pybind.cc 101.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
27
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
30
#include "paddle/fluid/framework/io/fs.h"
31
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
32
#include "paddle/fluid/framework/ir/pass_builder.h"
33
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
34 35 36
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
37
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/op_info.h"
39
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
42
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
43
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/selected_rows.h"
46
#include "paddle/fluid/framework/trainer.h"
47
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/framework/version.h"
H
hong 已提交
49
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
50
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
51
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
52
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/operators/py_func_op.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/platform/cpu_info.h"
56
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/platform/enforce.h"
58
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
59
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
60 61
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
62
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
65
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
66
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
67
#include "paddle/fluid/pybind/global_value_getter_setter.h"
68
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
69
#include "paddle/fluid/pybind/heter_wrapper_py.h"
70
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
71
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
72
#include "paddle/fluid/pybind/ir.h"
73
#include "paddle/fluid/pybind/pybind_boost_headers.h"
74

75
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
76
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
77
#endif
78
#include "paddle/fluid/framework/data_type.h"
79 80
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
81
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/pybind/tensor_py.h"
83
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
84
#ifdef PADDLE_WITH_CUDA
85
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
86
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
87
#endif
Y
Yi Wang 已提交
88 89
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
90 91
#endif

92 93 94 95
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
96 97 98 99
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
100 101
#include "pybind11/stl.h"

102
DECLARE_bool(use_mkldnn);
103

Q
Qiao Longfei 已提交
104 105
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
106 107 108
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
109

110
namespace paddle {
111
namespace pybind {
112
bool IsCompiledWithCUDA() {
113
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
114 115 116 117 118 119
  return false;
#else
  return true;
#endif
}

120 121 122 123 124 125 126 127
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

128
bool IsCompiledWithBrpc() {
129
#ifndef PADDLE_WITH_DISTRIBUTE
130 131
  return false;
#endif
132 133 134 135 136 137

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
138 139
}

Y
update  
Yancey1989 已提交
140
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
141
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
142 143 144 145 146 147
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
148 149 150 151 152 153 154 155 156 157
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
180 181 182
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
196 197
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
198 199
    }
    vec_res.emplace_back(
200
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
201 202 203 204 205 206 207 208 209 210 211 212
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
213 214
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
215 216 217 218 219 220 221 222 223 224 225 226
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
227 228 229
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
230 231 232 233
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
234 235
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
236 237 238 239
  }
  return vec_res;
}

240 241 242 243 244 245 246 247
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
248 249
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
250 251 252 253 254 255 256 257 258 259 260 261 262
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
263 264 265
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
266 267 268 269 270
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
271 272 273 274 275
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
276 277
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
278 279 280
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
281 282 283 284 285 286 287 288 289
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
290 291
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
292 293 294 295 296
  }

  return;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

321 322 323 324 325 326
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
327 328 329
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
330
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
331

332 333
  AssertStaticGraphAndDygraphGradMakerNoDiff();

334
  m.doc() = "C++ core of PaddlePaddle";
335

336 337 338 339
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

340
  BindException(&m);
Y
Yu Yang 已提交
341

342 343
  m.def("set_num_threads", &platform::SetNumThreads);

6
633WHU 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
362 363 364 365 366 367 368 369 370
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
371
           const Scope &scope, const Executor *executor) {
H
hong 已提交
372
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
373
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
374 375 376
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

377 378 379 380 381 382
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
402

403 404 405 406 407 408
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
409
  m.def(
S
sneaxiy 已提交
410
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
411 412 413 414
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
415 416 417
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
434 435 436
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
437
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
438

439
  m.def("_set_fuse_parameter_group_size",
440
        &paddle::framework::ir::SetFuseParameterGroupsSize);
441
  m.def("_set_fuse_parameter_memory_size",
442
        &paddle::framework::ir::SetFuseParameterMemorySize);
443

