pybind.cc 183.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
74
#include "paddle/fluid/operators/py_func_op.h"
75
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
76
#include "paddle/fluid/platform/cpu_info.h"
77
#include "paddle/fluid/platform/device/device_wrapper.h"
78
#include "paddle/fluid/platform/device_context.h"
79
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/platform/enforce.h"
81
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
82
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
83 84
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
85 86 87
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
88
#include "paddle/fluid/pybind/cuda_streams_py.h"
89
#include "paddle/fluid/pybind/distributed_py.h"
90
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
91
#include "paddle/fluid/pybind/imperative.h"
92
#include "paddle/fluid/pybind/io.h"
93 94
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
95
#include "paddle/utils/none.h"
96 97 98
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
99
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
100
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
101
#include "paddle/fluid/pybind/box_helper_py.h"
102
#include "paddle/fluid/pybind/communication.h"
103
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
104
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
105
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
107
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
108
#include "paddle/fluid/pybind/generator_py.h"
109
#include "paddle/fluid/pybind/global_value_getter_setter.h"
110
#include "paddle/fluid/pybind/gloo_context_py.h"
111
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
112
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
113
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
114
#include "paddle/fluid/pybind/ir.h"
115
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
117
#include "paddle/fluid/pybind/pybind_boost_headers.h"
118
#include "paddle/phi/backends/device_manager.h"
119

120
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
121
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
122
#endif
123
#include "paddle/fluid/framework/data_type.h"
124 125
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
126
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
127
#include "paddle/fluid/pybind/tensor_py.h"
128
#include "paddle/fluid/string/to_string.h"
129 130
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
131
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
132
#endif
133
#ifndef PADDLE_WITH_HIP
134
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
135
#endif
136
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
137 138
#endif

139
#ifdef PADDLE_WITH_ASCEND_CL
140
#include "paddle/fluid/platform/collective_helper.h"
141 142
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
143 144
#endif

145
#ifdef PADDLE_WITH_XPU
146
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
147
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
148 149
#endif

150
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
151

J
jianghaicheng 已提交
152
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
153 154
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
155
#endif
156

157 158 159 160
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
161 162 163 164
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
165
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
166 167 168
#include "paddle/fluid/pybind/fleet_py.h"
#endif

169 170 171
#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
172 173
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
174 175
#include "pybind11/stl.h"

176
DECLARE_bool(use_mkldnn);
177

Q
Qiao Longfei 已提交
178 179
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
180 181 182
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
183

184
namespace paddle {
185
namespace pybind {
186 187

PyTypeObject *g_place_pytype = nullptr;
0
0x45f 已提交
188
PyTypeObject *g_framework_scope_pytype = nullptr;
189 190 191 192 193
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
194
PyTypeObject *g_mluplace_pytype = nullptr;
195
PyTypeObject *g_framework_tensor_pytype = nullptr;
196
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
197
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
198

199
bool IsCompiledWithCUDA() {
200 201 202 203 204 205 206
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

207 208 209 210 211 212 213 214
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

215 216
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
217 218 219 220 221 222
  return false;
#else
  return true;
#endif
}

223 224 225 226 227 228 229 230
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

231 232 233 234 235 236 237 238
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

239 240 241 242 243 244 245 246
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
247 248 249 250 251 252 253 254
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

255 256 257 258 259 260 261 262
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

263 264 265 266 267 268 269 270
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

271 272 273 274 275 276 277 278
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

279 280 281 282 283 284 285 286
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

287 288 289 290 291 292 293 294 295 296 297
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

298 299 300 301 302 303 304 305 306 307 308
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

326
bool IsCompiledWithBrpc() {
327
#ifndef PADDLE_WITH_DISTRIBUTE
328 329
  return false;
#endif
330
  return true;
331 332
}

Y
update  
Yancey1989 已提交
333
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
334
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
335 336 337 338 339 340
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
341 342 343 344 345 346 347
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
348
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
349 350
}

H
hong 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
373 374 375
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
389 390
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
391 392
    }
    vec_res.emplace_back(
393
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
394 395 396 397 398 399 400 401 402 403 404 405
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
406 407
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
408 409 410 411 412 413 414 415 416 417 418 419
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
420 421 422
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
423 424 425 426
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
427 428
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
429 430 431 432
  }
  return vec_res;
}

433 434 435 436 437 438 439 440
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
441 442
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
443 444 445 446 447 448 449 450 451 452 453 454 455
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
456 457 458
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
459 460 461 462 463
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
464 465 466 467 468
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
469 470
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
471 472 473
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
474 475 476 477
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
478
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
479 480
        tensor_temp->mutable_data(
            exe->GetPlace(),
481
            framework::TransToPhiDataType(var_desc.GetDataType()));
482 483 484
      }
    }
  } else {
485 486
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
487 488 489 490 491
  }

  return;
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
516 517 518 519
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
520
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
521 522 523 524 525 526 527 528
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
529 530 531 532 533 534 535 536 537 538 539
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

540 541 542 543 544 545
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
546
  BindImperative(&m);
547
  BindEager(&m);
548 549
  BindCudaStream(&m);

Y
Yu Yang 已提交
550 551 552
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
553
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
554

555 556
  AssertStaticGraphAndDygraphGradMakerNoDiff();

557
  m.doc() = "C++ core of PaddlePaddle";
558

559 560 561 562
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

563
  BindException(&m);
Y
Yu Yang 已提交
564

565 566
  m.def("set_num_threads", &platform::SetNumThreads);

567 568
  m.def("disable_signal_handler", &DisableSignalHandler);

569 570 571 572 573 574 575 576
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

577
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
578
  m.def("cudnn_version", &platform::DnnVersion);
579 580 581 582 583 584
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
585
#endif
586

Z
Zeng Jinle 已提交
587 588 589 590
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

591 592 593 594 595 596 597 598 599 600
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
601 602
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
603 604
#endif

Z
Zeng Jinle 已提交
605 606 607 608
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
609 610 611
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
612 613 614 615 616 617

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
618 619
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
620
    framework::Tensor tensor;
6
633WHU 已提交
621

S
Siming Dai 已提交
622
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
623 624
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
625
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
626
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
627 628 629 630 631
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
632

633 634 635 636 637 638
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

639 640 641 642 643 644
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
645 646
  });

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
672 673
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
674 675
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
676 677
  });

