pybind.cc 101.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
27
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
30
#include "paddle/fluid/framework/io/fs.h"
31
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
32
#include "paddle/fluid/framework/ir/pass_builder.h"
33
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
34 35 36
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
37
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/op_info.h"
39
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
42
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
43
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/selected_rows.h"
46
#include "paddle/fluid/framework/trainer.h"
47
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/framework/version.h"
H
hong 已提交
49
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
50
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
51
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
52
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/operators/py_func_op.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/platform/cpu_info.h"
56
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/platform/enforce.h"
58
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
59
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
60 61
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
62
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
65
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
66
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
67
#include "paddle/fluid/pybind/global_value_getter_setter.h"
68
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
69
#include "paddle/fluid/pybind/heter_wrapper_py.h"
70
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
71
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
72
#include "paddle/fluid/pybind/ir.h"
73
#include "paddle/fluid/pybind/pybind_boost_headers.h"
74

75
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
76
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
77
#endif
78
#include "paddle/fluid/framework/data_type.h"
79 80
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
81
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/pybind/tensor_py.h"
83
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
84
#ifdef PADDLE_WITH_CUDA
85
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
86
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
87
#endif
Y
Yi Wang 已提交
88 89
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
90 91
#endif

92 93 94 95
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
96 97 98 99
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
100 101
#include "pybind11/stl.h"

102
DECLARE_bool(use_mkldnn);
103

Q
Qiao Longfei 已提交
104 105
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
106 107 108
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
109

110
namespace paddle {
111
namespace pybind {
112
bool IsCompiledWithCUDA() {
113
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
114 115 116 117 118 119
  return false;
#else
  return true;
#endif
}

120 121 122 123 124 125 126 127
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

128
bool IsCompiledWithBrpc() {
129
#ifndef PADDLE_WITH_DISTRIBUTE
130 131
  return false;
#endif
132 133 134 135 136 137

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
138 139
}

Y
update  
Yancey1989 已提交
140
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
141
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
142 143 144 145 146 147
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
148 149 150 151 152 153 154 155 156 157
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
180 181 182
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
196 197
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
198 199
    }
    vec_res.emplace_back(
200
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
201 202 203 204 205 206 207 208 209 210 211 212
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
213 214
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
215 216 217 218 219 220 221 222 223 224 225 226
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
227 228 229
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
230 231 232 233
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
234 235
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
236 237 238 239
  }
  return vec_res;
}

240 241 242 243 244 245 246 247
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
248 249
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
250 251 252 253 254 255 256 257 258 259 260 261 262
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
263 264 265
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
266 267 268 269 270
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
271 272 273 274 275
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
276 277
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
278 279 280
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
281 282 283 284 285 286 287 288 289
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
290 291
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
292 293 294 295 296
  }

  return;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

321 322 323 324 325 326
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
327 328 329
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
330
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
331

332 333
  AssertStaticGraphAndDygraphGradMakerNoDiff();

334
  m.doc() = "C++ core of PaddlePaddle";
335

336 337 338 339
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

340
  BindException(&m);
Y
Yu Yang 已提交
341

342 343
  m.def("set_num_threads", &platform::SetNumThreads);

344 345 346 347
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
366 367 368 369 370 371 372 373 374
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
375
           const Scope &scope, const Executor *executor) {
H
hong 已提交
376
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
377
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
378 379 380
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

381 382 383 384 385 386
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
406

407 408 409 410 411 412
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
413
  m.def(
S
sneaxiy 已提交
414
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
415 416 417 418
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
419 420 421
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
438 439 440
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
441
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
442

443
  m.def("_set_fuse_parameter_group_size",
444
        &paddle::framework::ir::SetFuseParameterGroupsSize);
445
  m.def("_set_fuse_parameter_memory_size",
446
        &paddle::framework::ir::SetFuseParameterMemorySize);
447

