sched.c 176.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
55
#include <linux/cpu_acct.h>
L
Linus Torvalds 已提交
56 57
#include <linux/kthread.h>
#include <linux/seq_file.h>
58
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
59 60
#include <linux/syscalls.h>
#include <linux/times.h>
61
#include <linux/tsacct_kern.h>
62
#include <linux/kprobes.h>
63
#include <linux/delayacct.h>
64
#include <linux/reciprocal_div.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
67

68
#include <asm/tlb.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76 77 78 79
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
102 103
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
172 173
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
S
Srivatsa Vaddagiri 已提交
174 175 176 177 178 179 180
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

181 182
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
183 184

/* Default task group.
I
Ingo Molnar 已提交
185
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
186
 */
187
struct task_group init_task_group = {
I
Ingo Molnar 已提交
188 189 190
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
191

192
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
193
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
194
#else
I
Ingo Molnar 已提交
195
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
196 197
#endif

198
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
199 200

/* return group to which a task belongs */
201
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
202
{
203
	struct task_group *tg;
204

205 206
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
207 208 209
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
210
#else
211
	tg  = &init_task_group;
212
#endif
213 214

	return tg;
S
Srivatsa Vaddagiri 已提交
215 216 217 218 219
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
220 221
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
222 223 224 225 226 227 228 229
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
230 231 232 233 234 235
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
236
	u64 min_vruntime;
I
Ingo Molnar 已提交
237 238 239 240 241 242 243 244

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
245 246 247

	unsigned long nr_spread_over;

248
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
249 250 251 252 253 254 255 256 257 258
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
259
	struct task_group *tg;    /* group that "owns" this runqueue */
260
	struct rcu_head rcu;
I
Ingo Molnar 已提交
261 262
#endif
};
L
Linus Torvalds 已提交
263

I
Ingo Molnar 已提交
264 265 266 267 268 269 270
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
271 272 273 274 275 276 277
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
278
struct rq {
279 280
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
281 282 283 284 285 286

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
287 288
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289
	unsigned char idle_at_tick;
290 291 292
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
293 294
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
295 296 297 298 299
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
300 301
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
302
#endif
I
Ingo Molnar 已提交
303
	struct rt_rq  rt;
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311 312

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

313
	struct task_struct *curr, *idle;
314
	unsigned long next_balance;
L
Linus Torvalds 已提交
315
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
316 317 318 319 320

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
321 322
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
323
	u64 tick_timestamp;
I
Ingo Molnar 已提交
324

L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
333 334
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
335

336
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
345 346 347 348
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
349 350

	/* schedule() stats */
351 352 353
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
354 355

	/* try_to_wake_up() stats */
356 357
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
358 359

	/* BKL stats */
360
	unsigned int bkl_count;
L
Linus Torvalds 已提交
361
#endif
362
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
363 364
};

365
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
367

I
Ingo Molnar 已提交
368 369 370 371 372
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

373 374 375 376 377 378 379 380 381
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
382
/*
I
Ingo Molnar 已提交
383 384
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
385
 */
I
Ingo Molnar 已提交
386
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
387 388 389 390 391 392
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
393 394 395
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
396 397 398 399 400 401 402 403 404 405
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
406 407 408 409 410
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
411 412 413 414 415 416 417 418 419 420
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
421
}
I
Ingo Molnar 已提交
422

I
Ingo Molnar 已提交
423 424 425 426
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
427 428
}

N
Nick Piggin 已提交
429 430
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
432 433 434 435
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
436 437
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
438 439 440 441 442 443

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
457 458
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
459
	SCHED_FEAT_TREE_AVG             = 4,
460
	SCHED_FEAT_APPROX_AVG           = 8,
461
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
462
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
463 464 465
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
466 467 468 469 470 471
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
		SCHED_FEAT_PREEMPT_RESTRICT	* 1;
I
Ingo Molnar 已提交
472 473 474

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

475 476 477 478 479 480 481 482
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
483
	struct rq *rq;
484

485
	local_irq_save(flags);
I
Ingo Molnar 已提交
486 487 488
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
489
	local_irq_restore(flags);
490 491 492

	return now;
}
P
Paul E. McKenney 已提交
493
EXPORT_SYMBOL_GPL(cpu_clock);
494

L
Linus Torvalds 已提交
495
#ifndef prepare_arch_switch
496 497 498 499 500 501 502
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
503
static inline int task_running(struct rq *rq, struct task_struct *p)
504 505 506 507
{
	return rq->curr == p;
}

508
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
509 510 511
{
}

512
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
513
{
514 515 516 517
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
518 519 520 521 522 523 524
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

525 526 527 528
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
529
static inline int task_running(struct rq *rq, struct task_struct *p)
530 531 532 533 534 535 536 537
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

538
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

555
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
556 557 558 559 560 561 562 563 564 565 566 567
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
568
#endif
569 570
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
571

572 573 574 575
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
576
static inline struct rq *__task_rq_lock(struct task_struct *p)
577 578
	__acquires(rq->lock)
{
579 580 581 582 583
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
584 585 586 587
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
588 589 590 591 592
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
593
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
594 595
	__acquires(rq->lock)
{
596
	struct rq *rq;
L
Linus Torvalds 已提交
597

598 599 600 601 602 603
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
604 605 606 607
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
608
static void __task_rq_unlock(struct rq *rq)
609 610 611 612 613
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

614
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
615 616 617 618 619 620
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
621
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
622
 */
A
Alexey Dobriyan 已提交
623
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
624 625
	__acquires(rq->lock)
{
626
	struct rq *rq;
L
Linus Torvalds 已提交
627 628 629 630 631 632 633 634

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

635
/*
636
 * We are going deep-idle (irqs are disabled):
637
 */
638
void sched_clock_idle_sleep_event(void)
639
{
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
656

657 658 659 660 661 662 663 664 665 666 667
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
668
}
669
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
670

I
Ingo Molnar 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

723 724 725 726 727 728 729 730
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
731 732 733
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
734
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
735

736
static unsigned long
737 738 739 740 741 742
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
743
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
744 745 746 747 748

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
749
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
750
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
751 752
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
753
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
754

755
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
756 757 758 759 760 761 762 763
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

764
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
765 766 767 768
{
	lw->weight += inc;
}

769
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
770 771 772 773
{
	lw->weight -= dec;
}

774 775 776 777 778 779 780 781 782
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
783 784 785 786 787 788 789 790 791 792 793
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
794 795 796
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
797 798
 */
static const int prio_to_weight[40] = {
799 800 801 802 803 804 805 806
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
807 808
};

809 810 811 812 813 814 815
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
816
static const u32 prio_to_wmult[40] = {
817 818 819 820 821 822 823 824
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
825
};
826

I
Ingo Molnar 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
844
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
845 846 847

#include "sched_stats.h"
#include "sched_idletask.c"
848 849
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
850 851 852 853 854 855
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

856 857 858 859
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
860
 * total load (rq->load.weight) on the runqueue, while
861 862 863 864 865 866 867
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
868
 * This function is called /before/ updating rq->load
869 870
 * and when switching tasks.
 */
871
static inline void inc_load(struct rq *rq, const struct task_struct *p)
872
{
873
	update_load_add(&rq->load, p->se.load.weight);
874 875
}

876
static inline void dec_load(struct rq *rq, const struct task_struct *p)
877
{
878
	update_load_sub(&rq->load, p->se.load.weight);
879 880
}

881
static void inc_nr_running(struct task_struct *p, struct rq *rq)
882 883
{
	rq->nr_running++;
884
	inc_load(rq, p);
885 886
}

887
static void dec_nr_running(struct task_struct *p, struct rq *rq)
888 889
{
	rq->nr_running--;
890
	dec_load(rq, p);
891 892
}

893 894 895
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
896 897 898 899
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
900

I
Ingo Molnar 已提交
901 902 903 904 905 906 907 908
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
909

I
Ingo Molnar 已提交
910 911
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
912 913
}

914
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
915
{
I
Ingo Molnar 已提交
916
	sched_info_queued(p);
917
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
918
	p->se.on_rq = 1;
919 920
}

921
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
922
{
923
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
924
	p->se.on_rq = 0;
925 926
}

927
/*
I
Ingo Molnar 已提交
928
 * __normal_prio - return the priority that is based on the static prio
929 930 931
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
932
	return p->static_prio;
933 934
}

935 936 937 938 939 940 941
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
942
static inline int normal_prio(struct task_struct *p)
943 944 945
{
	int prio;

946
	if (task_has_rt_policy(p))
947 948 949 950 951 952 953 954 955 956 957 958 959
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
960
static int effective_prio(struct task_struct *p)
961 962 963 964 965 966 967 968 969 970 971 972
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
973
/*
I
Ingo Molnar 已提交
974
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
975
 */
I
Ingo Molnar 已提交
976
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
977
{
I
Ingo Molnar 已提交
978 979
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
980

981
	enqueue_task(rq, p, wakeup);
982
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
983 984 985 986 987
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
988
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
989
{
I
Ingo Molnar 已提交
990 991 992
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

993
	dequeue_task(rq, p, sleep);
994
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
995 996 997 998 999 1000
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1001
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1002 1003 1004 1005
{
	return cpu_curr(task_cpu(p)) == p;
}

1006 1007 1008
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1009
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1010 1011 1012 1013 1014 1015 1016
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1017
	set_task_cfs_rq(p);
1018 1019
}

L
Linus Torvalds 已提交
1020
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1033 1034 1035 1036 1037
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1038 1039 1040 1041 1042 1043
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1044
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1045
{
I
Ingo Molnar 已提交
1046 1047
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1048 1049
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1050
	u64 clock_offset;
I
Ingo Molnar 已提交
1051 1052

