pybind.cc 64.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
21
#include <unordered_set>
C
chengduoZH 已提交
22 23
#include <utility>
#include <vector>
24

Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
29
#include "paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.h"
30
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
34
#include "paddle/fluid/framework/op_info.h"
35
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
36
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
41
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
42
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
43
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
44
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
47
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/platform/enforce.h"
49
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
52
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
54
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
56
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
57
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
58
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
59
#include "paddle/fluid/pybind/ir.h"
60

W
wopeizl 已提交
61
#ifndef _WIN32
D
dongdaxiang 已提交
62
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
63
#endif
64 65
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
66
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
67
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/tensor_py.h"
69
#include "paddle/fluid/string/to_string.h"
70

D
Dong Zhihong 已提交
71
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
72
#ifndef _WIN32
Y
Yi Wang 已提交
73
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
74
#endif
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
77 78
#endif

79 80 81 82
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
83 84
#include "pybind11/stl.h"

85 86 87 88
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
89 90 91
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

92
namespace paddle {
93
namespace pybind {
94
bool IsCompiledWithCUDA() {
95
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
96 97 98 99 100 101
  return false;
#else
  return true;
#endif
}

102 103 104 105 106 107 108 109
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

110 111 112 113 114 115 116 117
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

118
bool IsCompiledWithBrpc() {
119
#ifndef PADDLE_WITH_DISTRIBUTE
120 121
  return false;
#endif
122 123 124 125 126 127

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
128 129
}

Y
update  
Yancey1989 已提交
130
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
131
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
132 133 134 135 136 137
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
138 139 140 141 142 143 144 145 146 147
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

148 149 150 151 152 153
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
154 155 156
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
157
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
158

159
  m.doc() = "C++ core of PaddlePaddle";
160

161 162 163 164
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

165
  BindException(&m);
Y
Yu Yang 已提交
166

S
sneaxiy 已提交
167
  m.def(
S
sneaxiy 已提交
168
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
169 170 171 172
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
173 174 175
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
176 177 178
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
179
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
180

181
  m.def("_set_fuse_parameter_group_size",
182
        &paddle::framework::ir::SetFuseParameterGroupsSize);
183
  m.def("_set_fuse_parameter_memory_size",
184
        &paddle::framework::ir::SetFuseParameterMemorySize);
185

S
sneaxiy 已提交
186 187 188
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

189 190 191 192 193 194 195
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

196
  BindImperative(&m);
197

198
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
199
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
200 201
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
202
      .def("_get_dims",
203
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
204
      .def("_set_dims",
Q
qijun 已提交
205
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
206
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
207
           })
Y
yuyang18 已提交
208
      .def("_set_layout",
D
dzhwinter 已提交
209 210 211
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
212
      .def("_alloc_float",
D
dzhwinter 已提交
213
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
214
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
215
           })
Y
yuyang18 已提交
216
      .def("_alloc_float",
Y
Yu Yang 已提交
217
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
218
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
219
           })
Y
yuyang18 已提交
220
      .def("_alloc_int",
Y
Yu Yang 已提交
221
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
222
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
223
           })
Y
yuyang18 已提交
224
      .def("_alloc_int",
D
dzhwinter 已提交
225
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
226
             self.mutable_data<int>(place);
Q
qijun 已提交
227
           })
Y
yuyang18 已提交
228
      .def("_alloc_int",
C
chengduoZH 已提交
229 230 231
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
232
      .def("_alloc_float",
C
chengduoZH 已提交
233 234 235
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Z
Zeng Jinle 已提交
236
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
237 238
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
239
      .def("set", PyCPUTensorSetFromArray<double>)
240
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
241
      .def("set", PyCPUTensorSetFromArray<bool>)
242
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
243
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
244
      .def("set", PyCPUTensorSetFromArray<int8_t>)
245
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
246 247
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
248
      .def("set", PyCUDATensorSetFromArray<double>)
249
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
250
      .def("set", PyCUDATensorSetFromArray<bool>)
251
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
252
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
253
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
254 255 256 257 258 259
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
260
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
261
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
262
#endif
263
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
264 265 266 267
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
268
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
269
      .def("_dtype", [](Tensor &self) { return self.type(); })
270 271 272 273 274 275
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
276

X
Xin Pan 已提交
277 278 279 280 281 282 283 284 285
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