S
sneaxiy 已提交
448 449 450
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

451 452
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

453
  BindImperative(&m);
454

455
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
456
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
457 458
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
459
      .def("_get_dims",
460
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
461
      .def("_set_dims",
Q
qijun 已提交
462
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
463
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
464
           })
Y
yuyang18 已提交
465
      .def("_set_layout",
D
dzhwinter 已提交
466 467 468
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
469
      .def("_alloc_float",
D
dzhwinter 已提交
470
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
471
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
472
           })
Y
yuyang18 已提交
473
      .def("_alloc_float",
Y
Yu Yang 已提交
474
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
475
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
476
           })
477 478 479 480
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
481
      .def("_alloc_int",
Y
Yu Yang 已提交
482
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
483
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
484
           })
Y
yuyang18 已提交
485
      .def("_alloc_int",
D
dzhwinter 已提交
486
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
487
             self.mutable_data<int>(place);
Q
qijun 已提交
488
           })
Y
yuyang18 已提交
489
      .def("_alloc_int",
C
chengduoZH 已提交
490 491 492
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
493
      .def("_alloc_float",
C
chengduoZH 已提交
494 495 496
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
512
      .def("_clear", &Tensor::clear)
513
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
514
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
515
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
516
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
517
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
518 519
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
520 521 522 523 524 525
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.
526 527
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
541

L
Leo Chen 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
581 582 583 584
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
585
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
586
      .def("_dtype", [](Tensor &self) { return self.type(); })
587
      .def("_share_data_with", &Tensor::ShareDataWith)
588 589 590 591 592 593
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
594

L
Leo Chen 已提交
595
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
596
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
671 672 673 674 675 676 677

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
678 679

        )DOC")
680
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
681 682 683 684 685 686 687 688 689
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
690 691
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
692 693 694 695
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
696 697
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
698
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
699
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
700 701
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
702 703 704
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
705
      .def("set_lod",
706
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
707
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
708
             LoD new_lod;
709 710
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
711 712
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
713 714
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
715
             self.set_lod(new_lod);
S
sneaxiy 已提交
716 717 718 719 720
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
721 722 723 724
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
725 726 727 728 729 730 731 732 733 734

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
735
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
736
           )DOC")
737 738 739 740 741 742 743 744 745 746 747
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
748 749
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
750 751 752 753 754
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
755
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
756 757
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
758
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
759

L
Leo Chen 已提交
760
           For example, if recursive_sequence_lengths=[[2, 3]], which means
761
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
762
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
763 764

           Args:
L
Leo Chen 已提交
765 766 767 768
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
769 770 771 772 773 774 775 776 777 778

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
779 780
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
781
           )DOC")
782 783 784 785 786 787 788 789
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
790 791 792 793 794
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
795 796
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
797 798 799 800 801 802 803 804 805 806
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
807
           )DOC")
G
gongweibao 已提交
808
      // Set above comments of set_lod.
809 810 811 812 813 814 815 816
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
817 818
           },
           R"DOC(
L
Leo Chen 已提交
819 820
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
821 822

           Returns:
L
Leo Chen 已提交
823
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
824 825 826 827 828 829 830 831 832 833 834

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
835 836 837 838 839 840 841 842
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
843
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
844 845

           Returns:
L
Leo Chen 已提交
846
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
847 848 849 850 851 852 853 854 855 856 857

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
858 859 860 861 862 863 864
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
865
           )DOC")
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
884
#ifdef _WIN32
885
      });
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
936

Q
qijun 已提交
937 938 939 940 941 942 943 944 945 946 947
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
948 949
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
950 951
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
952 953 954 955 956 957 958 959 960
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
961
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
962
      .def("rows", [](SelectedRows &self) {
963 964 965 966 967
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
968
      });
Q
qijun 已提交
969

970
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
971 972 973

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
974
      .def(py::init<>())
975
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
976
      .def("set_int",
977 978
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
979 980 981 982 983 984 985
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
986
      .def("get_tensor",
987 988
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
989 990
           },
           py::return_value_policy::reference)
991 992 993 994
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
995 996 997
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
998 999 1000 1001 1002
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1003 1004 1005
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1006 1007 1008
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1009
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1010 1011 1012 1013 1014
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1015
#endif
Y
Refine  
Yu Yang 已提交
1016 1017
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1018 1019 1020 1021
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1022 1023
             return self.GetMutable<framework::ReaderHolder>();
           },
1024 1025 1026 1027 1028
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1029

