pybind.cc 124.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
41
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
42 43 44
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/framework/op_info.h"
46
#include "paddle/fluid/framework/op_registry.h"
47
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
50
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
51
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/selected_rows.h"
54
#include "paddle/fluid/framework/tensor_util.h"
55
#include "paddle/fluid/framework/trainer.h"
56
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
57
#include "paddle/fluid/framework/version.h"
H
hong 已提交
58
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
59
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
60
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
61
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
62
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
63
#include "paddle/fluid/operators/py_func_op.h"
64
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
65
#include "paddle/fluid/platform/cpu_info.h"
66
#include "paddle/fluid/platform/device_context.h"
67
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/platform/enforce.h"
69
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
70
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
71 72
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
73
#include "paddle/fluid/pybind/cuda_streams_py.h"
74
#include "paddle/fluid/pybind/io.h"
75 76 77
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
78
#include "paddle/fluid/pybind/box_helper_py.h"
79
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
81
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
83
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
84
#include "paddle/fluid/pybind/generator_py.h"
85
#include "paddle/fluid/pybind/global_value_getter_setter.h"
86
#include "paddle/fluid/pybind/gloo_context_py.h"
87
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
88
#include "paddle/fluid/pybind/heter_wrapper_py.h"
89
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
90
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
91
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
92
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
93
#include "paddle/fluid/pybind/pybind_boost_headers.h"
94

95
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
96
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
97
#endif
98
#include "paddle/fluid/framework/data_type.h"
99 100
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
101
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
102
#include "paddle/fluid/pybind/tensor_py.h"
103
#include "paddle/fluid/string/to_string.h"
104 105
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
106
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
107
#endif
108
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
109
#include "paddle/fluid/platform/cuda_profiler.h"
110
#endif
Y
Yi Wang 已提交
111
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
112 113
#endif

114 115
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
116
#include "paddle/fluid/platform/npu_profiler.h"
117 118
#endif

119
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
120
#include "paddle/fluid/platform/xpu/xpu_info.h"
121 122
#endif

Y
Yanghello 已提交
123 124 125 126
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
127
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
128 129 130
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
131 132
#include "pybind11/stl.h"

133
DECLARE_bool(use_mkldnn);
134

Q
Qiao Longfei 已提交
135 136
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
137 138 139
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
140

141
namespace paddle {
142
namespace pybind {
143
bool IsCompiledWithCUDA() {
144 145 146 147 148 149 150 151 152
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
153 154 155 156 157 158
  return false;
#else
  return true;
#endif
}

159 160 161 162 163 164 165 166
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

167 168 169 170 171 172 173 174
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

175 176 177 178 179 180 181 182
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

183 184 185 186 187 188 189 190
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

191 192 193 194 195 196 197 198
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

199 200 201 202 203 204 205 206 207 208 209
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

210 211 212 213 214 215 216 217 218 219 220
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
239 240 241
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
242
      {"NPU", &platform::is_npu_place},
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

282
bool IsCompiledWithBrpc() {
283
#ifndef PADDLE_WITH_DISTRIBUTE
284 285
  return false;
#endif
286
  return true;
287 288
}

Y
update  
Yancey1989 已提交
289
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
290
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
291 292 293 294 295 296
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
297 298 299 300 301 302 303 304 305 306
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
329 330 331
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
345 346
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
347 348
    }
    vec_res.emplace_back(
349
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
350 351 352 353 354 355 356 357 358 359 360 361
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
362 363
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
364 365 366 367 368 369 370 371 372 373 374 375
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
376 377 378
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
379 380 381 382
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
383 384
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
385 386 387 388
  }
  return vec_res;
}

389 390 391 392 393 394 395 396
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
397 398
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
399 400 401 402 403 404 405 406 407 408 409 410 411
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
412 413 414
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
415 416 417 418 419
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
420 421 422 423 424
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
425 426
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
427 428 429
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
430 431 432 433 434 435 436 437 438
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
439 440
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
441 442 443 444 445
  }

  return;
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

483 484 485 486 487 488
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

489 490
  BindCudaStream(&m);

Y
Yu Yang 已提交
491 492 493
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
494
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
495

496 497
  AssertStaticGraphAndDygraphGradMakerNoDiff();

