pybind.cc 112.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/operators/py_func_op.h"
58
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
59
#include "paddle/fluid/platform/cpu_info.h"
60
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
61
#include "paddle/fluid/platform/enforce.h"
62
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
63
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
64 65
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
66
#include "paddle/fluid/pybind/box_helper_py.h"
67
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
69
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
70
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
71
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
72
#include "paddle/fluid/pybind/generator_py.h"
73
#include "paddle/fluid/pybind/global_value_getter_setter.h"
74
#include "paddle/fluid/pybind/gloo_context_py.h"
75
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
76
#include "paddle/fluid/pybind/heter_wrapper_py.h"
77
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
78
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
79
#include "paddle/fluid/pybind/ir.h"
80
#include "paddle/fluid/pybind/pybind_boost_headers.h"
81

82
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
83
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
84
#endif
85
#include "paddle/fluid/framework/data_type.h"
86 87
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
88
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/pybind/tensor_py.h"
90
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
91
#ifdef PADDLE_WITH_CUDA
92
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
93
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
94
#endif
Y
Yi Wang 已提交
95 96
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
97 98
#endif

99 100 101 102
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

103 104 105 106
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
107 108 109 110
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
111 112
#include "pybind11/stl.h"

113
DECLARE_bool(use_mkldnn);
114

Q
Qiao Longfei 已提交
115 116
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
117 118 119
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
120

121
namespace paddle {
122
namespace pybind {
123
bool IsCompiledWithCUDA() {
124
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
125 126 127 128 129 130
  return false;
#else
  return true;
#endif
}

131 132 133 134 135 136 137 138
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

139 140 141 142 143 144 145 146
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

147 148 149 150 151 152 153 154 155 156 157
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

158
bool IsCompiledWithBrpc() {
159
#ifndef PADDLE_WITH_DISTRIBUTE
160 161
  return false;
#endif
162 163 164 165 166 167

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
168 169
}

Y
update  
Yancey1989 已提交
170
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
171
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
172 173 174 175 176 177
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
178 179 180 181 182 183 184 185 186 187
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
210 211 212
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
226 227
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
228 229
    }
    vec_res.emplace_back(
230
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
231 232 233 234 235 236 237 238 239 240 241 242
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
243 244
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
245 246 247 248 249 250 251 252 253 254 255 256
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
257 258 259
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
260 261 262 263
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
264 265
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
266 267 268 269
  }
  return vec_res;
}

270 271 272 273 274 275 276 277
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
278 279
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
280 281 282 283 284 285 286 287 288 289 290 291 292
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
293 294 295
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
296 297 298 299 300
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
301 302 303 304 305
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
306 307
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
308 309 310
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
311 312 313 314 315 316 317 318 319
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
320 321
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
322 323 324 325 326
  }

  return;
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

351 352 353 354 355 356
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
357 358 359
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
360
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
361

362 363
  AssertStaticGraphAndDygraphGradMakerNoDiff();

364
  m.doc() = "C++ core of PaddlePaddle";
365

366 367 368 369
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

370
  BindException(&m);
Y
Yu Yang 已提交
371

372 373
  m.def("set_num_threads", &platform::SetNumThreads);

374 375 376 377
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
396 397 398 399 400 401 402 403 404
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
405
           const Scope &scope, const Executor *executor) {
H
hong 已提交
406
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
407
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
408 409 410
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

411 412 413 414 415 416
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
436

437 438 439 440 441 442
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
443 444
  });

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

S
sneaxiy 已提交
470
  m.def(
S
sneaxiy 已提交
471
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
472 473 474 475
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
476 477 478
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
495 496 497
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
498
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
499

500
  m.def("_set_fuse_parameter_group_size",
501
        &paddle::framework::ir::SetFuseParameterGroupsSize);
502
  m.def("_set_fuse_parameter_memory_size",
503
        &paddle::framework::ir::SetFuseParameterMemorySize);
504