S
sneaxiy 已提交
444 445 446
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

447 448
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

449
  BindImperative(&m);
450

451
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
452
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
453 454
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
455
      .def("_get_dims",
456
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
457
      .def("_set_dims",
Q
qijun 已提交
458
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
459
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
460
           })
Y
yuyang18 已提交
461
      .def("_set_layout",
D
dzhwinter 已提交
462 463 464
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
465
      .def("_alloc_float",
D
dzhwinter 已提交
466
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
467
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
468
           })
Y
yuyang18 已提交
469
      .def("_alloc_float",
Y
Yu Yang 已提交
470
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
471
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
472
           })
473 474 475 476
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
477
      .def("_alloc_int",
Y
Yu Yang 已提交
478
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
479
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
480
           })
Y
yuyang18 已提交
481
      .def("_alloc_int",
D
dzhwinter 已提交
482
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
483
             self.mutable_data<int>(place);
Q
qijun 已提交
484
           })
Y
yuyang18 已提交
485
      .def("_alloc_int",
C
chengduoZH 已提交
486 487 488
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
489
      .def("_alloc_float",
C
chengduoZH 已提交
490 491 492
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
508
      .def("_clear", &Tensor::clear)
509
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
510
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
511
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
512
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
513
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
514 515
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
516 517 518 519 520 521
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.
522 523
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
537

L
Leo Chen 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
577 578 579 580
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
581
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
582
      .def("_dtype", [](Tensor &self) { return self.type(); })
583
      .def("_share_data_with", &Tensor::ShareDataWith)
584 585 586 587 588 589
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
590

L
Leo Chen 已提交
591
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
592
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
667 668 669 670 671 672 673

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
674 675

        )DOC")
676
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
677 678 679 680 681 682 683 684 685
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
686 687
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
688 689 690 691
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
692 693
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
694
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
695
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
696 697
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
698 699 700
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
701
      .def("set_lod",
702
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
703
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
704
             LoD new_lod;
705 706
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
707 708
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
709 710
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
711
             self.set_lod(new_lod);
S
sneaxiy 已提交
712 713 714 715 716
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
717 718 719 720
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
721 722 723 724 725 726 727 728 729 730

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
731
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
732
           )DOC")
733 734 735 736 737 738 739 740 741 742 743
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
744 745
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
746 747 748 749 750
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
751
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
752 753
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
754
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
755

L
Leo Chen 已提交
756
           For example, if recursive_sequence_lengths=[[2, 3]], which means
757
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
758
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
759 760

           Args:
L
Leo Chen 已提交
761 762 763 764
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
765 766 767 768 769 770 771 772 773 774

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
775 776
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
777
           )DOC")
778 779 780 781 782 783 784 785
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
786 787 788 789 790
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
791 792
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
793 794 795 796 797 798 799 800 801 802
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
803
           )DOC")
G
gongweibao 已提交
804
      // Set above comments of set_lod.
805 806 807 808 809 810 811 812
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
813 814
           },
           R"DOC(
L
Leo Chen 已提交
815 816
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
817 818

           Returns:
L
Leo Chen 已提交
819
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
820 821 822 823 824 825 826 827 828 829 830

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
831 832 833 834 835 836 837 838
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
839
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
840 841

           Returns:
L
Leo Chen 已提交
842
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
843 844 845 846 847 848 849 850 851 852 853

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
854 855 856 857 858 859 860
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
861
           )DOC")
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
880
#ifdef _WIN32
881
      });
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
932

Q
qijun 已提交
933 934 935 936 937 938 939 940 941 942 943
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
944 945
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
946 947
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
948 949 950 951 952 953 954 955 956
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
957
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
958
      .def("rows", [](SelectedRows &self) {
959 960 961 962 963
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
964
      });
Q
qijun 已提交
965

966
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
967 968 969

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
970
      .def(py::init<>())
971
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
972
      .def("set_int",
973 974
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
975 976 977 978 979 980 981
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
982
      .def("get_tensor",
983 984
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
985 986
           },
           py::return_value_policy::reference)
987 988 989 990
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
991 992 993
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
994 995 996 997 998
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
999 1000 1001
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1002 1003 1004
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1005
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1006 1007 1008 1009 1010
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1011
#endif
Y
Refine  
Yu Yang 已提交
1012 1013
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1014 1015 1016 1017
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1018 1019
             return self.GetMutable<framework::ReaderHolder>();
           },
1020 1021 1022 1023 1024
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1025