498
  m.doc() = "C++ core of PaddlePaddle";
499

500 501 502 503
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

504
  BindException(&m);
Y
Yu Yang 已提交
505

506 507
  m.def("set_num_threads", &platform::SetNumThreads);

508
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
509 510 511
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
512 513 514 515 516 517 518 519
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
520 521 522 523 524
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
525
    framework::Tensor tensor;
6
633WHU 已提交
526 527 528 529

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
530
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
531 532 533 534 535 536
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
537

538 539 540 541 542 543
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

544 545 546 547 548 549
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
550 551
  });

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
577 578 579 580 581 582
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
583
  m.def(
S
sneaxiy 已提交
584
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
585 586 587 588
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
589 590 591
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
608 609 610
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
611
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
612

613
  m.def("_set_fuse_parameter_group_size",
614
        &paddle::framework::ir::SetFuseParameterGroupsSize);
615
  m.def("_set_fuse_parameter_memory_size",
616
        &paddle::framework::ir::SetFuseParameterMemorySize);
617

S
sneaxiy 已提交
618 619 620
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

621 622
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

623 624 625
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

626
  BindImperative(&m);
627

628 629 630
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
631
      .def("_is_initialized",
632
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
633
      .def("_get_dims",
634
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
635
      .def("_set_dims",
636
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
637
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
638
           })
Y
yuyang18 已提交
639
      .def("_set_layout",
640
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
641 642
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
643
      .def("_alloc_float",
644
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
645
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
646
           })
647
      .def("_alloc_float",
648
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
649 650
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
651
      .def("_alloc_float",
652
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
653
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
654
           })
655 656 657 658
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
659
      .def("_alloc_double",
660
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
661 662
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
663
      .def("_alloc_int",
664
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
665
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
666
           })
667
      .def("_alloc_int",
668
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
669 670
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
671
      .def("_alloc_int",
672
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
673
             self.mutable_data<int>(place);
Q
qijun 已提交
674
           })
Y
yuyang18 已提交
675
      .def("_alloc_int",
676 677
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
678 679
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
680
      .def("_alloc_float",
681 682
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
683 684
             self.mutable_data<float>(place);
           })
685
      .def("_mutable_data",
686
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
687 688 689
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
690
      .def("_mutable_data",
691
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
692 693 694
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
695
      .def("_mutable_data",
696
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
697 698 699 700
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
701
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
702 703 704
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
705
      .def("_clear", &framework::Tensor::clear)
706 707 708 709 710
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
711
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
712
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
713 714
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
715
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
716
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
717 718
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
719
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
720 721
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
722 723 724 725
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
726
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
727
          LoDTensor is to be set.
728 729
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
743

744 745 746
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
763
      .def("_to_dlpack",
764
           [](framework::Tensor &self) {
6
633WHU 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
785 786 787 788
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
789 790
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
791
      .def("_layout",
792 793 794 795
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
796
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
797
      .def("__str__", [](const framework::Tensor &self) {
798 799 800 801
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
802

L
Leo Chen 已提交
803
  // TODO(cql): add reference: en_user_guide_lod_tensor
804
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
879 880 881 882 883 884 885

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
886 887

        )DOC")
888 889
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
890 891 892 893 894 895 896 897 898
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
899 900
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
901 902 903 904
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
905 906
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
907
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
908
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
909 910
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
911 912 913
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
914
      .def("set_lod",
915
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
916
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
917
             LoD new_lod;
918 919
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
920 921
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
922 923
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
924
             self.set_lod(new_lod);
S
sneaxiy 已提交
925 926 927 928 929
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
930 931 932 933
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
934 935 936 937 938 939 940 941 942 943

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
944
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
945
           )DOC")
946 947 948 949 950 951 952 953 954 955 956
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
957 958
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
959 960 961 962 963
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
964
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
965 966
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
967
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
968

L
Leo Chen 已提交
969
           For example, if recursive_sequence_lengths=[[2, 3]], which means
970
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
971
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
972 973

           Args:
L
Leo Chen 已提交
974 975 976 977
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
978 979 980 981 982 983 984 985 986 987

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
988 989
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
990
           )DOC")
991 992 993 994 995 996 997 998
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
999 1000 1001 1002 1003
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1004 1005
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1016
           )DOC")
G
gongweibao 已提交
1017
      // Set above comments of set_lod.
1018 1019 1020 1021 1022 1023 1024 1025
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1026 1027
           },
           R"DOC(
L
Leo Chen 已提交
1028 1029
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1030 1031