S
sneaxiy 已提交
1030
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1031

S
sneaxiy 已提交
1032
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1046
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1047 1048 1049 1050 1051 1052
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1053 1054
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1055
      .def("var",
1056
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1057
             return self.Var(name);
Y
Yu Yang 已提交
1058
           },
S
sneaxiy 已提交
1059 1060
           py::arg("name"),
           R"DOC(
1061
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1062

1063
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1064
           current scope, the variable would be created. Otherwise,
1065
           return the existing variable.
S
sneaxiy 已提交
1066 1067

           Args:
1068 1069
               name (str): the variable name.

S
sneaxiy 已提交
1070
           Returns:
1071
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1072 1073 1074 1075
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1076
           Find variable named :code:`name` in the current scope or
1077
           its parent scope. Return None if not found. 
1078

S
sneaxiy 已提交
1079 1080
           Args:
               name (str): the variable name.
1081

S
sneaxiy 已提交
1082
           Returns:
1083
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1084
           )DOC",
1085
           py::return_value_policy::reference)
1086
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1087 1088 1089 1090 1091 1092
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1093
           py::return_value_policy::reference)
S
sneaxiy 已提交
1094 1095 1096
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1097 1098
           )DOC")
      .def("_kids", &Scope::kids);
1099

S
sneaxiy 已提交
1100 1101 1102 1103 1104 1105
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1106 1107
        R"DOC(
        Create a new scope.
1108

S
sneaxiy 已提交
1109 1110 1111
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1112 1113
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1114 1115
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1116 1117
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1118 1119 1120 1121
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1122 1123
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1124 1125
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1126 1127 1128
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1129 1130
    return ret_values;
  });
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1160 1161 1162
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1163 1164 1165 1166 1167
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1168 1169 1170
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1185
  m.def("prune", [](const ProgramDesc &origin,
1186
                    const std::set<std::string> &feeded_var_names,
1187
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1188
    ProgramDesc prog_with_targets(origin);
1189

1190
    for (const auto &t : targets) {
1191
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1192
    }
1193
    proto::ProgramDesc pruned_desc;
1194 1195 1196 1197
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1198
  });
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1216 1217 1218 1219
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1220 1221 1222
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1223 1224
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1225
  // clang-format off
Y
Yu Yang 已提交
1226
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1227 1228
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1229
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1230 1231 1232
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1233
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1234
                      -> paddle::platform::DeviceContext* {
1235
#ifndef PADDLE_WITH_CUDA
1236 1237 1238 1239
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1240
#else
Q
qijun 已提交
1241
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1242
#endif
C
chengduoZH 已提交
1243 1244 1245 1246 1247
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1248 1249 1250 1251
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1252 1253 1254 1255
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1256
// clang-format on
1257
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1258 1259
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1260
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1261 1262 1263 1264 1265 1266 1267 1268
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1269
    The memory of CUDAPlace with different dev_id is not accessible.
1270 1271 1272 1273 1274 1275 1276 1277
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1278 1279 1280 1281

    Examples:
        .. code-block:: python

1282
          import paddle.fluid as fluid
L
lujun 已提交
1283 1284
          gpu_place = fluid.CUDAPlace(0)

1285
        )DOC")
S
sneaxiy 已提交
1286 1287 1288
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1313 1314
             new (&self) platform::CUDAPlace(dev_id);
#else
1315 1316 1317 1318 1319 1320 1321 1322 1323
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1324 1325
#endif
           })
1326
#ifdef PADDLE_WITH_CUDA
1327 1328
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1329 1330 1331 1332 1333 1334
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1335 1336 1337
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
D
dzhwinter 已提交
1338
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1339

1340
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1341 1342
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1343 1344 1345 1346

    Examples:
        .. code-block:: python

1347
          import paddle.fluid as fluid
1348
          cpu_place = fluid.CPUPlace()
L
lujun 已提交
1349

1350
        )DOC")
1351
      .def(py::init<>())
S
sneaxiy 已提交
1352 1353 1354 1355 1356 1357
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1358
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1359