S
sneaxiy 已提交
1026
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1027

S
sneaxiy 已提交
1028
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1042
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1043 1044 1045 1046 1047 1048
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1049 1050
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1051
      .def("var",
1052
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1053
             return self.Var(name);
Y
Yu Yang 已提交
1054
           },
S
sneaxiy 已提交
1055 1056
           py::arg("name"),
           R"DOC(
1057
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1058

1059
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1060
           current scope, the variable would be created. Otherwise,
1061
           return the existing variable.
S
sneaxiy 已提交
1062 1063

           Args:
1064 1065
               name (str): the variable name.

S
sneaxiy 已提交
1066
           Returns:
1067
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1068 1069 1070 1071
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1072
           Find variable named :code:`name` in the current scope or
1073
           its parent scope. Return None if not found. 
1074

S
sneaxiy 已提交
1075 1076
           Args:
               name (str): the variable name.
1077

S
sneaxiy 已提交
1078
           Returns:
1079
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1080
           )DOC",
1081
           py::return_value_policy::reference)
1082
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1083 1084 1085 1086 1087 1088
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1089
           py::return_value_policy::reference)
S
sneaxiy 已提交
1090 1091 1092
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1093 1094
           )DOC")
      .def("_kids", &Scope::kids);
1095

S
sneaxiy 已提交
1096 1097 1098 1099 1100 1101
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1102 1103
        R"DOC(
        Create a new scope.
1104

S
sneaxiy 已提交
1105 1106 1107
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1108 1109
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1110 1111
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1112 1113
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1114 1115 1116 1117
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1118 1119
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1120 1121
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1122 1123 1124
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1125 1126
    return ret_values;
  });
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1156 1157 1158
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1159 1160 1161 1162 1163
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1164 1165 1166
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1181
  m.def("prune", [](const ProgramDesc &origin,
1182
                    const std::set<std::string> &feeded_var_names,
1183
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1184
    ProgramDesc prog_with_targets(origin);
1185

1186
    for (const auto &t : targets) {
1187
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1188
    }
1189
    proto::ProgramDesc pruned_desc;
1190 1191 1192 1193
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1194
  });
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1212 1213 1214 1215
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1216 1217 1218
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1219 1220
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1221
  // clang-format off
Y
Yu Yang 已提交
1222
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1223 1224
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1225
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1226 1227 1228
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1229
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1230
                      -> paddle::platform::DeviceContext* {
1231
#ifndef PADDLE_WITH_CUDA
1232 1233 1234 1235
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1236
#else
Q
qijun 已提交
1237
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1238
#endif
C
chengduoZH 已提交
1239 1240 1241 1242 1243
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1244 1245 1246 1247
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1248 1249 1250 1251
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1252
// clang-format on
1253
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1254 1255
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1256
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1257 1258 1259 1260 1261 1262 1263 1264
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1265
    The memory of CUDAPlace with different dev_id is not accessible.
1266 1267 1268 1269 1270 1271 1272 1273
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1274 1275 1276 1277

    Examples:
        .. code-block:: python

1278
          import paddle.fluid as fluid
L
lujun 已提交
1279 1280
          gpu_place = fluid.CUDAPlace(0)

1281
        )DOC")
S
sneaxiy 已提交
1282 1283 1284
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1309 1310
             new (&self) platform::CUDAPlace(dev_id);
#else
1311 1312 1313 1314 1315 1316 1317 1318 1319
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1320 1321
#endif
           })
1322
#ifdef PADDLE_WITH_CUDA
1323 1324
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1325 1326 1327 1328 1329 1330
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1331 1332 1333
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
D
dzhwinter 已提交
1334
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1335

1336
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1337 1338
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1339 1340 1341 1342

    Examples:
        .. code-block:: python

1343
          import paddle.fluid as fluid
1344
          cpu_place = fluid.CPUPlace()
L
lujun 已提交
1345

1346
        )DOC")
1347
      .def(py::init<>())
S
sneaxiy 已提交
1348 1349 1350 1351 1352 1353
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1354
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1355