S
sneaxiy 已提交
678
  m.def(
S
sneaxiy 已提交
679
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
680 681 682 683
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
684 685 686
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
  m.def("_get_all_register_op_kernels",
        [](const std::string &lib) {
          std::unordered_map<std::string, std::vector<std::string>>
              all_kernels_info;
          if (lib == "fluid" || lib == "all") {
            auto &all_kernels =
                paddle::framework::OperatorWithKernel::AllOpKernels();

            for (auto &kernel_pair : all_kernels) {
              auto op_type = kernel_pair.first;
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                paddle::framework::OpKernelType kernel_type = info_pair.first;
                kernel_types.emplace_back(
                    paddle::framework::KernelTypeToString(kernel_type));
              }
              all_kernels_info.emplace(op_type, kernel_types);
704 705
            }
          }
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
          if (lib == "phi" || lib == "all") {
            auto phi_kernels = phi::KernelFactory::Instance().kernels();
            for (auto &kernel_pair : phi_kernels) {
              auto op_type = phi::TransToFluidOpName(kernel_pair.first);
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                framework::OpKernelType kernel_type =
                    framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
                auto kernel_type_str =
                    framework::KernelTypeToString(kernel_type);
                if (all_kernels_info.count(op_type)) {
                  if (std::find(all_kernels_info[op_type].begin(),
                                all_kernels_info[op_type].end(),
                                kernel_type_str) ==
                      all_kernels_info[op_type].end()) {
                    all_kernels_info[op_type].emplace_back(kernel_type_str);
                  }
                } else {
                  kernel_types.emplace_back(kernel_type_str);
725 726
                }
              }
727 728 729
              if (!kernel_types.empty()) {
                all_kernels_info.emplace(op_type, kernel_types);
              }
730 731 732
            }
          }

733 734 735 736
          return all_kernels_info;
        },
        py::arg("lib") = "all",
        R"DOC(
737 738 739
           Return the registered kernels in paddle.

           Args:
740
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
741
           )DOC");
742

743 744 745 746 747 748
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
749 750 751 752 753
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
754

S
sneaxiy 已提交
755 756 757
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
758
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
759

760
  m.def("_set_fuse_parameter_group_size",
761
        &paddle::framework::ir::SetFuseParameterGroupsSize);
762
  m.def("_set_fuse_parameter_memory_size",
763
        &paddle::framework::ir::SetFuseParameterMemorySize);
764

S
sneaxiy 已提交
765 766 767
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

768 769
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

770 771 772
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          bool attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          float attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int64_t attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          const std::vector<std::string> &attr) {
        self.EmplaceBackAttr(attr);
      });

824 825 826 827 828
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
829 830
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
831 832 833 834
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
J
Jiabin Yang 已提交
835 836
      .def("_slice", &framework::Tensor::Slice)
      .def("_numel", &framework::Tensor::numel)
S
sneaxiy 已提交
837
      .def("_is_initialized",
838
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
839
      .def("_get_dims",
840
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
841
      .def("_set_dims",
842
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
843
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
844
           })
Y
yuyang18 已提交
845
      .def("_set_layout",
846
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
847 848
             self.set_layout(StringToDataLayout(layout));
           })
R
ronnywang 已提交
849 850 851 852
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
853
      .def("_alloc_float",
854
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
855
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
856
           })
857
      .def("_alloc_float",
858
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
859 860
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
861
      .def("_alloc_float",
862
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
863
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
864
           })
865 866 867 868
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
869 870 871 872
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
873
      .def("_alloc_double",
874
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
875 876
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
877
      .def("_alloc_int",
878
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
879
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
880
           })
R
ronnywang 已提交
881 882 883 884
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<int>(place);
           })
885
      .def("_alloc_int",
886
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
887 888
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
889
      .def("_alloc_int",
890
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
891
             self.mutable_data<int>(place);
Q
qijun 已提交
892
           })
893 894 895 896
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
897
      .def("_alloc_int",
898 899
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
900 901
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
902
      .def("_alloc_float",
903 904
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
905 906
             self.mutable_data<float>(place);
           })
907
      .def("_mutable_data",
908
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
909
              paddle::framework::proto::VarType::Type type) {
910 911
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
912
           })
R
ronnywang 已提交
913 914 915 916 917 918
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
919
      .def("_mutable_data",
920
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
921
              paddle::framework::proto::VarType::Type type) {
922 923
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
924
           })
925
      .def("_mutable_data",
926
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
927
              paddle::framework::proto::VarType::Type type) {
928 929
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
930 931
           })
      .def("_mutable_data",
932
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
933
              paddle::framework::proto::VarType::Type type) {
934 935
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
936
           })
937 938 939
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
940 941
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
942
           })
943
      .def("_clear", &framework::Tensor::clear)
944 945 946
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
947 948
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
949
           })
Z
Zeng Jinle 已提交
950 951
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
R
ronnywang 已提交
952 953
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CustomPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
954 955 956 957 958 959 960 961
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
962 963
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
964
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
965
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
966
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
967
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
R
ronnywang 已提交
968 969
      .def("set", SetTensorFromPyArray<paddle::platform::CustomPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
970 971
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
972
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
973
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
974 975
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
976 977
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
978 979
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
980
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
981 982
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
983
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
984 985 986
        
        Args:
          lod (numpy.ndarray): The data to set.
987
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
988
          Tensor is to be set.
989 990
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
991 992 993 994 995 996 997 998 999 1000

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1001
                t = fluid.Tensor()
L
Leo Chen 已提交
1002 1003
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
1004

1005 1006 1007
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
1008
           Return the shape of Tensor.
L
Leo Chen 已提交
1009 1010

           Returns:
1011
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
1012 1013 1014 1015 1016 1017 1018 1019


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

1020
                  t = fluid.Tensor()
L
Leo Chen 已提交
1021 1022 1023
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
1024
      .def("_to_dlpack",
1025
           [](framework::Tensor &self) {
6
633WHU 已提交
1026
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
1027
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
1045 1046 1047 1048
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
1049
      .def("_place", [](framework::Tensor &self) { return self.place(); })
1050 1051 1052 1053
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
1054
      .def("_layout",
1055 1056 1057 1058
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
1059
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
1079 1080
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
1081 1082 1083 1084
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
1085
      .def("__init__",
1086 1087
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1088
           })
G
gongweibao 已提交
1089
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1090 1091
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1092 1093 1094
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1095
      .def("set_lod",
1096 1097
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1098
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1099
             LoD new_lod;
1100 1101
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1102 1103
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1104 1105
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1106
             self.set_lod(new_lod);
S
sneaxiy 已提交
1107 1108
           },
           py::arg("lod"), R"DOC(
1109
           Set LoD of the Tensor.
S
sneaxiy 已提交
1110 1111