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1053 1054 1055 1056

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1057 1058 1059 1060
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1061 1062 1063 1064 1065
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1066
#endif
1067 1068
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1069 1070

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1071 1072
}

1073
struct migration_req {
L
Linus Torvalds 已提交
1074 1075
	struct list_head list;

1076
	struct task_struct *task;
L
Linus Torvalds 已提交
1077 1078 1079
	int dest_cpu;

	struct completion done;
1080
};
L
Linus Torvalds 已提交
1081 1082 1083 1084 1085

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1086
static int
1087
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1088
{
1089
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1090 1091 1092 1093 1094

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1095
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1096 1097 1098 1099 1100 1101 1102 1103
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1104

L
Linus Torvalds 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1117
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1118 1119
{
	unsigned long flags;
I
Ingo Molnar 已提交
1120
	int running, on_rq;
1121
	struct rq *rq;
L
Linus Torvalds 已提交
1122

1123 1124 1125 1126 1127 1128 1129 1130
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1180

1181 1182 1183 1184 1185 1186 1187
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1203
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1215 1216
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1217 1218 1219 1220
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1221
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1222
{
1223
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1224
	unsigned long total = weighted_cpuload(cpu);
1225

1226
	if (type == 0)
I
Ingo Molnar 已提交
1227
		return total;
1228

I
Ingo Molnar 已提交
1229
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1230 1231 1232
}

/*
1233 1234
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1235
 */
A
Alexey Dobriyan 已提交
1236
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1237
{
1238
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1239
	unsigned long total = weighted_cpuload(cpu);
1240

N
Nick Piggin 已提交
1241
	if (type == 0)
I
Ingo Molnar 已提交
1242
		return total;
1243

I
Ingo Molnar 已提交
1244
	return max(rq->cpu_load[type-1], total);
1245 1246 1247 1248 1249 1250 1251
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1252
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1253
	unsigned long total = weighted_cpuload(cpu);
1254 1255
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1256
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1257 1258
}

N
Nick Piggin 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1276 1277
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1278
			continue;
1279

N
Nick Piggin 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1296 1297
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1298 1299 1300 1301 1302 1303 1304 1305

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1306
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1307 1308 1309 1310 1311 1312 1313

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1314
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1315
 */
I
Ingo Molnar 已提交
1316 1317
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1318
{
1319
	cpumask_t tmp;
N
Nick Piggin 已提交
1320 1321 1322 1323
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1324 1325 1326 1327
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1328
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1354

1355
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1356 1357 1358
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1359 1360
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1361 1362
		if (tmp->flags & flag)
			sd = tmp;
1363
	}
N
Nick Piggin 已提交
1364 1365 1366 1367

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1368 1369 1370 1371 1372 1373
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1374 1375 1376

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1377 1378 1379 1380
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1381

1382
		new_cpu = find_idlest_cpu(group, t, cpu);
1383 1384 1385 1386 1387
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1388

1389
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1416
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1417 1418 1419 1420 1421
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1432 1433 1434 1435
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1436
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1437
			for_each_cpu_mask(i, tmp) {
1438 1439 1440 1441 1442
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1443
					return i;
1444
				}
L
Linus Torvalds 已提交
1445
			}
I
Ingo Molnar 已提交
1446
		} else {
N
Nick Piggin 已提交
1447
			break;
I
Ingo Molnar 已提交
1448
		}
L
Linus Torvalds 已提交
1449 1450 1451 1452
	}
	return cpu;
}
#else
1453
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1473
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1474
{
1475
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1476 1477
	unsigned long flags;
	long old_state;
1478
	struct rq *rq;
L
Linus Torvalds 已提交
1479
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1480
	struct sched_domain *sd, *this_sd = NULL;
1481
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486 1487 1488 1489
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1490
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1491 1492 1493
		goto out_running;

	cpu = task_cpu(p);
1494
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1501 1502
	new_cpu = cpu;

1503
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1504 1505
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1506 1507 1508 1509 1510 1511 1512 1513
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1514 1515 1516
		}
	}

N
Nick Piggin 已提交
1517
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1518 1519 1520
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1521
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1522
	 */
N
Nick Piggin 已提交
1523 1524 1525
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1526

1527 1528
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1529 1530
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1531

N
Nick Piggin 已提交
1532 1533
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1534 1535
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1536 1537
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1538 1539 1540 1541 1542 1543
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1544
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1545
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1546

L
Linus Torvalds 已提交
1547
			/*
1548 1549 1550
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1551
			 */
1552
			if (sync)
I
Ingo Molnar 已提交
1553
				tl -= current->se.load.weight;
1554 1555

			if ((tl <= load &&
1556
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1557
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1558 1559 1560 1561 1562 1563
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1564
				schedstat_inc(p, se.nr_wakeups_affine);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1576
				schedstat_inc(p, se.nr_wakeups_passive);
1577 1578
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1593
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599 1600 1601
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1602 1603 1604 1605 1606 1607 1608 1609 1610
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1611
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1612
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1613
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1624
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629 1630
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1631
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1632 1633 1634 1635 1636 1637 1638
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1639 1640 1641 1642 1643 1644 1645
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1646
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1647 1648 1649

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1650 1651 1652 1653 1654 1655
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1656
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1657
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1658
#endif
N
Nick Piggin 已提交
1659

I
Ingo Molnar 已提交
1660 1661
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1662

1663 1664 1665 1666
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672 1673
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1688
	set_task_cpu(p, cpu);
1689 1690 1691 1692 1693

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1694 1695
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1696

1697
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1698
	if (likely(sched_info_on()))
1699
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1700
#endif
1701
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1702 1703
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1704
#ifdef CONFIG_PREEMPT
1705
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1706
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1707
#endif
N
Nick Piggin 已提交
1708
	put_cpu();
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1718
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1719 1720
{
	unsigned long flags;
I
Ingo Molnar 已提交
1721
	struct rq *rq;
L
Linus Torvalds 已提交
1722 1723

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1724
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1725
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1726 1727 1728

	p->prio = effective_prio(p);

1729
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1730
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1731 1732
	} else {
		/*
I
Ingo Molnar 已提交
1733 1734
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1735
		 */
1736
		p->sched_class->task_new(rq, p);
1737
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1738
	}
I
Ingo Molnar 已提交
1739 1740
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1741 1742
}

1743 1744 1745
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1746 1747
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1748 1749 1750 1751 1752 1753 1754 1755 1756
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1757
 * @notifier: notifier struct to unregister
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1801 1802 1803
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1804
 * @prev: the current task that is being switched out
1805 1806 1807 1808 1809 1810 1811 1812 1813
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1814 1815 1816
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1817
{
1818
	fire_sched_out_preempt_notifiers(prev, next);
1819 1820 1821 1822
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1823 1824
/**
 * finish_task_switch - clean up after a task-switch
1825
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1826 1827
 * @prev: the thread we just switched away from.
 *
1828 1829 1830 1831
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1838
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1839 1840 1841
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1842
	long prev_state;
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1848
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1849 1850
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1851
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1852 1853 1854 1855 1856
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1857
	prev_state = prev->state;
1858 1859
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1860
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1861 1862
	if (mm)
		mmdrop(mm);
1863
	if (unlikely(prev_state == TASK_DEAD)) {
1864 1865 1866
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1867
		 */
1868
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1869
		put_task_struct(prev);
1870
	}
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1877
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1878 1879
	__releases(rq->lock)
{
1880 1881
	struct rq *rq = this_rq();

1882 1883 1884 1885 1886
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1887
	if (current->set_child_tid)
1888
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1889 1890 1891 1892 1893 1894
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1895
static inline void
1896
context_switch(struct rq *rq, struct task_struct *prev,
1897
	       struct task_struct *next)
L
Linus Torvalds 已提交
1898
{
I
Ingo Molnar 已提交
1899
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1900

1901
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1902 1903
	mm = next->mm;
	oldmm = prev->active_mm;
1904 1905 1906 1907 1908 1909 1910
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1911
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916 1917
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1918
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1919 1920 1921
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1922 1923 1924 1925 1926 1927 1928
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1929
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1930
#endif
L
Linus Torvalds 已提交
1931 1932 1933 1934

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1935 1936 1937 1938 1939 1940 1941
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1965
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1980 1981
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1982

1983
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1993
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1994 1995 1996 1997 1998
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2014
/*
I
Ingo Molnar 已提交
2015 2016
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2017
 */
I
Ingo Molnar 已提交
2018
static void update_cpu_load(struct rq *this_rq)
2019
{
2020
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2033 2034 2035 2036 2037 2038 2039
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2040 2041
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2042 2043
}

I
Ingo Molnar 已提交
2044 2045
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2046 2047 2048 2049 2050 2051
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2052
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2053 2054 2055
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2056
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2057 2058 2059 2060
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2061
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2069 2070
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076 2077 2078
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2079
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2093
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2094 2095 2096 2097
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2098 2099 2100 2101 2102
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2103
	if (unlikely(!spin_trylock(&busiest->lock))) {
2104
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2119
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2120
{
2121
	struct migration_req req;
L
Linus Torvalds 已提交
2122
	unsigned long flags;
2123
	struct rq *rq;
L
Linus Torvalds 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2134

L
Linus Torvalds 已提交
2135 2136 2137 2138 2139
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2140

L
Linus Torvalds 已提交
2141 2142 2143 2144 2145 2146 2147
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2148 2149
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2150 2151 2152 2153
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2154
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2155
	put_cpu();
N
Nick Piggin 已提交
2156 2157
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162 2163
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2164 2165
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2166
{
2167
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2168
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2169
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2170 2171 2172 2173
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2174
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2175 2176 2177 2178 2179
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2180
static
2181
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2182
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2183
		     int *all_pinned)
L
Linus Torvalds 已提交
2184 2185 2186 2187 2188 2189 2190
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2191 2192
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2193
		return 0;
2194
	}
2195 2196
	*all_pinned = 0;