1356
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1357 1358 1359 1360 1361 1362
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1363 1364 1365 1366

    Examples:
        .. code-block:: python

1367
          import paddle.fluid as fluid
L
lujun 已提交
1368 1369
          place = fluid.CUDAPinnedPlace()

1370
        )DOC")
S
sneaxiy 已提交
1371
      .def("__init__",
S
sneaxiy 已提交
1372
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1373
#ifndef PADDLE_WITH_CUDA
1374 1375 1376
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1377
#endif
S
sneaxiy 已提交
1378
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1379
           })
S
sneaxiy 已提交
1380 1381 1382 1383 1384 1385 1386 1387
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1388 1389
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1390 1391
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1392 1393 1394 1395 1396
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1397 1398
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1399 1400 1401 1402 1403 1404
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1405 1406
      .def("gpu_device_id",
           [](platform::Place &self) {
1407
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1408
           })
S
sneaxiy 已提交
1409 1410
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1411 1412 1413 1414 1415
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1416
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1417
             self = gpu_place;
C
chengduoZH 已提交
1418 1419
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1420 1421
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1422
      });
Y
Yu Yang 已提交
1423

Y
Yu Yang 已提交
1424
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1425 1426 1427 1428 1429
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1430 1431 1432 1433 1434 1435 1436
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1437 1438
            return OpRegistry::CreateOp(desc);
          })
1439
      .def("run",
1440
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1441 1442 1443
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1444
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1445 1446 1447 1448 1449
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1450 1451 1452 1453 1454 1455 1456
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1457 1458
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1459
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1460
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1461 1462 1463 1464
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1465

1466 1467 1468
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1469 1470 1471 1472 1473 1474 1475 1476 1477
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1478
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1479
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1480
      .def("close", &Executor::Close)
1481 1482
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1483 1484
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1485 1486 1487 1488
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1489
             pybind11::gil_scoped_release release;
1490 1491 1492 1493 1494 1495 1496
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1497 1498 1499
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1500
              std::map<std::string, FetchType *> *fetch_targets,
1501 1502 1503 1504 1505 1506 1507 1508
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1509
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1510 1511 1512 1513 1514 1515 1516
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1527
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1528 1529
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1530
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1531 1532
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1533
      });
S
sneaxiy 已提交
1534

D
dzhwinter 已提交
1535
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1536
  m.def("init_glog", framework::InitGLOG);
1537
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1538 1539
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1540

1541
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1542
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1543
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1544
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
H
hutuxian 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1564 1565 1566 1567 1568 1569 1570
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1580 1581 1582 1583 1584 1585
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1586

1587
  m.def("set_feed_variable", framework::SetFeedVariable);
1588 1589 1590 1591 1592
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1593
            return py::cast(BOOST_GET(LoDTensor, var));
1594
          } else {
1595
            return py::cast(BOOST_GET(LoDTensorArray, var));
1596 1597
          }
        });
1598
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1599

X
Xin Pan 已提交
1600 1601
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1602 1603 1604 1605 1606
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1607
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1608

Y
Yu Yang 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1618
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1619
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1620 1621 1622

    Examples:
        .. code-block:: python
1623

Z
Zeng Jinle 已提交
1624 1625 1626 1627
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1628 1629
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1630 1631 1632 1633 1634 1635
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1636 1637 1638 1639
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1640 1641 1642
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1643 1644 1645 1646 1647 1648
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1649 1650
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1651 1652 1653 1654 1655 1656
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1679

1680 1681 1682 1683 1684 1685 1686 1687
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1688
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1689 1690
                 res[i] = py::cast(std::move(data));
               } else {
1691
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1707
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1708 1709 1710 1711 1712 1713 1714 1715
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1716
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1717 1718 1719 1720 1721 1722 1723 1724 1725
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1726 1727
        )DOC")
      .def("_move_to_list",
1728
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1729 1730 1731 1732
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1733
                 if (data_is_lod_tensor(self[i][j])) {
1734
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1735 1736
                   tmp[j] = py::cast(std::move(var));
                 } else {
1737
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1738 1739 1740 1741 1742 1743
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1753
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1754
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1755
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1756