1360
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1361 1362 1363 1364 1365 1366
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1367 1368 1369 1370

    Examples:
        .. code-block:: python

1371
          import paddle.fluid as fluid
L
lujun 已提交
1372 1373
          place = fluid.CUDAPinnedPlace()

1374
        )DOC")
S
sneaxiy 已提交
1375
      .def("__init__",
S
sneaxiy 已提交
1376
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1377
#ifndef PADDLE_WITH_CUDA
1378 1379 1380
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1381
#endif
S
sneaxiy 已提交
1382
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1383
           })
S
sneaxiy 已提交
1384 1385 1386 1387 1388 1389 1390 1391
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1392 1393
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1394 1395
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1396 1397 1398 1399 1400
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1401 1402
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1403 1404 1405 1406 1407 1408
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1409 1410
      .def("gpu_device_id",
           [](platform::Place &self) {
1411
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1412
           })
S
sneaxiy 已提交
1413 1414
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1415 1416 1417 1418 1419
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1420
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1421
             self = gpu_place;
C
chengduoZH 已提交
1422 1423
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1424 1425
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1426
      });
Y
Yu Yang 已提交
1427

Y
Yu Yang 已提交
1428
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1429 1430 1431 1432 1433
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1434 1435 1436 1437 1438 1439 1440
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1441 1442
            return OpRegistry::CreateOp(desc);
          })
1443
      .def("run",
1444
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1445 1446 1447
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1448
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1449 1450 1451 1452 1453
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1454 1455 1456 1457 1458 1459 1460
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1461 1462
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1463
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1464
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1465 1466 1467 1468
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1469

1470 1471 1472
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1473 1474 1475 1476 1477 1478 1479 1480 1481
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1482
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1483
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1484
      .def("close", &Executor::Close)
1485 1486
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1487 1488
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1489 1490 1491 1492
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1493
             pybind11::gil_scoped_release release;
1494 1495 1496 1497 1498 1499 1500
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1501 1502 1503
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1504
              std::map<std::string, FetchType *> *fetch_targets,
1505 1506 1507 1508 1509 1510 1511 1512
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1513
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1514 1515 1516 1517 1518 1519 1520
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1531
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1532 1533
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1534
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1535 1536
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1537
      });
S
sneaxiy 已提交
1538

D
dzhwinter 已提交
1539
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1540
  m.def("init_glog", framework::InitGLOG);
1541
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1542 1543
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1544

1545
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1546
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1547
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1548
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
H
hutuxian 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1568 1569 1570 1571 1572 1573 1574
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1584 1585 1586 1587 1588 1589
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1590

1591
  m.def("set_feed_variable", framework::SetFeedVariable);
1592 1593 1594 1595 1596
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1597
            return py::cast(BOOST_GET(LoDTensor, var));
1598
          } else {
1599
            return py::cast(BOOST_GET(LoDTensorArray, var));
1600 1601
          }
        });
1602
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1603

X
Xin Pan 已提交
1604 1605
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1606 1607 1608 1609 1610
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1611
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1612

Y
Yu Yang 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1622
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1623
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1624 1625 1626

    Examples:
        .. code-block:: python
1627

Z
Zeng Jinle 已提交
1628 1629 1630 1631
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1632 1633
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1634 1635 1636 1637 1638 1639
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1640 1641 1642 1643
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1644 1645 1646
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1647 1648 1649 1650 1651 1652
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1653 1654
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1655 1656 1657 1658 1659 1660
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1683

1684 1685 1686 1687 1688 1689 1690 1691
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1692
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1693 1694
                 res[i] = py::cast(std::move(data));
               } else {
1695
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1711
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1712 1713 1714 1715 1716 1717 1718 1719
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1720
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1721 1722 1723 1724 1725 1726 1727 1728 1729
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1730 1731
        )DOC")
      .def("_move_to_list",
1732
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1733 1734 1735 1736
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1737
                 if (data_is_lod_tensor(self[i][j])) {
1738
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1739 1740
                   tmp[j] = py::cast(std::move(var));
                 } else {
1741
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1742 1743 1744 1745 1746 1747
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1757
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1758
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1759
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1760

