pybind.cc 126.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
41
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
42 43 44
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
H
hong 已提交
45
#include "paddle/fluid/framework/new_exec.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/framework/op_info.h"
47
#include "paddle/fluid/framework/op_registry.h"
48
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
51
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
52
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/framework/selected_rows.h"
55
#include "paddle/fluid/framework/tensor_util.h"
56
#include "paddle/fluid/framework/trainer.h"
57
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
58
#include "paddle/fluid/framework/version.h"
H
hong 已提交
59
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
60
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
61
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
62
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
63
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
64
#include "paddle/fluid/operators/py_func_op.h"
65
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
66
#include "paddle/fluid/platform/cpu_info.h"
67
#include "paddle/fluid/platform/device_context.h"
68
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/platform/enforce.h"
70
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
71
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
72 73
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
74
#include "paddle/fluid/pybind/cuda_streams_py.h"
75
#include "paddle/fluid/pybind/io.h"
76
#include "paddle/utils/none.h"
77 78 79
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
80
#include "paddle/fluid/pybind/box_helper_py.h"
81
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
83
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
84
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
85
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
86
#include "paddle/fluid/pybind/generator_py.h"
87
#include "paddle/fluid/pybind/global_value_getter_setter.h"
88
#include "paddle/fluid/pybind/gloo_context_py.h"
89
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
90
#include "paddle/fluid/pybind/heter_wrapper_py.h"
91
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
92
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
93
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
94
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
95
#include "paddle/fluid/pybind/pybind_boost_headers.h"
96

97
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
98
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
99
#endif
100
#include "paddle/fluid/framework/data_type.h"
101 102
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
103
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
104
#include "paddle/fluid/pybind/tensor_py.h"
105
#include "paddle/fluid/string/to_string.h"
106 107
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
108
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
109
#endif
110
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
111
#include "paddle/fluid/platform/cuda_profiler.h"
112
#endif
Y
Yi Wang 已提交
113
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
114 115
#endif

116 117
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
118
#include "paddle/fluid/platform/npu_profiler.h"
119 120
#endif

121
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
122
#include "paddle/fluid/platform/xpu/xpu_info.h"
123 124
#endif

Y
Yanghello 已提交
125 126 127 128
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
129
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
130 131 132
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
133 134
#include "pybind11/stl.h"

135
DECLARE_bool(use_mkldnn);
136

Q
Qiao Longfei 已提交
137 138
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
139 140 141
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
142

143
namespace paddle {
144
namespace pybind {
145
bool IsCompiledWithCUDA() {
146 147 148 149 150 151 152 153 154
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
155 156 157 158 159 160
  return false;
#else
  return true;
#endif
}

161 162 163 164 165 166 167 168
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

169 170 171 172 173 174 175 176
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

177 178 179 180 181 182 183 184
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

185 186 187 188 189 190 191 192
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

193 194 195 196 197 198 199 200
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

201 202 203 204 205 206 207 208 209 210 211
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

212 213 214 215 216 217 218 219 220 221 222
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
241 242 243
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
244
      {"NPU", &platform::is_npu_place},
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

284
bool IsCompiledWithBrpc() {
285
#ifndef PADDLE_WITH_DISTRIBUTE
286 287
  return false;
#endif
288
  return true;
289 290
}

Y
update  
Yancey1989 已提交
291
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
292
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
293 294 295 296 297 298
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
299 300 301 302 303 304 305 306 307 308
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
331 332 333
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
347 348
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
349 350
    }
    vec_res.emplace_back(
351
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
352 353 354 355 356 357 358 359 360 361 362 363
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
364 365
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
366 367 368 369 370 371 372 373 374 375 376 377
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
378 379 380
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
381 382 383 384
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
385 386
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
387 388 389 390
  }
  return vec_res;
}

