
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
698 699 700 701
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
702
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
703 704 705
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
706
      .def("_clear", &framework::Tensor::clear)
707 708 709 710 711
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
712
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
713
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
714 715
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
716
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
717
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
718 719
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
720
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
721 722
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
723 724 725 726
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
727
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
728
          LoDTensor is to be set.
729 730
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
744

745 746 747
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
764
      .def("_to_dlpack",
765
           [](framework::Tensor &self) {
6
633WHU 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
786 787 788 789
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
790 791
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
792
      .def("_layout",
793 794 795 796
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
797
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
798
      .def("__str__", [](const framework::Tensor &self) {
799 800 801 802
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
803

L
Leo Chen 已提交
804
  // TODO(cql): add reference: en_user_guide_lod_tensor
805
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
880 881 882 883 884 885 886

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
887 888

        )DOC")
889 890
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
891 892 893 894 895 896 897 898 899
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
900 901
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
902 903 904 905
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
906 907
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
908
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
909
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
910 911
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
912 913 914
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
915
      .def("set_lod",
916
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
917
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
918
             LoD new_lod;
919 920
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
921 922
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
923 924
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
925
             self.set_lod(new_lod);
S
sneaxiy 已提交
926 927 928 929 930
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
931 932 933 934
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
935 936 937 938 939 940 941 942 943 944

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
945
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
946
           )DOC")
947 948 949 950 951 952 953 954 955 956 957
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
958 959
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
960 961 962 963 964
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
965
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
966 967
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
968
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
969

L
Leo Chen 已提交
970
           For example, if recursive_sequence_lengths=[[2, 3]], which means
971
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
972
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
973 974

           Args:
L
Leo Chen 已提交
975 976 977 978
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
979 980 981 982 983 984 985 986 987 988

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
989 990
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
991
           )DOC")
992 993 994 995 996 997 998 999
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1000 1001 1002 1003 1004
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1005 1006
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1017
           )DOC")
G
gongweibao 已提交
1018
      // Set above comments of set_lod.
1019 1020 1021 1022 1023 1024 1025 1026
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1027 1028
           },
           R"DOC(
L
Leo Chen 已提交
1029 1030
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1031 1032

           Returns:
L
Leo Chen 已提交
1033
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1045 1046 1047 1048 1049 1050 1051 1052
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1053
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1054 1055

           Returns:
L
Leo Chen 已提交
1056
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1068 1069 1070 1071 1072 1073 1074
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1075
           )DOC")
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1094
#ifdef _WIN32
1095
      });
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1146

Q
qijun 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1158 1159
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1160 1161
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1162 1163
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1164
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1165 1166 1167 1168 1169 1170
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1171
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1172
      .def("rows", [](SelectedRows &self) {
1173 1174 1175 1176 1177
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1178
      });
Q
qijun 已提交
1179

1180
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1181 1182 1183

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1184
      .def(py::init<>())
1185
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1186
      .def("set_int",
1187 1188
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1189 1190 1191 1192 1193 1194 1195
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1196
      .def("get_tensor",
1197 1198
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1199 1200
           },
           py::return_value_policy::reference)
1201 1202 1203 1204
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1205 1206 1207
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1208 1209 1210 1211 1212
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1213 1214 1215
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1216 1217 1218
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1219
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1220 1221 1222 1223 1224
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1225
#endif
Y
Refine  
Yu Yang 已提交
1226 1227
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1228 1229 1230 1231
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1232 1233
             return self.GetMutable<framework::ReaderHolder>();
           },
1234 1235 1236 1237 1238
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1239

S
sneaxiy 已提交
1240
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1241

S
sneaxiy 已提交
1242
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1256
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1257 1258 1259 1260 1261 1262
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1263 1264
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1265
      .def("var",
1266
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1267
             return self.Var(name);
Y
Yu Yang 已提交
1268
           },
S
sneaxiy 已提交
1269 1270
           py::arg("name"),
           R"DOC(
1271
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1272

1273
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1274
           current scope, the variable would be created. Otherwise,
1275
           return the existing variable.
S
sneaxiy 已提交
1276 1277

           Args:
1278 1279
               name (str): the variable name.