P
peizhilin 已提交
1761
#ifndef _WIN32
D
dangqingqing 已提交
1762 1763 1764
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1765
#endif
P
peizhilin 已提交
1766
#endif
Y
Yu Yang 已提交
1767

1768 1769 1770 1771 1772 1773
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1774 1775 1776 1777
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1778
      .value("kAll", platform::ProfilerState::kAll)
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1790
  m.def("set_tracer_option", platform::SetTracerOption);
1791 1792
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1793
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1794
  m.def("reset_profiler", platform::ResetProfiler);
1795
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1796 1797 1798
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1799

1800 1801
  m.def("size_of_dtype", framework::SizeOfType);

1802 1803 1804
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1805 1806
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1807
      .def("has", &ir::Pass::Has)
1808 1809 1810
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1811
           })
1812
      .def(
1813
          "set",
1814 1815 1816
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1817 1818
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1819 1820
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1835 1836
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1837
        self.Apply(graph.get());
F
flame 已提交
1838
      });
1839

X
fix  
Xin Pan 已提交
1840 1841
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1856
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1857

Y
yuyang18 已提交
1858
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1859 1860 1861 1862
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1863 1864 1865
    Examples:
        .. code-block:: python

1866
          import paddle.fluid as fluid
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1877 1878 1879
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1880 1881
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1882 1883
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1884 1885
        )DOC");

Y
yuyang18 已提交
1886
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1887 1888 1889 1890 1891
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1902
      .def_property(
1903 1904 1905 1906
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1907 1908 1909 1910
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1911 1912 1913 1914 1915
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1916 1917 1918
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1919 1920
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1921 1922 1923 1924 1925 1926 1927
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1928 1929 1930 1931
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1932 1933
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1934 1935 1936 1937 1938 1939

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1940
              )DOC")
Q
Qiao Longfei 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1950
                user call exe.run() in python
Q
Qiao Longfei 已提交
1951
              )DOC")
1952 1953 1954 1955 1956 1957 1958 1959
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
1960 1961 1962 1963 1964
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1965

Y
yuyang18 已提交
1966
  exec_strategy.def_property(
Y
yuyang18 已提交
1967 1968 1969 1970 1971 1972 1973
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1974 1975
      });

C
chengduo 已提交
1976 1977 1978 1979
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1980 1981 1982
    Examples:
        .. code-block:: python

1983 1984
            import os
            import numpy as np
F
flame 已提交
1985
            import paddle.fluid as fluid
1986 1987 1988 1989 1990 1991 1992 1993 1994

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1995
            build_strategy = fluid.BuildStrategy()
1996 1997
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1998
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1999 2000 2001 2002
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
2003
)DOC");
Y
yuyang18 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2020 2021 2022 2023
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2024
            self.reduce_ = strategy;
C
chengduo 已提交
2025
          },
2026
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2027 2028
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2029
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2030 2031
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2032
                Default is 'AllReduce'.
F
flame 已提交
2033 2034 2035 2036 2037 2038 2039 2040

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
2041 2042 2043 2044 2045
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2046 2047 2048 2049
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2050
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2051
          },
2052 2053
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2054 2055
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2056
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2057 2058 2059 2060 2061

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
2090
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2105
                   )DOC")
Y
yuyang18 已提交
2106 2107 2108 2109
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2110 2111 2112 2113
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2114
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2115
          },
2116
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2117
                writing the SSA Graph to file in the form of graphviz.
2118
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2119 2120 2121 2122 2123 2124

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2125 2126
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
2127
                    )DOC")
S
sneaxiy 已提交
2128 2129 2130 2131 2132 2133
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2134 2135 2136 2137
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2138 2139
            self.enable_sequential_execution_ = b;
          },
2140 2141
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2142 2143 2144 2145 2146 2147 2148 2149

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2150 2151 2152 2153 2154 2155
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2156 2157 2158 2159
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2160 2161
            self.remove_unnecessary_lock_ = b;
          },
2162 2163
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2164 2165 2166 2167 2168 2169 2170 2171

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2172 2173 2174 2175
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2176
#ifdef WIN32
2177
            PADDLE_THROW(platform::errors::Unavailable(
2178
                "Distribution mode is not supported on Windows platform."));
2179
#endif
2180 2181
            self.num_trainers_ = num_trainers;
          })
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2194 2195 2196 2197 2198 2199
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2200
      .def_property("use_hierarchical_allreduce",
2201 2202 2203 2204 2205 2206
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2207
      .def_property("hierarchical_allreduce_inter_nranks",
2208 2209 2210 2211 2212 2213 2214
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2215 2216 2217 2218 2219 2220
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2221 2222 2223 2224
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2225 2226
            self.fuse_elewise_add_act_ops_ = b;
          },
2227
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2228
                to fuse elementwise_add_op and activation_op,
2229
                it may make the execution faster. Default is False.
F
flame 已提交
2230 2231 2232 2233 2234 2235 2236 2237

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2238 2239 2240 2241
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2242
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2243
                              platform::errors::PreconditionNotMet(
2244 2245
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2259 2260 2261 2262
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2263
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2264
                              platform::errors::PreconditionNotMet(
2265 2266
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2281 2282 2283 2284 2285 2286
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2287 2288 2289 2290
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2291 2292
            self.fuse_relu_depthwise_conv_ = b;
          },
2293
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2294 2295 2296
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2297
                Default is False.
F
flame 已提交
2298 2299 2300 2301 2302 2303 2304 2305

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2306 2307 2308 2309 2310 2311
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2312 2313 2314 2315
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2316 2317
                      self.fuse_broadcast_ops_ = b;
                    },
2318
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2319 2320 2321 2322
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2323 2324 2325 2326 2327 2328 2329 2330 2331
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2332 2333
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2334 2335
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2336 2337
                    },
                    [](BuildStrategy &self, bool b) {
2338 2339 2340 2341
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2342 2343
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2344 2345 2346 2347
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2348 2349 2350 2351
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2352 2353
            self.sync_batch_norm_ = b;
          },
2354
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2355 2356 2357
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2358 2359
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2360 2361 2362 2363 2364 2365 2366 2367

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2368 2369
      .def_property(
          "memory_optimize",
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2384 2385 2386
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2387 2388
            }
          },
2389
          R"DOC((bool, optional): memory opitimize aims to save total memory
2390
                consumption, set to True to enable it.
2391

2392 2393 2394
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2395
                True means enabling and False means disabling. Default is None.)DOC")
2396 2397 2398
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2399 2400 2401
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2402
              PADDLE_THROW(platform::errors::Unavailable(
2403
                  "Distribution mode is not supported on Windows platform."));
2404 2405 2406 2407 2408
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2409 2410 2411
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2412
      .def_property(
D
dzhwinter 已提交
2413 2414 2415
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2416 2417
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2418 2419 2420 2421
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2422
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2423 2424 2425 2426 2427 2428 2429
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2430 2431 2432 2433
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2434 2435 2436 2437 2438 2439 2440 2441 2442
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2443
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2444
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2445 2446 2447 2448 2449
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2450 2451

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2452
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2453
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2454
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2455 2456 2457 2458
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2459 2460 2461 2462 2463
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2464 2465 2466
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2467 2468 2469 2470
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2471 2472
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2473 2474 2475 2476 2477 2478 2479 2480
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2481
               return py::cast(
2482
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2483 2484
             } else {
               return py::cast(std::move(
2485
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2486
             }
2487 2488
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2489

D
dongdaxiang 已提交
2490
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2491 2492 2493
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
#endif
2494
  BindGlooWrapper(&m);
H
hutuxian 已提交
2495
  BindBoxHelper(&m);
H
hutuxian 已提交
2496 2497 2498
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2499
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2500
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2501
#endif
F
flame 已提交
2502 2503
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2504
  BindInferenceApi(&m);
2505
  BindDataset(&m);
Y
Yanghello 已提交
2506 2507 2508
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2509 2510
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
2511 2512
  BindCommunicatorContext(&m);
  BindLargeScaleKV(&m);
2513
#endif
L
Luo Tao 已提交
2514
}
2515
}  // namespace pybind
2516
}  // namespace paddle