391 392 393 394 395 396 397 398
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
399 400
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
401 402 403 404 405 406 407 408 409 410 411 412 413
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
414 415 416
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
417 418 419 420 421
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
422 423 424 425 426
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
427 428
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
429 430 431
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
432 433 434 435 436 437 438 439 440
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
441 442
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
443 444 445 446 447
  }

  return;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

485 486 487 488 489 490
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

491 492
  BindCudaStream(&m);

Y
Yu Yang 已提交
493 494 495
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
496
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
497

498 499
  AssertStaticGraphAndDygraphGradMakerNoDiff();

500
  m.doc() = "C++ core of PaddlePaddle";
501

502 503 504 505
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

506
  BindException(&m);
Y
Yu Yang 已提交
507

508 509
  m.def("set_num_threads", &platform::SetNumThreads);

510
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
511 512 513
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
514 515 516 517 518 519 520 521
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
522 523 524 525 526
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
527
    framework::Tensor tensor;
6
633WHU 已提交
528 529 530 531

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
532
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
533 534 535 536 537 538
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
539

540 541 542 543 544 545
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

546 547 548 549 550 551
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
552 553
  });

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
579 580 581 582 583 584
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
585
  m.def(
S
sneaxiy 已提交
586
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
587 588 589 590
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
591 592 593
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
610 611 612
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
613
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
614

615
  m.def("_set_fuse_parameter_group_size",
616
        &paddle::framework::ir::SetFuseParameterGroupsSize);
617
  m.def("_set_fuse_parameter_memory_size",
618
        &paddle::framework::ir::SetFuseParameterMemorySize);
619

S
sneaxiy 已提交
620 621 622
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

623 624
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

625 626 627
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

628
  BindImperative(&m);
629

630 631 632
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
633
      .def("_is_initialized",
634
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
635
      .def("_get_dims",
636
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
637
      .def("_set_dims",
638
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
639
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
640
           })
Y
yuyang18 已提交
641
      .def("_set_layout",
642
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
643 644
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
645
      .def("_alloc_float",
646
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
647
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
648
           })
649
      .def("_alloc_float",
650
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
651 652
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
653
      .def("_alloc_float",
654
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
655
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
656
           })
657 658 659 660
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
661
      .def("_alloc_double",
662
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
663 664
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
665
      .def("_alloc_int",
666
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
667
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
668
           })
669
      .def("_alloc_int",
670
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
671 672
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
673
      .def("_alloc_int",
674
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
675
             self.mutable_data<int>(place);
Q
qijun 已提交
676
           })
Y
yuyang18 已提交
677
      .def("_alloc_int",
678 679
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
680 681
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
682
      .def("_alloc_float",
683 684
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
685 686
             self.mutable_data<float>(place);
           })
687
      .def("_mutable_data",
688
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
689 690 691
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
692
      .def("_mutable_data",
693
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
694 695 696
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
697
      .def("_mutable_data",
698
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
699 700 701 702
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
703
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
704 705 706
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
707
      .def("_clear", &framework::Tensor::clear)
708 709 710 711 712
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
713
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
714
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
715 716
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
717
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
718
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
719 720
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
721
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
722 723
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
724 725 726 727
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
728
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
729
          LoDTensor is to be set.
730 731
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
745

746 747 748
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
765
      .def("_to_dlpack",
766
           [](framework::Tensor &self) {
6
633WHU 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
787 788 789 790
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
791 792
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
793
      .def("_layout",
794 795 796 797
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
798
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
799
      .def("__str__", [](const framework::Tensor &self) {
800 801 802 803
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
804

L
Leo Chen 已提交
805
  // TODO(cql): add reference: en_user_guide_lod_tensor
806
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
881 882 883 884 885 886 887

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
888 889

        )DOC")
890 891
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
892 893 894 895 896 897 898 899 900
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
901 902
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
903 904 905 906
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
907 908
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
909
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
910
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
911 912
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
913 914 915
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
916
      .def("set_lod",
917
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
918
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
919
             LoD new_lod;
920 921
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
922 923
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
924 925
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
926
             self.set_lod(new_lod);
S
sneaxiy 已提交
927 928 929 930 931
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
932 933 934 935
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
936 937 938 939 940 941 942 943 944 945