S
sneaxiy 已提交
1280
           Returns:
1281
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1282 1283 1284 1285
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1286
           Find variable named :code:`name` in the current scope or
1287
           its parent scope. Return None if not found. 
1288

S
sneaxiy 已提交
1289 1290
           Args:
               name (str): the variable name.
1291

S
sneaxiy 已提交
1292
           Returns:
1293
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1294
           )DOC",
1295
           py::return_value_policy::reference)
1296
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1297 1298 1299 1300 1301 1302
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1303
           py::return_value_policy::reference)
S
sneaxiy 已提交
1304 1305 1306
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1307 1308
           )DOC")
      .def("_kids", &Scope::kids);
1309

S
sneaxiy 已提交
1310 1311 1312 1313 1314 1315
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1316 1317
        R"DOC(
        Create a new scope.
1318

S
sneaxiy 已提交
1319 1320 1321
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1322 1323
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1324 1325
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1326 1327
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1328 1329 1330 1331
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1332 1333
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1334 1335
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1336 1337 1338
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1339 1340
    return ret_values;
  });
1341 1342 1343 1344 1345 1346 1347 1348
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1349
              res = op_checker->GetDefaultAttrsMap();
1350 1351 1352 1353
            }
          }
          return res;
        });
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1370 1371 1372
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1373 1374 1375 1376 1377
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1378 1379 1380
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1395
  m.def("prune", [](const ProgramDesc &origin,
1396
                    const std::set<std::string> &feeded_var_names,
1397
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1398
    ProgramDesc prog_with_targets(origin);
1399

1400
    for (const auto &t : targets) {
1401
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1402
    }
1403
    proto::ProgramDesc pruned_desc;
1404 1405 1406 1407
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1408
  });
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1426 1427 1428 1429
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1430 1431 1432
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1433 1434
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1435

Q
qijun 已提交
1436
  // clang-format off
Y
Yu Yang 已提交
1437
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1438 1439
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1440
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1441 1442
                    return new paddle::platform::CPUDeviceContext();
                  })
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1467
      .def_static("create",
D
dzhwinter 已提交
1468
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1469
                      -> paddle::platform::DeviceContext* {
1470
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1471 1472 1473 1474
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1475
#else
Q
qijun 已提交
1476
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1477
#endif
C
chengduoZH 已提交
1478 1479 1480 1481
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1482
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1483 1484 1485 1486
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1487 1488 1489 1490
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1491
// clang-format on
1492
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1493 1494
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1495
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1496 1497 1498 1499 1500

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1501
    The memory of CUDAPlace with different dev_id is not accessible.
1502 1503 1504 1505 1506 1507 1508 1509
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1510 1511 1512 1513

    Examples:
        .. code-block:: python

1514 1515 1516
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1517

1518
        )DOC")
S
sneaxiy 已提交
1519 1520
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1521
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1546 1547
             new (&self) platform::CUDAPlace(dev_id);
#else
1548 1549 1550 1551 1552 1553 1554 1555 1556
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1557 1558
#endif
           })
1559
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1560 1561
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1562 1563 1564 1565
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1566
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1567
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1568 1569
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1570 1571 1572
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1573
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1574
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1621
#ifdef PADDLE_WITH_XPU
1622 1623 1624 1625 1626 1627 1628
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1629 1630 1631
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1632
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1633
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1634
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1635 1636 1637 1638
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1639
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1640 1641
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1642
#endif
1643

1644
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1645
    CPUPlace is a descriptor of a device.
1646
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1647 1648 1649 1650

    Examples:
        .. code-block:: python

1651 1652
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1653

1654
        )DOC")
1655
      .def(py::init<>())
S
sneaxiy 已提交
1656 1657
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1658
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1659
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1660 1661 1662 1663
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1664
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1665
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1666

1667
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1668 1669 1670 1671 1672 1673
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1674 1675 1676 1677