Z
Zeng Jinle 已提交
286 287 288
    For example, a LoDTensor X can look like the example below. It contains 
    2 sequences. The first has length 2 and the second has length 3, as 
    described by x.lod.
X
Xin Pan 已提交
289

Z
Zeng Jinle 已提交
290 291 292
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
293

Z
Zeng Jinle 已提交
294 295 296
    x.lod  = [[2, 3]]
     
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
297

Z
Zeng Jinle 已提交
298
    x.shape = [5, 2]
X
Xin Pan 已提交
299

Z
Zeng Jinle 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
317 318 319 320 321 322 323 324 325 326 327 328

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
329
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
330 331 332 333 334 335 336 337 338 339 340 341 342 343
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
344
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
345 346 347 348 349
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
350
      .def("set_lod",
351
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
352
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
353
             LoD new_lod;
354 355
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
356 357
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
358
             self.set_lod(new_lod);
S
sneaxiy 已提交
359 360 361 362 363 364
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
365 366 367 368 369 370 371 372 373 374

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
375
           )DOC")
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
391 392 393 394
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
395
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
396 397
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
398 399

           Args:
400
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
401 402 403 404 405 406 407 408 409 410

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
411
           )DOC")
412 413 414 415 416 417 418 419
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
420 421 422 423 424 425
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
426 427 428 429 430 431 432 433 434 435 436

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
437
           )DOC")
G
gongweibao 已提交
438
      // Set above comments of set_lod.
439 440 441 442 443 444 445 446
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
447 448 449 450 451
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
452
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
453 454 455 456 457 458 459 460 461 462 463

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
464 465 466 467 468 469 470 471 472 473 474 475
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
476 477 478 479 480 481 482 483 484 485 486

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
487 488 489 490 491 492 493
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
494 495 496 497 498 499
           )DOC")
      .def("__str__", [](const LoDTensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
D
dangqingqing 已提交
500

Q
qijun 已提交
501 502 503 504 505 506 507 508 509 510 511
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
512 513
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
514 515
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
516 517 518 519 520 521 522 523 524
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
525
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
526
      .def("rows", [](SelectedRows &self) {
527 528 529 530 531
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
532
      });
Q
qijun 已提交
533

534
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
535 536 537

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
538
      .def(py::init<>())
539
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
540
      .def("set_int",
541 542
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
543 544 545 546 547 548 549
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
550
      .def("get_tensor",
551 552
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
553 554
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
555 556 557
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
558 559 560 561 562
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
563 564 565
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
566
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
567 568 569 570 571
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
572
#endif
Y
Refine  
Yu Yang 已提交
573 574 575 576 577
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
578
           py::return_value_policy::reference);
579

S
sneaxiy 已提交
580
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
581

S
sneaxiy 已提交
582 583 584 585
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
586

S
sneaxiy 已提交
587 588
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
589
      .def("push",
S
sneaxiy 已提交
590
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
591
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
592
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
593
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
594
           })
S
sneaxiy 已提交
595 596 597 598
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
599

S
sneaxiy 已提交
600
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
601 602
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
603
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
604 605 606 607
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
608
        py::return_value_policy::copy);
S
sneaxiy 已提交
609

S
sneaxiy 已提交
610
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
630 631
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
632
      .def("var",
633
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
634
             return self.Var(name);
Y
Yu Yang 已提交
635
           },
S
sneaxiy 已提交
636 637
           py::arg("name"),
           R"DOC(
638
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
639

640
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
641
           current scope, the variable would be created. Otherwise,
642
           return the existing variable.
S
sneaxiy 已提交
643 644

           Args:
645 646
               name (str): the variable name.

S
sneaxiy 已提交
647
           Returns:
648
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
649 650 651 652
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
653
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
654
           its parent scope. Return None if not found.
655

S
sneaxiy 已提交
656 657
           Args:
               name (str): the variable name.
658

S
sneaxiy 已提交
659
           Returns:
660
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
661
           )DOC",
662
           py::return_value_policy::reference)
663
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
664 665 666 667 668 669
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
670
           py::return_value_policy::reference)
S
sneaxiy 已提交
671 672 673
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
674 675
           )DOC")
      .def("_kids", &Scope::kids);
676

S
sneaxiy 已提交
677 678 679 680 681 682
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
683 684
        R"DOC(
        Create a new scope.
685