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
946
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
947
           )DOC")
948 949 950 951 952 953 954 955 956 957 958
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
959 960
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
961 962 963 964 965
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
966
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
967 968
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
969
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
970

L
Leo Chen 已提交
971
           For example, if recursive_sequence_lengths=[[2, 3]], which means
972
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
973
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
974 975

           Args:
L
Leo Chen 已提交
976 977 978 979
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
980 981 982 983 984 985 986 987 988 989

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
990 991
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
992
           )DOC")
993 994 995 996 997 998 999 1000
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1001 1002 1003 1004 1005
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1006 1007
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1018
           )DOC")
G
gongweibao 已提交
1019
      // Set above comments of set_lod.
1020 1021 1022 1023 1024 1025 1026 1027
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1028 1029
           },
           R"DOC(
L
Leo Chen 已提交
1030 1031
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1032 1033

           Returns:
L
Leo Chen 已提交
1034
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1046 1047 1048 1049 1050 1051 1052 1053
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1054
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1055 1056

           Returns:
L
Leo Chen 已提交
1057
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1069 1070 1071 1072 1073 1074 1075
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1076
           )DOC")
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1095
#ifdef _WIN32
1096
      });
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1147

Q
qijun 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1159 1160
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1161 1162
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1163 1164
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1165
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1166 1167 1168 1169 1170 1171
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1172
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1173
      .def("rows", [](SelectedRows &self) {
1174 1175 1176 1177 1178
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1179
      });
Q
qijun 已提交
1180

1181
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1182 1183 1184

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1185
      .def(py::init<>())
1186
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1187
      .def("set_int",
1188 1189
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1190 1191 1192 1193 1194 1195 1196
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1197
      .def("get_tensor",
1198 1199
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1200 1201
           },
           py::return_value_policy::reference)
1202 1203 1204 1205
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1206 1207 1208
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1209 1210 1211 1212 1213
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1214 1215 1216
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1217 1218 1219
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1220
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1221 1222 1223 1224 1225
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1226
#endif
Y
Refine  
Yu Yang 已提交
1227 1228
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1229 1230 1231 1232
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1233 1234
             return self.GetMutable<framework::ReaderHolder>();
           },
1235 1236 1237 1238 1239
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1240

S
sneaxiy 已提交
1241
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1242

S
sneaxiy 已提交
1243
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1257
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1258 1259 1260 1261 1262 1263
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1264 1265
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1266
      .def("var",
1267
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1268
             return self.Var(name);
Y
Yu Yang 已提交
1269
           },
S
sneaxiy 已提交
1270 1271
           py::arg("name"),
           R"DOC(
1272
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1273

1274
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1275
           current scope, the variable would be created. Otherwise,
1276
           return the existing variable.
S
sneaxiy 已提交
1277 1278

           Args:
1279 1280
               name (str): the variable name.

S
sneaxiy 已提交
1281
           Returns:
1282
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1283 1284 1285 1286
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1287
           Find variable named :code:`name` in the current scope or
1288
           its parent scope. Return None if not found. 
1289

S
sneaxiy 已提交
1290 1291
           Args:
               name (str): the variable name.
1292

S
sneaxiy 已提交
1293
           Returns:
1294
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1295
           )DOC",
1296
           py::return_value_policy::reference)
1297
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1298 1299 1300 1301 1302 1303
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1304
           py::return_value_policy::reference)
S
sneaxiy 已提交
1305 1306 1307
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1308 1309
           )DOC")
      .def("_kids", &Scope::kids);
1310

S
sneaxiy 已提交
1311 1312 1313 1314 1315 1316
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1317 1318
        R"DOC(
        Create a new scope.
1319