    Examples:
        .. code-block:: python

1678 1679
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1680

1681
        )DOC")
S
sneaxiy 已提交
1682
      .def("__init__",
S
sneaxiy 已提交
1683
           [](platform::CUDAPinnedPlace &self) {
1684
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1685 1686 1687
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1688
#endif
S
sneaxiy 已提交
1689
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1690
           })
S
sneaxiy 已提交
1691 1692 1693 1694
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1695 1696
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1697 1698
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1699 1700 1701 1702
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1703
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1704 1705
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1748
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1763 1764
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1765 1766
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1767 1768
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1769 1770 1771 1772
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1773
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1774
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1775
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1776 1777
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1778 1779
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1780 1781
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1782 1783
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1784 1785 1786 1787
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1788 1789
      .def("gpu_device_id",
           [](platform::Place &self) {
1790
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1791
           })
1792 1793 1794 1795
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1796 1797 1798 1799
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1800 1801
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1802 1803 1804 1805
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1806 1807 1808 1809
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1810
      .def("set_place",
D
dzhwinter 已提交
1811
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1812
             self = gpu_place;
C
chengduoZH 已提交
1813
           })
1814 1815 1816 1817 1818
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1819 1820 1821 1822
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1823 1824
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1825

Y
Yu Yang 已提交
1826
  py::class_<OperatorBase>(m, "Operator")
Z
Zeng Jinle 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1841
      .def("run",
1842
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1843
              const platform::CPUPlace &place) { self.Run(scope, place); })
1844 1845 1846
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1847 1848 1849
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1850 1851
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1852
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1853 1854 1855 1856 1857
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1858 1859 1860 1861 1862 1863 1864
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1865 1866
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1867
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1868
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1869 1870 1871 1872
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1873

1874 1875 1876
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1877 1878 1879 1880 1881 1882 1883 1884 1885
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1886 1887
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1888
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1889
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1890
      .def("close", &Executor::Close)
1891 1892
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1893 1894
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1895 1896 1897 1898
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1899
             pybind11::gil_scoped_release release;
1900 1901 1902 1903 1904 1905 1906
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1907 1908 1909
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1910
              std::map<std::string, FetchType *> *fetch_targets,
1911 1912 1913 1914 1915 1916 1917 1918
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1919
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1920 1921 1922 1923 1924 1925 1926
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1937
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1938 1939
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1940
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1941 1942
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1943
      });
S
sneaxiy 已提交
1944

H
hong 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
  py::class_<framework::InterpreterCore>(m, "InterpreterCore")
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
           [](InterpreterCore &self,
              const std::unordered_map<std::string, py::array> &input_dict,
              std::vector<std::string> vec_fetch_name) {
             pybind11::gil_scoped_release release;
             std::vector<framework::Tensor> vec_tensor;
             std::vector<std::string> vec_name;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               vec_name.push_back(item.first);
               vec_tensor.push_back(t);
             }

             std::vector<framework::Tensor> vec_out;
             self.run(vec_name, vec_tensor, vec_fetch_name, &vec_out);
             std::vector<py::array> vec_ret;
             for (size_t i = 0; i < vec_out.size(); ++i) {
               vec_ret.push_back(TensorToPyArray(vec_out[i], true));
             }
             return vec_ret;
           });

D
dzhwinter 已提交
1973
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1974
  m.def("init_glog", framework::InitGLOG);
1975 1976
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1977
  m.def("init_devices", []() { framework::InitDevices(); });
1978

1979
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1980
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1981
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1982
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1983
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1984
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1985
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1986
  m.def("supports_bfloat16", SupportsBfloat16);
1987
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1988
  m.def("op_supported_infos", OpSupportedInfos);
1989
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1990
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1991 1992 1993
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2013 2014 2015 2016 2017 2018 2019
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2029
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2030 2031 2032 2033 2034
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2035

2036
  m.def("set_feed_variable", framework::SetFeedVariable);
2037 2038 2039 2040 2041
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2042
            return py::cast(BOOST_GET(LoDTensor, var));
2043
          } else {
2044
            return py::cast(BOOST_GET(LoDTensorArray, var));
2045 2046
          }
        });
2047
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2048