           Returns:
L
Leo Chen 已提交
1032
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1044 1045 1046 1047 1048 1049 1050 1051
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1052
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1053 1054

           Returns:
L
Leo Chen 已提交
1055
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1067 1068 1069 1070 1071 1072 1073
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1074
           )DOC")
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1093
#ifdef _WIN32
1094
      });
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1145

Q
qijun 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1157 1158
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1159 1160
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1161 1162
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1163
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1164 1165 1166 1167 1168 1169
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1170
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1171
      .def("rows", [](SelectedRows &self) {
1172 1173 1174 1175 1176
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1177
      });
Q
qijun 已提交
1178

1179
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1180 1181 1182

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1183
      .def(py::init<>())
1184
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1185
      .def("set_int",
1186 1187
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1188 1189 1190 1191 1192 1193 1194
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1195
      .def("get_tensor",
1196 1197
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1198 1199
           },
           py::return_value_policy::reference)
1200 1201 1202 1203
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1204 1205 1206
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1207 1208 1209 1210 1211
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1212 1213 1214
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1215 1216 1217
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1218
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1219 1220 1221 1222 1223
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1224
#endif
Y
Refine  
Yu Yang 已提交
1225 1226
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1227 1228 1229 1230
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1231 1232
             return self.GetMutable<framework::ReaderHolder>();
           },
1233 1234 1235 1236 1237
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1238

S
sneaxiy 已提交
1239
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1240

S
sneaxiy 已提交
1241
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1255
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1256 1257 1258 1259 1260 1261
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1262 1263
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1264
      .def("var",
1265
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1266
             return self.Var(name);
Y
Yu Yang 已提交
1267
           },
S
sneaxiy 已提交
1268 1269
           py::arg("name"),
           R"DOC(
1270
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1271

1272
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1273
           current scope, the variable would be created. Otherwise,
1274
           return the existing variable.
S
sneaxiy 已提交
1275 1276

           Args:
1277 1278
               name (str): the variable name.

S
sneaxiy 已提交
1279
           Returns:
1280
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1281 1282 1283 1284
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1285
           Find variable named :code:`name` in the current scope or
1286
           its parent scope. Return None if not found. 
1287

S
sneaxiy 已提交
1288 1289
           Args:
               name (str): the variable name.
1290

S
sneaxiy 已提交
1291
           Returns:
1292
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1293
           )DOC",
1294
           py::return_value_policy::reference)
1295
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1296 1297 1298 1299 1300 1301
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1302
           py::return_value_policy::reference)
S
sneaxiy 已提交
1303 1304 1305
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1306 1307
           )DOC")
      .def("_kids", &Scope::kids);
1308

S
sneaxiy 已提交
1309 1310 1311 1312 1313 1314
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1315 1316
        R"DOC(
        Create a new scope.
1317

S
sneaxiy 已提交
1318 1319 1320
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1321 1322
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1323 1324
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1325 1326
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1327 1328 1329 1330
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1331 1332
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1333 1334
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1335 1336 1337
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1338 1339
    return ret_values;
  });
1340 1341 1342 1343 1344 1345 1346 1347
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1348
              res = op_checker->GetDefaultAttrsMap();
1349 1350 1351 1352
            }
          }
          return res;
        });
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1369 1370 1371
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1372 1373 1374 1375 1376
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1377 1378 1379
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1394
  m.def("prune", [](const ProgramDesc &origin,
1395
                    const std::set<std::string> &feeded_var_names,
1396
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1397
    ProgramDesc prog_with_targets(origin);
1398

1399
    for (const auto &t : targets) {
1400
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1401
    }
1402
    proto::ProgramDesc pruned_desc;
1403 1404 1405 1406
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1407
  });
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1425 1426 1427 1428
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1429 1430 1431
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1432 1433
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1434

Q
qijun 已提交
1435
  // clang-format off
Y
Yu Yang 已提交
1436
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1437 1438
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1439
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1440 1441
                    return new paddle::platform::CPUDeviceContext();
                  })
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1466
      .def_static("create",
D
dzhwinter 已提交
1467
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1468
                      -> paddle::platform::DeviceContext* {
1469
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1470 1471 1472 1473
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1474
#else
Q
qijun 已提交
1475
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1476
#endif
C
chengduoZH 已提交
1477 1478 1479 1480
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1481
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1482 1483 1484 1485
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1486 1487 1488 1489
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1490
// clang-format on
1491
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1492 1493
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1494
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1495 1496 1497 1498 1499