S
sneaxiy 已提交
686 687 688
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
689 690
        py::return_value_policy::reference);

Y
Yu Yang 已提交
691 692
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
693 694
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
695 696 697 698 699 700 701 702 703 704
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
705 706
    return ret_values;
  });
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
723
  m.def("prune", [](const ProgramDesc &origin,
724
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
725
    ProgramDesc prog_with_targets(origin);
726
    for (const auto &t : targets) {
727
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
728
    }
729
    proto::ProgramDesc pruned_desc;
730
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
731
    return new ProgramDesc(pruned_desc);
732
  });
733 734 735 736
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
737 738 739
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
740 741
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
742
  // clang-format off
Y
Yu Yang 已提交
743
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
744 745
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
746
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
747 748 749
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
750
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
751
                      -> paddle::platform::DeviceContext* {
752
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
753
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
754
#else
Q
qijun 已提交
755
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
756
#endif
C
chengduoZH 已提交
757 758 759 760 761 762 763 764 765 766 767
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
768
// clang-format on
P
peizhilin 已提交
769
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
770 771
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
772 773 774 775
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
776 777 778 779 780 781

    Examples:
        .. code-block:: python

          gpu_place = fluid.CUDAPlace(0)

782
        )DOC")
S
sneaxiy 已提交
783 784 785 786 787 788 789 790 791 792 793 794
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
795 796 797 798 799 800
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
801
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
802

803 804 805
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
806 807 808 809 810 811

    Examples:
        .. code-block:: python

          cpu_place = fluid.CPUPlace()

812
        )DOC")
813
      .def(py::init<>())
S
sneaxiy 已提交
814 815 816 817 818 819
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
820
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
821

822 823 824
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
825 826 827 828 829 830

    Examples:
        .. code-block:: python

          place = fluid.CUDAPinnedPlace()

831
        )DOC")
S
sneaxiy 已提交
832
      .def("__init__",
S
sneaxiy 已提交
833
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
834 835 836
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
837
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
838
           })
S
sneaxiy 已提交
839 840 841 842 843 844 845 846
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
847 848
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
849 850
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
851 852 853 854 855
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
856 857
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
858 859 860 861 862 863
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
864 865 866 867
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
868 869
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
870 871 872 873 874
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
875
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
876
             self = gpu_place;
C
chengduoZH 已提交
877 878
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
879 880
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
881
      });
Y
Yu Yang 已提交
882

Y
Yu Yang 已提交
883 884 885
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
886
                    proto::OpDesc desc;
Y
Yu Yang 已提交
887 888 889 890 891
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
892
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
893
                  })
894
      .def("run",
895
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
896 897 898
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
899
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
900 901 902 903 904
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
905 906 907 908 909 910 911
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
912 913
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
914
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
915
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
916 917 918 919
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
920

921 922 923
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
924
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
925
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
926
      .def("close", &Executor::Close)
927 928 929 930 931 932 933 934 935 936 937 938 939 940
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
941 942 943 944 945 946 947 948
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
949 950
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
951 952
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
953
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
954 955
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
956
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
957 958
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
959
      });
S
sneaxiy 已提交
960

D
dzhwinter 已提交
961
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
962
  m.def("init_glog", framework::InitGLOG);
963
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
964 965
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
966

967
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
968
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
969
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
970
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
971
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
972 973 974 975 976 977
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
978

979
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
980
  m.def("get_fetch_variable", framework::GetFetchVariable);
981
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
982

X
Xin Pan 已提交
983 984
  m.def("_is_program_version_supported", IsProgramVersionSupported);

985 986 987 988 989
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
990

Y
Yu Yang 已提交
991 992 993 994 995 996 997 998 999
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
        
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1010 1011
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1022 1023 1024 1025 1026 1027
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
           )DOC");
Y
Yu Yang 已提交
1042

D
dzhwinter 已提交
1043 1044 1045
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1046
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1047
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1048
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1049

P
peizhilin 已提交
1050
#ifndef _WIN32
D
dangqingqing 已提交
1051 1052 1053
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1054
#endif
P
peizhilin 已提交
1055
#endif
Y
Yu Yang 已提交
1056

1057 1058 1059 1060
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1061
      .value("kAll", platform::ProfilerState::kAll)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1075
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1076
  m.def("reset_profiler", platform::ResetProfiler);
1077
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1078 1079 1080
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1081