P
peizhilin 已提交
1757
#ifndef _WIN32
D
dangqingqing 已提交
1758 1759 1760
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1761
#endif
P
peizhilin 已提交
1762
#endif
Y
Yu Yang 已提交
1763

1764 1765 1766 1767 1768 1769
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1770 1771 1772 1773
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1774
      .value("kAll", platform::ProfilerState::kAll)
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1786
  m.def("set_tracer_option", platform::SetTracerOption);
1787 1788
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1789
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1790
  m.def("reset_profiler", platform::ResetProfiler);
1791
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1792 1793 1794
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1795

1796 1797
  m.def("size_of_dtype", framework::SizeOfType);

1798 1799 1800
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1801 1802
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1803
      .def("has", &ir::Pass::Has)
1804 1805 1806
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1807
           })
1808
      .def(
1809
          "set",
1810 1811 1812
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1813 1814
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1815 1816
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1831 1832
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1833
        self.Apply(graph.get());
F
flame 已提交
1834
      });
1835

X
fix  
Xin Pan 已提交
1836 1837
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1852
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1853

Y
yuyang18 已提交
1854
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1855 1856 1857 1858
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1859 1860 1861
    Examples:
        .. code-block:: python

1862
          import paddle.fluid as fluid
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1873 1874 1875
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1876 1877
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1878 1879
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1880 1881
        )DOC");

Y
yuyang18 已提交
1882
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1883 1884 1885 1886 1887
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1898
      .def_property(
1899 1900 1901 1902
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1903 1904 1905 1906
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1907 1908 1909 1910 1911
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1912 1913 1914
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1915 1916
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1917 1918 1919 1920 1921 1922 1923
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1924 1925 1926 1927
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1928 1929
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1930 1931 1932 1933 1934 1935

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1936
              )DOC")
Q
Qiao Longfei 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1946
                user call exe.run() in python
Q
Qiao Longfei 已提交
1947
              )DOC")
1948 1949 1950 1951 1952 1953 1954 1955
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
1956 1957 1958 1959 1960
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1961

Y
yuyang18 已提交
1962
  exec_strategy.def_property(
Y
yuyang18 已提交
1963 1964 1965 1966 1967 1968 1969
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1970 1971
      });

C
chengduo 已提交
1972 1973 1974 1975
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1976 1977 1978
    Examples:
        .. code-block:: python

1979 1980
            import os
            import numpy as np
F
flame 已提交
1981
            import paddle.fluid as fluid
1982 1983 1984 1985 1986 1987 1988 1989 1990

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1991
            build_strategy = fluid.BuildStrategy()
1992 1993
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1994
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1995 1996 1997 1998
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1999
)DOC");
Y
yuyang18 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2016 2017 2018 2019
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2020
            self.reduce_ = strategy;
C
chengduo 已提交
2021
          },
2022
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2023 2024
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2025
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2026 2027
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2028
                Default is 'AllReduce'.
F
flame 已提交
2029 2030 2031 2032 2033 2034 2035 2036

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
2037 2038 2039 2040 2041
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2042 2043 2044 2045
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2046
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2047
          },
2048 2049
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2050 2051
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2052
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2053 2054 2055 2056 2057

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
2086
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2101
                   )DOC")
Y
yuyang18 已提交
2102 2103 2104 2105
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2106 2107 2108 2109
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2110
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2111
          },
2112
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2113
                writing the SSA Graph to file in the form of graphviz.
2114
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2115 2116 2117 2118 2119 2120

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2121 2122
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
2123
                    )DOC")
S
sneaxiy 已提交
2124 2125 2126 2127 2128 2129
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2130 2131 2132 2133
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2134 2135
            self.enable_sequential_execution_ = b;
          },
2136 2137
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2138 2139 2140 2141 2142 2143 2144 2145

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2146 2147 2148 2149 2150 2151
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2152 2153 2154 2155
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2156 2157
            self.remove_unnecessary_lock_ = b;
          },
2158 2159
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2160 2161 2162 2163 2164 2165 2166 2167