2197 2198
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2199
		return 0;
2200
	}
L
Linus Torvalds 已提交
2201

2202 2203 2204 2205 2206 2207
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2208 2209
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2210
#ifdef CONFIG_SCHEDSTATS
2211
		if (task_hot(p, rq->clock, sd)) {
2212
			schedstat_inc(sd, lb_hot_gained[idle]);
2213 2214
			schedstat_inc(p, se.nr_forced_migrations);
		}
2215 2216 2217 2218
#endif
		return 1;
	}

2219 2220
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2221
		return 0;
2222
	}
L
Linus Torvalds 已提交
2223 2224 2225
	return 1;
}

I
Ingo Molnar 已提交
2226
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2227
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2228
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2229
		      int *all_pinned, unsigned long *load_moved,
2230
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2231
{
I
Ingo Molnar 已提交
2232 2233 2234
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2235

2236
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2237 2238
		goto out;

2239 2240
	pinned = 1;

L
Linus Torvalds 已提交
2241
	/*
I
Ingo Molnar 已提交
2242
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2243
	 */
I
Ingo Molnar 已提交
2244 2245 2246
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2247
		goto out;
2248 2249 2250 2251 2252
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2253 2254
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2255
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2256 2257 2258
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2259 2260
	}

I
Ingo Molnar 已提交
2261
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2262
	pulled++;
I
Ingo Molnar 已提交
2263
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2264

2265 2266 2267 2268 2269
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2270 2271
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2272 2273
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2274 2275 2276 2277 2278 2279 2280 2281
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2282 2283 2284

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2285
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2286 2287 2288
	return pulled;
}

I
Ingo Molnar 已提交
2289
/*
P
Peter Williams 已提交
2290 2291 2292
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2293 2294 2295 2296
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2297
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2298 2299 2300
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2301
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2302
	unsigned long total_load_moved = 0;
2303
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2304 2305

	do {
P
Peter Williams 已提交
2306 2307 2308
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2309
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2310
		class = class->next;
P
Peter Williams 已提交
2311
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2312

P
Peter Williams 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2326
	const struct sched_class *class;
2327
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2328 2329 2330

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2331 2332
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2333 2334 2335
			return 1;

	return 0;
I
Ingo Molnar 已提交
2336 2337
}

L
Linus Torvalds 已提交
2338 2339
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2340 2341
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2342 2343 2344
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2345 2346
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2347 2348 2349
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2350
	unsigned long max_pull;
2351 2352
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2353
	int load_idx, group_imb = 0;
2354 2355 2356 2357 2358 2359
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2360 2361

	max_load = this_load = total_load = total_pwr = 0;
2362 2363
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2364
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2365
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2366
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2367 2368 2369
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2370 2371

	do {
2372
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2373 2374
		int local_group;
		int i;
2375
		int __group_imb = 0;
2376
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2377
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2378 2379 2380

		local_group = cpu_isset(this_cpu, group->cpumask);

2381 2382 2383
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2384
		/* Tally up the load of all CPUs in the group */
2385
		sum_weighted_load = sum_nr_running = avg_load = 0;
2386 2387
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2388 2389

		for_each_cpu_mask(i, group->cpumask) {
2390 2391 2392 2393 2394 2395
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2396

2397
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2398 2399
				*sd_idle = 0;

L
Linus Torvalds 已提交
2400
			/* Bias balancing toward cpus of our domain */
2401 2402 2403 2404 2405 2406
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2407
				load = target_load(i, load_idx);
2408
			} else {
N
Nick Piggin 已提交
2409
				load = source_load(i, load_idx);
2410 2411 2412 2413 2414
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2415 2416

			avg_load += load;
2417
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2418
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2419 2420
		}

2421 2422 2423
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2424 2425
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2426
		 */
2427 2428
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2429 2430 2431 2432
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2433
		total_load += avg_load;
2434
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2435 2436

		/* Adjust by relative CPU power of the group */
2437 2438
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2439

2440 2441 2442
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2443
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2444

L
Linus Torvalds 已提交
2445 2446 2447
		if (local_group) {
			this_load = avg_load;
			this = group;
2448 2449 2450
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2451
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2452 2453
			max_load = avg_load;
			busiest = group;
2454 2455
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2456
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2457
		}
2458 2459 2460 2461 2462 2463

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2464 2465 2466
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2467 2468 2469 2470 2471 2472 2473 2474 2475

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2476
		/*
2477 2478
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2479 2480
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2481
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2482
			goto group_next;
2483

I
Ingo Molnar 已提交
2484
		/*
2485
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2486 2487 2488 2489 2490
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2491 2492
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2493 2494
			group_min = group;
			min_nr_running = sum_nr_running;
2495 2496
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2497
		}
2498

I
Ingo Molnar 已提交
2499
		/*
2500
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2512
		}
2513 2514
group_next:
#endif
L
Linus Torvalds 已提交
2515 2516 2517
		group = group->next;
	} while (group != sd->groups);

2518
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525 2526
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2527
	busiest_load_per_task /= busiest_nr_running;
2528 2529 2530
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2554 2555

	/* Don't want to pull so many tasks that a group would go idle */
2556
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2557

L
Linus Torvalds 已提交
2558
	/* How much load to actually move to equalise the imbalance */
2559 2560
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2561 2562
			/ SCHED_LOAD_SCALE;

2563 2564 2565 2566 2567 2568
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2569
	if (*imbalance < busiest_load_per_task) {
2570
		unsigned long tmp, pwr_now, pwr_move;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2582

I
Ingo Molnar 已提交
2583 2584
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2585
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2595 2596 2597 2598
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2599 2600 2601
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2602 2603
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2604
		if (max_load > tmp)
2605
			pwr_move += busiest->__cpu_power *
2606
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2607 2608

		/* Amount of load we'd add */
2609
		if (max_load * busiest->__cpu_power <
2610
				busiest_load_per_task * SCHED_LOAD_SCALE)
2611 2612
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2613
		else
2614 2615 2616 2617
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2618 2619 2620
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2621 2622
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2623 2624 2625 2626 2627
	}

	return busiest;

out_balanced:
2628
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2629
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2630
		goto ret;
L
Linus Torvalds 已提交
2631

2632 2633 2634 2635 2636
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2637
ret:
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642 2643 2644
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2645
static struct rq *
I
Ingo Molnar 已提交
2646
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2647
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2648
{
2649
	struct rq *busiest = NULL, *rq;
2650
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2651 2652 2653
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2654
		unsigned long wl;
2655 2656 2657 2658

		if (!cpu_isset(i, *cpus))
			continue;

2659
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2660
		wl = weighted_cpuload(i);
2661

I
Ingo Molnar 已提交
2662
		if (rq->nr_running == 1 && wl > imbalance)
2663
			continue;
L
Linus Torvalds 已提交
2664

I
Ingo Molnar 已提交
2665 2666
		if (wl > max_load) {
			max_load = wl;
2667
			busiest = rq;
L
Linus Torvalds 已提交
2668 2669 2670 2671 2672 2673
		}
	}

	return busiest;
}

2674 2675 2676 2677 2678 2679
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2680 2681 2682 2683
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2684
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2685
			struct sched_domain *sd, enum cpu_idle_type idle,
2686
			int *balance)
L
Linus Torvalds 已提交
2687
{
P
Peter Williams 已提交
2688
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2689 2690
	struct sched_group *group;
	unsigned long imbalance;
2691
	struct rq *busiest;
2692
	cpumask_t cpus = CPU_MASK_ALL;
2693
	unsigned long flags;
N
Nick Piggin 已提交
2694

2695 2696 2697
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2698
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2699
	 * portraying it as CPU_NOT_IDLE.
2700
	 */
I
Ingo Molnar 已提交
2701
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2702
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2703
		sd_idle = 1;
L
Linus Torvalds 已提交
2704

2705
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2706

2707 2708
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2709 2710
				   &cpus, balance);

2711
	if (*balance == 0)
2712 2713
		goto out_balanced;

L
Linus Torvalds 已提交
2714 2715 2716 2717 2718
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2719
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2720 2721 2722 2723 2724
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2725
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2726 2727 2728

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2729
	ld_moved = 0;
L
Linus Torvalds 已提交
2730 2731 2732 2733
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2734
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2735 2736
		 * correctly treated as an imbalance.
		 */
2737
		local_irq_save(flags);
N
Nick Piggin 已提交
2738
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2739
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2740
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2741
		double_rq_unlock(this_rq, busiest);
2742
		local_irq_restore(flags);
2743

2744 2745 2746
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2747
		if (ld_moved && this_cpu != smp_processor_id())
2748 2749
			resched_cpu(this_cpu);

2750
		/* All tasks on this runqueue were pinned by CPU affinity */
2751 2752 2753 2754
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2755
			goto out_balanced;
2756
		}
L
Linus Torvalds 已提交
2757
	}
2758

P
Peter Williams 已提交
2759
	if (!ld_moved) {
L
Linus Torvalds 已提交
2760 2761 2762 2763 2764
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2765
			spin_lock_irqsave(&busiest->lock, flags);
2766 2767 2768 2769 2770

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2771
				spin_unlock_irqrestore(&busiest->lock, flags);
2772 2773 2774 2775
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2776 2777 2778
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2779
				active_balance = 1;
L
Linus Torvalds 已提交
2780
			}
2781
			spin_unlock_irqrestore(&busiest->lock, flags);
2782
			if (active_balance)
L
Linus Torvalds 已提交
2783 2784 2785 2786 2787 2788
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2789
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2790
		}
2791
	} else
L
Linus Torvalds 已提交
2792 2793
		sd->nr_balance_failed = 0;