S
sneaxiy 已提交
1320 1321 1322
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1323 1324
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1325 1326
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1327 1328
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1329 1330 1331 1332
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1333 1334
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1335 1336
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1337 1338 1339
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1340 1341
    return ret_values;
  });
1342 1343 1344 1345 1346 1347 1348 1349
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1350
              res = op_checker->GetDefaultAttrsMap();
1351 1352 1353 1354
            }
          }
          return res;
        });
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1371 1372 1373
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1374 1375 1376 1377 1378
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1379 1380 1381
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1396
  m.def("prune", [](const ProgramDesc &origin,
1397
                    const std::set<std::string> &feeded_var_names,
1398
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1399
    ProgramDesc prog_with_targets(origin);
1400

1401
    for (const auto &t : targets) {
1402
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1403
    }
1404
    proto::ProgramDesc pruned_desc;
1405 1406 1407 1408
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1409
  });
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1427 1428 1429 1430
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1431 1432 1433
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1434 1435
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1436

Q
qijun 已提交
1437
  // clang-format off
Y
Yu Yang 已提交
1438
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1439 1440
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1441
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1442 1443
                    return new paddle::platform::CPUDeviceContext();
                  })
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1468
      .def_static("create",
D
dzhwinter 已提交
1469
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1470
                      -> paddle::platform::DeviceContext* {
1471
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1472 1473 1474 1475
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1476
#else
Q
qijun 已提交
1477
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1478
#endif
C
chengduoZH 已提交
1479 1480 1481 1482
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1483
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1484 1485 1486 1487
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1488 1489 1490 1491
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1492
// clang-format on
1493
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1494 1495
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1496
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1497 1498 1499 1500 1501

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1502
    The memory of CUDAPlace with different dev_id is not accessible.
1503 1504 1505 1506 1507 1508 1509 1510
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1511 1512 1513 1514

    Examples:
        .. code-block:: python

1515 1516 1517
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1518

1519
        )DOC")
S
sneaxiy 已提交
1520 1521
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1522
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1547 1548
             new (&self) platform::CUDAPlace(dev_id);
#else
1549 1550 1551 1552 1553 1554 1555 1556 1557
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1558 1559
#endif
           })
1560
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1561 1562
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1563 1564 1565 1566
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1567
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1568
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1569 1570
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1571 1572 1573
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1574
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1575
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1576

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1622
#ifdef PADDLE_WITH_XPU
1623 1624 1625 1626 1627 1628 1629
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1630 1631 1632
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1633
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1634
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1635
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1636 1637 1638 1639
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1640
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1641 1642
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1643
#endif
1644

1645
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1646
    CPUPlace is a descriptor of a device.
1647
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1648 1649 1650 1651

    Examples:
        .. code-block:: python

1652 1653
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1654

1655
        )DOC")
1656
      .def(py::init<>())
S
sneaxiy 已提交
1657 1658
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1659
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1660
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1661 1662 1663 1664
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1665
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1666
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1667

1668
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1669 1670 1671 1672 1673 1674
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1675 1676 1677 1678

    Examples:
        .. code-block:: python

1679 1680
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1681

1682
        )DOC")
S
sneaxiy 已提交
1683
      .def("__init__",
S
sneaxiy 已提交
1684
           [](platform::CUDAPinnedPlace &self) {
1685
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1686 1687 1688
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1689
#endif
S
sneaxiy 已提交
1690
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1691
           })
S
sneaxiy 已提交
1692 1693 1694 1695
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1696 1697
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1698 1699
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1700 1701 1702 1703
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1704
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1705 1706
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1749
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1764 1765
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1766 1767
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1768 1769
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1770 1771 1772 1773
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1774
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1775
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1776
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1777 1778
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1779 1780
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1781 1782
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1783 1784
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1785 1786 1787 1788
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1789 1790
      .def("gpu_device_id",
           [](platform::Place &self) {
1791
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1792
           })
1793 1794 1795 1796
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1797 1798 1799 1800
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1801 1802
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1803 1804 1805 1806
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1807 1808 1809 1810
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1811
      .def("set_place",
D
dzhwinter 已提交
1812
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1813
             self = gpu_place;
C
chengduoZH 已提交
1814
           })
1815 1816 1817 1818 1819
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1820 1821 1822 1823
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1824 1825
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1826