S
sneaxiy 已提交
505 506 507
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

508 509
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

510
  BindImperative(&m);
511

512
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
513
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
514 515
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
516
      .def("_get_dims",
517
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
518
      .def("_set_dims",
Q
qijun 已提交
519
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
520
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
521
           })
Y
yuyang18 已提交
522
      .def("_set_layout",
D
dzhwinter 已提交
523 524 525
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
526
      .def("_alloc_float",
D
dzhwinter 已提交
527
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
528
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
529
           })
530 531 532 533
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
534
      .def("_alloc_float",
Y
Yu Yang 已提交
535
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
536
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
537
           })
538 539 540 541
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
542
      .def("_alloc_int",
Y
Yu Yang 已提交
543
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
544
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
545
           })
546 547 548 549
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
550
      .def("_alloc_int",
D
dzhwinter 已提交
551
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
552
             self.mutable_data<int>(place);
Q
qijun 已提交
553
           })
Y
yuyang18 已提交
554
      .def("_alloc_int",
C
chengduoZH 已提交
555 556 557
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
558
      .def("_alloc_float",
C
chengduoZH 已提交
559 560 561
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
562 563 564 565 566
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
567 568 569 570 571
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
572 573 574 575 576 577 578 579 580 581
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
582
      .def("_clear", &Tensor::clear)
583
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
584
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
585 586
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
587
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
588
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
589
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
590 591
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
592 593 594 595
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
596
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
597
          LoDTensor is to be set.
598 599
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
613

L
Leo Chen 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
653 654 655 656
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
657
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
658
      .def("_dtype", [](Tensor &self) { return self.type(); })
659 660
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
661
      .def("_share_data_with", &Tensor::ShareDataWith)
662 663 664 665 666 667
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
668

L
Leo Chen 已提交
669
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
670
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
745 746 747 748 749 750 751

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
752 753

        )DOC")
754
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
755 756 757 758 759 760 761 762 763
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
764 765
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
766 767 768 769
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
770 771
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
772
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
773
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
774 775
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
776 777 778
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
779
      .def("set_lod",
780
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
781
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
782
             LoD new_lod;
783 784
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
785 786
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
787 788
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
789
             self.set_lod(new_lod);
S
sneaxiy 已提交
790 791 792 793 794
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
795 796 797 798
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
799 800 801 802 803 804 805 806 807 808

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
809
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
810
           )DOC")
811 812 813 814 815 816 817 818 819 820 821
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
822 823
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
824 825 826 827 828
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
829
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
830 831
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
832
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
833

L
Leo Chen 已提交
834
           For example, if recursive_sequence_lengths=[[2, 3]], which means
835
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
836
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
837 838

           Args:
L
Leo Chen 已提交
839 840 841 842
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
843 844 845 846 847 848 849 850 851 852

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
853 854
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
855
           )DOC")
856 857 858 859 860 861 862 863
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
864 865 866 867 868
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
869 870
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
871 872 873 874 875 876 877 878 879 880
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
881
           )DOC")
G
gongweibao 已提交
882
      // Set above comments of set_lod.
883 884 885 886 887 888 889 890
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
891 892
           },
           R"DOC(
L
Leo Chen 已提交
893 894
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
895 896

           Returns:
L
Leo Chen 已提交
897
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
898 899 900 901 902 903 904 905 906 907 908

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
909 910 911 912 913 914 915 916
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
917
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
918 919

           Returns:
L
Leo Chen 已提交
920
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
921 922 923 924 925 926 927 928 929 930 931

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
932 933 934 935 936 937 938
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
939
           )DOC")
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
958
#ifdef _WIN32
959
      });
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1010

Q
qijun 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1022 1023
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1024 1025
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1035
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1036
      .def("rows", [](SelectedRows &self) {
1037 1038 1039 1040 1041
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1042
      });
Q
qijun 已提交
1043