2794
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2795 2796
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2797 2798 2799 2800 2801 2802 2803 2804 2805
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2806 2807
	}

P
Peter Williams 已提交
2808
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2809
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2810
		return -1;
P
Peter Williams 已提交
2811
	return ld_moved;
L
Linus Torvalds 已提交
2812 2813 2814 2815

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2816
	sd->nr_balance_failed = 0;
2817 2818

out_one_pinned:
L
Linus Torvalds 已提交
2819
	/* tune up the balancing interval */
2820 2821
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2822 2823
		sd->balance_interval *= 2;

2824
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2825
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2826
		return -1;
L
Linus Torvalds 已提交
2827 2828 2829 2830 2831 2832 2833
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2834
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2835 2836
 * this_rq is locked.
 */
2837
static int
2838
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2839 2840
{
	struct sched_group *group;
2841
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2842
	unsigned long imbalance;
P
Peter Williams 已提交
2843
	int ld_moved = 0;
N
Nick Piggin 已提交
2844
	int sd_idle = 0;
2845
	int all_pinned = 0;
2846
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2847

2848 2849 2850 2851
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2852
	 * portraying it as CPU_NOT_IDLE.
2853 2854 2855
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2856
		sd_idle = 1;
L
Linus Torvalds 已提交
2857

2858
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2859
redo:
I
Ingo Molnar 已提交
2860
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2861
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2862
	if (!group) {
I
Ingo Molnar 已提交
2863
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2864
		goto out_balanced;
L
Linus Torvalds 已提交
2865 2866
	}

I
Ingo Molnar 已提交
2867
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2868
				&cpus);
N
Nick Piggin 已提交
2869
	if (!busiest) {
I
Ingo Molnar 已提交
2870
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2871
		goto out_balanced;
L
Linus Torvalds 已提交
2872 2873
	}

N
Nick Piggin 已提交
2874 2875
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2876
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2877

P
Peter Williams 已提交
2878
	ld_moved = 0;
2879 2880 2881
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2882 2883
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2884
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2885 2886
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2887
		spin_unlock(&busiest->lock);
2888

2889
		if (unlikely(all_pinned)) {
2890 2891 2892 2893
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2894 2895
	}

P
Peter Williams 已提交
2896
	if (!ld_moved) {
I
Ingo Molnar 已提交
2897
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2898 2899
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2900 2901
			return -1;
	} else
2902
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2903

P
Peter Williams 已提交
2904
	return ld_moved;
2905 2906

out_balanced:
I
Ingo Molnar 已提交
2907
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2908
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2909
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2910
		return -1;
2911
	sd->nr_balance_failed = 0;
2912

2913
	return 0;
L
Linus Torvalds 已提交
2914 2915 2916 2917 2918 2919
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2920
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2921 2922
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2923 2924
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2925 2926

	for_each_domain(this_cpu, sd) {
2927 2928 2929 2930 2931 2932
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2933
			/* If we've pulled tasks over stop searching: */
2934
			pulled_task = load_balance_newidle(this_cpu,
2935 2936 2937 2938 2939 2940 2941
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2942
	}
I
Ingo Molnar 已提交
2943
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2944 2945 2946 2947 2948
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2949
	}
L
Linus Torvalds 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2960
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2961
{
2962
	int target_cpu = busiest_rq->push_cpu;
2963 2964
	struct sched_domain *sd;
	struct rq *target_rq;
2965

2966
	/* Is there any task to move? */
2967 2968 2969 2970
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2971 2972

	/*
2973 2974 2975
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2976
	 */
2977
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2978

2979 2980
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2981 2982
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2983 2984

	/* Search for an sd spanning us and the target CPU. */
2985
	for_each_domain(target_cpu, sd) {
2986
		if ((sd->flags & SD_LOAD_BALANCE) &&
2987
		    cpu_isset(busiest_cpu, sd->span))
2988
				break;
2989
	}
2990

2991
	if (likely(sd)) {
2992
		schedstat_inc(sd, alb_count);
2993

P
Peter Williams 已提交
2994 2995
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2996 2997 2998 2999
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3000
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3001 3002
}

3003 3004 3005 3006 3007 3008 3009 3010 3011
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3012
/*
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3023
 *
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3080 3081 3082 3083 3084
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3085
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3086
{
3087 3088
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3089 3090
	unsigned long interval;
	struct sched_domain *sd;
3091
	/* Earliest time when we have to do rebalance again */
3092
	unsigned long next_balance = jiffies + 60*HZ;
3093
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3094

3095
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3096 3097 3098 3099
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3100
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3101 3102 3103 3104 3105 3106
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3107 3108 3109
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3110

3111 3112 3113 3114 3115
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3116
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3117
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3118 3119
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3120 3121 3122
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3123
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3124
			}
3125
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3126
		}
3127 3128 3129
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3130
		if (time_after(next_balance, sd->last_balance + interval)) {
3131
			next_balance = sd->last_balance + interval;
3132 3133
			update_next_balance = 1;
		}
3134 3135 3136 3137 3138 3139 3140 3141

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3142
	}
3143 3144 3145 3146 3147 3148 3149 3150

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3151 3152 3153 3154 3155 3156 3157 3158 3159
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3160 3161 3162 3163
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3164

I
Ingo Molnar 已提交
3165
	rebalance_domains(this_cpu, idle);
3166 3167 3168 3169 3170 3171 3172

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3173 3174
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3175 3176 3177 3178
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3179
		cpu_clear(this_cpu, cpus);
3180 3181 3182 3183 3184 3185 3186 3187 3188
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3189
			rebalance_domains(balance_cpu, CPU_IDLE);
3190 3191

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3192 3193
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3206
static inline void trigger_load_balance(struct rq *rq, int cpu)
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3258
}
I
Ingo Molnar 已提交
3259 3260 3261

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3262 3263 3264
/*
 * on UP we do not need to balance between CPUs:
 */
3265
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3266 3267
{
}
I
Ingo Molnar 已提交
3268 3269 3270 3271 3272 3273

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3274
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3275 3276 3277 3278 3279 3280
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3281 3282 3283 3284 3285 3286 3287
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3288 3289
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3290
 */
3291
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3292 3293
{
	unsigned long flags;
3294 3295
	u64 ns, delta_exec;
	struct rq *rq;
3296

3297 3298 3299
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3300 3301
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3302 3303 3304 3305
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3306

L
Linus Torvalds 已提交
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;
3320
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3321 3322 3323

	p->utime = cputime_add(p->utime, cputime);

3324 3325 3326
	if (p != rq->idle)
		cpuacct_charge(p, cputime);

L
Linus Torvalds 已提交
3327 3328 3329 3330 3331 3332 3333 3334
	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
void account_guest_time(struct task_struct *p, cputime_t cputime)
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3374
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3375 3376
	cputime64_t tmp;

3377 3378 3379 3380 3381 3382
	if (p->flags & PF_VCPU) {
		account_guest_time(p, cputime);
		p->flags &= ~PF_VCPU;
		return;
	}

L
Linus Torvalds 已提交
3383 3384 3385 3386 3387 3388 3389 3390
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3391
	else if (p != rq->idle) {
L
Linus Torvalds 已提交
3392
		cpustat->system = cputime64_add(cpustat->system, tmp);
3393 3394
		cpuacct_charge(p, cputime);
	} else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3395 3396 3397 3398 3399 3400 3401
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3422
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3423 3424 3425 3426 3427 3428 3429

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3430
	} else {
L
Linus Torvalds 已提交
3431
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
3432 3433
		cpuacct_charge(p, -tmp);
	}
L
Linus Torvalds 已提交
3434 3435
}

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3447
	struct task_struct *curr = rq->curr;
3448
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3449 3450

	spin_lock(&rq->lock);
3451
	__update_rq_clock(rq);
3452 3453 3454 3455 3456 3457
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3458
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3459 3460 3461
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3462

3463
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3464 3465
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3466
#endif
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3476 3477
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3478 3479 3480 3481
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3482 3483
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3484 3485 3486 3487 3488 3489 3490 3491
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3492 3493
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3494 3495 3496
	/*
	 * Is the spinlock portion underflowing?
	 */
3497 3498 3499 3500
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3501 3502 3503 3504 3505 3506 3507
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3508
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3509
 */
I
Ingo Molnar 已提交
3510
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3511
{
I
Ingo Molnar 已提交
3512
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3513
		prev->comm, preempt_count(), task_pid_nr(prev));
I
Ingo Molnar 已提交
3514 3515 3516 3517 3518
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3519

I
Ingo Molnar 已提交
3520 3521 3522 3523 3524
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3530 3531 3532
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3533 3534
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3535
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3536 3537
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3538 3539
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3540 3541
	}
#endif
I
Ingo Molnar 已提交
3542 3543 3544 3545 3546 3547
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3548
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3549
{
3550
	const struct sched_class *class;
I
Ingo Molnar 已提交
3551
	struct task_struct *p;
L
Linus Torvalds 已提交
3552 3553

	/*
I
Ingo Molnar 已提交
3554 3555
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3556
	 */
I
Ingo Molnar 已提交
3557
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3558
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3559 3560
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3561 3562
	}

I
Ingo Molnar 已提交
3563 3564
	class = sched_class_highest;
	for ( ; ; ) {
3565
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3575

I
Ingo Molnar 已提交
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3598

3599 3600 3601 3602
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3603
	__update_rq_clock(rq);
3604 3605
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3606 3607 3608

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3609
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3610
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3611
		} else {
3612
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3613
		}
I
Ingo Molnar 已提交
3614
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3615 3616
	}