Y
Yu Yang 已提交
1827
  py::class_<OperatorBase>(m, "Operator")
Z
Zeng Jinle 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1842
      .def("run",
1843
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1844
              const platform::CPUPlace &place) { self.Run(scope, place); })
1845 1846 1847
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1848 1849 1850
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1851 1852
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1853
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1854 1855 1856 1857 1858
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1859 1860 1861 1862 1863 1864 1865
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1866 1867
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1868
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1869
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1870 1871 1872 1873
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1874

1875 1876 1877
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1878 1879 1880 1881 1882 1883 1884 1885 1886
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1887 1888
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1889
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1890
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1891
      .def("close", &Executor::Close)
1892 1893
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1894 1895
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1896 1897 1898 1899
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1900
             pybind11::gil_scoped_release release;
1901 1902 1903 1904 1905 1906 1907
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1908 1909 1910
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1911
              std::map<std::string, FetchType *> *fetch_targets,
1912 1913 1914 1915 1916 1917 1918 1919
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1920
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1921 1922 1923 1924 1925 1926 1927
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1938
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1939 1940
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1941
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1942 1943
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1944
      });
S
sneaxiy 已提交
1945

H
hong 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
  py::class_<framework::InterpreterCore>(m, "InterpreterCore")
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
           [](InterpreterCore &self,
              const std::unordered_map<std::string, py::array> &input_dict,
              std::vector<std::string> vec_fetch_name) {
             pybind11::gil_scoped_release release;
             std::vector<framework::Tensor> vec_tensor;
             std::vector<std::string> vec_name;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               vec_name.push_back(item.first);
               vec_tensor.push_back(t);
             }

             std::vector<framework::Tensor> vec_out;
             self.run(vec_name, vec_tensor, vec_fetch_name, &vec_out);
             std::vector<py::array> vec_ret;
             for (size_t i = 0; i < vec_out.size(); ++i) {
               vec_ret.push_back(TensorToPyArray(vec_out[i], true));
             }
             return vec_ret;
           });

D
dzhwinter 已提交
1974
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1975
  m.def("init_glog", framework::InitGLOG);
1976 1977
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1978
  m.def("init_devices", []() { framework::InitDevices(); });
1979

1980
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1981
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1982
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1983
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1984
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1985
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1986
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1987
  m.def("supports_bfloat16", SupportsBfloat16);
1988
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1989
  m.def("op_supported_infos", OpSupportedInfos);
1990
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1991
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1992 1993 1994
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2014 2015 2016 2017 2018 2019 2020
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2030
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2031 2032 2033 2034 2035
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2036

2037
  m.def("set_feed_variable", framework::SetFeedVariable);
2038 2039 2040 2041 2042
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2043
            return py::cast(BOOST_GET(LoDTensor, var));
2044
          } else {
2045
            return py::cast(BOOST_GET(LoDTensorArray, var));
2046 2047
          }
        });
2048
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2049

X
Xin Pan 已提交
2050 2051
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2052 2053 2054 2055 2056
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2057
  BindGlobalValueGetterSetter(&m);
2058
  BindProcessMeshDesc(&m);
Y
Yu Yang 已提交
2059

Y
Yu Yang 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2069
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2070
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2071 2072 2073

    Examples:
        .. code-block:: python
2074

Z
Zeng Jinle 已提交
2075 2076 2077 2078
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2079 2080
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2081 2082 2083 2084 2085 2086
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2087 2088 2089 2090
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2091 2092 2093
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2094 2095 2096 2097 2098 2099
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2100 2101
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2102 2103 2104 2105 2106 2107
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2130