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1500
    The memory of CUDAPlace with different dev_id is not accessible.
1501 1502 1503 1504 1505 1506 1507 1508
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1509 1510 1511 1512

    Examples:
        .. code-block:: python

1513 1514 1515
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1516

1517
        )DOC")
S
sneaxiy 已提交
1518 1519
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1520
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1545 1546
             new (&self) platform::CUDAPlace(dev_id);
#else
1547 1548 1549 1550 1551 1552 1553 1554 1555
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1556 1557
#endif
           })
1558
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1559 1560
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1561 1562 1563 1564
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1565
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1566
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1567 1568
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1569 1570 1571
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1572
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1573
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1620
#ifdef PADDLE_WITH_XPU
1621 1622 1623 1624 1625 1626 1627
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1628 1629 1630
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1631
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1632
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1633 1634 1635
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1636

1637
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1638
    CPUPlace is a descriptor of a device.
1639
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1640 1641 1642 1643

    Examples:
        .. code-block:: python

1644 1645
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1646

1647
        )DOC")
1648
      .def(py::init<>())
S
sneaxiy 已提交
1649 1650
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1651
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1652
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1653 1654 1655 1656
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1657
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1658
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1659

1660
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1661 1662 1663 1664 1665 1666
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1667 1668 1669 1670

    Examples:
        .. code-block:: python

1671 1672
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1673

1674
        )DOC")
S
sneaxiy 已提交
1675
      .def("__init__",
S
sneaxiy 已提交
1676
           [](platform::CUDAPinnedPlace &self) {
1677
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1678 1679 1680
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1681
#endif
S
sneaxiy 已提交
1682
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1683
           })
S
sneaxiy 已提交
1684 1685 1686 1687
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1688 1689
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1690 1691
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1692 1693 1694 1695
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1696
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1697 1698
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1741
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1756 1757
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1758 1759
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1760 1761
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1762 1763 1764 1765
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1766
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1767
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1768
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1769 1770
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1771 1772
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1773 1774
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1775 1776
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1777 1778 1779 1780
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1781 1782
      .def("gpu_device_id",
           [](platform::Place &self) {
1783
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1784
           })
1785 1786 1787 1788
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1789 1790 1791 1792
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1793 1794
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1795 1796 1797 1798
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1799 1800 1801 1802
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1803
      .def("set_place",
D
dzhwinter 已提交
1804
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1805
             self = gpu_place;
C
chengduoZH 已提交
1806
           })
1807 1808 1809 1810 1811
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1812 1813 1814 1815
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1816 1817
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1818

Y
Yu Yang 已提交
1819
  py::class_<OperatorBase>(m, "Operator")
Z
Zeng Jinle 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1834
      .def("run",
1835
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1836
              const platform::CPUPlace &place) { self.Run(scope, place); })
1837 1838 1839
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1840 1841 1842
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1843 1844
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1845
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1846 1847 1848 1849 1850
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1851 1852 1853 1854 1855 1856 1857
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1858 1859
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1860
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1861
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1862 1863 1864 1865
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1866

1867 1868 1869
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1870 1871 1872 1873 1874 1875 1876 1877 1878
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1879 1880
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1881
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1882
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1883
      .def("close", &Executor::Close)
1884 1885
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1886 1887
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1888 1889 1890 1891
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1892
             pybind11::gil_scoped_release release;
1893 1894 1895 1896 1897 1898 1899
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1900 1901 1902
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1903
              std::map<std::string, FetchType *> *fetch_targets,
1904 1905 1906 1907 1908 1909 1910 1911
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1912
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1913 1914 1915 1916 1917 1918 1919
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1930
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1931 1932
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1933
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1934 1935
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1936
      });
S
sneaxiy 已提交
1937

D
dzhwinter 已提交
1938
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1939
  m.def("init_glog", framework::InitGLOG);
1940 1941
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1942
  m.def("init_devices", []() { framework::InitDevices(); });
1943