I
Ingo Molnar 已提交
3617
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3618 3619
		idle_balance(cpu, rq);

3620
	prev->sched_class->put_prev_task(rq, prev);
3621
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3622 3623

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3624

L
Linus Torvalds 已提交
3625 3626 3627 3628 3629
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3630
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3631 3632 3633
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3634 3635 3636
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3637
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3638
	}
L
Linus Torvalds 已提交
3639 3640 3641 3642 3643 3644 3645 3646
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3647
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3662
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3663 3664
		return;

3665 3666 3667 3668 3669 3670 3671 3672
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3673
#ifdef CONFIG_PREEMPT_BKL
3674 3675
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3676
#endif
3677
		schedule();
L
Linus Torvalds 已提交
3678
#ifdef CONFIG_PREEMPT_BKL
3679
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3680
#endif
3681
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3682

3683 3684 3685 3686 3687 3688
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3689 3690 3691 3692
}
EXPORT_SYMBOL(preempt_schedule);

/*
3693
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3705
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3706 3707
	BUG_ON(ti->preempt_count || !irqs_disabled());

3708 3709 3710 3711 3712 3713 3714 3715
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3716
#ifdef CONFIG_PREEMPT_BKL
3717 3718
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3719
#endif
3720 3721 3722
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3723
#ifdef CONFIG_PREEMPT_BKL
3724
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3725
#endif
3726
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3727

3728 3729 3730 3731 3732 3733
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3734 3735 3736 3737
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3738 3739
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3740
{
3741
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3757
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3758

3759
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3760 3761
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3762
		if (curr->func(curr, mode, sync, key) &&
3763
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3773
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3774 3775
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3776
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3795
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3807 3808
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3849 3850
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3851 3852 3853 3854 3855 3856 3857
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3858 3859 3860 3861 3862 3863
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3869
				return timeout;
L
Linus Torvalds 已提交
3870 3871 3872 3873 3874 3875 3876 3877
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3878 3879
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3880 3881 3882 3883
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3884
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3885
	spin_unlock_irq(&x->wait.lock);
3886 3887
	return timeout;
}
L
Linus Torvalds 已提交
3888

3889 3890 3891
void fastcall __sched wait_for_completion(struct completion *x)
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3892
}
3893
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3894 3895

unsigned long fastcall __sched
3896
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3897
{
3898
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3899
}
3900
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3901

3902
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3903
{
3904 3905 3906 3907
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3908
}
3909
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3910

3911 3912 3913
unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3914
{
3915
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3916
}
3917
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3918

3919 3920
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3921
{
I
Ingo Molnar 已提交
3922 3923 3924 3925
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3926

3927
	__set_current_state(state);
L
Linus Torvalds 已提交
3928

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3943 3944 3945
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3946
long __sched
I
Ingo Molnar 已提交
3947
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3948
{
3949
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3950 3951 3952
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3953
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3954
{
3955
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3956 3957 3958
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3959
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3960
{
3961
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3962 3963 3964
}
EXPORT_SYMBOL(sleep_on_timeout);

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3977
void rt_mutex_setprio(struct task_struct *p, int prio)
3978 3979
{
	unsigned long flags;
3980
	int oldprio, on_rq, running;
3981
	struct rq *rq;
3982 3983 3984 3985

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3986
	update_rq_clock(rq);
3987

3988
	oldprio = p->prio;
I
Ingo Molnar 已提交
3989
	on_rq = p->se.on_rq;
3990 3991
	running = task_running(rq, p);
	if (on_rq) {
3992
		dequeue_task(rq, p, 0);
3993 3994 3995
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3996 3997 3998 3999 4000 4001

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4002 4003
	p->prio = prio;

I
Ingo Molnar 已提交
4004
	if (on_rq) {
4005 4006
		if (running)
			p->sched_class->set_curr_task(rq);
4007
		enqueue_task(rq, p, 0);
4008 4009
		/*
		 * Reschedule if we are currently running on this runqueue and
4010 4011
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4012
		 */
4013
		if (running) {
4014 4015
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4016 4017 4018
		} else {
			check_preempt_curr(rq, p);
		}
4019 4020 4021 4022 4023 4024
	}
	task_rq_unlock(rq, &flags);
}

#endif

4025
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4026
{
I
Ingo Molnar 已提交
4027
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4028
	unsigned long flags;
4029
	struct rq *rq;
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035 4036 4037

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4038
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4039 4040 4041 4042
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4043
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4044
	 */
4045
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4046 4047 4048
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4049 4050
	on_rq = p->se.on_rq;
	if (on_rq) {
4051
		dequeue_task(rq, p, 0);
4052
		dec_load(rq, p);
4053
	}
L
Linus Torvalds 已提交
4054 4055

	p->static_prio = NICE_TO_PRIO(nice);
4056
	set_load_weight(p);
4057 4058 4059
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4060

I
Ingo Molnar 已提交
4061
	if (on_rq) {
4062
		enqueue_task(rq, p, 0);
4063
		inc_load(rq, p);
L
Linus Torvalds 已提交
4064
		/*
4065 4066
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4067
		 */
4068
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4069 4070 4071 4072 4073 4074 4075
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4076 4077 4078 4079 4080
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4081
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4082
{
4083 4084
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4085

M
Matt Mackall 已提交
4086 4087 4088 4089
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4101
	long nice, retval;
L
Linus Torvalds 已提交
4102 4103 4104 4105 4106 4107

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4108 4109
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4119 4120 4121
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4140
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4141 4142 4143 4144 4145 4146 4147 4148
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4149
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4168
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4169 4170 4171 4172 4173 4174 4175 4176
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4177
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4178
{
4179
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4180 4181 4182
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4183 4184
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4185
{
I
Ingo Molnar 已提交
4186
	BUG_ON(p->se.on_rq);
4187

L
Linus Torvalds 已提交
4188
	p->policy = policy;
I
Ingo Molnar 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4201
	p->rt_priority = prio;
4202 4203 4204
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4205
	set_load_weight(p);
L
Linus Torvalds 已提交
4206 4207 4208
}

/**
4209
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4210 4211 4212
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4213
 *
4214
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4215
 */
I
Ingo Molnar 已提交
4216 4217
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4218
{
4219
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4220
	unsigned long flags;
4221
	struct rq *rq;
L
Linus Torvalds 已提交
4222

4223 4224
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4225 4226 4227 4228 4229
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4230 4231
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4232
		return -EINVAL;
L
Linus Torvalds 已提交
4233 4234
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4235 4236
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4237 4238
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4239
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4240
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4241
		return -EINVAL;
4242
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4243 4244
		return -EINVAL;

4245 4246 4247 4248
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4249
		if (rt_policy(policy)) {
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4266 4267 4268 4269 4270 4271
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4272

4273 4274 4275 4276 4277
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4278 4279 4280 4281

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4282 4283 4284 4285 4286
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4287 4288 4289 4290
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4291
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4292 4293 4294
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4295 4296
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4297 4298
		goto recheck;
	}
I
Ingo Molnar 已提交
4299
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4300
	on_rq = p->se.on_rq;
4301 4302
	running = task_running(rq, p);
	if (on_rq) {
4303
		deactivate_task(rq, p, 0);
4304 4305 4306
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4307

L
Linus Torvalds 已提交
4308
	oldprio = p->prio;
I
Ingo Molnar 已提交
4309
	__setscheduler(rq, p, policy, param->sched_priority);
4310

I
Ingo Molnar 已提交
4311
	if (on_rq) {
4312 4313
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4314
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4315 4316
		/*
		 * Reschedule if we are currently running on this runqueue and
4317 4318
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4319
		 */
4320
		if (running) {
4321 4322
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4323 4324 4325
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4326
	}
4327 4328 4329
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4330 4331
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4332 4333 4334 4335
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4336 4337
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4338 4339 4340
{
	struct sched_param lparam;
	struct task_struct *p;
4341
	int retval;
L
Linus Torvalds 已提交
4342 4343 4344 4345 4346

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4347 4348 4349

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4350
	p = find_process_by_pid(pid);
4351 4352 4353
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4354

L
Linus Torvalds 已提交
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4367 4368 4369 4370
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4390
	struct task_struct *p;
4391
	int retval;
L
Linus Torvalds 已提交
4392 4393

	if (pid < 0)
4394
		return -EINVAL;
L
Linus Torvalds 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4416
	struct task_struct *p;
4417
	int retval;
L
Linus Torvalds 已提交
4418 4419

	if (!param || pid < 0)
4420
		return -EINVAL;
L
Linus Torvalds 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4450 4451
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4452

4453
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4454 4455 4456 4457 4458
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4459
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4476 4477 4478 4479
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4480 4481
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4482
 again:
L
Linus Torvalds 已提交
4483 4484
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4497 4498
out_unlock:
	put_task_struct(p);
4499
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4540
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4541 4542 4543
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4544
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4545 4546
EXPORT_SYMBOL(cpu_online_map);

4547
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4548
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4549 4550 4551 4552
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4553
	struct task_struct *p;
L
Linus Torvalds 已提交
4554 4555
	int retval;

4556
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4557 4558 4559 4560 4561 4562 4563
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4564 4565 4566 4567
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4568
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4569 4570 4571

out_unlock:
	read_unlock(&tasklist_lock);
4572
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4573

4574
	return retval;
L
Linus Torvalds 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4605 4606
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4607 4608 4609
 */
asmlinkage long sys_sched_yield(void)
{
4610
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4611

4612
	schedstat_inc(rq, yld_count);
4613
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4614 4615 4616 4617 4618 4619