2131 2132 2133 2134 2135 2136 2137 2138
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2139
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2140 2141
                 res[i] = py::cast(std::move(data));
               } else {
2142
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2158
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2159 2160 2161 2162 2163 2164 2165 2166
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2167
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2168 2169 2170 2171 2172 2173 2174 2175 2176
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2177 2178
        )DOC")
      .def("_move_to_list",
2179
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2180 2181 2182 2183
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2184
                 if (data_is_lod_tensor(self[i][j])) {
2185
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2186 2187
                   tmp[j] = py::cast(std::move(var));
                 } else {
2188
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2189 2190 2191 2192 2193 2194
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2204
  m.def("op_support_gpu", OpSupportGPU);
2205
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2206
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2207

2208
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2209 2210 2211
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2212 2213 2214 2215
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2216
#endif
P
peizhilin 已提交
2217
#endif
Y
Yu Yang 已提交
2218

2219 2220
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2221 2222 2223 2224
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2225
      platform::NPUDeviceGuard guard(devices[i]);
2226 2227 2228 2229
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2250 2251 2252 2253 2254 2255
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2256 2257 2258 2259
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2260
      .value("kAll", platform::ProfilerState::kAll)
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2272
  m.def("set_tracer_option", platform::SetTracerOption);
2273 2274
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2275
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2276
  m.def("reset_profiler", platform::ResetProfiler);
2277
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2278 2279 2280
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2281

2282 2283
  m.def("size_of_dtype", framework::SizeOfType);

2284
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2285 2286
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2287 2288
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2289
#endif  // PADDLE_WITH_CUDA
2290 2291
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2292

2293 2294 2295
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2296 2297
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2298
      .def("has", &ir::Pass::Has)
2299 2300 2301
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2302
           })
2303
      .def(
2304
          "set",
2305 2306 2307
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2308 2309
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2310 2311
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2326 2327
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2328
        self.Apply(graph.get());
F
flame 已提交
2329
      });
2330

X
fix  
Xin Pan 已提交
2331 2332
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2347
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2348

Y
yuyang18 已提交
2349
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2350 2351 2352 2353
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2354 2355 2356
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2357 2358 2359
    Examples:
        .. code-block:: python

2360 2361 2362 2363 2364 2365 2366 2367 2368
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2369

2370 2371
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2372

2373
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2374 2375
          sgd_optimizer.minimize(avg_loss)

2376
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2377 2378
          exec_strategy.num_threads = 4

2379 2380 2381
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2382 2383
        )DOC");

2384 2385 2386 2387
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2388

Y
yuyang18 已提交
2389
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2390 2391 2392 2393 2394
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2395
          },
2396 2397
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2398 2399 2400 2401 2402 2403 2404
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2418
      .def_property(
2419 2420
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2421
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2422 2423 2424
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2425 2426 2427 2428 2429
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2430 2431 2432
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2433 2434
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2435 2436 2437 2438 2439 2440 2441
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2442 2443 2444 2445
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2446
                because the temp variable's shape maybe the same between two iterations.
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2457

2458 2459 2460 2461 2462 2463 2464
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2465
              )DOC")
Q
Qiao Longfei 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2487
              )DOC")
2488 2489 2490 2491 2492 2493 2494 2495
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2496 2497 2498 2499 2500
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2501

Y
yuyang18 已提交
2502
  exec_strategy.def_property(
Y
yuyang18 已提交
2503 2504 2505 2506 2507 2508 2509
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2510 2511
      });

C
chengduo 已提交
2512 2513 2514 2515
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2516 2517 2518
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2519 2520 2521
    Examples:
        .. code-block:: python

2522
            import os
2523 2524 2525 2526
            import paddle
            import paddle.static as static

            paddle.enable_static()
2527

2528 2529
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2530

2531 2532 2533 2534
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2535

2536
            build_strategy = static.BuildStrategy()
2537 2538
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2539 2540
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2541
            program = program.with_data_parallel(loss_name=loss.name,
2542 2543
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2544
)DOC");
Y
yuyang18 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2557
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2558 2559 2560 2561
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2562 2563 2564 2565
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2566
            self.reduce_ = strategy;
C
chengduo 已提交
2567
          },
2568
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2569 2570
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2571
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2572 2573
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2574
                Default is 'AllReduce'.
F
flame 已提交
2575 2576 2577 2578

                Examples:
                    .. code-block:: python

2579 2580 2581 2582 2583 2584 2585
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2586
                  )DOC")
Y
yuyang18 已提交
2587 2588 2589 2590 2591
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2592 2593 2594 2595
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2596
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2597
          },
2598
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2599
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2600 2601
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2602
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2603 2604 2605 2606

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2607 2608
                        import numpy
                        import os
2609 2610 2611 2612
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2613 2614

                        use_cuda = True
2615 2616
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2617 2618

                        # NOTE: If you use CPU to run the program, you need
2619
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2620 2621 2622 2623 2624 2625
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2626
                            places = static.cpu_places()
C
chengduo 已提交
2627
                        else:
2628
                            places = static.cuda_places()
C
chengduo 已提交
2629

2630 2631 2632 2633
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2634

2635
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2636

2637
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2638
                        build_strategy.gradient_scale_strategy = \
2639 2640 2641
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2642
                                          loss_name=loss.name, build_strategy=build_strategy,
2643
                                          places=places)
C
chengduo 已提交
2644 2645 2646 2647 2648 2649

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2650 2651
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2652
                   )DOC")
Y
yuyang18 已提交
2653 2654 2655 2656
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2657 2658 2659 2660
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2661
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2662
          },
2663
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2664
                writing the SSA Graph to file in the form of graphviz.
2665
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2666 2667 2668 2669

                Examples:
                    .. code-block:: python

2670 2671 2672 2673
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2674

2675 2676
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2677
                    )DOC")
S
sneaxiy 已提交
2678 2679 2680 2681 2682 2683
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2684 2685 2686 2687
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2688 2689
            self.enable_sequential_execution_ = b;
          },
2690 2691
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2692 2693 2694 2695

                Examples:
                    .. code-block:: python

2696 2697 2698 2699 2700 2701
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2702 2703
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2704 2705 2706 2707 2708 2709
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2710 2711 2712 2713
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2714 2715
            self.remove_unnecessary_lock_ = b;
          },
2716 2717
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2718 2719 2720 2721

                Examples:
                    .. code-block:: python

2722 2723 2724 2725 2726 2727
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2728 2729
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2730 2731 2732 2733
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2734
#ifdef WIN32
2735
            PADDLE_THROW(platform::errors::Unavailable(
2736
                "Distribution mode is not supported on Windows platform."));
2737
#endif
2738 2739
            self.num_trainers_ = num_trainers;
          })
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2752 2753 2754 2755 2756 2757
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2758 2759 2760 2761 2762 2763
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2764
      .def_property("use_hierarchical_allreduce",
2765 2766 2767 2768 2769 2770
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2771
      .def_property("hierarchical_allreduce_inter_nranks",
2772 2773 2774 2775 2776 2777 2778
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2779 2780 2781 2782 2783 2784
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2785 2786 2787 2788
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2789 2790
            self.fuse_elewise_add_act_ops_ = b;
          },
2791
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2792
                to fuse elementwise_add_op and activation_op,
2793
                it may make the execution faster. Default is False.
F
flame 已提交
2794 2795 2796 2797

                Examples:
                    .. code-block:: python

2798 2799 2800 2801 2802 2803
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2804 2805
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2806 2807 2808 2809
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2810
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2811
                              platform::errors::PreconditionNotMet(
2812 2813
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2823 2824 2825 2826 2827 2828
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2829 2830
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2856 2857 2858 2859
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2860
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2861
                              platform::errors::PreconditionNotMet(
2862 2863
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2874 2875 2876 2877 2878 2879
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2880 2881
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2882 2883 2884 2885 2886 2887
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2888 2889 2890 2891
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2892 2893
            self.fuse_relu_depthwise_conv_ = b;
          },
2894
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2895 2896 2897
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2898
                Default is False.
F
flame 已提交
2899 2900 2901 2902