           Args:
L
Leo Chen 已提交
1112 1113 1114 1115
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1116 1117 1118 1119 1120 1121 1122

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1123
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1124 1125
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1126
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1127
           )DOC")
1128
      .def("set_recursive_sequence_lengths",
1129 1130
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1131 1132 1133 1134 1135 1136 1137 1138
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1139 1140
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1141
                 platform::errors::InvalidArgument(
1142 1143
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1144 1145 1146
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1147
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1148 1149
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1150
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1151

L
Leo Chen 已提交
1152
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1153
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1154
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1155 1156

           Args:
L
Leo Chen 已提交
1157 1158 1159 1160
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1161 1162 1163 1164 1165 1166 1167

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1168
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1169 1170
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1171
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1172
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1173
           )DOC")
1174
      .def("lod",
1175
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1176 1177 1178 1179 1180 1181
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1182 1183
           },
           R"DOC(
1184
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1185 1186

           Returns:
1187
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1188
           
Z
Zeng Jinle 已提交
1189 1190 1191 1192 1193 1194
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1195
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1196 1197 1198
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1199
           )DOC")
G
gongweibao 已提交
1200
      // Set above comments of set_lod.
1201
      .def("recursive_sequence_lengths",
1202
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1203
             // output the length-based lod info
1204
             LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
1205 1206 1207 1208
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1209 1210
           },
           R"DOC(
L
Leo Chen 已提交
1211
           Return the recursive sequence lengths corresponding to of the LodD 
1212
           of the Tensor.
S
sneaxiy 已提交
1213 1214

           Returns:
L
Leo Chen 已提交
1215
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1216 1217 1218 1219 1220 1221 1222

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1223
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1224 1225 1226
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1227 1228
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1229
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1230
             // Check that the lod info is valid and match the outermost
1231
             // dimension of the Tensor data
S
sneaxiy 已提交
1232 1233 1234
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1235
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1236 1237

           Returns:
L
Leo Chen 已提交
1238
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1239 1240 1241 1242 1243 1244 1245

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1246
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1247 1248 1249
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1250
           )DOC")
L
Leo Chen 已提交
1251
      .def("_as_type",
1252
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1253
              paddle::framework::proto::VarType::Type type) {
1254
             framework::Tensor dst;
L
Leo Chen 已提交
1255 1256 1257 1258 1259
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1273
#ifdef _WIN32
1274
           });
1275 1276
#else
           })
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
#ifdef PADDLE_WITH_CUDA
      .def("_share_buffer_with",
           [](framework::Tensor &self, const framework::Tensor src,
              py::tuple t) {
             auto *cuda_ipc_allocation =
                 dynamic_cast<memory::allocation::CudaIpcAllocation *>(
                     src.Holder().get());

             PADDLE_ENFORCE_NOT_NULL(
                 cuda_ipc_allocation,
                 platform::errors::PreconditionNotMet(
                     "Tensor is not Cuda IPC shared tensor. "
                     "Now only Tensor shared by cuda ipc could use this "
                     "api."));

             size_t size = t[0].cast<size_t>();
             auto dtype =
                 static_cast<paddle::experimental::DataType>(t[1].cast<int>());
             auto dims = phi::make_ddim(t[2].cast<std::vector<int>>());
             auto lod_info = t[3].cast<framework::LoD>();
             auto device_id = t[4].cast<int>();

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_ipc_allocation->ptr(),
                     cuda_ipc_allocation->base_ptr(), size,
                     platform::CUDAPlace(device_id));

             self.ResetHolderWithType(shared_reader_holder, dtype);
             self.Resize(dims);
             self.set_lod(lod_info);

             VLOG(6) << "Reconstructed tensor with buffer shared!";
           },
           R"DOC(
           Deserialize GPU Tensor for existed shared Cuda IPC tensor.

           Params:
               tensor: Shared Cuda IPC tensor.
               tuple: contrains data size, data type,
                      tensor dims, lod information, device index.

       )DOC")
      .def("_share_cuda",
           [](framework::Tensor self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0.  could not pass "
                   "to shared memory. ");

             auto *holder = dynamic_cast<memory::allocation::Allocation *>(
                 self.Holder().get());
             PADDLE_ENFORCE_EQ(
                 platform::is_gpu_place(holder->place()), true,
                 platform::errors::InvalidArgument(
                     "Tensor is not on GPU. share_cuda only support GPU "
                     "Tensor, share_filename is for CPU tensor."));

             void *base_ptr = holder->base_ptr();
             ptrdiff_t offset_bytes = reinterpret_cast<char *>(holder->ptr()) -
                                      reinterpret_cast<char *>(base_ptr);

             cudaIpcMemHandle_t handle;
             PADDLE_ENFORCE_GPU_SUCCESS(cudaIpcGetMemHandle(&handle, base_ptr));

             auto _handle = py::bytes(reinterpret_cast<char *>(&handle),
                                      (py::ssize_t)CUDA_IPC_HANDLE_SIZE);

             // TODO(ZHUI): use cuda event, to avoid sync.
             const auto &device_id = paddle::platform::GetCurrentDeviceId();
             auto stream =
                 paddle::platform::stream::get_current_stream(device_id);
             stream->Synchronize();

             int type_idx = static_cast<int>(self.type());
             size_t data_size =
                 self.numel() *
                 framework::SizeOfType(
                     framework::TransToProtoVarType(self.type()));

             return py::make_tuple(_handle, (py::size_t)offset_bytes, data_size,
                                   type_idx, vectorize(self.dims()), self.lod(),
                                   device_id);
           },
           R"DOC(
           Serialize GPU Tensor by cudaIpcMemHandle.

           Returns:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()

      )DOC")
      .def("_new_shared_cuda",
           [](py::tuple t) {
             if (t.size() != 7)
               throw std::runtime_error(
                   "Invalid Tensor meta info for shared cuda tensor!");

             // 1. Create a new C++ instance
             framework::Tensor tensor;

             // 2. Rebuild Allocation from handle
             const std::string &handle = t[0].cast<std::string>();
             ptrdiff_t offset_bytes = (ptrdiff_t)t[1].cast<int64_t>();
             auto device_id = t[6].cast<int>();
             auto base_ptr = memory::allocation::GetIpcBasePtr(handle);
             size_t size = t[2].cast<size_t>();
             void *dev = base_ptr.get();
             dev = reinterpret_cast<char *>(dev) + offset_bytes;

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::CudaIpcAllocation>(
                     dev, size, device_id, std::move(base_ptr));

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_reader_holder,
                 static_cast<paddle::experimental::DataType>(t[3].cast<int>()));
             tensor.Resize(phi::make_ddim(t[4].cast<std::vector<int>>()));
             tensor.set_lod(t[5].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize GPU lod tensor from cudaIpcMemHandle.