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2168 2169 2170 2171
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2172
#ifdef WIN32
2173
            PADDLE_THROW(platform::errors::Unavailable(
2174
                "Distribution mode is not supported on Windows platform."));
2175
#endif
2176 2177
            self.num_trainers_ = num_trainers;
          })
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2190 2191 2192 2193 2194 2195
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2196
      .def_property("use_hierarchical_allreduce",
2197 2198 2199 2200 2201 2202
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2203
      .def_property("hierarchical_allreduce_inter_nranks",
2204 2205 2206 2207 2208 2209 2210
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2211 2212 2213 2214 2215 2216
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2217 2218 2219 2220
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2221 2222
            self.fuse_elewise_add_act_ops_ = b;
          },
2223
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2224
                to fuse elementwise_add_op and activation_op,
2225
                it may make the execution faster. Default is False.
F
flame 已提交
2226 2227 2228 2229 2230 2231 2232 2233

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2234 2235 2236 2237
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2238
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2239
                              platform::errors::PreconditionNotMet(
2240 2241
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2255 2256 2257 2258
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2259
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2260
                              platform::errors::PreconditionNotMet(
2261 2262
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2277 2278 2279 2280 2281 2282
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2283 2284 2285 2286
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2287 2288
            self.fuse_relu_depthwise_conv_ = b;
          },
2289
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2290 2291 2292
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2293
                Default is False.
F
flame 已提交
2294 2295 2296 2297 2298 2299 2300 2301

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2302 2303 2304 2305 2306 2307
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2308 2309 2310 2311
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2312 2313
                      self.fuse_broadcast_ops_ = b;
                    },
2314
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2315 2316 2317 2318
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2319 2320 2321 2322 2323 2324 2325 2326 2327
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2328 2329
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2330 2331
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2332 2333
                    },
                    [](BuildStrategy &self, bool b) {
2334 2335 2336 2337
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2338 2339
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2340 2341 2342 2343
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2344 2345 2346 2347
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2348 2349
            self.sync_batch_norm_ = b;
          },
2350
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2351 2352 2353
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2354 2355
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2356 2357 2358 2359 2360 2361 2362 2363

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2364 2365
      .def_property(
          "memory_optimize",
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2380 2381 2382
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2383 2384
            }
          },
2385
          R"DOC((bool, optional): memory opitimize aims to save total memory
2386
                consumption, set to True to enable it.
2387

2388 2389 2390
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2391
                True means enabling and False means disabling. Default is None.)DOC")
2392 2393 2394
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2395 2396 2397
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2398
              PADDLE_THROW(platform::errors::Unavailable(
2399
                  "Distribution mode is not supported on Windows platform."));
2400 2401 2402 2403 2404
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2405 2406 2407
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2408
      .def_property(
D
dzhwinter 已提交
2409 2410 2411
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2412 2413
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2414 2415 2416 2417
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2418
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2419 2420 2421 2422 2423 2424 2425
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2426 2427 2428 2429
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2430 2431 2432 2433 2434 2435 2436 2437 2438
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2439
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2440
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2441 2442 2443 2444 2445
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2446 2447

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2448
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2449
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2450
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2451 2452 2453 2454
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2455 2456 2457 2458 2459
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2460 2461 2462
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2463 2464 2465 2466
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2467 2468
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2469 2470 2471 2472 2473 2474 2475 2476
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2477
               return py::cast(
2478
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2479 2480
             } else {
               return py::cast(std::move(
2481
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2482
             }
2483 2484
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2485

D
dongdaxiang 已提交
2486
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2487 2488 2489
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
#endif
2490
  BindGlooWrapper(&m);
H
hutuxian 已提交
2491
  BindBoxHelper(&m);
H
hutuxian 已提交
2492 2493 2494
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2495
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2496
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2497
#endif
F
flame 已提交
2498 2499
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2500
  BindInferenceApi(&m);
2501
  BindDataset(&m);
Y
Yanghello 已提交
2502 2503 2504
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2505 2506
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
2507 2508
  BindCommunicatorContext(&m);
  BindLargeScaleKV(&m);
2509
#endif
L
Luo Tao 已提交
2510
}
2511
}  // namespace pybind
2512
}  // namespace paddle