1944
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1945
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1946
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1947
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1948
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1949
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1950
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1951
  m.def("supports_bfloat16", SupportsBfloat16);
1952
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1953
  m.def("op_supported_infos", OpSupportedInfos);
1954
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1955
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1956 1957 1958
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1978 1979 1980 1981 1982 1983 1984
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1994
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1995 1996 1997 1998 1999
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2000

2001
  m.def("set_feed_variable", framework::SetFeedVariable);
2002 2003 2004 2005 2006
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2007
            return py::cast(BOOST_GET(LoDTensor, var));
2008
          } else {
2009
            return py::cast(BOOST_GET(LoDTensorArray, var));
2010 2011
          }
        });
2012
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2013

X
Xin Pan 已提交
2014 2015
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2016 2017 2018 2019 2020
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2021
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
2022

Y
Yu Yang 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2032
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2033
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2034 2035 2036

    Examples:
        .. code-block:: python
2037

Z
Zeng Jinle 已提交
2038 2039 2040 2041
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2042 2043
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2044 2045 2046 2047 2048 2049
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2050 2051 2052 2053
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2054 2055 2056
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2057 2058 2059 2060 2061 2062
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2063 2064
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2065 2066 2067 2068 2069 2070
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2093

2094 2095 2096 2097 2098 2099 2100 2101
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2102
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2103 2104
                 res[i] = py::cast(std::move(data));
               } else {
2105
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2121
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2122 2123 2124 2125 2126 2127 2128 2129
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2130
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2131 2132 2133 2134 2135 2136 2137 2138 2139
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2140 2141
        )DOC")
      .def("_move_to_list",
2142
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2143 2144 2145 2146
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2147
                 if (data_is_lod_tensor(self[i][j])) {
2148
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2149 2150
                   tmp[j] = py::cast(std::move(var));
                 } else {
2151
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2152 2153 2154 2155 2156 2157
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2167
  m.def("op_support_gpu", OpSupportGPU);
2168
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2169
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2170

2171
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2172 2173 2174
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2175 2176 2177 2178
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2179
#endif
P
peizhilin 已提交
2180
#endif
Y
Yu Yang 已提交
2181

2182 2183
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2184
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2205 2206 2207 2208 2209 2210
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2211 2212 2213 2214
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2215
      .value("kAll", platform::ProfilerState::kAll)
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2227
  m.def("set_tracer_option", platform::SetTracerOption);
2228 2229
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2230
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2231
  m.def("reset_profiler", platform::ResetProfiler);
2232
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2233 2234 2235
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2236

2237 2238
  m.def("size_of_dtype", framework::SizeOfType);

2239
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2240 2241
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2242 2243
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2244
#endif  // PADDLE_WITH_CUDA
2245 2246
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2247

2248 2249 2250
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2251 2252
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2253
      .def("has", &ir::Pass::Has)
2254 2255 2256
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2257
           })
2258
      .def(
2259
          "set",
2260 2261 2262
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2263 2264
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2265 2266
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2281 2282
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2283
        self.Apply(graph.get());
F
flame 已提交
2284
      });
2285

X
fix  
Xin Pan 已提交
2286 2287
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2302
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2303

Y
yuyang18 已提交
2304
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2305 2306 2307 2308
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2309 2310 2311
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2312 2313 2314
    Examples:
        .. code-block:: python

2315 2316 2317 2318 2319 2320 2321 2322 2323
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2324

2325 2326
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2327

2328
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2329 2330
          sgd_optimizer.minimize(avg_loss)

2331
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2332 2333
          exec_strategy.num_threads = 4

2334 2335 2336
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2337 2338
        )DOC");

2339 2340 2341 2342
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2343

Y
yuyang18 已提交
2344
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2345 2346 2347 2348 2349
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2350
          },
2351 2352
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2353 2354 2355 2356 2357 2358 2359
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2373
      .def_property(
2374 2375
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2376
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2377 2378 2379
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2380 2381 2382 2383 2384
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2385 2386 2387
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2388 2389
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2390 2391 2392 2393 2394 2395 2396
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2397 2398 2399 2400
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2401
                because the temp variable's shape maybe the same between two iterations.
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2412

2413 2414 2415 2416 2417 2418 2419
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2420
              )DOC")
Q
Qiao Longfei 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2442
              )DOC")
2443 2444 2445 2446 2447 2448 2449 2450
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2451 2452 2453 2454 2455
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2456