1044
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1045 1046 1047

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1048
      .def(py::init<>())
1049
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1050
      .def("set_int",
1051 1052
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1053 1054 1055 1056 1057 1058 1059
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1060
      .def("get_tensor",
1061 1062
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1063 1064
           },
           py::return_value_policy::reference)
1065 1066 1067 1068
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1069 1070 1071
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1072 1073 1074 1075 1076
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1077 1078 1079
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1080 1081 1082
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1083
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1084 1085 1086 1087 1088
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1089
#endif
Y
Refine  
Yu Yang 已提交
1090 1091
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1092 1093 1094 1095
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1096 1097
             return self.GetMutable<framework::ReaderHolder>();
           },
1098 1099 1100 1101 1102
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1103

S
sneaxiy 已提交
1104
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1105

S
sneaxiy 已提交
1106
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1120
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1121 1122 1123 1124 1125 1126
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1127 1128
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1129
      .def("var",
1130
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1131
             return self.Var(name);
Y
Yu Yang 已提交
1132
           },
S
sneaxiy 已提交
1133 1134
           py::arg("name"),
           R"DOC(
1135
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1136

1137
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1138
           current scope, the variable would be created. Otherwise,
1139
           return the existing variable.
S
sneaxiy 已提交
1140 1141

           Args:
1142 1143
               name (str): the variable name.

S
sneaxiy 已提交
1144
           Returns:
1145
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1146 1147 1148 1149
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1150
           Find variable named :code:`name` in the current scope or
1151
           its parent scope. Return None if not found. 
1152

S
sneaxiy 已提交
1153 1154
           Args:
               name (str): the variable name.
1155

S
sneaxiy 已提交
1156
           Returns:
1157
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1158
           )DOC",
1159
           py::return_value_policy::reference)
1160
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1161 1162 1163 1164 1165 1166
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1167
           py::return_value_policy::reference)
S
sneaxiy 已提交
1168 1169 1170
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1171 1172
           )DOC")
      .def("_kids", &Scope::kids);
1173

S
sneaxiy 已提交
1174 1175 1176 1177 1178 1179
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1180 1181
        R"DOC(
        Create a new scope.
1182

S
sneaxiy 已提交
1183 1184 1185
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1186 1187
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1188 1189
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1190 1191
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1192 1193 1194 1195
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1196 1197
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1198 1199
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1200 1201 1202
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1203 1204
    return ret_values;
  });
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1234 1235 1236
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1237 1238 1239 1240 1241
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1242 1243 1244
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1259
  m.def("prune", [](const ProgramDesc &origin,
1260
                    const std::set<std::string> &feeded_var_names,
1261
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1262
    ProgramDesc prog_with_targets(origin);
1263

1264
    for (const auto &t : targets) {
1265
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1266
    }
1267
    proto::ProgramDesc pruned_desc;
1268 1269 1270 1271
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1272
  });
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1290 1291 1292 1293
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1294 1295 1296
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1297 1298
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1299
  // clang-format off
Y
Yu Yang 已提交
1300
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1301 1302
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1303
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1304 1305
                    return new paddle::platform::CPUDeviceContext();
                  })
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1318
      .def_static("create",
D
dzhwinter 已提交
1319
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1320
                      -> paddle::platform::DeviceContext* {
1321
#ifndef PADDLE_WITH_CUDA
1322 1323 1324 1325
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1326
#else
Q
qijun 已提交
1327
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1328
#endif
C
chengduoZH 已提交
1329 1330 1331 1332 1333
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1334 1335 1336 1337
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1338 1339 1340 1341
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1342
// clang-format on
1343
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1344 1345
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1346
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1347 1348 1349 1350 1351

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1352
    The memory of CUDAPlace with different dev_id is not accessible.
1353 1354 1355 1356 1357 1358 1359 1360
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1361 1362 1363 1364

    Examples:
        .. code-block:: python

1365 1366 1367 1368
          import paddle

          place = paddle.CUDAPlace(0)
          paddle.disable_static(place)
L
lujun 已提交
1369