X
Xin Pan 已提交
2049 2050
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2051 2052 2053 2054 2055
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2056
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
2057

Y
Yu Yang 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2067
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2068
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2069 2070 2071

    Examples:
        .. code-block:: python
2072

Z
Zeng Jinle 已提交
2073 2074 2075 2076
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2077 2078
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2079 2080 2081 2082 2083 2084
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2085 2086 2087 2088
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2089 2090 2091
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2092 2093 2094 2095 2096 2097
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2098 2099
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2100 2101 2102 2103 2104 2105
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2128

2129 2130 2131 2132 2133 2134 2135 2136
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2137
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2138 2139
                 res[i] = py::cast(std::move(data));
               } else {
2140
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2156
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2157 2158 2159 2160 2161 2162 2163 2164
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2165
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2166 2167 2168 2169 2170 2171 2172 2173 2174
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2175 2176
        )DOC")
      .def("_move_to_list",
2177
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2178 2179 2180 2181
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2182
                 if (data_is_lod_tensor(self[i][j])) {
2183
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2184 2185
                   tmp[j] = py::cast(std::move(var));
                 } else {
2186
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2187 2188 2189 2190 2191 2192
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2202
  m.def("op_support_gpu", OpSupportGPU);
2203
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2204
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2205

2206
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2207 2208 2209
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2210 2211 2212 2213
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2214
#endif
P
peizhilin 已提交
2215
#endif
Y
Yu Yang 已提交
2216

2217 2218
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2219
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2240 2241 2242 2243 2244 2245
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2246 2247 2248 2249
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2250
      .value("kAll", platform::ProfilerState::kAll)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2262
  m.def("set_tracer_option", platform::SetTracerOption);
2263 2264
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2265
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2266
  m.def("reset_profiler", platform::ResetProfiler);
2267
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2268 2269 2270
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2271

2272 2273
  m.def("size_of_dtype", framework::SizeOfType);

2274
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2275 2276
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2277 2278
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2279
#endif  // PADDLE_WITH_CUDA
2280 2281
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2282

2283 2284 2285
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2286 2287
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2288
      .def("has", &ir::Pass::Has)
2289 2290 2291
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2292
           })
2293
      .def(
2294
          "set",
2295 2296 2297
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2298 2299
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2300 2301
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2316 2317
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2318
        self.Apply(graph.get());
F
flame 已提交
2319
      });
2320

X
fix  
Xin Pan 已提交
2321 2322
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2337
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2338

Y
yuyang18 已提交
2339
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2340 2341 2342 2343
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2344 2345 2346
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2347 2348 2349
    Examples:
        .. code-block:: python

2350 2351 2352 2353 2354 2355 2356 2357 2358
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2359

2360 2361
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2362

2363
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2364 2365
          sgd_optimizer.minimize(avg_loss)

2366
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2367 2368
          exec_strategy.num_threads = 4

2369 2370 2371
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2372 2373
        )DOC");

2374 2375 2376 2377
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2378

Y
yuyang18 已提交
2379
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2380 2381 2382 2383 2384
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2385
          },
2386 2387
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2388 2389 2390 2391 2392 2393 2394
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2408
      .def_property(
2409 2410
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2411
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2412 2413 2414
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2415 2416 2417 2418 2419
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2420 2421 2422
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2423 2424
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2425 2426 2427 2428 2429 2430 2431
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2432 2433 2434 2435
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2436
                because the temp variable's shape maybe the same between two iterations.
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2447

2448 2449 2450 2451 2452 2453 2454
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2455
              )DOC")
Q
Qiao Longfei 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2477
              )DOC")
2478 2479 2480 2481 2482 2483 2484 2485
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2486 2487 2488 2489 2490
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2491

Y
yuyang18 已提交
2492
  exec_strategy.def_property(
Y
yuyang18 已提交
2493 2494 2495 2496 2497 2498 2499
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2500 2501
      });

C
chengduo 已提交
2502 2503 2504 2505
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2506 2507 2508
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2509 2510 2511
    Examples:
        .. code-block:: python