                Examples:
                    .. code-block:: python

2903 2904 2905 2906 2907 2908
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2909 2910
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2911 2912 2913
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
2914
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
2915 2916
                    },
                    [](BuildStrategy &self, bool b) {
2917 2918 2919 2920
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2921 2922
                      self.fuse_broadcast_ops_ = b;
                    },
2923
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2924 2925 2926 2927
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2928 2929 2930 2931 2932
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2933 2934 2935 2936 2937 2938
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2939 2940
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2941 2942
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2943
                      return self.fuse_all_optimizer_ops_ == true ||
2944
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
2945 2946
                    },
                    [](BuildStrategy &self, bool b) {
2947 2948 2949 2950
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2951 2952
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2953 2954 2955 2956
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2957 2958 2959 2960
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2961 2962
            self.sync_batch_norm_ = b;
          },
2963
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2964 2965 2966
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2967 2968
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2969 2970 2971 2972

                Examples:
                    .. code-block:: python

2973 2974 2975 2976 2977 2978
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2979 2980
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2981 2982
      .def_property(
          "memory_optimize",
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
2993
              self.memory_optimize_ = paddle::none;
2994 2995 2996
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2997
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
2998 2999
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3000 3001
            }
          },
3002
          R"DOC((bool, optional): memory opitimize aims to save total memory
3003
                consumption, set to True to enable it.
3004

3005 3006 3007
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3022 3023 3024
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3025 3026 3027
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3028
              PADDLE_THROW(platform::errors::Unavailable(
3029
                  "Distribution mode is not supported on Windows platform."));
3030 3031 3032 3033 3034
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3035 3036 3037
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3038
      .def_property(
D
dzhwinter 已提交
3039 3040 3041
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3042 3043 3044 3045
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3046 3047
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3048 3049
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3050
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3051
          },
C
chengduo 已提交
3052
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3053 3054 3055 3056 3057 3058 3059
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3060 3061 3062 3063
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3064 3065 3066 3067 3068 3069 3070 3071 3072
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3073 3074 3075 3076 3077 3078
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3079 3080 3081 3082 3083 3084
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3085
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3086
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3087 3088 3089 3090 3091
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3092

3093 3094 3095 3096 3097 3098
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3099
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3100
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3101
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3102
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3103 3104 3105 3106
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3107 3108 3109 3110 3111
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3112 3113 3114
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3115 3116 3117 3118
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3119 3120
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3121 3122 3123 3124 3125 3126 3127 3128
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3129
               return py::cast(
3130
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3131 3132
             } else {
               return py::cast(std::move(
3133
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3134
             }
3135 3136
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3137

D
dongdaxiang 已提交
3138
  BindFleetWrapper(&m);
3139
  BindIO(&m);
T
Thunderbrook 已提交
3140

T
Thunderbrook 已提交
3141 3142
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3143
#endif
T
Thunderbrook 已提交
3144
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3145
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3146
#endif
3147
  BindGlooWrapper(&m);
H
hutuxian 已提交
3148
  BindBoxHelper(&m);
H
hutuxian 已提交
3149 3150 3151
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3152
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3153
  BindNCCLWrapper(&m);
3154 3155 3156
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3157
#endif
F
flame 已提交
3158 3159
  BindGraph(&m);
  BindNode(&m);
3160
  BindPass(&m);
F
flame 已提交
3161
  BindInferenceApi(&m);
3162
  BindCompatible(&m);
3163
  BindDataset(&m);
Y
yaoxuefeng 已提交
3164
  BindGenerator(&m);
3165 3166 3167
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3168
  BindAscendDevice(&m);
3169
#endif
Y
Yanghello 已提交
3170 3171 3172
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3173

T
tangwei12 已提交
3174
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3175 3176
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3177
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3178 3179
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3180 3181 3182 3183 3184
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3185 3186 3187 3188
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3189
  BindSparseShardingTools(&m);
3190
#endif
L
Luo Tao 已提交
3191
}
3192
}  // namespace pybind
3193
}  // namespace paddle