1370
        )DOC")
S
sneaxiy 已提交
1371 1372 1373
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1398 1399
             new (&self) platform::CUDAPlace(dev_id);
#else
1400 1401 1402 1403 1404 1405 1406 1407 1408
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1409 1410
#endif
           })
1411
#ifdef PADDLE_WITH_CUDA
1412 1413
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1414 1415 1416 1417
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1418
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1419 1420
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1421 1422 1423
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1424
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1425
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1472
#ifdef PADDLE_WITH_XPU
1473 1474 1475 1476 1477 1478 1479
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1480 1481 1482
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1483
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1484 1485
      .def("__str__", string::to_string<const platform::XPUPlace &>);

1486
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1487
    CPUPlace is a descriptor of a device.
1488
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1489 1490 1491 1492

    Examples:
        .. code-block:: python

1493 1494
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1495

1496
        )DOC")
1497
      .def(py::init<>())
S
sneaxiy 已提交
1498 1499
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1500
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1501 1502 1503 1504
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1505
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1506
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1507

1508
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1509 1510 1511 1512 1513 1514
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1515 1516 1517 1518

    Examples:
        .. code-block:: python

1519 1520
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1521

1522
        )DOC")
S
sneaxiy 已提交
1523
      .def("__init__",
S
sneaxiy 已提交
1524
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1525
#ifndef PADDLE_WITH_CUDA
1526 1527 1528
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1529
#endif
S
sneaxiy 已提交
1530
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1531
           })
S
sneaxiy 已提交
1532 1533 1534 1535
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1536 1537
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1538 1539 1540 1541
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1542
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1543 1544
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1545 1546
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1547 1548 1549 1550
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1551
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1552
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1553 1554
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1555 1556
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1557 1558
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1559 1560 1561 1562
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1563 1564
      .def("gpu_device_id",
           [](platform::Place &self) {
1565
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1566
           })
1567 1568 1569 1570
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1571 1572
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1573 1574 1575 1576
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1577 1578 1579 1580
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1581
      .def("set_place",
D
dzhwinter 已提交
1582
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1583
             self = gpu_place;
C
chengduoZH 已提交
1584
           })
1585 1586 1587 1588 1589 1590 1591
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1592

Y
Yu Yang 已提交
1593
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1594 1595 1596 1597 1598
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1599 1600 1601 1602 1603 1604 1605
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1606 1607
            return OpRegistry::CreateOp(desc);
          })
1608
      .def("run",
1609
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1610
              const platform::CPUPlace &place) { self.Run(scope, place); })
1611 1612 1613
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1614 1615
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1616
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1617 1618 1619 1620 1621
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1622 1623 1624 1625 1626 1627 1628
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1629 1630
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1631
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1632
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1633 1634 1635 1636
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1637

1638 1639 1640
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1641 1642 1643 1644 1645 1646 1647 1648 1649
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1650
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1651
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1652
      .def("close", &Executor::Close)
1653 1654
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1655 1656
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1657 1658 1659 1660
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1661
             pybind11::gil_scoped_release release;
1662 1663 1664 1665 1666 1667 1668
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1669 1670 1671
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1672
              std::map<std::string, FetchType *> *fetch_targets,
1673 1674 1675 1676 1677 1678 1679 1680
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1681
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1682 1683 1684 1685 1686 1687 1688
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1699
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1700 1701
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1702
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1703 1704
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1705
      });
S
sneaxiy 已提交
1706

D
dzhwinter 已提交
1707
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1708
  m.def("init_glog", framework::InitGLOG);
1709
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1710 1711
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1712

1713
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1714
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1715
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1716
  m.def("supports_bfloat16", SupportsBfloat16);
1717
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1718
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1719 1720 1721
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1741 1742 1743 1744 1745 1746 1747
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1757 1758 1759 1760 1761 1762
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1763