Y
yuyang18 已提交
2457
  exec_strategy.def_property(
Y
yuyang18 已提交
2458 2459 2460 2461 2462 2463 2464
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2465 2466
      });

C
chengduo 已提交
2467 2468 2469 2470
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2471 2472 2473
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2474 2475 2476
    Examples:
        .. code-block:: python

2477
            import os
2478 2479 2480 2481
            import paddle
            import paddle.static as static

            paddle.enable_static()
2482

2483 2484
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2485

2486 2487 2488 2489
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2490

2491
            build_strategy = static.BuildStrategy()
2492 2493
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2494 2495
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2496
            program = program.with_data_parallel(loss_name=loss.name,
2497 2498
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2499
)DOC");
Y
yuyang18 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2516 2517 2518 2519
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2520
            self.reduce_ = strategy;
C
chengduo 已提交
2521
          },
2522
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2523 2524
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2525
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2526 2527
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2528
                Default is 'AllReduce'.
F
flame 已提交
2529 2530 2531 2532

                Examples:
                    .. code-block:: python

2533 2534 2535 2536 2537 2538 2539
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2540
                  )DOC")
Y
yuyang18 已提交
2541 2542 2543 2544 2545
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2546 2547 2548 2549
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2550
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2551
          },
2552
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2553
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2554 2555
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2556
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2557 2558 2559 2560

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2561 2562
                        import numpy
                        import os
2563 2564 2565 2566
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2567 2568

                        use_cuda = True
2569 2570
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2571 2572

                        # NOTE: If you use CPU to run the program, you need
2573
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2574 2575 2576 2577 2578 2579
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2580
                            places = static.cpu_places()
C
chengduo 已提交
2581
                        else:
2582
                            places = static.cuda_places()
C
chengduo 已提交
2583

2584 2585 2586 2587
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2588

2589
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2590

2591
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2592
                        build_strategy.gradient_scale_strategy = \
2593 2594 2595
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2596
                                          loss_name=loss.name, build_strategy=build_strategy,
2597
                                          places=places)
C
chengduo 已提交
2598 2599 2600 2601 2602 2603

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2604 2605
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2606
                   )DOC")
Y
yuyang18 已提交
2607 2608 2609 2610
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2611 2612 2613 2614
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2615
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2616
          },
2617
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2618
                writing the SSA Graph to file in the form of graphviz.
2619
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2620 2621 2622 2623

                Examples:
                    .. code-block:: python

2624 2625 2626 2627
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2628

2629 2630
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2631
                    )DOC")
S
sneaxiy 已提交
2632 2633 2634 2635 2636 2637
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2638 2639 2640 2641
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2642 2643
            self.enable_sequential_execution_ = b;
          },
2644 2645
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2646 2647 2648 2649

                Examples:
                    .. code-block:: python

2650 2651 2652 2653 2654 2655
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2656 2657
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2658 2659 2660 2661 2662 2663
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2664 2665 2666 2667
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2668 2669
            self.remove_unnecessary_lock_ = b;
          },
2670 2671
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2672 2673 2674 2675

                Examples:
                    .. code-block:: python

2676 2677 2678 2679 2680 2681
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2682 2683
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2684 2685 2686 2687
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2688
#ifdef WIN32
2689
            PADDLE_THROW(platform::errors::Unavailable(
2690
                "Distribution mode is not supported on Windows platform."));
2691
#endif
2692 2693
            self.num_trainers_ = num_trainers;
          })
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2706 2707 2708 2709 2710 2711
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2712 2713 2714 2715 2716 2717
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2718
      .def_property("use_hierarchical_allreduce",
2719 2720 2721 2722 2723 2724
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2725
      .def_property("hierarchical_allreduce_inter_nranks",
2726 2727 2728 2729 2730 2731 2732
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2733 2734 2735 2736 2737 2738
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2739 2740 2741 2742
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2743 2744
            self.fuse_elewise_add_act_ops_ = b;
          },
2745
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2746
                to fuse elementwise_add_op and activation_op,
2747
                it may make the execution faster. Default is False.
F
flame 已提交
2748 2749 2750 2751