           Params:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_cuda(metainfo))

        )DOC")
#endif
      .def("_share_filename",
           [](framework::Tensor &self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0. could not pass to "
                   "shared memory. ");

             auto holder = self.Holder();
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(holder->place()) ||
                     platform::is_cuda_pinned_place(holder->place()),
                 true, platform::errors::InvalidArgument(
                           "Tensor is not on CPU. share_filename only "
                           "support CPU Tensor."));

             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 holder.get());
             // If the tensor is not shared, allocate memory map allocation.
             if (mmap_allocation == nullptr) {
               void *data_ptr = self.data();
               size_t data_size =
                   self.numel() *
                   framework::SizeOfType(
                       framework::TransToProtoVarType(self.type()));

               int flags = memory::allocation::MAPPED_SHAREDMEM |
                           memory::allocation::MAPPED_EXCLUSIVE;
               std::string handle = memory::allocation::GetIPCName();
               auto shared_holder =
                   memory::allocation::AllocateRefcountedMemoryMapAllocation(
                       handle, flags, data_size);

               // copy data & reset holder
               if (platform::is_cuda_pinned_place(holder->place())) {
#ifdef PADDLE_WITH_CUDA
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CUDAPinnedPlace(), data_ptr, data_size);
#endif
               } else {
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CPUPlace(), data_ptr, data_size);
               }
               self.ResetHolder(shared_holder);
               mmap_allocation = shared_holder.get();
             }
             int type_idx = static_cast<int>(self.type());

             return py::make_tuple(mmap_allocation->ipc_name(),
                                   mmap_allocation->size(), type_idx,
                                   vectorize(self.dims()), self.lod());
           },
           R"DOC(
           Serialize CPU lod tensor in shared memory to tuple.
           If the tensor is not in shared memory, we will copy it first.

           Returns:
               tuple: contrains ipc name, data size, data type,
                      tensor dims and lod imformation.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()

       )DOC")
      .def("_new_shared_filename",
           [](py::tuple t) {  // __setstate__
             if (t.size() != 5)
               throw std::runtime_error("Invalid Tensor meta info state!");

             framework::Tensor tensor;

             // 2. Rebuild Allocation
             const std::string &ipc_name = t[0].cast<std::string>();
             size_t size = t[1].cast<size_t>();
             int flags = memory::allocation::MAPPED_SHAREDMEM |
                         memory::allocation::MAPPED_NOCREATE;

             auto shared_holder =
                 memory::allocation::AllocateRefcountedMemoryMapAllocation(
                     ipc_name, flags, size);

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_holder,
                 static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
             tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
             tensor.set_lod(t[4].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize CPU lod tensor from shared memory.

           Params:
               tuple: contrains ipc file name, data size, data type,
                      tensor dims and lod information.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_filename(metainfo))

        )DOC")
      .def("_shared_incref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->incref();
             }
           },
           R"DOC(
            Increase reference count of share_filename tensor.
      )DOC")
      .def("_shared_decref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->decref();
             }
           },
           R"DOC(
            Decrease reference count of share_filename tensor.
      )DOC")
1558
      .def(py::pickle(
1559
          [](const framework::Tensor &t) {  // __getstate__
1560
            auto holder = t.Holder();
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1573 1574 1575
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1576 1577
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1578 1579 1580
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1581
              throw std::runtime_error("Invalid Tensor state!");
1582 1583

            // 1. Create a new C++ instance
1584
            framework::Tensor tensor;
1585 1586 1587 1588 1589

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1590 1591
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1592 1593

            // 3. Maintain global fd set
1594
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1595 1596
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1597 1598 1599
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1600
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1601
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1602 1603 1604 1605 1606
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1607

1608
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1609
      .def("__init__",
1610 1611
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1612
           })
Q
qijun 已提交
1613
      .def("__init__",
1614
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1615
              const int64_t &height) {
1616
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1617 1618
           })
      .def("get_tensor",
1619
           [](phi::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1620
           py::return_value_policy::reference)
1621
      .def("numel",
1622
           [](phi::SelectedRows &self) -> int64_t {
1623 1624
             return self.value().numel();
           })
1625 1626
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1627
      .def("set_rows",
1628
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1629
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1630 1631 1632 1633 1634 1635
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1636
      .def("sync_index",
1637 1638
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1639 1640 1641 1642 1643
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1644
      });
Q
qijun 已提交
1645

1646
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1647 1648 1649

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1650
      .def(py::init<>())
1651
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1652
      .def("set_int",
1653 1654
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1655 1656 1657 1658 1659 1660 1661
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1662
      .def("get_tensor",
1663 1664
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1665 1666
           },
           py::return_value_policy::reference)
1667 1668 1669 1670
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1683 1684 1685
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1686
      .def("get_selected_rows",
1687 1688
           [](Variable &self) -> phi::SelectedRows * {
             return self.GetMutable<phi::SelectedRows>();
Q
qijun 已提交
1689 1690
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1691 1692 1693
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1694 1695 1696
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1697
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1698 1699 1700 1701 1702
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1703
#endif
Y
Refine  
Yu Yang 已提交
1704 1705
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1706 1707 1708 1709
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1710 1711
             return self.GetMutable<framework::ReaderHolder>();
           },
1712
           py::return_value_policy::reference)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1724 1725 1726 1727
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1728

S
sneaxiy 已提交
1729
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1730

0
0x45f 已提交
1731
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1745
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1746 1747 1748 1749 1750
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1751 1752 1753
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1754 1755
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1756
      .def("var",
1757
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1758
             return self.Var(name);
Y
Yu Yang 已提交
1759
           },
S
sneaxiy 已提交
1760 1761
           py::arg("name"),
           R"DOC(
1762
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1763

1764
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1765
           current scope, the variable would be created. Otherwise,
1766
           return the existing variable.
S
sneaxiy 已提交
1767 1768

           Args:
1769 1770
               name (str): the variable name.