1764
  m.def("set_feed_variable", framework::SetFeedVariable);
1765 1766 1767 1768 1769
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1770
            return py::cast(BOOST_GET(LoDTensor, var));
1771
          } else {
1772
            return py::cast(BOOST_GET(LoDTensorArray, var));
1773 1774
          }
        });
1775
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1776

X
Xin Pan 已提交
1777 1778
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1779 1780 1781 1782 1783
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1784
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1785

Y
Yu Yang 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1795
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1796
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1797 1798 1799

    Examples:
        .. code-block:: python
1800

Z
Zeng Jinle 已提交
1801 1802 1803 1804
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1805 1806
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1807 1808 1809 1810 1811 1812
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1813 1814 1815 1816
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1817 1818 1819
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1820 1821 1822 1823 1824 1825
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1826 1827
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1828 1829 1830 1831 1832 1833
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1856

1857 1858 1859 1860 1861 1862 1863 1864
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1865
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1866 1867
                 res[i] = py::cast(std::move(data));
               } else {
1868
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1884
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1885 1886 1887 1888 1889 1890 1891 1892
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1893
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1894 1895 1896 1897 1898 1899 1900 1901 1902
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1903 1904
        )DOC")
      .def("_move_to_list",
1905
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1906 1907 1908 1909
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1910
                 if (data_is_lod_tensor(self[i][j])) {
1911
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1912 1913
                   tmp[j] = py::cast(std::move(var));
                 } else {
1914
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1915 1916 1917 1918 1919 1920
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1930
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1931
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1932
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1933

P
peizhilin 已提交
1934
#ifndef _WIN32
D
dangqingqing 已提交
1935 1936 1937
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1938
#endif
P
peizhilin 已提交
1939
#endif
Y
Yu Yang 已提交
1940

1941 1942 1943 1944 1945 1946
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1947 1948 1949 1950
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1951
      .value("kAll", platform::ProfilerState::kAll)
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1963
  m.def("set_tracer_option", platform::SetTracerOption);
1964 1965
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1966
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1967
  m.def("reset_profiler", platform::ResetProfiler);
1968
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1969 1970 1971
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1972

1973 1974
  m.def("size_of_dtype", framework::SizeOfType);

1975 1976 1977
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1978 1979
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1980
      .def("has", &ir::Pass::Has)
1981 1982 1983
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1984
           })
1985
      .def(
1986
          "set",
1987 1988 1989
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1990 1991
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1992 1993
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2008 2009
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2010
        self.Apply(graph.get());
F
flame 已提交
2011
      });
2012

X
fix  
Xin Pan 已提交
2013 2014
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2029
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2030

Y
yuyang18 已提交
2031
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2032 2033 2034 2035
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2036 2037 2038
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2039 2040 2041
    Examples:
        .. code-block:: python

2042 2043 2044 2045 2046 2047 2048 2049 2050
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2051

2052 2053
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2054

2055
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2056 2057
          sgd_optimizer.minimize(avg_loss)

2058
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2059 2060
          exec_strategy.num_threads = 4

2061 2062 2063
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2064 2065
        )DOC");

Y
yuyang18 已提交
2066
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2067 2068 2069 2070 2071
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2072
          },
2073 2074
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2075 2076 2077 2078 2079 2080 2081
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2095
      .def_property(
2096 2097 2098 2099
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
2100 2101 2102 2103
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
2104 2105 2106 2107 2108
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2109 2110 2111
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2112 2113
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2114 2115 2116 2117 2118 2119 2120
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2121 2122 2123 2124
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2125
                because the temp variable's shape maybe the same between two iterations.
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2136

2137 2138 2139 2140 2141 2142 2143
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2144
              )DOC")
Q
Qiao Longfei 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2166
              )DOC")
2167 2168 2169 2170 2171 2172 2173 2174
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2175 2176 2177 2178 2179
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2180

Y
yuyang18 已提交
2181
  exec_strategy.def_property(
Y
yuyang18 已提交
2182 2183 2184 2185 2186 2187 2188
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2189 2190
      });

C
chengduo 已提交
2191 2192 2193 2194
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2195 2196 2197
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2198 2199 2200
    Examples:
        .. code-block:: python

2201
            import os
2202 2203 2204 2205
            import paddle
            import paddle.static as static

            paddle.enable_static()
2206

2207 2208
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2209

2210 2211 2212 2213
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2214

2215
            build_strategy = static.BuildStrategy()
2216 2217
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2218 2219
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2220
            program = program.with_data_parallel(loss_name=loss.name,
2221 2222
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2223
)DOC");
Y
yuyang18 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2240 2241 2242 2243
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2244
            self.reduce_ = strategy;
C
chengduo 已提交
2245
          },
2246
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2247 2248
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2249
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2250 2251
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2252
                Default is 'AllReduce'.
F
flame 已提交
2253 2254 2255 2256

                Examples:
                    .. code-block:: python

2257 2258 2259 2260 2261 2262 2263
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2264
                  )DOC")
Y
yuyang18 已提交
2265 2266 2267 2268 2269
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2270 2271 2272 2273
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2274
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2275
          },
2276 2277
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2278 2279
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2280
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2281 2282 2283 2284

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2285 2286
                        import numpy
                        import os
2287 2288 2289 2290
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2291 2292

                        use_cuda = True
2293 2294
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2295 2296

                        # NOTE: If you use CPU to run the program, you need
2297
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2298 2299 2300 2301 2302 2303
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2304
                            places = static.cpu_places()
C
chengduo 已提交
2305
                        else:
2306
                            places = static.cuda_places()
C
chengduo 已提交
2307

2308 2309 2310 2311
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2312

2313
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2314

2315
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2316
                        build_strategy.gradient_scale_strategy = \
2317 2318 2319
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2320
                                          loss_name=loss.name, build_strategy=build_strategy,
2321
                                          places=places)
C
chengduo 已提交
2322 2323 2324 2325 2326 2327

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2328 2329
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2330
                   )DOC")
Y
yuyang18 已提交
2331 2332 2333 2334
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2335 2336 2337 2338
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2339
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2340
          },
2341
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2342
                writing the SSA Graph to file in the form of graphviz.
2343
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2344 2345 2346 2347

                Examples:
                    .. code-block:: python

2348 2349 2350 2351
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2352

2353 2354
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2355
                    )DOC")
S
sneaxiy 已提交
2356 2357 2358 2359 2360 2361
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2362 2363 2364 2365
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2366 2367
            self.enable_sequential_execution_ = b;
          },
2368 2369
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2370 2371 2372 2373

                Examples:
                    .. code-block:: python

2374 2375 2376 2377 2378 2379
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2380 2381
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2382 2383 2384 2385 2386 2387
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2388 2389 2390 2391
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2392 2393
            self.remove_unnecessary_lock_ = b;
          },
2394 2395
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2396 2397 2398 2399

                Examples:
                    .. code-block:: python

2400 2401 2402 2403 2404 2405
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2406 2407
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2408 2409 2410 2411
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2412
#ifdef WIN32
2413
            PADDLE_THROW(platform::errors::Unavailable(
2414
                "Distribution mode is not supported on Windows platform."));
2415
#endif
2416 2417
            self.num_trainers_ = num_trainers;
          })
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2430 2431 2432 2433 2434 2435
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2436
      .def_property("use_hierarchical_allreduce",
2437 2438 2439 2440 2441 2442
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2443
      .def_property("hierarchical_allreduce_inter_nranks",
2444 2445 2446 2447 2448 2449 2450
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2451 2452 2453 2454 2455 2456
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2457 2458 2459 2460
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2461 2462
            self.fuse_elewise_add_act_ops_ = b;
          },
2463
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2464
                to fuse elementwise_add_op and activation_op,
2465
                it may make the execution faster. Default is False.
F
flame 已提交
2466 2467 2468 2469

                Examples:
                    .. code-block:: python

2470 2471 2472 2473 2474 2475
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2476 2477
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2478 2479 2480 2481
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2482
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2483
                              platform::errors::PreconditionNotMet(
2484 2485
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2495 2496 2497 2498 2499 2500
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2501 2502
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2528 2529 2530 2531
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2532
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2533
                              platform::errors::PreconditionNotMet(
2534 2535
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2546 2547 2548 2549 2550 2551
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2552 2553
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2554 2555 2556 2557 2558 2559
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2560 2561 2562 2563
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2564 2565
            self.fuse_relu_depthwise_conv_ = b;
          },
2566
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2567 2568 2569
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2570
                Default is False.
F
flame 已提交
2571 2572 2573 2574

                Examples:
                    .. code-block:: python

2575 2576 2577 2578 2579 2580
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2581 2582
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2583 2584 2585 2586 2587 2588
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2589 2590 2591 2592
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2593 2594
                      self.fuse_broadcast_ops_ = b;
                    },
2595
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2596 2597 2598 2599
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2600 2601 2602 2603 2604
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2605 2606 2607 2608 2609 2610
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2611 2612
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2613 2614
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2615 2616
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2617 2618
                    },
                    [](BuildStrategy &self, bool b) {
2619 2620 2621 2622
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2623 2624
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2625 2626 2627 2628
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2629 2630 2631 2632
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2633 2634
            self.sync_batch_norm_ = b;
          },
2635
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2636 2637 2638
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2639 2640
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2641 2642 2643 2644

                Examples:
                    .. code-block:: python

2645 2646 2647 2648 2649 2650
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2651 2652
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2653 2654
      .def_property(
          "memory_optimize",
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2669 2670 2671
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2672 2673
            }
          },
2674
          R"DOC((bool, optional): memory opitimize aims to save total memory
2675
                consumption, set to True to enable it.
2676

2677 2678 2679
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2694 2695 2696
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2697 2698 2699
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2700
              PADDLE_THROW(platform::errors::Unavailable(
2701
                  "Distribution mode is not supported on Windows platform."));
2702 2703 2704 2705 2706
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2707 2708 2709
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2710
      .def_property(
D
dzhwinter 已提交
2711 2712 2713
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2714 2715 2716 2717
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2718 2719
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2720 2721 2722 2723
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2724
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2725 2726 2727 2728 2729 2730 2731
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2732 2733 2734 2735
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2736 2737 2738 2739 2740 2741 2742 2743 2744
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2745
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2746
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2747 2748 2749 2750 2751
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2752 2753

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2754
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2755
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2756
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2757 2758 2759 2760
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2761 2762 2763 2764 2765
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2766 2767 2768
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2769 2770 2771 2772
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2773 2774
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2775 2776 2777 2778 2779 2780 2781 2782
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2783
               return py::cast(
2784
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2785 2786
             } else {
               return py::cast(std::move(
2787
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2788
             }
2789 2790
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2791

D
dongdaxiang 已提交
2792
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2793 2794 2795
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
#endif
2796
  BindGlooWrapper(&m);
H
hutuxian 已提交
2797
  BindBoxHelper(&m);
H
hutuxian 已提交
2798 2799 2800
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2801
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2802
  BindNCCLWrapper(&m);
2803 2804 2805
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2806
#endif
F
flame 已提交
2807 2808
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2809
  BindInferenceApi(&m);
2810
  BindCompatible(&m);
2811
  BindDataset(&m);
Y
yaoxuefeng 已提交
2812
  BindGenerator(&m);
Y
Yanghello 已提交
2813 2814 2815
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2816 2817
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
2818 2819
  BindCommunicatorContext(&m);
  BindLargeScaleKV(&m);
2820
#endif
L
Luo Tao 已提交
2821
}
2822
}  // namespace pybind
2823
}  // namespace paddle