1082 1083
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1084
      .def("has", &ir::Pass::Has)
1085 1086 1087
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1088
           })
1089
      .def(
1090
          "set",
1091 1092 1093
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1094 1095
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1096 1097
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1098
        self.Apply(graph.get());
F
flame 已提交
1099
      });
1100

X
fix  
Xin Pan 已提交
1101 1102
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1117
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1118

Y
yuyang18 已提交
1119
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1120 1121 1122 1123
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1124 1125 1126
    Examples:
        .. code-block:: python

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1137 1138 1139
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1140 1141
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1142 1143
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1144 1145
        )DOC");

Y
yuyang18 已提交
1146
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1147 1148 1149 1150 1151
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1162
      .def_property(
1163 1164 1165 1166
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1167 1168 1169 1170
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1171 1172 1173 1174 1175
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1176 1177 1178 1179
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1180 1181 1182 1183 1184 1185 1186
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1198
              )DOC")
Q
Qiao Longfei 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1210 1211 1212 1213 1214
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1215

Y
yuyang18 已提交
1216
  exec_strategy.def_property(
Y
yuyang18 已提交
1217 1218 1219 1220 1221 1222 1223
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1224 1225
      });

C
chengduo 已提交
1226 1227 1228 1229
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1230 1231 1232
    Examples:
        .. code-block:: python

F
flame 已提交
1233 1234 1235
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1236
)DOC");
Y
yuyang18 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1253
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1254
            self.reduce_ = strategy;
C
chengduo 已提交
1255 1256
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
F
flame 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
                'AllReduce' and 'Reduce'. If you want that all the parameters'
                optimization are done on all devices independently, you should choose 'AllReduce';
                if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                to different devices, and then broadcast the optimized parameter to other devices.
                In some models, `Reduce` is faster. Default 'AllReduce'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1270 1271 1272 1273 1274
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1275
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1276
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1277 1278
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
F
flame 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
                ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                Default 'CoeffNumDevice'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.gradient_scale_strategy = True
                   )DOC")
Y
yuyang18 已提交
1291 1292 1293 1294
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1295
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1296
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1297 1298
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
F
flame 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.debug_graphviz_path = ""
                    )DOC")
S
sneaxiy 已提交
1309 1310 1311 1312 1313 1314
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1315
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1316 1317
            self.enable_sequential_execution_ = b;
          },
F
flame 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1327 1328 1329 1330 1331 1332
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1333
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1334 1335
            self.remove_unnecessary_lock_ = b;
          },
F
flame 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1345 1346 1347 1348
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1349 1350 1351
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1352 1353
            self.num_trainers_ = num_trainers;
          })
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
      .def_property("use_hierarchical_allreduce_",
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
      .def_property("hierarchical_allreduce_inter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })
      .def_property("hierarchical_allreduce_exter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_exter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_exter_nranks_ = nranks;
                    })

C
chengduo 已提交
1394 1395 1396 1397 1398 1399
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1400
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1401 1402 1403
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1481 1482 1483
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
          R"DOC(The type is BOOL, memory opitimize aims to save total memory 
                consumption, set to True to enable it.
                
                Memory Optimize is our experimental feature, some variables 
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
                
                Default False)DOC")
1494 1495 1496
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1497 1498 1499 1500 1501 1502 1503 1504 1505
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1506 1507 1508
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1509
      .def_property(
D
dzhwinter 已提交
1510 1511 1512
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1513 1514 1515 1516
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1517 1518 1519 1520 1521 1522 1523
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1524 1525 1526 1527
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1528 1529 1530 1531 1532 1533 1534 1535 1536
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1537
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1538
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1539 1540 1541 1542 1543
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1544 1545

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1546
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1547
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1548
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1549 1550 1551 1552
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1553 1554 1555 1556 1557
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1558 1559 1560
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1561 1562 1563 1564
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1565 1566 1567 1568 1569 1570
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1571

1572
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1573
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1574
  BindFleetWrapper(&m);
W
wopeizl 已提交
1575
#ifndef _WIN32
D
dongdaxiang 已提交
1576
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1577
#endif
F
flame 已提交
1578 1579
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1580
  BindInferenceApi(&m);
1581
  BindDataset(&m);
1582 1583 1584
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1585
}
1586
}  // namespace pybind
1587
}  // namespace paddle