                Examples:
                    .. code-block:: python

2752 2753 2754 2755 2756 2757
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2758 2759
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2760 2761 2762 2763
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2764
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2765
                              platform::errors::PreconditionNotMet(
2766 2767
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2777 2778 2779 2780 2781 2782
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2783 2784
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2810 2811 2812 2813
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2814
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2815
                              platform::errors::PreconditionNotMet(
2816 2817
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2828 2829 2830 2831 2832 2833
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2834 2835
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2836 2837 2838 2839 2840 2841
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2842 2843 2844 2845
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2846 2847
            self.fuse_relu_depthwise_conv_ = b;
          },
2848
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2849 2850 2851
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2852
                Default is False.
F
flame 已提交
2853 2854 2855 2856

                Examples:
                    .. code-block:: python

2857 2858 2859 2860 2861 2862
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2863 2864
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2865 2866 2867 2868 2869 2870
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2871 2872 2873 2874
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2875 2876
                      self.fuse_broadcast_ops_ = b;
                    },
2877
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2878 2879 2880 2881
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2882 2883 2884 2885 2886
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2887 2888 2889 2890 2891 2892
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2893 2894
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2895 2896
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2897 2898
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2899 2900
                    },
                    [](BuildStrategy &self, bool b) {
2901 2902 2903 2904
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2905 2906
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2907 2908 2909 2910
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2911 2912 2913 2914
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2915 2916
            self.sync_batch_norm_ = b;
          },
2917
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2918 2919 2920
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2921 2922
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2923 2924 2925 2926

                Examples:
                    .. code-block:: python

2927 2928 2929 2930 2931 2932
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2933 2934
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2935 2936
      .def_property(
          "memory_optimize",
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2951
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
2952 2953
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
2954 2955
            }
          },
2956
          R"DOC((bool, optional): memory opitimize aims to save total memory
2957
                consumption, set to True to enable it.
2958

2959 2960 2961
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2976 2977 2978
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2979 2980 2981
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2982
              PADDLE_THROW(platform::errors::Unavailable(
2983
                  "Distribution mode is not supported on Windows platform."));
2984 2985 2986 2987 2988
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2989 2990 2991
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2992
      .def_property(
D
dzhwinter 已提交
2993 2994 2995
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2996 2997 2998 2999
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3000 3001
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3002 3003 3004 3005
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
3006
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3007 3008 3009 3010 3011 3012 3013
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3014 3015 3016 3017
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3018 3019 3020 3021 3022 3023 3024 3025 3026
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3027 3028 3029 3030 3031 3032
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3033
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3034
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3035 3036 3037 3038 3039
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3040

3041 3042 3043 3044 3045 3046
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3047
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3048
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3049
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3050
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3051 3052 3053 3054
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3055 3056 3057 3058 3059
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3060 3061 3062
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3063 3064 3065 3066
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3067 3068
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3069 3070 3071 3072 3073 3074 3075 3076
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3077
               return py::cast(
3078
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3079 3080
             } else {
               return py::cast(std::move(
3081
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3082
             }
3083 3084
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3085

D
dongdaxiang 已提交
3086
  BindFleetWrapper(&m);
3087
  BindIO(&m);
T
Thunderbrook 已提交
3088

T
Thunderbrook 已提交
3089 3090
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3091
#endif
T
Thunderbrook 已提交
3092
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3093
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3094
#endif
3095
  BindGlooWrapper(&m);
H
hutuxian 已提交
3096
  BindBoxHelper(&m);
H
hutuxian 已提交
3097 3098 3099
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3100
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3101
  BindNCCLWrapper(&m);
3102 3103 3104
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3105
#endif
F
flame 已提交
3106 3107
  BindGraph(&m);
  BindNode(&m);
3108
  BindPass(&m);
F
flame 已提交
3109
  BindInferenceApi(&m);
3110
  BindCompatible(&m);
3111
  BindDataset(&m);
Y
yaoxuefeng 已提交
3112
  BindGenerator(&m);
3113 3114 3115
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3116
  BindAscendDevice(&m);
3117
#endif
Y
Yanghello 已提交
3118 3119 3120
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3121

T
tangwei12 已提交
3122
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3123 3124
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3125
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3126 3127
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3128 3129 3130 3131 3132
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3133 3134 3135 3136
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3137
  BindSparseShardingTools(&m);
3138
#endif
L
Luo Tao 已提交
3139
}
3140
}  // namespace pybind
3141
}  // namespace paddle