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4620
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4621 4622 4623 4624 4625 4626 4627 4628
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4629
static void __cond_resched(void)
L
Linus Torvalds 已提交
4630
{
4631 4632 4633
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4634 4635 4636 4637 4638
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4648 4649
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4665
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4666
{
J
Jan Kara 已提交
4667 4668
	int ret = 0;

L
Linus Torvalds 已提交
4669 4670 4671
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4672
		ret = 1;
L
Linus Torvalds 已提交
4673 4674
		spin_lock(lock);
	}
4675
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4676
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4677 4678 4679
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4680
		ret = 1;
L
Linus Torvalds 已提交
4681 4682
		spin_lock(lock);
	}
J
Jan Kara 已提交
4683
	return ret;
L
Linus Torvalds 已提交
4684 4685 4686 4687 4688 4689 4690
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4691
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4692
		local_bh_enable();
L
Linus Torvalds 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4704
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4723
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4724

4725
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4726 4727 4728
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4729
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4730 4731 4732 4733 4734
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4735
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4736 4737
	long ret;

4738
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4739 4740 4741
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4742
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4763
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4764
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4788
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4789
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4806
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4807
	unsigned int time_slice;
4808
	int retval;
L
Linus Torvalds 已提交
4809 4810 4811
	struct timespec t;

	if (pid < 0)
4812
		return -EINVAL;
L
Linus Torvalds 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4837
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4838
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4839 4840
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4841

L
Linus Torvalds 已提交
4842 4843 4844 4845 4846
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4847
static const char stat_nam[] = "RSDTtZX";
4848 4849

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4850 4851
{
	unsigned long free = 0;
4852
	unsigned state;
L
Linus Torvalds 已提交
4853 4854

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4855
	printk(KERN_INFO "%-13.13s %c", p->comm,
4856
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4857
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4858
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4859
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4860
	else
I
Ingo Molnar 已提交
4861
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4862 4863
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4864
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4865
	else
I
Ingo Molnar 已提交
4866
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4867 4868 4869
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4870
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4871 4872
		while (!*n)
			n++;
4873
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4874 4875
	}
#endif
4876 4877
	printk(KERN_CONT "%5lu %5d %6d\n", free,
		task_pid_nr(p), task_pid_nr(p->parent));
L
Linus Torvalds 已提交
4878 4879 4880 4881 4882

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4883
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4884
{
4885
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4886

4887 4888 4889
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4890
#else
4891 4892
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4893 4894 4895 4896 4897 4898 4899 4900
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4901
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4902
			show_task(p);
L
Linus Torvalds 已提交
4903 4904
	} while_each_thread(g, p);

4905 4906
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4907 4908 4909
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4910
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4911 4912 4913 4914 4915
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4916 4917
}

I
Ingo Molnar 已提交
4918 4919
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4920
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4921 4922
}

4923 4924 4925 4926 4927 4928 4929 4930
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4931
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4932
{
4933
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4934 4935
	unsigned long flags;

I
Ingo Molnar 已提交
4936 4937 4938
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4939
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4940
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4941
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4942 4943 4944

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4945 4946 4947
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4948 4949 4950 4951
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4952
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4953
#else
A
Al Viro 已提交
4954
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4955
#endif
I
Ingo Molnar 已提交
4956 4957 4958 4959
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4975
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4997
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4998
{
4999
	struct migration_req req;
L
Linus Torvalds 已提交
5000
	unsigned long flags;
5001
	struct rq *rq;
5002
	int ret = 0;
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5025

L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5038 5039
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5040
 */
5041
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5042
{
5043
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5044
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5045 5046

	if (unlikely(cpu_is_offline(dest_cpu)))
5047
		return ret;
L
Linus Torvalds 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5060
	on_rq = p->se.on_rq;
5061
	if (on_rq)
5062
		deactivate_task(rq_src, p, 0);
5063

L
Linus Torvalds 已提交
5064
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5065 5066 5067
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5068
	}
5069
	ret = 1;
L
Linus Torvalds 已提交
5070 5071
out:
	double_rq_unlock(rq_src, rq_dest);
5072
	return ret;
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078 5079
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5080
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5081 5082
{
	int cpu = (long)data;
5083
	struct rq *rq;
L
Linus Torvalds 已提交
5084 5085 5086 5087 5088 5089

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5090
		struct migration_req *req;
L
Linus Torvalds 已提交
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5113
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5114 5115
		list_del_init(head->next);

N
Nick Piggin 已提交
5116 5117 5118
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5148 5149 5150 5151
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5152
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5153
{
5154
	unsigned long flags;
L
Linus Torvalds 已提交
5155
	cpumask_t mask;
5156 5157
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5158

5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5171 5172 5173 5174 5175 5176 5177 5178
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
			 * cpuset_cpus_allowed() will not block.  It must be
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5179
			rq = task_rq_lock(p, &flags);
5180
			p->cpus_allowed = cpus_allowed;
5181 5182
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5183

5184 5185 5186 5187 5188 5189 5190 5191
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
5192
			       task_pid_nr(p), p->comm, dead_cpu);
5193
		}
5194
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5204
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5205
{
5206
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5220
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5221

5222
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5223

5224 5225
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5226 5227
			continue;

5228 5229 5230
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5231

5232
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5233 5234
}

A
Alexey Dobriyan 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5249 5250
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5251
 * It does so by boosting its priority to highest possible and adding it to
5252
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5253 5254 5255
 */
void sched_idle_next(void)
{
5256
	int this_cpu = smp_processor_id();
5257
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5258 5259 5260 5261
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5262
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5263

5264 5265 5266
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5267 5268 5269
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5270
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5271 5272

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5273
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5274 5275 5276 5277

	spin_unlock_irqrestore(&rq->lock, flags);
}

5278 5279
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5293
/* called under rq->lock with disabled interrupts */
5294
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5295
{
5296
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5297 5298

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5299
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5300 5301

	/* Cannot have done final schedule yet: would have vanished. */
5302
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5303

5304
	get_task_struct(p);
L
Linus Torvalds 已提交
5305 5306 5307 5308 5309 5310

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5311
	spin_unlock_irq(&rq->lock);
5312
	move_task_off_dead_cpu(dead_cpu, p);
5313
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5314

5315
	put_task_struct(p);
L
Linus Torvalds 已提交
5316 5317 5318 5319 5320
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5321
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5322
	struct task_struct *next;
5323

I
Ingo Molnar 已提交
5324 5325 5326
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5327
		update_rq_clock(rq);
5328
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5329 5330 5331
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5332

L
Linus Torvalds 已提交
5333 5334 5335 5336
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5337 5338 5339
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5340 5341
	{
		.procname	= "sched_domain",
5342
		.mode		= 0555,
5343
	},
5344 5345 5346 5347
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5348
	{
5349
		.ctl_name	= CTL_KERN,
5350
		.procname	= "kernel",
5351
		.mode		= 0555,
5352 5353
		.child		= sd_ctl_dir,
	},
5354 5355 5356 5357 5358 5359
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5360
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5361 5362 5363 5364

	return entry;
}

5365 5366
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5367
	struct ctl_table *entry;
5368

5369 5370 5371 5372 5373 5374 5375
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
	 * will always be set.  In the lowest directory the names are
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5376 5377
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5378 5379 5380
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5381 5382 5383 5384 5385

	kfree(*tablep);
	*tablep = NULL;
}

5386
static void
5387
set_table_entry(struct ctl_table *entry,
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5401
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5402

5403 5404 5405
	if (table == NULL)
		return NULL;

5406
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5407
		sizeof(long), 0644, proc_doulongvec_minmax);
5408
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5409
		sizeof(long), 0644, proc_doulongvec_minmax);
5410
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5411
		sizeof(int), 0644, proc_dointvec_minmax);
5412
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5413
		sizeof(int), 0644, proc_dointvec_minmax);
5414
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5415
		sizeof(int), 0644, proc_dointvec_minmax);
5416
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5417
		sizeof(int), 0644, proc_dointvec_minmax);
5418
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5419
		sizeof(int), 0644, proc_dointvec_minmax);
5420
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5421
		sizeof(int), 0644, proc_dointvec_minmax);
5422
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5423
		sizeof(int), 0644, proc_dointvec_minmax);
5424
	set_table_entry(&table[9], "cache_nice_tries",
5425 5426
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5427
	set_table_entry(&table[10], "flags", &sd->flags,
5428
		sizeof(int), 0644, proc_dointvec_minmax);
5429
	/* &table[11] is terminator */
5430 5431 5432 5433

	return table;
}

I
Ingo Molnar 已提交
5434
static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5435 5436 5437 5438 5439 5440 5441 5442 5443
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5444 5445
	if (table == NULL)
		return NULL;
5446 5447 5448 5449 5450

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5451
		entry->mode = 0555;
5452 5453 5454 5455 5456 5457 5458 5459
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5460
static void register_sched_domain_sysctl(void)
5461 5462 5463 5464 5465
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5466 5467 5468
	if (entry == NULL)
		return;

5469 5470
	sd_ctl_dir[0].child = entry;

5471
	for_each_online_cpu(i) {
5472 5473
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5474
		entry->mode = 0555;
5475
		entry->child = sd_alloc_ctl_cpu_table(i);
5476
		entry++;
5477 5478 5479
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5480 5481 5482 5483 5484 5485 5486

static void unregister_sched_domain_sysctl(void)
{
	unregister_sysctl_table(sd_sysctl_header);
	sd_sysctl_header = NULL;
	sd_free_ctl_entry(&sd_ctl_dir[0].child);
}
5487
#else
5488 5489 5490 5491
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5492 5493 5494 5495
{
}
#endif