S
sneaxiy 已提交
1771
           Returns:
1772
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1773 1774 1775 1776
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1777
           Find variable named :code:`name` in the current scope or
1778
           its parent scope. Return None if not found. 
1779

S
sneaxiy 已提交
1780 1781
           Args:
               name (str): the variable name.
1782

S
sneaxiy 已提交
1783
           Returns:
1784
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1785
           )DOC",
1786
           py::return_value_policy::reference)
1787
      .def("size", &Scope::Size)
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1800
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1801 1802 1803 1804 1805 1806
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1807
           py::return_value_policy::reference)
S
sneaxiy 已提交
1808 1809 1810
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1811 1812
           )DOC")
      .def("_kids", &Scope::kids);
1813

S
sneaxiy 已提交
1814 1815 1816 1817 1818 1819
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1820 1821
        R"DOC(
        Create a new scope.
1822

S
sneaxiy 已提交
1823 1824 1825
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1826 1827
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1828 1829
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1830 1831
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1832 1833 1834 1835
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1836 1837
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1838 1839
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1840 1841 1842
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1843 1844
    return ret_values;
  });
1845 1846 1847 1848 1849 1850 1851 1852
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1853
              res = op_checker->GetDefaultAttrsMap();
1854 1855 1856 1857
            }
          }
          return res;
        });
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1874 1875 1876
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1877 1878 1879 1880 1881
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1882 1883 1884
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1899
  m.def("prune", [](const ProgramDesc &origin,
1900
                    const std::set<std::string> &feeded_var_names,
1901
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1902
    ProgramDesc prog_with_targets(origin);
1903

1904
    for (const auto &t : targets) {
1905
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1906
    }
1907
    proto::ProgramDesc pruned_desc;
1908 1909 1910 1911
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1912
  });
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1930 1931 1932 1933
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1934 1935 1936
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1937 1938
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1939

Q
qijun 已提交
1940
  // clang-format off
Y
Yu Yang 已提交
1941
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1942 1943
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1944
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1959
                  })
1960 1961 1962 1963 1964 1965 1966 1967 1968
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1995 1996
#endif
                  })
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
#endif
        })
        .def_static("create",
                    [](paddle::platform::CustomPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CustomPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with "
                 "CustomDevice support."));
#else
                return new paddle::platform::CustomDeviceContext(place);
2020 2021
#endif
        })
Q
qijun 已提交
2022
      .def_static("create",
D
dzhwinter 已提交
2023
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
2024
                      -> paddle::platform::DeviceContext* {
2025
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2026 2027 2028 2029
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
2030
#else
W
Wilber 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
2044 2045 2046 2047
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
2048 2049
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
2050
#endif
C
chengduoZH 已提交
2051 2052 2053 2054
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
2055
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2056 2057 2058 2059
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
2060 2061 2062 2063
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
2064
// clang-format on
2065
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
2066 2067
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
2068 2069 2070
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2071
    device_types = phi::DeviceManager::GetAllDeviceTypes();
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2085
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2099
    devices = phi::DeviceManager::GetAllDeviceList();
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2113
    devices = phi::DeviceManager::GetAllCustomDeviceList();
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  py::class_<platform::CustomPlace>(m, "CustomPlace",
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

2150 2151
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
2152
               int dev_count = static_cast<int>(
2153
                   phi::DeviceManager::GetDeviceCount(device_type));
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
2201
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
2202 2203 2204 2205 2206

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
2207
    The memory of CUDAPlace with different dev_id is not accessible.
2208 2209 2210 2211 2212 2213 2214 2215
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
2216 2217 2218 2219

    Examples:
        .. code-block:: python

2220 2221 2222
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
2223

2224 2225 2226
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
2227 2228
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
2229
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2230 2231 2232 2233 2234 2235 2236 2237
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

2238 2239
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
2240 2241 2242 2243 2244 2245 2246 2247
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
2248 2249
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
2250 2251 2252 2253
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
2254 2255
             new (&self) platform::CUDAPlace(dev_id);
#else
2256 2257 2258 2259 2260 2261 2262 2263 2264
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
2265 2266
#endif
           })
2267
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2268 2269
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
2270 2271 2272 2273
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
2274
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
2275
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
2276
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
2277 2278
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
2279 2280 2281
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
2282
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
2283
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
2284

2285
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
2286 2287 2288 2289 2290
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
2291 2292 2293
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
2332
#ifdef PADDLE_WITH_XPU
2333 2334 2335 2336 2337 2338 2339
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
2340 2341 2342
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
2343
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
2344
      .def("__str__", string::to_string<const platform::XPUPlace &>);
2345
#ifdef PADDLE_WITH_XPU
2346 2347 2348
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
2349
      .export_values();
2350
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
2351 2352
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
L
Lijunhui 已提交
2353 2354 2355 2356 2357 2358
#ifdef PADDLE_WITH_XPU_KP
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_kp_op_support_type(op_name, version);
        });
#else
2359 2360 2361 2362
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
L
Lijunhui 已提交
2363
#endif
2364
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
2365 2366
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
2367 2368
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2369
    return platform::get_xpu_version(place.device) >
2370
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2371 2372 2373
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2374
    return platform::get_xpu_version(place.device) >
2375
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2376
  });
2377
#endif
2378

2379
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
2380
    CPUPlace is a descriptor of a device.
2381
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
2382 2383 2384 2385

    Examples:
        .. code-block:: python

2386 2387
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
2388

2389 2390 2391
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
2392 2393
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
2394
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
2395
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2396 2397 2398 2399
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
2400
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
2401
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
2402

2403 2404
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2405 2406 2407 2408 2409 2410
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2411 2412 2413 2414

    Examples:
        .. code-block:: python

2415 2416
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2417

2418 2419 2420 2421
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2422
      .def("__init__",
S
sneaxiy 已提交
2423
           [](platform::CUDAPinnedPlace &self) {
2424
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2425 2426 2427
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2428
#endif
S
sneaxiy 已提交
2429
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2430
           })
S
sneaxiy 已提交
2431 2432 2433 2434
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2435 2436
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2437 2438
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2439 2440 2441 2442
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2443
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2444 2445
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2446
  // NPUPlace
2447
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2448 2449 2450 2451 2452 2453 2454 2455
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2456 2457 2458
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2490
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2505 2506
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2507 2508
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2630 2631 2632
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2633 2634 2635 2636
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2637
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2638
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2639
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2640
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2641
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2642 2643
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2644 2645
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2646 2647
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2648 2649
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2650 2651
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2652 2653 2654 2655
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2656 2657
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2658 2659 2660
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2661 2662 2663 2664 2665
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2666 2667
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2668 2669
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2670 2671 2672 2673
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2674 2675 2676 2677
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2678
      .def("set_place",
D
dzhwinter 已提交
2679
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2680
             self = gpu_place;
C
chengduoZH 已提交
2681
           })
2682 2683 2684 2685 2686
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2687 2688 2689 2690
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2691 2692 2693 2694
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2695 2696 2697 2698
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2699 2700 2701 2702
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2703 2704
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2705

Y
Yu Yang 已提交
2706
  py::class_<OperatorBase>(m, "Operator")
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2721
      .def("run",
2722
           [](OperatorBase &self, const Scope &scope,
2723 2724 2725 2726
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2727 2728
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2729 2730 2731 2732
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2733 2734
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2735 2736 2737 2738
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2739 2740
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2741 2742 2743 2744
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2745 2746 2747
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2748
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2749 2750
             self.Run(scope, place);
           })
2751 2752 2753 2754 2755 2756
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
2757 2758 2759 2760 2761 2762
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2763 2764 2765 2766 2767 2768 2769
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2770 2771
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2772
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2773
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2774 2775 2776 2777
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2778

2779 2780 2781
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2782 2783 2784 2785 2786 2787 2788
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2789 2790
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2791

2792 2793
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2794
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2795
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2796
      .def("close", &Executor::Close)
2797 2798
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2799 2800
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2801 2802 2803 2804
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2805
             pybind11::gil_scoped_release release;
2806 2807 2808 2809 2810 2811 2812
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2813 2814 2815
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2816
              std::map<std::string, FetchType *> *fetch_targets,
2817 2818 2819 2820 2821 2822 2823 2824
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2825
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2826 2827 2828 2829 2830 2831 2832
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2843
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2844 2845
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2846
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2847 2848
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2849
      });
S
sneaxiy 已提交
2850

2851
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2852
      .def(py::init<>())
2853 2854 2855 2856 2857
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2858

2859
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2860 2861 2862
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2863
           [](StandaloneExecutor &self,
H
hong 已提交
2864
              const std::unordered_map<std::string, py::array> &input_dict,
2865
              std::vector<std::string> fetch_names) {
2866
             std::vector<framework::LoDTensor> feed_tensors;
2867
             std::vector<std::string> feed_names;
H
hong 已提交
2868 2869 2870 2871 2872

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2873 2874
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2875 2876
             }

2877 2878 2879 2880 2881 2882 2883 2884 2885
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2886
              const std::unordered_map<std::string, framework::LoDTensor>
2887 2888
                  &input_dict,
              std::vector<std::string> fetch_names) {
2889
             std::vector<framework::LoDTensor> feed_tensors;
2890 2891 2892 2893 2894 2895 2896
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2897 2898 2899 2900
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2901
             }
W
wanghuancoder 已提交
2902
             return py::cast(std::move(ret));
2903
           })
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2914 2915 2916
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2917
             std::vector<framework::LoDTensor> feed_tensors;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2928
             framework::interpreter::CostInfo cost_info;
2929 2930 2931 2932 2933
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2934 2935
           });

D
dzhwinter 已提交
2936
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2937
  m.def("init_glog", framework::InitGLOG);
2938 2939 2940 2941
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
2942
  m.def("init_devices", []() { framework::InitDevices(); });
2943
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2944
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2945
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2946
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2947
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2948
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2949
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2950
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2951
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2952
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2953
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2954
  m.def("supports_bfloat16", SupportsBfloat16);
2955
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2956 2957
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2958
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2959
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2960
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2961 2962 2963
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2983 2984
  m.def("memory_stat_get_current", memory::StatGetCurrentValue);
  m.def("memory_stat_get_peak", memory::StatGetPeakValue);
H
hutuxian 已提交
2985 2986 2987 2988 2989 2990 2991
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

3001
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3002 3003
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
3004
    return platform::GetGPUComputeCapability(place.device) >= 53;
3005 3006
  });
#endif
3007

S
Steffy-zxf 已提交
3008 3009 3010 3011 3012 3013
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
3014 3015 3016 3017 3018
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
3019
            return py::cast(BOOST_GET(LoDTensor, var));
3020
          } else {
3021
            return py::cast(BOOST_GET(LoDTensorArray, var));
3022 3023
          }
        });
3024
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
3025

X
Xin Pan 已提交
3026 3027
  m.def("_is_program_version_supported", IsProgramVersionSupported);

3028 3029 3030 3031
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
3032
  BindCostModel(&m);
3033
  BindConstValue(&m);
3034
  BindGlobalValueGetterSetter(&m);
3035
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
3036
  BindFleetExecutor(&m);
3037
  BindTCPStore(&m);
Y
Yu Yang 已提交
3038

Y
Yu Yang 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

3048
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
3049
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
3050 3051 3052

    Examples:
        .. code-block:: python
3053

Z
Zeng Jinle 已提交
3054 3055 3056
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
3057 3058 3059 3060
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
3061 3062
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
3063 3064 3065 3066 3067 3068
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
3069 3070 3071 3072
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
3073 3074 3075
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
3076 3077 3078 3079 3080 3081
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
3082 3083
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
3084 3085 3086 3087 3088 3089
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
3112

3113 3114 3115 3116 3117 3118 3119 3120
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
3121
                 auto &data = BOOST_GET(LoDTensor, self[i]);
3122 3123
                 res[i] = py::cast(std::move(data));
               } else {
3124
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
3140
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
3141 3142 3143 3144 3145 3146 3147 3148
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
3149
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
3150 3151 3152 3153 3154 3155 3156 3157 3158
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
3159 3160
        )DOC")
      .def("_move_to_list",
3161
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
3162 3163 3164 3165
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
3166
                 if (data_is_lod_tensor(self[i][j])) {
3167
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
3168 3169
                   tmp[j] = py::cast(std::move(var));
                 } else {
3170
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
3171 3172 3173 3174 3175 3176
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
3186
  m.def("op_support_gpu", OpSupportGPU);
3187
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3188
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
3189
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
3190 3191 3192 3193 3194 3195 3196 3197
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
3198 3199 3200 3201 3202 3203 3204
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
3230
      });
D
dangqingqing 已提交
3231

3232
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
3233 3234 3235
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
3236 3237 3238 3239
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
3240
#endif
P
peizhilin 已提交
3241
#endif
Y
Yu Yang 已提交
3242

3243 3244
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
3245
  m.def("npu_finalize", []() {
3246 3247
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

3248 3249 3250
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
3251
      platform::NPUDeviceGuard guard(devices[i]);
3252 3253 3254 3255
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
3276 3277 3278 3279
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

3280 3281 3282 3283
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

3284 3285 3286 3287 3288 3289
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

3290 3291 3292 3293
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
3294
      .value("kAll", platform::ProfilerState::kAll)
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

3306
  m.def("set_tracer_option", platform::SetTracerOption);
3307 3308
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
3309
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
3310
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
3311
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
3312 3313
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
3314 3315 3316
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
3317
    callable.inc_ref();
3318 3319 3320 3321 3322 3323 3324 3325
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
3326
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
3327 3328 3329
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
3330

3331
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
      .def("get_data", &paddle::platform::ProfilerResult::GetData,
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
                     &paddle::platform::HostPythonNode::device_node_ptrs);

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
      .def("create", &paddle::platform::Profiler::Create,
           py::return_value_policy::take_ownership)
C
chenjian 已提交
3371
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
C
chenjian 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
      .def("stop",
           [](paddle::platform::Profiler *profiler) {
             platform::DisableHostEventRecorder();
L
liutiexing 已提交
3381 3382 3383 3384
             auto result = profiler->Stop();
             framework::StaticGraphExecutorPerfStatistics(
                 result->GetNodeTrees());
             return result;
C
chenjian 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
           },
           py::return_value_policy::automatic_reference);

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3418

3419
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3420 3421
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3422 3423
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3424
#endif  // PADDLE_WITH_CUDA
3425 3426
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3427

3428 3429 3430
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3431 3432
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3433
      .def("has", &ir::Pass::Has)
3434 3435 3436
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3437
           })
3438
      .def(
3439
          "set",
3440 3441 3442
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
3443 3444
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
3445 3446
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
3447 3448 3449 3450 3451
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3466 3467
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3468
        self.Apply(graph.get());
F
flame 已提交
3469
      });
3470

X
fix  
Xin Pan 已提交
3471 3472
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3487
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3488
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3489 3490 3491 3492
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3493 3494 3495
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3496 3497 3498
    Examples:
        .. code-block:: python

3499 3500 3501 3502 3503 3504 3505 3506 3507
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3508

3509 3510
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3511

3512
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3513 3514
          sgd_optimizer.minimize(avg_loss)

3515
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3516 3517
          exec_strategy.num_threads = 4

3518 3519 3520
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3521 3522
        )DOC");

3523 3524 3525 3526
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3527

Y
yuyang18 已提交
3528
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3529 3530 3531 3532 3533
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3534
          },
3535 3536
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3537 3538 3539 3540 3541 3542 3543
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3557
      .def_property(
3558 3559
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3560
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3561 3562 3563
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3564 3565 3566 3567 3568
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3569 3570 3571
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3572 3573
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3574 3575 3576 3577 3578 3579 3580
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3581 3582 3583 3584
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3585
                because the temp variable's shape maybe the same between two iterations.
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3596

3597 3598 3599 3600 3601 3602 3603
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3604
              )DOC")
Q
Qiao Longfei 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3626
              )DOC")
3627 3628 3629 3630 3631 3632 3633 3634
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3635 3636 3637 3638 3639
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3640

Y
yuyang18 已提交
3641
  exec_strategy.def_property(
Y
yuyang18 已提交
3642 3643 3644 3645 3646 3647 3648
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3649 3650
      });

C
chengduo 已提交
3651 3652 3653 3654
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3655 3656 3657
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3658 3659 3660
    Examples:
        .. code-block:: python

3661
            import os
3662 3663 3664 3665
            import paddle
            import paddle.static as static

            paddle.enable_static()
3666

3667 3668
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3669

3670 3671 3672 3673
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3674

3675
            build_strategy = static.BuildStrategy()
3676 3677
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3678 3679
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3680
            program = program.with_data_parallel(loss_name=loss.name,
3681 3682
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3683
)DOC");
Y
yuyang18 已提交
3684 3685 3686

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3687 3688
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3689 3690 3691 3692 3693 3694 3695 3696
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3697
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3698 3699 3700 3701
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3702 3703 3704 3705
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3706
            self.reduce_ = strategy;
C
chengduo 已提交
3707
          },
3708
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3709 3710
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3711
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3712 3713
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3714
                Default is 'AllReduce'.
F
flame 已提交
3715 3716 3717 3718

                Examples:
                    .. code-block:: python

3719 3720 3721 3722 3723 3724 3725
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3726
                  )DOC")
Y
yuyang18 已提交
3727 3728 3729 3730 3731
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3732 3733 3734 3735
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3736
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3737
          },
3738
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3739
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3740 3741
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3742
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3743 3744 3745 3746

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3747 3748
                        import numpy
                        import os
3749 3750 3751 3752
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3753 3754

                        use_cuda = True
3755 3756
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3757 3758

                        # NOTE: If you use CPU to run the program, you need
3759
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3760 3761 3762 3763 3764 3765
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3766
                            places = static.cpu_places()
C
chengduo 已提交
3767
                        else:
3768
                            places = static.cuda_places()
C
chengduo 已提交
3769

3770 3771 3772 3773
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3774

3775
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3776

3777
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3778
                        build_strategy.gradient_scale_strategy = \
3779 3780 3781
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3782
                                          loss_name=loss.name, build_strategy=build_strategy,
3783
                                          places=places)
C
chengduo 已提交
3784 3785 3786 3787 3788 3789

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3790 3791
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3792
                   )DOC")
Y
yuyang18 已提交
3793 3794 3795 3796
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3797 3798 3799 3800
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3801
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3802
          },
3803
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3804
                writing the SSA Graph to file in the form of graphviz.
3805
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3806 3807 3808 3809

                Examples:
                    .. code-block:: python

3810 3811 3812 3813
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3814

3815 3816
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3817
                    )DOC")
S
sneaxiy 已提交
3818 3819 3820 3821 3822 3823
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3824 3825 3826 3827
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3828 3829
            self.enable_sequential_execution_ = b;
          },
3830 3831
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3832 3833 3834 3835

                Examples:
                    .. code-block:: python

3836 3837 3838 3839 3840 3841
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3842 3843
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3844 3845 3846 3847 3848 3849
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3850 3851 3852 3853
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3854 3855
            self.remove_unnecessary_lock_ = b;
          },
3856 3857
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3858 3859 3860 3861

                Examples:
                    .. code-block:: python

3862 3863 3864 3865 3866 3867
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3868 3869
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3870 3871 3872 3873
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3874
#ifdef WIN32
3875
            PADDLE_THROW(platform::errors::Unavailable(
3876
                "Distribution mode is not supported on Windows platform."));
3877
#endif
3878 3879
            self.num_trainers_ = num_trainers;
          })
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3892 3893 3894 3895 3896 3897
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3898 3899 3900 3901 3902 3903
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3904
      .def_property("use_hierarchical_allreduce",
3905 3906 3907 3908 3909 3910
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3911
      .def_property("hierarchical_allreduce_inter_nranks",
3912 3913 3914 3915 3916 3917 3918
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3919 3920 3921 3922 3923 3924
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3925 3926 3927 3928
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3929 3930
            self.fuse_elewise_add_act_ops_ = b;
          },
3931
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3932
                to fuse elementwise_add_op and activation_op,
3933
                it may make the execution faster. Default is False.
F
flame 已提交
3934 3935 3936 3937

                Examples:
                    .. code-block:: python

3938 3939 3940 3941 3942 3943
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3944 3945
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
3971 3972 3973 3974
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3975
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3976
                              platform::errors::PreconditionNotMet(
3977 3978
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3988 3989 3990 3991 3992 3993
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3994 3995
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
4021 4022 4023 4024
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
4025
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
4026
                              platform::errors::PreconditionNotMet(
4027 4028
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

4039 4040 4041 4042 4043 4044
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
4045 4046
                        build_strategy.enable_auto_fusion = True
                    )DOC")
4047 4048 4049 4050 4051 4052
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
4053 4054 4055 4056
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4057 4058
            self.fuse_relu_depthwise_conv_ = b;
          },
4059
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
4060 4061 4062
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
4063
                Default is False.
F
flame 已提交
4064 4065 4066 4067

                Examples:
                    .. code-block:: python

4068 4069 4070 4071 4072 4073
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4074 4075
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
4076 4077 4078
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
4079
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
4080 4081
                    },
                    [](BuildStrategy &self, bool b) {
4082 4083 4084 4085
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
4086 4087
                      self.fuse_broadcast_ops_ = b;
                    },
4088
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
4089 4090 4091 4092
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
4093 4094 4095 4096 4097
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

4098 4099 4100 4101 4102 4103
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
4104 4105
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
4106 4107
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
4108
                      return self.fuse_all_optimizer_ops_ == true ||
4109
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
4110 4111
                    },
                    [](BuildStrategy &self, bool b) {
4112 4113 4114 4115
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
4116 4117
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
4118 4119 4120 4121
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
4122 4123 4124 4125
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
4126 4127
            self.sync_batch_norm_ = b;
          },
4128
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
4129 4130 4131
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
4132 4133
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
4134 4135 4136 4137

                Examples:
                    .. code-block:: python

4138 4139 4140 4141 4142 4143
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4144 4145
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
4146 4147
      .def_property(
          "memory_optimize",
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
4158
              self.memory_optimize_ = paddle::none;
4159 4160 4161
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
4162
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
4163 4164
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
4165 4166
            }
          },
4167
          R"DOC((bool, optional): memory opitimize aims to save total memory
4168
                consumption, set to True to enable it.
4169

4170 4171 4172
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
4187 4188 4189
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
4190 4191 4192
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
4193
              PADDLE_THROW(platform::errors::Unavailable(
4194
                  "Distribution mode is not supported on Windows platform."));
4195 4196 4197 4198 4199
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
4200 4201 4202
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
4203
      .def_property(
D
dzhwinter 已提交
4204 4205 4206
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
4207 4208 4209 4210
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
4211 4212
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
4213 4214
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
4215
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
4216
          },
C
chengduo 已提交
4217
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
4218 4219 4220 4221 4222 4223 4224
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
4225 4226 4227 4228
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
4229 4230 4231 4232 4233 4234 4235 4236 4237
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
4238 4239 4240 4241 4242 4243
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
4244 4245 4246 4247 4248 4249 4250
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
4251 4252 4253 4254 4255 4256
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
4257
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
4258
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
4259 4260 4261 4262 4263
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
4264

4265 4266 4267 4268 4269 4270
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
4271
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
4272
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
4273
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
4274
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
4275 4276 4277 4278
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
4279 4280 4281 4282 4283
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
4284 4285 4286
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
4287 4288 4289 4290
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
4291 4292
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
4293 4294 4295 4296 4297 4298 4299 4300
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
4301
               return py::cast(
4302
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
4303 4304
             } else {
               return py::cast(std::move(
4305
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
4306
             }
4307 4308
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
4309

J
jianghaicheng 已提交
4310 4311
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
4312 4313 4314 4315 4316 4317 4318 4319 4320
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
      .def("get_instance",
           []() {
             return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                 platform::ipu::IpuBackend::GetInstance());
           },
           py::return_value_policy::reference)
A
Allen Guo 已提交
4321
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
4322 4323
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
4324
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
               if (py::isinstance<py::bool_>(element.second)) {
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
A
Allen Guo 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4455 4456
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4457 4458 4459
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4460 4461
#endif

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

  m.def("autotune_range", [](int64_t start, int64_t stop) {
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
    py::dict res;
    res["use_autotune"] =
        phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

D
dongdaxiang 已提交
4490
  BindFleetWrapper(&m);
4491
  BindIO(&m);
T
Thunderbrook 已提交
4492

T
Thunderbrook 已提交
4493
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4494
  BindHeterWrapper(&m);
4495
  BindMetrics(&m);
T
Thunderbrook 已提交
4496
#endif
T
Thunderbrook 已提交
4497
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4498
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4499 4500 4501
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
4502
#endif
4503
  BindGlooWrapper(&m);
H
hutuxian 已提交
4504
  BindBoxHelper(&m);
H
hutuxian 已提交
4505 4506 4507
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4508
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4509
  BindNCCLWrapper(&m);
4510 4511 4512
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4513
#endif
F
flame 已提交
4514 4515
  BindGraph(&m);
  BindNode(&m);
4516
  BindPass(&m);
F
flame 已提交
4517
  BindInferenceApi(&m);
4518
  BindCompatible(&m);
4519
  BindDataset(&m);
Y
yaoxuefeng 已提交
4520
  BindGenerator(&m);
4521 4522 4523
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4524 4525 4526
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4527
  BindAscendDevice(&m);
4528
#endif
Y
Yanghello 已提交
4529 4530 4531
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4532

T
tangwei12 已提交
4533
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4534 4535
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4536
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4537 4538
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4539 4540 4541 4542 4543
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4544 4545 4546 4547
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4548
#endif
L
Luo Tao 已提交
4549
}
4550
}  // namespace pybind
4551
}  // namespace paddle