2512
            import os
2513 2514 2515 2516
            import paddle
            import paddle.static as static

            paddle.enable_static()
2517

2518 2519
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2520

2521 2522 2523 2524
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2525

2526
            build_strategy = static.BuildStrategy()
2527 2528
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2529 2530
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2531
            program = program.with_data_parallel(loss_name=loss.name,
2532 2533
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2534
)DOC");
Y
yuyang18 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2551 2552 2553 2554
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2555
            self.reduce_ = strategy;
C
chengduo 已提交
2556
          },
2557
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2558 2559
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2560
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2561 2562
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2563
                Default is 'AllReduce'.
F
flame 已提交
2564 2565 2566 2567

                Examples:
                    .. code-block:: python

2568 2569 2570 2571 2572 2573 2574
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2575
                  )DOC")
Y
yuyang18 已提交
2576 2577 2578 2579 2580
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2581 2582 2583 2584
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2585
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2586
          },
2587
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2588
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2589 2590
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2591
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2592 2593 2594 2595

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2596 2597
                        import numpy
                        import os
2598 2599 2600 2601
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2602 2603

                        use_cuda = True
2604 2605
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2606 2607

                        # NOTE: If you use CPU to run the program, you need
2608
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2609 2610 2611 2612 2613 2614
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2615
                            places = static.cpu_places()
C
chengduo 已提交
2616
                        else:
2617
                            places = static.cuda_places()
C
chengduo 已提交
2618

2619 2620 2621 2622
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2623

2624
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2625

2626
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2627
                        build_strategy.gradient_scale_strategy = \
2628 2629 2630
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2631
                                          loss_name=loss.name, build_strategy=build_strategy,
2632
                                          places=places)
C
chengduo 已提交
2633 2634 2635 2636 2637 2638

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2639 2640
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2641
                   )DOC")
Y
yuyang18 已提交
2642 2643 2644 2645
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2646 2647 2648 2649
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2650
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2651
          },
2652
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2653
                writing the SSA Graph to file in the form of graphviz.
2654
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2655 2656 2657 2658

                Examples:
                    .. code-block:: python

2659 2660 2661 2662
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2663

2664 2665
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2666
                    )DOC")
S
sneaxiy 已提交
2667 2668 2669 2670 2671 2672
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2673 2674 2675 2676
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2677 2678
            self.enable_sequential_execution_ = b;
          },
2679 2680
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2681 2682 2683 2684

                Examples:
                    .. code-block:: python

2685 2686 2687 2688 2689 2690
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2691 2692
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2693 2694 2695 2696 2697 2698
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2699 2700 2701 2702
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2703 2704
            self.remove_unnecessary_lock_ = b;
          },
2705 2706
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2707 2708 2709 2710

                Examples:
                    .. code-block:: python

2711 2712 2713 2714 2715 2716
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2717 2718
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2719 2720 2721 2722
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2723
#ifdef WIN32
2724
            PADDLE_THROW(platform::errors::Unavailable(
2725
                "Distribution mode is not supported on Windows platform."));
2726
#endif
2727 2728
            self.num_trainers_ = num_trainers;
          })
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2741 2742 2743 2744 2745 2746
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2747 2748 2749 2750 2751 2752
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2753
      .def_property("use_hierarchical_allreduce",
2754 2755 2756 2757 2758 2759
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2760
      .def_property("hierarchical_allreduce_inter_nranks",
2761 2762 2763 2764 2765 2766 2767
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2768 2769 2770 2771 2772 2773
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2774 2775 2776 2777
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2778 2779
            self.fuse_elewise_add_act_ops_ = b;
          },
2780
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2781
                to fuse elementwise_add_op and activation_op,
2782
                it may make the execution faster. Default is False.
F
flame 已提交
2783 2784 2785 2786

                Examples:
                    .. code-block:: python

2787 2788 2789 2790 2791 2792
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2793 2794
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2795 2796 2797 2798
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2799
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2800
                              platform::errors::PreconditionNotMet(
2801 2802
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2812 2813 2814 2815 2816 2817
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2818 2819
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2845 2846 2847 2848
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2849
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2850
                              platform::errors::PreconditionNotMet(
2851 2852
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2863 2864 2865 2866 2867 2868
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2869 2870
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2871 2872 2873 2874 2875 2876
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2877 2878 2879 2880
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2881 2882
            self.fuse_relu_depthwise_conv_ = b;
          },
2883
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2884 2885 2886
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2887
                Default is False.
F
flame 已提交
2888 2889 2890 2891

                Examples:
                    .. code-block:: python

2892 2893 2894 2895 2896 2897
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2898 2899
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2900 2901 2902 2903 2904 2905
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2906 2907 2908 2909
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2910 2911
                      self.fuse_broadcast_ops_ = b;
                    },
2912
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2913 2914 2915 2916
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2917 2918 2919 2920 2921
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2922 2923 2924 2925 2926 2927
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2928 2929
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2930 2931
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2932 2933
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2934 2935
                    },
                    [](BuildStrategy &self, bool b) {
2936 2937 2938 2939
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2940 2941
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2942 2943 2944 2945
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2946 2947 2948 2949
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2950 2951
            self.sync_batch_norm_ = b;
          },
2952
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2953 2954 2955
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2956 2957
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2958 2959 2960 2961

                Examples:
                    .. code-block:: python

2962 2963 2964 2965 2966 2967
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2968 2969
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2970 2971
      .def_property(
          "memory_optimize",
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2986
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
2987 2988
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
2989 2990
            }
          },
2991
          R"DOC((bool, optional): memory opitimize aims to save total memory
2992
                consumption, set to True to enable it.
2993

2994 2995 2996
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3011 3012 3013
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3014 3015 3016
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3017
              PADDLE_THROW(platform::errors::Unavailable(
3018
                  "Distribution mode is not supported on Windows platform."));
3019 3020 3021 3022 3023
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3024 3025 3026
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3027
      .def_property(
D
dzhwinter 已提交
3028 3029 3030
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3031 3032 3033 3034
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3035 3036
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3037 3038 3039 3040
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
3041
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3042 3043 3044 3045 3046 3047 3048
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3049 3050 3051 3052
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3053 3054 3055 3056 3057 3058 3059 3060 3061
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3062 3063 3064 3065 3066 3067
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3068
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3069
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3070 3071 3072 3073 3074
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3075

3076 3077 3078 3079 3080 3081
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3082
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3083
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3084
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3085
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3086 3087 3088 3089
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3090 3091 3092 3093 3094
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3095 3096 3097
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3098 3099 3100 3101
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3102 3103
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3104 3105 3106 3107 3108 3109 3110 3111
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3112
               return py::cast(
3113
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3114 3115
             } else {
               return py::cast(std::move(
3116
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3117
             }
3118 3119
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3120

D
dongdaxiang 已提交
3121
  BindFleetWrapper(&m);
3122
  BindIO(&m);
T
Thunderbrook 已提交
3123

T
Thunderbrook 已提交
3124 3125
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3126
#endif
T
Thunderbrook 已提交
3127
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3128
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3129
#endif
3130
  BindGlooWrapper(&m);
H
hutuxian 已提交
3131
  BindBoxHelper(&m);
H
hutuxian 已提交
3132 3133 3134
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3135
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3136
  BindNCCLWrapper(&m);
3137 3138 3139
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3140
#endif
F
flame 已提交
3141 3142
  BindGraph(&m);
  BindNode(&m);
3143
  BindPass(&m);
F
flame 已提交
3144
  BindInferenceApi(&m);
3145
  BindCompatible(&m);
3146
  BindDataset(&m);
Y
yaoxuefeng 已提交
3147
  BindGenerator(&m);
3148 3149 3150
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3151
  BindAscendDevice(&m);
3152
#endif
Y
Yanghello 已提交
3153 3154 3155
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3156

T
tangwei12 已提交
3157
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3158 3159
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3160
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3161 3162
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3163 3164 3165 3166 3167
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3168 3169 3170 3171
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3172
  BindSparseShardingTools(&m);
3173
#endif
L
Luo Tao 已提交
3174
}
3175
}  // namespace pybind
3176
}  // namespace paddle