L
Linus Torvalds 已提交
5496 5497 5498 5499
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5500 5501
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5502 5503
{
	struct task_struct *p;
5504
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5505
	unsigned long flags;
5506
	struct rq *rq;
L
Linus Torvalds 已提交
5507 5508

	switch (action) {
5509 5510 5511 5512
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5513
	case CPU_UP_PREPARE:
5514
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5515
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5516 5517 5518 5519 5520
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5521
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5522 5523 5524
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5525

L
Linus Torvalds 已提交
5526
	case CPU_ONLINE:
5527
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5528 5529 5530
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5531

L
Linus Torvalds 已提交
5532 5533
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5534
	case CPU_UP_CANCELED_FROZEN:
5535 5536
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5537
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5538 5539
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5540 5541 5542
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5543

L
Linus Torvalds 已提交
5544
	case CPU_DEAD:
5545
	case CPU_DEAD_FROZEN:
5546
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5547 5548 5549 5550 5551
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5552
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5553
		update_rq_clock(rq);
5554
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5555
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5556 5557
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5558
		migrate_dead_tasks(cpu);
5559
		spin_unlock_irq(&rq->lock);
5560
		cpuset_unlock();
L
Linus Torvalds 已提交
5561 5562 5563 5564
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5565
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5566 5567 5568
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5569 5570
			struct migration_req *req;

L
Linus Torvalds 已提交
5571
			req = list_entry(rq->migration_queue.next,
5572
					 struct migration_req, list);
L
Linus Torvalds 已提交
5573 5574 5575 5576 5577 5578
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5579 5580 5581
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5582 5583 5584 5585 5586 5587 5588
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5589
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5590 5591 5592 5593 5594 5595 5596
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5597
	int err;
5598 5599

	/* Start one for the boot CPU: */
5600 5601
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5602 5603
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5604

L
Linus Torvalds 已提交
5605 5606 5607 5608 5609
	return 0;
}
#endif

#ifdef CONFIG_SMP
5610 5611 5612 5613 5614

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5615
#ifdef CONFIG_SCHED_DEBUG
L
Linus Torvalds 已提交
5616 5617 5618 5619
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5620 5621 5622 5623 5624
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5644 5645
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5646 5647 5648 5649 5650 5651
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5652 5653
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5654
		if (!cpu_isset(cpu, group->cpumask))
5655 5656
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5669
			if (!group->__cpu_power) {
I
Ingo Molnar 已提交
5670
				printk(KERN_CONT "\n");
5671 5672
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
5673
				break;
L
Linus Torvalds 已提交
5674 5675 5676
			}

			if (!cpus_weight(group->cpumask)) {
I
Ingo Molnar 已提交
5677
				printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5678
				printk(KERN_ERR "ERROR: empty group\n");
5679
				break;
L
Linus Torvalds 已提交
5680 5681 5682
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
5683
				printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5684
				printk(KERN_ERR "ERROR: repeated CPUs\n");
5685
				break;
L
Linus Torvalds 已提交
5686 5687 5688 5689 5690
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
I
Ingo Molnar 已提交
5691
			printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5692 5693 5694

			group = group->next;
		} while (group != sd->groups);
I
Ingo Molnar 已提交
5695
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5696 5697

		if (!cpus_equal(sd->span, groupmask))
5698 5699
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5700 5701 5702

		level++;
		sd = sd->parent;
5703 5704
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5705

5706 5707 5708
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5709 5710 5711 5712

	} while (sd);
}
#else
5713
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5714 5715
#endif

5716
static int sd_degenerate(struct sched_domain *sd)
5717 5718 5719 5720 5721 5722 5723 5724
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5725 5726 5727
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5741 5742
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5761 5762 5763
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5764 5765 5766 5767 5768 5769 5770
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5771 5772 5773 5774
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5775
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5776
{
5777
	struct rq *rq = cpu_rq(cpu);
5778 5779 5780 5781 5782 5783 5784
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5785
		if (sd_parent_degenerate(tmp, parent)) {
5786
			tmp->parent = parent->parent;
5787 5788 5789
			if (parent->parent)
				parent->parent->child = tmp;
		}
5790 5791
	}

5792
	if (sd && sd_degenerate(sd)) {
5793
		sd = sd->parent;
5794 5795 5796
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5797 5798 5799

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5800
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5801 5802 5803
}

/* cpus with isolated domains */
5804
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5819
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5820 5821

/*
5822 5823 5824 5825
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5826 5827 5828 5829 5830
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5831
static void
5832 5833 5834
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5835 5836 5837 5838 5839 5840
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5841 5842
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5843 5844 5845 5846 5847 5848
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5849
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5850 5851

		for_each_cpu_mask(j, span) {
5852
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5867
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5868

5869
#ifdef CONFIG_NUMA
5870

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5923 5924
	cpumask_t span, nodemask;
	int i;
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5935

5936 5937 5938 5939 5940 5941 5942 5943
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5944
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5945

5946
/*
5947
 * SMT sched-domains:
5948
 */
L
Linus Torvalds 已提交
5949 5950
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5951
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5952

5953 5954
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5955
{
5956 5957
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5958 5959 5960 5961
	return cpu;
}
#endif

5962 5963 5964
/*
 * multi-core sched-domains:
 */
5965 5966
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5967
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5968 5969 5970
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5971 5972
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5973
{
5974
	int group;
5975
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5976
	cpus_and(mask, mask, *cpu_map);
5977 5978 5979 5980
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5981 5982
}
#elif defined(CONFIG_SCHED_MC)
5983 5984
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5985
{
5986 5987
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5988 5989 5990 5991
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5992
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5993
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5994

5995 5996
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5997
{
5998
	int group;
5999
#ifdef CONFIG_SCHED_MC
6000
	cpumask_t mask = cpu_coregroup_map(cpu);
6001
	cpus_and(mask, mask, *cpu_map);
6002
	group = first_cpu(mask);
6003
#elif defined(CONFIG_SCHED_SMT)
6004
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6005
	cpus_and(mask, mask, *cpu_map);
6006
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6007
#else
6008
	group = cpu;
L
Linus Torvalds 已提交
6009
#endif
6010 6011 6012
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6013 6014 6015 6016
}

#ifdef CONFIG_NUMA
/*
6017 6018 6019
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6020
 */
6021
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6022
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6023

6024
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6025
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6026

6027 6028
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6029
{
6030 6031 6032 6033 6034 6035 6036 6037 6038
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6039
}
6040

6041 6042 6043 6044 6045 6046 6047
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6048 6049 6050
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6051

6052 6053 6054 6055 6056 6057 6058 6059
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6060

6061 6062 6063 6064
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6065
}
L
Linus Torvalds 已提交
6066 6067
#endif

6068
#ifdef CONFIG_NUMA
6069 6070 6071
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6072
	int cpu, i;
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6103 6104 6105 6106 6107
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6108

6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6135 6136
	sd->groups->__cpu_power = 0;

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6147
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6148 6149 6150 6151 6152 6153 6154 6155
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6156
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6157 6158 6159 6160
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6161
/*
6162 6163
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6164
 */
6165
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6166 6167
{
	int i;
6168 6169
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6170
	int sd_allnodes = 0;
6171 6172 6173 6174

	/*
	 * Allocate the per-node list of sched groups
	 */
6175
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6176
					   GFP_KERNEL);
6177 6178
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6179
		return -ENOMEM;
6180 6181 6182
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6183 6184

	/*
6185
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6186
	 */
6187
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6188 6189 6190
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6191
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6192 6193

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6194 6195
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6196 6197 6198
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6199
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6200
			p = sd;
6201
			sd_allnodes = 1;
6202 6203 6204
		} else
			p = NULL;

L
Linus Torvalds 已提交
6205 6206
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6207 6208
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6209 6210
		if (p)
			p->child = sd;
6211
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6212 6213 6214 6215 6216 6217 6218
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6219 6220
		if (p)
			p->child = sd;
6221
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6222

6223 6224 6225 6226 6227 6228 6229
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6230
		p->child = sd;
6231
		cpu_to_core_group(i, cpu_map, &sd->groups);
6232 6233
#endif

L
Linus Torvalds 已提交
6234 6235 6236 6237
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6238
		sd->span = per_cpu(cpu_sibling_map, i);
6239
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6240
		sd->parent = p;
6241
		p->child = sd;
6242
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6243 6244 6245 6246 6247
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6248
	for_each_cpu_mask(i, *cpu_map) {
6249
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6250
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6251 6252 6253
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6254 6255
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6256 6257 6258
	}
#endif

6259 6260 6261 6262 6263 6264 6265
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6266 6267
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6268 6269 6270
	}
#endif

L
Linus Torvalds 已提交
6271 6272 6273 6274
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6275
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6276 6277 6278
		if (cpus_empty(nodemask))
			continue;

6279
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6280 6281 6282 6283
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6284
	if (sd_allnodes)
I
Ingo Molnar 已提交
6285 6286
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6297 6298
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6299
			continue;
6300
		}
6301 6302 6303 6304

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6305
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6306 6307 6308 6309 6310
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6311 6312 6313
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6314

6315 6316 6317
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6318
		sg->__cpu_power = 0;
6319
		sg->cpumask = nodemask;
6320
		sg->next = sg;
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6339 6340
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6341 6342 6343
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6344
				goto error;
6345
			}
6346
			sg->__cpu_power = 0;
6347
			sg->cpumask = tmp;
6348
			sg->next = prev->next;
6349 6350 6351 6352 6353
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6354 6355 6356
#endif

	/* Calculate CPU power for physical packages and nodes */
6357
#ifdef CONFIG_SCHED_SMT
6358
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6359 6360
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6361
		init_sched_groups_power(i, sd);
6362
	}
L
Linus Torvalds 已提交
6363
#endif
6364
#ifdef CONFIG_SCHED_MC
6365
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6366 6367
		struct sched_domain *sd = &per_cpu(core_domains, i);

6368
		init_sched_groups_power(i, sd);
6369 6370
	}
#endif
6371

6372
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6373 6374
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6375
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6376 6377
	}

6378
#ifdef CONFIG_NUMA
6379 6380
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6381

6382 6383
	if (sd_allnodes) {
		struct sched_group *sg;
6384

6385
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6386 6387
		init_numa_sched_groups_power(sg);
	}
6388 6389
#endif

L
Linus Torvalds 已提交
6390
	/* Attach the domains */
6391
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6392 6393 6394
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6395 6396
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6397 6398 6399 6400 6401
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6402 6403 6404

	return 0;

6405
#ifdef CONFIG_NUMA
6406 6407 6408
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6409
#endif
L
Linus Torvalds 已提交
6410
}
P
Paul Jackson 已提交
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6422 6423
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6424 6425
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6426
 */
6427
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6428
{
P
Paul Jackson 已提交
6429 6430 6431 6432 6433
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6434
	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6435
	return build_sched_domains(doms_cur);
6436 6437 6438
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6439
{
6440
	free_sched_groups(cpu_map);
6441
}
L
Linus Torvalds 已提交
6442

6443 6444 6445 6446
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6447
static void detach_destroy_domains(const cpumask_t *cpu_map)
6448 6449 6450
{
	int i;

6451 6452
	unregister_sched_domain_sysctl();

6453 6454 6455 6456 6457 6458
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
/*
 * Partition sched domains as specified by the 'ndoms_new'
 * cpumasks in the array doms_new[] of cpumasks.  This compares
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
 * The masks don't intersect (don't overlap.)  We should setup one
 * sched domain for each mask.  CPUs not in any of the cpumasks will
 * not be load balanced.  If the same cpumask appears both in the
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
 * The passed in 'doms_new' should be kmalloc'd.  This routine takes
 * ownership of it and will kfree it when done with it.  If the caller
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
}

6521
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6522
static int arch_reinit_sched_domains(void)
6523 6524 6525
{
	int err;

6526
	mutex_lock(&sched_hotcpu_mutex);
6527 6528
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6529
	mutex_unlock(&sched_hotcpu_mutex);
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6556 6557
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6558 6559 6560
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6561 6562
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6563 6564 6565 6566 6567 6568 6569
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6570 6571
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6572 6573 6574
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6595 6596
#endif

L
Linus Torvalds 已提交
6597 6598 6599
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6600
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6601 6602 6603 6604 6605 6606 6607
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6608
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6609
	case CPU_DOWN_PREPARE:
6610
	case CPU_DOWN_PREPARE_FROZEN:
6611
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6612 6613 6614
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6615
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6616
	case CPU_DOWN_FAILED:
6617
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6618
	case CPU_ONLINE:
6619
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6620
	case CPU_DEAD:
6621
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6622 6623 6624 6625 6626 6627 6628 6629 6630
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6631
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6632 6633 6634 6635 6636 6637

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6638 6639
	cpumask_t non_isolated_cpus;

6640
	mutex_lock(&sched_hotcpu_mutex);
6641
	arch_init_sched_domains(&cpu_online_map);
6642
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6643 6644
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6645
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6646 6647
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6648 6649 6650 6651

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6663

L
Linus Torvalds 已提交
6664 6665 6666 6667 6668
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6669
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6670 6671 6672 6673 6674
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6675
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6676 6677
}

L
Linus Torvalds 已提交
6678 6679
void __init sched_init(void)
{
6680
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6681 6682
	int i, j;

6683
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6684
		struct rt_prio_array *array;
6685
		struct rq *rq;
L
Linus Torvalds 已提交
6686 6687 6688

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6689
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6690
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6691 6692 6693 6694
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6695 6696 6697 6698 6699 6700 6701
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6702
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6703
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6704 6705
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6706 6707 6708
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6709
			se->load.weight = init_task_group_load;
6710
			se->load.inv_weight =
6711
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6712 6713
			se->parent = NULL;
		}
6714
		init_task_group.shares = init_task_group_load;
6715
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6716
#endif
L
Linus Torvalds 已提交
6717

I
Ingo Molnar 已提交
6718 6719
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6720
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6721
		rq->sd = NULL;
L
Linus Torvalds 已提交
6722
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6723
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6724
		rq->push_cpu = 0;
6725
		rq->cpu = i;
L
Linus Torvalds 已提交
6726 6727 6728 6729 6730
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6731 6732 6733 6734
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6735
		}
6736
		highest_cpu = i;
I
Ingo Molnar 已提交
6737 6738
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6739 6740
	}

6741
	set_load_weight(&init_task);
6742

6743 6744 6745 6746
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6747
#ifdef CONFIG_SMP
6748
	nr_cpu_ids = highest_cpu + 1;
6749 6750 6751
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6752 6753 6754 6755
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6769 6770 6771 6772
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6773 6774 6775 6776 6777
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6778
#ifdef in_atomic
L
Linus Torvalds 已提交
6779 6780 6781 6782 6783 6784 6785
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6786
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6787 6788 6789
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6790
		debug_show_held_locks(current);
6791 6792
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6793 6794 6795 6796 6797 6798 6799 6800
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6815 6816
void normalize_rt_tasks(void)
{
6817
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6818
	unsigned long flags;
6819
	struct rq *rq;
L
Linus Torvalds 已提交
6820 6821

	read_lock_irq(&tasklist_lock);
6822
	do_each_thread(g, p) {
6823 6824 6825 6826 6827 6828
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6829 6830
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6831 6832 6833
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6834
#endif
I
Ingo Molnar 已提交
6835 6836 6837 6838 6839 6840 6841 6842 6843
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6844
			continue;
I
Ingo Molnar 已提交
6845
		}
L
Linus Torvalds 已提交
6846

6847 6848
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6849

6850
		normalize_task(rq, p);
6851

6852 6853
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6854 6855
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6856 6857 6858 6859
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6878
struct task_struct *curr_task(int cpu)
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6898
void set_curr_task(int cpu, struct task_struct *p)
6899 6900 6901 6902 6903
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6904 6905 6906 6907

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6908
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6909
{
6910
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6911 6912
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6913
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6914 6915 6916 6917 6918 6919
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6920
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6921 6922
	if (!tg->cfs_rq)
		goto err;
6923
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6924 6925 6926 6927
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6928
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6955 6956 6957 6958 6959
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6960

6961
	tg->shares = NICE_0_LOAD;
6962
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
6963

6964
	return tg;
S
Srivatsa Vaddagiri 已提交
6965 6966 6967

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6968
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
6969
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
6970
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
6971 6972
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
6973 6974 6975
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
6976 6977 6978 6979

	return ERR_PTR(-ENOMEM);
}

6980 6981
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6982
{
6983
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6984
	struct task_group *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7002
/* Destroy runqueue etc associated with a task group */
7003
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7004
{
7005 7006
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
7007

7008 7009 7010 7011 7012 7013 7014 7015 7016
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7017 7018
}

7019
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7020 7021 7022
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7023 7024
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

7040
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7041
		dequeue_task(rq, tsk, 0);
7042 7043 7044
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7045 7046 7047

	set_task_cfs_rq(tsk);

7048 7049 7050
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7051
		enqueue_task(rq, tsk, 0);
7052
	}
S
Srivatsa Vaddagiri 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7079
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7080 7081 7082
{
	int i;

7083
	spin_lock(&tg->lock);
7084
	if (tg->shares == shares)
7085
		goto done;
S
Srivatsa Vaddagiri 已提交
7086

7087
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7088
	for_each_possible_cpu(i)
7089
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7090

7091 7092
done:
	spin_unlock(&tg->lock);
7093
	return 0;
S
Srivatsa Vaddagiri 已提交
7094 7095
}

7096 7097 7098 7099 7100
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7101
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
static inline struct task_group *cgroup_tg(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpu_cgroup_subsys_id),
					 struct task_group, css);
}

static struct cgroup_subsys_state *
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct task_group *tg;

	if (!cont->parent) {
		/* This is early initialization for the top cgroup */
		init_task_group.css.cgroup = cont;
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
	if (cont->parent->parent)
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
	tg->css.cgroup = cont;

	return &tg->css;
}

static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct task_group *tg = cgroup_tg(cont);

	sched_destroy_group(tg);
}

static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cont,
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

static ssize_t cpu_shares_write(struct cgroup *cont, struct cftype *cftype,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	unsigned long shareval;
	struct task_group *tg = cgroup_tg(cont);
	char buffer[2*sizeof(unsigned long) + 1];
	int rc;

	if (nbytes > 2*sizeof(unsigned long))	/* safety check */
		return -E2BIG;

	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;	/* nul-terminate */
	shareval = simple_strtoul(buffer, NULL, 10);

	rc = sched_group_set_shares(tg, shareval);

	return (rc < 0 ? rc : nbytes);
}

static u64 cpu_shares_read_uint(struct cgroup *cont, struct cftype *cft)
{
	struct task_group *tg = cgroup_tg(cont);

	return (u64) tg->shares;
}

static struct cftype cpu_shares = {
	.name = "shares",
	.read_uint = cpu_shares_read_uint,
	.write = cpu_shares_write,
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_file(cont, ss, &cpu_shares);
}

struct cgroup_subsys cpu_cgroup_subsys = {
	.name 	    	= "cpu",
	.create	    	= cpu_cgroup_create,
	.destroy    	= cpu_cgroup_destroy,
	.can_attach 	= cpu_cgroup_can_attach,
	.attach     	= cpu_cgroup_attach,
	.populate   	= cpu_cgroup_populate,
	.subsys_id  	= cpu_cgroup_subsys_id,
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */