sched.c 220.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
368

369
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
370

I
Ingo Molnar 已提交
371 372 373 374 375 376
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
377
	u64 min_vruntime;
378
	u64 pair_start;
I
Ingo Molnar 已提交
379 380 381

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
382 383 384 385 386 387

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
388 389
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
390
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
391 392 393

	unsigned long nr_spread_over;

394
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
395 396
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
397 398
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
399 400 401 402 403 404
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
405 406
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

#ifdef CONFIG_SMP
	unsigned long task_weight;
	unsigned long shares;
	/*
	 * We need space to build a sched_domain wide view of the full task
	 * group tree, in order to avoid depending on dynamic memory allocation
	 * during the load balancing we place this in the per cpu task group
	 * hierarchy. This limits the load balancing to one instance per cpu,
	 * but more should not be needed anyway.
	 */
	struct aggregate_struct {
		/*
		 *   load = weight(cpus) * f(tg)
		 *
		 * Where f(tg) is the recursive weight fraction assigned to
		 * this group.
		 */
		unsigned long load;

		/*
		 * part of the group weight distributed to this span.
		 */
		unsigned long shares;

		/*
		 * The sum of all runqueue weights within this span.
		 */
		unsigned long rq_weight;

		/*
		 * Weight contributed by tasks; this is the part we can
		 * influence by moving tasks around.
		 */
		unsigned long task_weight;
	} aggregate;
#endif
I
Ingo Molnar 已提交
444 445
#endif
};
L
Linus Torvalds 已提交
446

I
Ingo Molnar 已提交
447 448 449
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
450
	unsigned long rt_nr_running;
451
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
452 453
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
454
#ifdef CONFIG_SMP
455
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
456
	int overloaded;
P
Peter Zijlstra 已提交
457
#endif
P
Peter Zijlstra 已提交
458
	int rt_throttled;
P
Peter Zijlstra 已提交
459
	u64 rt_time;
P
Peter Zijlstra 已提交
460
	u64 rt_runtime;
I
Ingo Molnar 已提交
461
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
462
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
463

464
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
465 466
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
467 468 469 470 471
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
472 473
};

G
Gregory Haskins 已提交
474 475 476 477
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
478 479
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
480 481 482 483 484 485 486 487
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
488

I
Ingo Molnar 已提交
489
	/*
490 491 492 493
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
494
	atomic_t rto_count;
495 496 497
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
498 499
};

500 501 502 503
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
504 505 506 507
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
508 509 510 511 512 513 514
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
515
struct rq {
516 517
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
518 519 520 521 522 523

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
524 525
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
526
	unsigned char idle_at_tick;
527
#ifdef CONFIG_NO_HZ
528
	unsigned long last_tick_seen;
529 530
	unsigned char in_nohz_recently;
#endif
531 532
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
533 534 535 536
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
537 538
	struct rt_rq rt;

I
Ingo Molnar 已提交
539
#ifdef CONFIG_FAIR_GROUP_SCHED
540 541
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
542 543
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
544
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
545 546 547 548 549 550 551 552 553 554
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

555
	struct task_struct *curr, *idle;
556
	unsigned long next_balance;
L
Linus Torvalds 已提交
557
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
558

559
	u64 clock;
I
Ingo Molnar 已提交
560

L
Linus Torvalds 已提交
561 562 563
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
564
	struct root_domain *rd;
L
Linus Torvalds 已提交
565 566 567 568 569
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
570 571
	/* cpu of this runqueue: */
	int cpu;
572
	int online;
L
Linus Torvalds 已提交
573

574
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
575 576 577
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
578 579 580 581 582 583
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
584 585 586 587 588
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
589 590 591 592
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
593 594

	/* schedule() stats */
595 596 597
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
598 599

	/* try_to_wake_up() stats */
600 601
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
602 603

	/* BKL stats */
604
	unsigned int bkl_count;
L
Linus Torvalds 已提交
605
#endif
606
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
607 608
};

609
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
610

I
Ingo Molnar 已提交
611 612 613 614 615
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

616 617 618 619 620 621 622 623 624
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
625 626
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
627
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
628 629 630 631
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
632 633
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
634 635 636 637 638 639

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

640 641 642 643 644
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
645 646 647 648 649 650 651 652 653 654 655 656
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
657 658 659 660

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
661
enum {
P
Peter Zijlstra 已提交
662
#include "sched_features.h"
I
Ingo Molnar 已提交
663 664
};

P
Peter Zijlstra 已提交
665 666 667 668 669
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
670
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
671 672 673 674 675 676 677 678 679
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

680
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
681 682 683 684 685 686
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

687
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
715
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
745
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
788

789 790 791 792 793 794
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
795
/*
P
Peter Zijlstra 已提交
796
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
797 798
 * default: 1s
 */
P
Peter Zijlstra 已提交
799
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
800

801 802
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
803 804 805 806 807
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
808

809 810 811 812 813 814 815 816 817 818 819 820
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
821

L
Linus Torvalds 已提交
822
#ifndef prepare_arch_switch
823 824 825 826 827 828
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

829 830 831 832 833
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

834
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
835
static inline int task_running(struct rq *rq, struct task_struct *p)
836
{
837
	return task_current(rq, p);
838 839
}

840
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
841 842 843
{
}

844
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
845
{
846 847 848 849
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
850 851 852 853 854 855 856
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

857 858 859 860
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
861
static inline int task_running(struct rq *rq, struct task_struct *p)
862 863 864 865
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
866
	return task_current(rq, p);
867 868 869
#endif
}

870
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

887
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 889 890 891 892 893 894 895 896 897 898 899
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
900
#endif
901 902
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
903

904 905 906 907
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
908
static inline struct rq *__task_rq_lock(struct task_struct *p)
909 910
	__acquires(rq->lock)
{
911 912 913 914 915
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
916 917 918 919
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
920 921
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
922
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
923 924
 * explicitly disabling preemption.
 */
925
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
926 927
	__acquires(rq->lock)
{
928
	struct rq *rq;
L
Linus Torvalds 已提交
929

930 931 932 933 934 935
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
936 937 938 939
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
940
static void __task_rq_unlock(struct rq *rq)
941 942 943 944 945
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

946
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
947 948 949 950 951 952
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
953
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
954
 */
A
Alexey Dobriyan 已提交
955
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
956 957
	__acquires(rq->lock)
{
958
	struct rq *rq;
L
Linus Torvalds 已提交
959 960 961 962 963 964 965 966

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1002
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1014 1015
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1091
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1092 1093 1094 1095 1096 1097
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1098
#ifdef CONFIG_SMP
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1154
#endif /* CONFIG_SMP */
1155 1156

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1193 1194 1195 1196

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1197 1198
#endif

I
Ingo Molnar 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1212
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1213 1214 1215 1216 1217
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1218
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1219 1220
		return;

P
Peter Zijlstra 已提交
1221
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1284
#endif /* CONFIG_NO_HZ */
1285

1286
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1287
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1288 1289
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1290
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1291
}
1292
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1293

1294 1295 1296 1297 1298 1299 1300 1301
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1302 1303 1304
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1305
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1306

1307 1308 1309
/*
 * delta *= weight / lw
 */
1310
static unsigned long
1311 1312 1313 1314 1315
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1316 1317 1318 1319 1320 1321 1322
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1323 1324 1325 1326 1327

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1328
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1329
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1330 1331
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1332
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1333

1334
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1335 1336
}

1337
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1338 1339
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1344 1345
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1346
	lw->inv_weight = 0;
1347 1348
}

1349 1350 1351 1352
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1353
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 1355 1356 1357
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 1370 1371
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1372 1373
 */
static const int prio_to_weight[40] = {
1374 1375 1376 1377 1378 1379 1380 1381
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1382 1383
};

1384 1385 1386 1387 1388 1389 1390
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1391
static const u32 prio_to_wmult[40] = {
1392 1393 1394 1395 1396 1397 1398 1399
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1400
};
1401

I
Ingo Molnar 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1427

1428 1429 1430 1431 1432 1433
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1444 1445 1446 1447 1448
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

#ifdef CONFIG_FAIR_GROUP_SCHED

/*
 * Group load balancing.
 *
 * We calculate a few balance domain wide aggregate numbers; load and weight.
 * Given the pictures below, and assuming each item has equal weight:
 *
 *         root          1 - thread
 *         / | \         A - group
 *        A  1  B
 *       /|\   / \
 *      C 2 D 3   4
 *      |   |
 *      5   6
 *
 * load:
 *    A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
 *    which equals 1/9-th of the total load.
 *
 * shares:
 *    The weight of this group on the selected cpus.
 *
 * rq_weight:
 *    Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
 *    B would get 2.
 *
 * task_weight:
 *    Part of the rq_weight contributed by tasks; all groups except B would
 *    get 1, B gets 2.
 */

static inline struct aggregate_struct *
1483
aggregate(struct task_group *tg, int cpu)
1484
{
1485
	return &tg->cfs_rq[cpu]->aggregate;
1486 1487
}

1488
typedef void (*aggregate_func)(struct task_group *, int, struct sched_domain *);
1489 1490 1491 1492 1493 1494 1495

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
static
void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1496
			 int cpu, struct sched_domain *sd)
1497 1498 1499 1500 1501 1502
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1503
	(*down)(parent, cpu, sd);
1504 1505 1506 1507 1508 1509 1510
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1511
	(*up)(parent, cpu, sd);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

/*
 * Calculate the aggregate runqueue weight.
 */
1523 1524
static void
aggregate_group_weight(struct task_group *tg, int cpu, struct sched_domain *sd)
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
{
	unsigned long rq_weight = 0;
	unsigned long task_weight = 0;
	int i;

	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		task_weight += tg->cfs_rq[i]->task_weight;
	}

1535 1536
	aggregate(tg, cpu)->rq_weight = rq_weight;
	aggregate(tg, cpu)->task_weight = task_weight;
1537 1538 1539 1540 1541
}

/*
 * Compute the weight of this group on the given cpus.
 */
1542 1543
static void
aggregate_group_shares(struct task_group *tg, int cpu, struct sched_domain *sd)
1544 1545 1546 1547 1548 1549 1550
{
	unsigned long shares = 0;
	int i;

	for_each_cpu_mask(i, sd->span)
		shares += tg->cfs_rq[i]->shares;

1551
	if ((!shares && aggregate(tg, cpu)->rq_weight) || shares > tg->shares)
1552 1553
		shares = tg->shares;

1554
	aggregate(tg, cpu)->shares = shares;
1555 1556 1557 1558 1559 1560
}

/*
 * Compute the load fraction assigned to this group, relies on the aggregate
 * weight and this group's parent's load, i.e. top-down.
 */
1561 1562
static void
aggregate_group_load(struct task_group *tg, int cpu, struct sched_domain *sd)
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
{
	unsigned long load;

	if (!tg->parent) {
		int i;

		load = 0;
		for_each_cpu_mask(i, sd->span)
			load += cpu_rq(i)->load.weight;

	} else {
1574
		load = aggregate(tg->parent, cpu)->load;
1575 1576 1577 1578 1579

		/*
		 * shares is our weight in the parent's rq so
		 * shares/parent->rq_weight gives our fraction of the load
		 */
1580 1581
		load *= aggregate(tg, cpu)->shares;
		load /= aggregate(tg->parent, cpu)->rq_weight + 1;
1582 1583
	}

1584
	aggregate(tg, cpu)->load = load;
1585 1586 1587 1588 1589 1590 1591 1592
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1593 1594
__update_group_shares_cpu(struct task_group *tg, int cpu,
			  struct sched_domain *sd, int tcpu)
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

	if (!tg->se[tcpu])
		return;

	rq_weight = tg->cfs_rq[tcpu]->load.weight;

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1621 1622
	shares = aggregate(tg, cpu)->shares * rq_weight;
	shares /= aggregate(tg, cpu)->rq_weight + 1;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
	tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

	__set_se_shares(tg->se[tcpu], shares);
}

/*
 * Re-adjust the weights on the cpu the task came from and on the cpu the
 * task went to.
 */
static void
1642
__move_group_shares(struct task_group *tg, int cpu, struct sched_domain *sd,
1643 1644 1645 1646 1647 1648
		    int scpu, int dcpu)
{
	unsigned long shares;

	shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;

1649 1650
	__update_group_shares_cpu(tg, cpu, sd, scpu);
	__update_group_shares_cpu(tg, cpu, sd, dcpu);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
	if (shares)
		tg->cfs_rq[dcpu]->shares += shares;
}

/*
 * Because changing a group's shares changes the weight of the super-group
 * we need to walk up the tree and change all shares until we hit the root.
 */
static void
1666
move_group_shares(struct task_group *tg, int cpu, struct sched_domain *sd,
1667 1668 1669
		  int scpu, int dcpu)
{
	while (tg) {
1670
		__move_group_shares(tg, cpu, sd, scpu, dcpu);
1671 1672 1673 1674
		tg = tg->parent;
	}
}

1675 1676
static void
aggregate_group_set_shares(struct task_group *tg, int cpu, struct sched_domain *sd)
1677
{
1678
	unsigned long shares = aggregate(tg, cpu)->shares;
1679 1680 1681 1682 1683 1684 1685
	int i;

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1686
		__update_group_shares_cpu(tg, cpu, sd, i);
1687 1688 1689
		spin_unlock_irqrestore(&rq->lock, flags);
	}

1690
	aggregate_group_shares(tg, cpu, sd);
1691 1692 1693 1694 1695

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
1696
	shares -= aggregate(tg, cpu)->shares;
1697
	if (shares) {
1698 1699
		tg->cfs_rq[cpu]->shares += shares;
		aggregate(tg, cpu)->shares += shares;
1700 1701 1702 1703 1704 1705 1706
	}
}

/*
 * Calculate the accumulative weight and recursive load of each task group
 * while walking down the tree.
 */
1707 1708
static void
aggregate_get_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1709
{
1710 1711 1712
	aggregate_group_weight(tg, cpu, sd);
	aggregate_group_shares(tg, cpu, sd);
	aggregate_group_load(tg, cpu, sd);
1713 1714 1715 1716 1717
}

/*
 * Rebalance the cpu shares while walking back up the tree.
 */
1718 1719
static void
aggregate_get_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1720
{
1721
	aggregate_group_set_shares(tg, cpu, sd);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
}

static DEFINE_PER_CPU(spinlock_t, aggregate_lock);

static void __init init_aggregate(void)
{
	int i;

	for_each_possible_cpu(i)
		spin_lock_init(&per_cpu(aggregate_lock, i));
}

1734
static int get_aggregate(int cpu, struct sched_domain *sd)
1735
{
1736
	if (!spin_trylock(&per_cpu(aggregate_lock, cpu)))
1737 1738
		return 0;

1739
	aggregate_walk_tree(aggregate_get_down, aggregate_get_up, cpu, sd);
1740 1741 1742
	return 1;
}

1743
static void put_aggregate(int cpu, struct sched_domain *sd)
1744
{
1745
	spin_unlock(&per_cpu(aggregate_lock, cpu));
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

static inline void init_aggregate(void)
{
}

1759
static inline int get_aggregate(int cpu, struct sched_domain *sd)
1760 1761 1762 1763
{
	return 0;
}

1764
static inline void put_aggregate(int cpu, struct sched_domain *sd)
1765 1766 1767 1768
{
}
#endif

1769 1770
#endif

I
Ingo Molnar 已提交
1771 1772
#include "sched_stats.h"
#include "sched_idletask.c"
1773 1774
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1775 1776 1777 1778 1779
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1780 1781
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1782

1783
static void inc_nr_running(struct rq *rq)
1784 1785 1786 1787
{
	rq->nr_running++;
}

1788
static void dec_nr_running(struct rq *rq)
1789 1790 1791 1792
{
	rq->nr_running--;
}

1793 1794 1795
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1796 1797 1798 1799
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1800

I
Ingo Molnar 已提交
1801 1802 1803 1804 1805 1806 1807 1808
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1809

I
Ingo Molnar 已提交
1810 1811
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1812 1813
}

1814
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1815
{
I
Ingo Molnar 已提交
1816
	sched_info_queued(p);
1817
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1818
	p->se.on_rq = 1;
1819 1820
}

1821
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1822
{
1823
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1824
	p->se.on_rq = 0;
1825 1826
}

1827
/*
I
Ingo Molnar 已提交
1828
 * __normal_prio - return the priority that is based on the static prio
1829 1830 1831
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1832
	return p->static_prio;
1833 1834
}

1835 1836 1837 1838 1839 1840 1841
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1842
static inline int normal_prio(struct task_struct *p)
1843 1844 1845
{
	int prio;

1846
	if (task_has_rt_policy(p))
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1860
static int effective_prio(struct task_struct *p)
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1873
/*
I
Ingo Molnar 已提交
1874
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1875
 */
I
Ingo Molnar 已提交
1876
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1877
{
1878
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1879
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1880

1881
	enqueue_task(rq, p, wakeup);
1882
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1888
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1889
{
1890
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1891 1892
		rq->nr_uninterruptible++;

1893
	dequeue_task(rq, p, sleep);
1894
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1895 1896 1897 1898 1899 1900
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1901
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1902 1903 1904 1905
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1906 1907
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1908
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1909
#ifdef CONFIG_SMP
1910 1911 1912 1913 1914 1915
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1916 1917
	task_thread_info(p)->cpu = cpu;
#endif
1918 1919
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1932
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1933

1934 1935 1936 1937 1938 1939
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1940 1941 1942
/*
 * Is this task likely cache-hot:
 */
1943
static int
1944 1945 1946 1947
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1948 1949 1950
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1951
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1952 1953
		return 1;

1954 1955 1956
	if (p->sched_class != &fair_sched_class)
		return 0;

1957 1958 1959 1960 1961
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1962 1963 1964 1965 1966 1967
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1968
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1969
{
I
Ingo Molnar 已提交
1970 1971
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1972 1973
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1974
	u64 clock_offset;
I
Ingo Molnar 已提交
1975 1976

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1977 1978 1979 1980

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1981 1982 1983 1984
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1985 1986 1987 1988 1989
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1990
#endif
1991 1992
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1993 1994

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1995 1996
}

1997
struct migration_req {
L
Linus Torvalds 已提交
1998 1999
	struct list_head list;

2000
	struct task_struct *task;
L
Linus Torvalds 已提交
2001 2002 2003
	int dest_cpu;

	struct completion done;
2004
};
L
Linus Torvalds 已提交
2005 2006 2007 2008 2009

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2010
static int
2011
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2012
{
2013
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2014 2015 2016 2017 2018

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2019
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025 2026 2027
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2028

L
Linus Torvalds 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
2041
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
2042 2043
{
	unsigned long flags;
I
Ingo Molnar 已提交
2044
	int running, on_rq;
2045
	struct rq *rq;
L
Linus Torvalds 已提交
2046

2047 2048 2049 2050 2051 2052 2053 2054
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
2069

2070 2071 2072 2073 2074 2075 2076 2077 2078
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2090

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2104

2105 2106 2107 2108 2109 2110 2111
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2127
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2139 2140
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2141 2142 2143 2144
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2145
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2146
{
2147
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2148
	unsigned long total = weighted_cpuload(cpu);
2149

2150
	if (type == 0)
I
Ingo Molnar 已提交
2151
		return total;
2152

I
Ingo Molnar 已提交
2153
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2154 2155 2156
}

/*
2157 2158
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2159
 */
A
Alexey Dobriyan 已提交
2160
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2161
{
2162
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2163
	unsigned long total = weighted_cpuload(cpu);
2164

N
Nick Piggin 已提交
2165
	if (type == 0)
I
Ingo Molnar 已提交
2166
		return total;
2167

I
Ingo Molnar 已提交
2168
	return max(rq->cpu_load[type-1], total);
2169 2170 2171 2172 2173
}

/*
 * Return the average load per task on the cpu's run queue
 */
2174
static unsigned long cpu_avg_load_per_task(int cpu)
2175
{
2176
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2177
	unsigned long total = weighted_cpuload(cpu);
2178 2179
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2180
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2181 2182
}

N
Nick Piggin 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2200 2201
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2202
			continue;
2203

N
Nick Piggin 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2220 2221
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2222 2223 2224 2225 2226 2227 2228 2229

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2230
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2231 2232 2233 2234 2235 2236 2237

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2238
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2239
 */
I
Ingo Molnar 已提交
2240
static int
2241 2242
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2243 2244 2245 2246 2247
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2248
	/* Traverse only the allowed CPUs */
2249
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2250

2251
	for_each_cpu_mask(i, *tmp) {
2252
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2278

2279
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2280 2281 2282
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2283 2284
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2285 2286
		if (tmp->flags & flag)
			sd = tmp;
2287
	}
N
Nick Piggin 已提交
2288 2289

	while (sd) {
2290
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2291
		struct sched_group *group;
2292 2293 2294 2295 2296 2297
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2298 2299 2300

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2301 2302 2303 2304
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2305

2306
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2307 2308 2309 2310 2311
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2312

2313
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2345
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2346
{
2347
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2348 2349
	unsigned long flags;
	long old_state;
2350
	struct rq *rq;
L
Linus Torvalds 已提交
2351

2352 2353 2354
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2355
	smp_wmb();
L
Linus Torvalds 已提交
2356 2357 2358 2359 2360
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2361
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2362 2363 2364
		goto out_running;

	cpu = task_cpu(p);
2365
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2372 2373 2374
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2375 2376 2377 2378 2379 2380
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2381
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2382 2383 2384 2385 2386 2387
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2401
#endif /* CONFIG_SCHEDSTATS */
2402

L
Linus Torvalds 已提交
2403 2404
out_activate:
#endif /* CONFIG_SMP */
2405 2406 2407 2408 2409 2410 2411 2412 2413
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2414
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2415
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2416 2417 2418
	success = 1;

out_running:
I
Ingo Molnar 已提交
2419 2420
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2421
	p->state = TASK_RUNNING;
2422 2423 2424 2425
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2432
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2433
{
2434
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2435 2436 2437
}
EXPORT_SYMBOL(wake_up_process);

2438
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2439 2440 2441 2442 2443 2444 2445
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2446 2447 2448 2449 2450 2451 2452
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2453
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2454 2455
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2456 2457 2458

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2459 2460 2461 2462 2463 2464
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2465
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2466
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2467
#endif
N
Nick Piggin 已提交
2468

P
Peter Zijlstra 已提交
2469
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2470
	p->se.on_rq = 0;
2471
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2472

2473 2474 2475 2476
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2477 2478 2479 2480 2481 2482 2483
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2498
	set_task_cpu(p, cpu);
2499 2500 2501 2502 2503

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2504 2505
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2506

2507
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2508
	if (likely(sched_info_on()))
2509
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2510
#endif
2511
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2512 2513
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2514
#ifdef CONFIG_PREEMPT
2515
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2516
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2517
#endif
N
Nick Piggin 已提交
2518
	put_cpu();
L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2528
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2529 2530
{
	unsigned long flags;
I
Ingo Molnar 已提交
2531
	struct rq *rq;
L
Linus Torvalds 已提交
2532 2533

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2534
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2535
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2536 2537 2538

	p->prio = effective_prio(p);

2539
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2540
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2541 2542
	} else {
		/*
I
Ingo Molnar 已提交
2543 2544
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2545
		 */
2546
		p->sched_class->task_new(rq, p);
2547
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2548
	}
I
Ingo Molnar 已提交
2549
	check_preempt_curr(rq, p);
2550 2551 2552 2553
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2554
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2555 2556
}

2557 2558 2559
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2560 2561
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2562 2563 2564 2565 2566 2567 2568 2569 2570
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2571
 * @notifier: notifier struct to unregister
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2601
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2613
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2614

2615 2616 2617
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2618
 * @prev: the current task that is being switched out
2619 2620 2621 2622 2623 2624 2625 2626 2627
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2628 2629 2630
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2631
{
2632
	fire_sched_out_preempt_notifiers(prev, next);
2633 2634 2635 2636
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2637 2638
/**
 * finish_task_switch - clean up after a task-switch
2639
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2640 2641
 * @prev: the thread we just switched away from.
 *
2642 2643 2644 2645
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2646 2647
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2648
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2649 2650 2651
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2652
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2653 2654 2655
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2656
	long prev_state;
L
Linus Torvalds 已提交
2657 2658 2659 2660 2661

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2662
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2663 2664
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2665
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2666 2667 2668 2669 2670
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2671
	prev_state = prev->state;
2672 2673
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2674 2675 2676 2677
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2678

2679
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2680 2681
	if (mm)
		mmdrop(mm);
2682
	if (unlikely(prev_state == TASK_DEAD)) {
2683 2684 2685
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2686
		 */
2687
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2688
		put_task_struct(prev);
2689
	}
L
Linus Torvalds 已提交
2690 2691 2692 2693 2694 2695
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2696
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2697 2698
	__releases(rq->lock)
{
2699 2700
	struct rq *rq = this_rq();

2701 2702 2703 2704 2705
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2706
	if (current->set_child_tid)
2707
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2714
static inline void
2715
context_switch(struct rq *rq, struct task_struct *prev,
2716
	       struct task_struct *next)
L
Linus Torvalds 已提交
2717
{
I
Ingo Molnar 已提交
2718
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2719

2720
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2721 2722
	mm = next->mm;
	oldmm = prev->active_mm;
2723 2724 2725 2726 2727 2728 2729
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2730
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2737
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2738 2739 2740
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2741 2742 2743 2744 2745 2746 2747
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2748
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2749
#endif
L
Linus Torvalds 已提交
2750 2751 2752 2753

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2754 2755 2756 2757 2758 2759 2760
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2784
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2799 2800
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2801

2802
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2812
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2813 2814 2815 2816 2817
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2833
/*
I
Ingo Molnar 已提交
2834 2835
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2836
 */
I
Ingo Molnar 已提交
2837
static void update_cpu_load(struct rq *this_rq)
2838
{
2839
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2852 2853 2854 2855 2856 2857 2858
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2859 2860
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2861 2862
}

I
Ingo Molnar 已提交
2863 2864
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2865 2866 2867 2868 2869 2870
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2871
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2872 2873 2874
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2875
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2876 2877 2878 2879
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2880
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886 2887
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2888 2889
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2898
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2912
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2913 2914 2915 2916
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2917 2918
	int ret = 0;

2919 2920 2921 2922 2923
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2924
	if (unlikely(!spin_trylock(&busiest->lock))) {
2925
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2926 2927 2928
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2929
			ret = 1;
L
Linus Torvalds 已提交
2930 2931 2932
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2933
	return ret;
L
Linus Torvalds 已提交
2934 2935 2936 2937 2938
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2939
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2940 2941
 * the cpu_allowed mask is restored.
 */
2942
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2943
{
2944
	struct migration_req req;
L
Linus Torvalds 已提交
2945
	unsigned long flags;
2946
	struct rq *rq;
L
Linus Torvalds 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2957

L
Linus Torvalds 已提交
2958 2959 2960 2961 2962
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2963

L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969 2970
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2971 2972
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2973 2974 2975 2976
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2977
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2978
	put_cpu();
N
Nick Piggin 已提交
2979 2980
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2981 2982 2983 2984 2985 2986
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2987 2988
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2989
{
2990
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2991
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2992
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2993 2994 2995 2996
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2997
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2998 2999 3000 3001 3002
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3003
static
3004
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3005
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3006
		     int *all_pinned)
L
Linus Torvalds 已提交
3007 3008 3009 3010 3011 3012 3013
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3014 3015
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3016
		return 0;
3017
	}
3018 3019
	*all_pinned = 0;

3020 3021
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3022
		return 0;
3023
	}
L
Linus Torvalds 已提交
3024

3025 3026 3027 3028 3029 3030
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3031 3032
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3033
#ifdef CONFIG_SCHEDSTATS
3034
		if (task_hot(p, rq->clock, sd)) {
3035
			schedstat_inc(sd, lb_hot_gained[idle]);
3036 3037
			schedstat_inc(p, se.nr_forced_migrations);
		}
3038 3039 3040 3041
#endif
		return 1;
	}

3042 3043
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3044
		return 0;
3045
	}
L
Linus Torvalds 已提交
3046 3047 3048
	return 1;
}

3049 3050 3051 3052 3053
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3054
{
3055
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
3056 3057
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3058

3059
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3060 3061
		goto out;

3062 3063
	pinned = 1;

L
Linus Torvalds 已提交
3064
	/*
I
Ingo Molnar 已提交
3065
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3066
	 */
I
Ingo Molnar 已提交
3067 3068
	p = iterator->start(iterator->arg);
next:
3069
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3070
		goto out;
3071
	/*
3072
	 * To help distribute high priority tasks across CPUs we don't
3073 3074 3075
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
3076 3077
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
3078
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
3079 3080 3081
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3082 3083
	}

I
Ingo Molnar 已提交
3084
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3085
	pulled++;
I
Ingo Molnar 已提交
3086
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3087

3088
	/*
3089
	 * We only want to steal up to the prescribed amount of weighted load.
3090
	 */
3091
	if (rem_load_move > 0) {
3092 3093
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3094 3095
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3096 3097 3098
	}
out:
	/*
3099
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3100 3101 3102 3103
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3104 3105 3106

	if (all_pinned)
		*all_pinned = pinned;
3107 3108

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3109 3110
}

I
Ingo Molnar 已提交
3111
/*
P
Peter Williams 已提交
3112 3113 3114
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3115 3116 3117 3118
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3119
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3120 3121 3122
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3123
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3124
	unsigned long total_load_moved = 0;
3125
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3126 3127

	do {
P
Peter Williams 已提交
3128 3129
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3130
				max_load_move - total_load_moved,
3131
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3132
		class = class->next;
P
Peter Williams 已提交
3133
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3134

P
Peter Williams 已提交
3135 3136 3137
	return total_load_moved > 0;
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3174
	const struct sched_class *class;
P
Peter Williams 已提交
3175 3176

	for (class = sched_class_highest; class; class = class->next)
3177
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3178 3179 3180
			return 1;

	return 0;
I
Ingo Molnar 已提交
3181 3182
}

L
Linus Torvalds 已提交
3183 3184
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3185 3186
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3187 3188 3189
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3190
		   unsigned long *imbalance, enum cpu_idle_type idle,
3191
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3192 3193 3194
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3195
	unsigned long max_pull;
3196 3197
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3198
	int load_idx, group_imb = 0;
3199 3200 3201 3202 3203 3204
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3205 3206

	max_load = this_load = total_load = total_pwr = 0;
3207 3208
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3209
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3210
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3211
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3212 3213 3214
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3215 3216

	do {
3217
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3218 3219
		int local_group;
		int i;
3220
		int __group_imb = 0;
3221
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3222
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3223 3224 3225

		local_group = cpu_isset(this_cpu, group->cpumask);

3226 3227 3228
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3229
		/* Tally up the load of all CPUs in the group */
3230
		sum_weighted_load = sum_nr_running = avg_load = 0;
3231 3232
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3233 3234

		for_each_cpu_mask(i, group->cpumask) {
3235 3236 3237 3238 3239 3240
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3241

3242
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3243 3244
				*sd_idle = 0;

L
Linus Torvalds 已提交
3245
			/* Bias balancing toward cpus of our domain */
3246 3247 3248 3249 3250 3251
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3252
				load = target_load(i, load_idx);
3253
			} else {
N
Nick Piggin 已提交
3254
				load = source_load(i, load_idx);
3255 3256 3257 3258 3259
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3260 3261

			avg_load += load;
3262
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3263
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3264 3265
		}

3266 3267 3268
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3269 3270
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3271
		 */
3272 3273
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3274 3275 3276 3277
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3278
		total_load += avg_load;
3279
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3280 3281

		/* Adjust by relative CPU power of the group */
3282 3283
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3284

3285 3286 3287
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3288
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3289

L
Linus Torvalds 已提交
3290 3291 3292
		if (local_group) {
			this_load = avg_load;
			this = group;
3293 3294 3295
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3296
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3297 3298
			max_load = avg_load;
			busiest = group;
3299 3300
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3301
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3302
		}
3303 3304 3305 3306 3307 3308

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3309 3310 3311
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3312 3313 3314 3315 3316 3317 3318 3319 3320

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3321
		/*
3322 3323
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3324 3325
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3326
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3327
			goto group_next;
3328

I
Ingo Molnar 已提交
3329
		/*
3330
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3331 3332 3333 3334 3335
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3336 3337
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3338 3339
			group_min = group;
			min_nr_running = sum_nr_running;
3340 3341
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3342
		}
3343

I
Ingo Molnar 已提交
3344
		/*
3345
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3357
		}
3358 3359
group_next:
#endif
L
Linus Torvalds 已提交
3360 3361 3362
		group = group->next;
	} while (group != sd->groups);

3363
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3364 3365 3366 3367 3368 3369 3370 3371
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3372
	busiest_load_per_task /= busiest_nr_running;
3373 3374 3375
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3376 3377 3378 3379 3380 3381 3382 3383
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3384
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3385 3386
	 * appear as very large values with unsigned longs.
	 */
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3399 3400

	/* Don't want to pull so many tasks that a group would go idle */
3401
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3402

L
Linus Torvalds 已提交
3403
	/* How much load to actually move to equalise the imbalance */
3404 3405
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3406 3407
			/ SCHED_LOAD_SCALE;

3408 3409 3410 3411 3412 3413
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3414
	if (*imbalance < busiest_load_per_task) {
3415
		unsigned long tmp, pwr_now, pwr_move;
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3427

I
Ingo Molnar 已提交
3428 3429
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3430
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3431 3432 3433 3434 3435 3436 3437 3438 3439
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3440 3441 3442 3443
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3444 3445 3446
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3447 3448
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3449
		if (max_load > tmp)
3450
			pwr_move += busiest->__cpu_power *
3451
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3452 3453

		/* Amount of load we'd add */
3454
		if (max_load * busiest->__cpu_power <
3455
				busiest_load_per_task * SCHED_LOAD_SCALE)
3456 3457
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3458
		else
3459 3460 3461 3462
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3463 3464 3465
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3466 3467
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3468 3469 3470 3471 3472
	}

	return busiest;

out_balanced:
3473
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3474
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3475
		goto ret;
L
Linus Torvalds 已提交
3476

3477 3478 3479 3480 3481
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3482
ret:
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487 3488 3489
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3490
static struct rq *
I
Ingo Molnar 已提交
3491
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3492
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3493
{
3494
	struct rq *busiest = NULL, *rq;
3495
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3496 3497 3498
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3499
		unsigned long wl;
3500 3501 3502 3503

		if (!cpu_isset(i, *cpus))
			continue;

3504
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3505
		wl = weighted_cpuload(i);
3506

I
Ingo Molnar 已提交
3507
		if (rq->nr_running == 1 && wl > imbalance)
3508
			continue;
L
Linus Torvalds 已提交
3509

I
Ingo Molnar 已提交
3510 3511
		if (wl > max_load) {
			max_load = wl;
3512
			busiest = rq;
L
Linus Torvalds 已提交
3513 3514 3515 3516 3517 3518
		}
	}

	return busiest;
}

3519 3520 3521 3522 3523 3524
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3525 3526 3527 3528
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3529
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3530
			struct sched_domain *sd, enum cpu_idle_type idle,
3531
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3532
{
P
Peter Williams 已提交
3533
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3534 3535
	struct sched_group *group;
	unsigned long imbalance;
3536
	struct rq *busiest;
3537
	unsigned long flags;
3538
	int unlock_aggregate;
N
Nick Piggin 已提交
3539

3540 3541
	cpus_setall(*cpus);

3542
	unlock_aggregate = get_aggregate(this_cpu, sd);
3543

3544 3545 3546
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3547
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3548
	 * portraying it as CPU_NOT_IDLE.
3549
	 */
I
Ingo Molnar 已提交
3550
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3551
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3552
		sd_idle = 1;
L
Linus Torvalds 已提交
3553

3554
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3555

3556 3557
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3558
				   cpus, balance);
3559

3560
	if (*balance == 0)
3561 3562
		goto out_balanced;

L
Linus Torvalds 已提交
3563 3564 3565 3566 3567
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3568
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3569 3570 3571 3572 3573
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3574
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3575 3576 3577

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3578
	ld_moved = 0;
L
Linus Torvalds 已提交
3579 3580 3581 3582
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3583
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3584 3585
		 * correctly treated as an imbalance.
		 */
3586
		local_irq_save(flags);
N
Nick Piggin 已提交
3587
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3588
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3589
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3590
		double_rq_unlock(this_rq, busiest);
3591
		local_irq_restore(flags);
3592

3593 3594 3595
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3596
		if (ld_moved && this_cpu != smp_processor_id())
3597 3598
			resched_cpu(this_cpu);

3599
		/* All tasks on this runqueue were pinned by CPU affinity */
3600
		if (unlikely(all_pinned)) {
3601 3602
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3603
				goto redo;
3604
			goto out_balanced;
3605
		}
L
Linus Torvalds 已提交
3606
	}
3607

P
Peter Williams 已提交
3608
	if (!ld_moved) {
L
Linus Torvalds 已提交
3609 3610 3611 3612 3613
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3614
			spin_lock_irqsave(&busiest->lock, flags);
3615 3616 3617 3618 3619

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3620
				spin_unlock_irqrestore(&busiest->lock, flags);
3621 3622 3623 3624
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3625 3626 3627
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3628
				active_balance = 1;
L
Linus Torvalds 已提交
3629
			}
3630
			spin_unlock_irqrestore(&busiest->lock, flags);
3631
			if (active_balance)
L
Linus Torvalds 已提交
3632 3633 3634 3635 3636 3637
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3638
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3639
		}
3640
	} else
L
Linus Torvalds 已提交
3641 3642
		sd->nr_balance_failed = 0;

3643
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3644 3645
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3646 3647 3648 3649 3650 3651 3652 3653 3654
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3655 3656
	}

P
Peter Williams 已提交
3657
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3658
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3659 3660 3661
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3662 3663 3664 3665

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3666
	sd->nr_balance_failed = 0;
3667 3668

out_one_pinned:
L
Linus Torvalds 已提交
3669
	/* tune up the balancing interval */
3670 3671
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3672 3673
		sd->balance_interval *= 2;

3674
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3675
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3676 3677 3678 3679 3680
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	if (unlock_aggregate)
3681
		put_aggregate(this_cpu, sd);
3682
	return ld_moved;
L
Linus Torvalds 已提交
3683 3684 3685 3686 3687 3688
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3689
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3690 3691
 * this_rq is locked.
 */
3692
static int
3693 3694
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3695 3696
{
	struct sched_group *group;
3697
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3698
	unsigned long imbalance;
P
Peter Williams 已提交
3699
	int ld_moved = 0;
N
Nick Piggin 已提交
3700
	int sd_idle = 0;
3701
	int all_pinned = 0;
3702 3703

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3704

3705 3706 3707 3708
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3709
	 * portraying it as CPU_NOT_IDLE.
3710 3711 3712
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3713
		sd_idle = 1;
L
Linus Torvalds 已提交
3714

3715
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3716
redo:
I
Ingo Molnar 已提交
3717
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3718
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3719
	if (!group) {
I
Ingo Molnar 已提交
3720
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3721
		goto out_balanced;
L
Linus Torvalds 已提交
3722 3723
	}

3724
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3725
	if (!busiest) {
I
Ingo Molnar 已提交
3726
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3727
		goto out_balanced;
L
Linus Torvalds 已提交
3728 3729
	}

N
Nick Piggin 已提交
3730 3731
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3732
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3733

P
Peter Williams 已提交
3734
	ld_moved = 0;
3735 3736 3737
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3738 3739
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3740
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3741 3742
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3743
		spin_unlock(&busiest->lock);
3744

3745
		if (unlikely(all_pinned)) {
3746 3747
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3748 3749
				goto redo;
		}
3750 3751
	}

P
Peter Williams 已提交
3752
	if (!ld_moved) {
I
Ingo Molnar 已提交
3753
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3754 3755
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3756 3757
			return -1;
	} else
3758
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3759

P
Peter Williams 已提交
3760
	return ld_moved;
3761 3762

out_balanced:
I
Ingo Molnar 已提交
3763
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3764
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3765
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3766
		return -1;
3767
	sd->nr_balance_failed = 0;
3768

3769
	return 0;
L
Linus Torvalds 已提交
3770 3771 3772 3773 3774 3775
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3776
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3777 3778
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3779 3780
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3781
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3782 3783

	for_each_domain(this_cpu, sd) {
3784 3785 3786 3787 3788 3789
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3790
			/* If we've pulled tasks over stop searching: */
3791 3792
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3793 3794 3795 3796 3797 3798

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3799
	}
I
Ingo Molnar 已提交
3800
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3801 3802 3803 3804 3805
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3806
	}
L
Linus Torvalds 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3817
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3818
{
3819
	int target_cpu = busiest_rq->push_cpu;
3820 3821
	struct sched_domain *sd;
	struct rq *target_rq;
3822

3823
	/* Is there any task to move? */
3824 3825 3826 3827
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3828 3829

	/*
3830
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3831
	 * we need to fix it. Originally reported by
3832
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3833
	 */
3834
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3835

3836 3837
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3838 3839
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3840 3841

	/* Search for an sd spanning us and the target CPU. */
3842
	for_each_domain(target_cpu, sd) {
3843
		if ((sd->flags & SD_LOAD_BALANCE) &&
3844
		    cpu_isset(busiest_cpu, sd->span))
3845
				break;
3846
	}
3847

3848
	if (likely(sd)) {
3849
		schedstat_inc(sd, alb_count);
3850

P
Peter Williams 已提交
3851 3852
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3853 3854 3855 3856
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3857
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3858 3859
}

3860 3861 3862
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3863
	cpumask_t cpu_mask;
3864 3865 3866 3867 3868
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3869
/*
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3880
 *
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3937 3938 3939 3940 3941
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3942
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3943
{
3944 3945
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3946 3947
	unsigned long interval;
	struct sched_domain *sd;
3948
	/* Earliest time when we have to do rebalance again */
3949
	unsigned long next_balance = jiffies + 60*HZ;
3950
	int update_next_balance = 0;
3951
	int need_serialize;
3952
	cpumask_t tmp;
L
Linus Torvalds 已提交
3953

3954
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3955 3956 3957 3958
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3959
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3960 3961 3962 3963 3964 3965
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3966 3967 3968
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3969
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3970

3971
		if (need_serialize) {
3972 3973 3974 3975
			if (!spin_trylock(&balancing))
				goto out;
		}

3976
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3977
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3978 3979
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3980 3981 3982
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3983
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3984
			}
3985
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3986
		}
3987
		if (need_serialize)
3988 3989
			spin_unlock(&balancing);
out:
3990
		if (time_after(next_balance, sd->last_balance + interval)) {
3991
			next_balance = sd->last_balance + interval;
3992 3993
			update_next_balance = 1;
		}
3994 3995 3996 3997 3998 3999 4000 4001

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4002
	}
4003 4004 4005 4006 4007 4008 4009 4010

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4011 4012 4013 4014 4015 4016 4017 4018 4019
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4020 4021 4022 4023
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4024

I
Ingo Molnar 已提交
4025
	rebalance_domains(this_cpu, idle);
4026 4027 4028 4029 4030 4031 4032

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4033 4034
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4035 4036 4037 4038
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
4039
		cpu_clear(this_cpu, cpus);
4040 4041 4042 4043 4044 4045 4046 4047 4048
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4049
			rebalance_domains(balance_cpu, CPU_IDLE);
4050 4051

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4052 4053
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4066
static inline void trigger_load_balance(struct rq *rq, int cpu)
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4093
			if (ilb < nr_cpu_ids)
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4118
}
I
Ingo Molnar 已提交
4119 4120 4121

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4122 4123 4124
/*
 * on UP we do not need to balance between CPUs:
 */
4125
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4126 4127
{
}
I
Ingo Molnar 已提交
4128

L
Linus Torvalds 已提交
4129 4130 4131 4132 4133 4134 4135
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4136 4137
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4138
 */
4139
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4140 4141
{
	unsigned long flags;
4142 4143
	u64 ns, delta_exec;
	struct rq *rq;
4144

4145 4146
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4147
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4148 4149
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4150 4151 4152 4153
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4154

L
Linus Torvalds 已提交
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4178 4179 4180 4181 4182
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4183
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4217
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4218 4219
	cputime64_t tmp;

4220 4221 4222 4223
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4224

L
Linus Torvalds 已提交
4225 4226 4227 4228 4229 4230 4231 4232
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4233
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4234
		cpustat->system = cputime64_add(cpustat->system, tmp);
4235
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4236 4237 4238 4239 4240 4241 4242
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4263
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268 4269 4270

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4271
	} else
L
Linus Torvalds 已提交
4272 4273 4274
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4286
	struct task_struct *curr = rq->curr;
4287 4288

	sched_clock_tick();
I
Ingo Molnar 已提交
4289 4290

	spin_lock(&rq->lock);
4291
	update_rq_clock(rq);
4292
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4293
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4294
	spin_unlock(&rq->lock);
4295

4296
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4297 4298
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4299
#endif
L
Linus Torvalds 已提交
4300 4301 4302 4303
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4304
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4305 4306 4307 4308
{
	/*
	 * Underflow?
	 */
4309 4310
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4311 4312 4313 4314
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4315 4316
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4317 4318 4319
}
EXPORT_SYMBOL(add_preempt_count);

4320
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4321 4322 4323 4324
{
	/*
	 * Underflow?
	 */
4325 4326
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4327 4328 4329
	/*
	 * Is the spinlock portion underflowing?
	 */
4330 4331 4332 4333
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4334 4335 4336 4337 4338 4339 4340
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4341
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4342
 */
I
Ingo Molnar 已提交
4343
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4344
{
4345 4346 4347 4348 4349
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4350
	debug_show_held_locks(prev);
4351
	print_modules();
I
Ingo Molnar 已提交
4352 4353
	if (irqs_disabled())
		print_irqtrace_events(prev);
4354 4355 4356 4357 4358

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4359
}
L
Linus Torvalds 已提交
4360

I
Ingo Molnar 已提交
4361 4362 4363 4364 4365
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4366
	/*
I
Ingo Molnar 已提交
4367
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4368 4369 4370
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4371
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4372 4373
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4374 4375
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4376
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4377 4378
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4379 4380
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4381 4382
	}
#endif
I
Ingo Molnar 已提交
4383 4384 4385 4386 4387 4388
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4389
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4390
{
4391
	const struct sched_class *class;
I
Ingo Molnar 已提交
4392
	struct task_struct *p;
L
Linus Torvalds 已提交
4393 4394

	/*
I
Ingo Molnar 已提交
4395 4396
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4397
	 */
I
Ingo Molnar 已提交
4398
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4399
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4400 4401
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4402 4403
	}

I
Ingo Molnar 已提交
4404 4405
	class = sched_class_highest;
	for ( ; ; ) {
4406
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4416

I
Ingo Molnar 已提交
4417 4418 4419 4420 4421 4422
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4423
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4424
	struct rq *rq;
M
Mike Galbraith 已提交
4425
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4439

M
Mike Galbraith 已提交
4440 4441
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4442

4443 4444 4445 4446
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4447
	update_rq_clock(rq);
4448 4449
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4450 4451

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4452
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4453
			prev->state = TASK_RUNNING;
4454
		else
4455
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4456
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4457 4458
	}

4459 4460 4461 4462
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4463

I
Ingo Molnar 已提交
4464
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4465 4466
		idle_balance(cpu, rq);

4467
	prev->sched_class->put_prev_task(rq, prev);
4468
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4469 4470

	if (likely(prev != next)) {
4471 4472
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4473 4474 4475 4476
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4477
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4478 4479 4480 4481 4482 4483
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4484 4485 4486
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4487 4488
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4489 4490

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4491
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4492

L
Linus Torvalds 已提交
4493 4494 4495 4496 4497 4498 4499 4500
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4501
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4502
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4508

L
Linus Torvalds 已提交
4509 4510
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4511
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4512
	 */
N
Nick Piggin 已提交
4513
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4514 4515
		return;

4516 4517 4518 4519
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4520

4521 4522 4523 4524 4525 4526
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4527 4528 4529 4530
}
EXPORT_SYMBOL(preempt_schedule);

/*
4531
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4532 4533 4534 4535 4536 4537 4538
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4539

4540
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4541 4542
	BUG_ON(ti->preempt_count || !irqs_disabled());

4543 4544 4545 4546 4547 4548
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4549

4550 4551 4552 4553 4554 4555
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4556 4557 4558 4559
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4560 4561
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4562
{
4563
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4564 4565 4566 4567
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4568 4569
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4570 4571 4572
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4573
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4574 4575 4576 4577 4578
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4579
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4580

4581
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4582 4583
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4584
		if (curr->func(curr, mode, sync, key) &&
4585
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4586 4587 4588 4589 4590 4591 4592 4593 4594
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4595
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4596
 */
4597
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4598
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4611
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4612 4613 4614 4615 4616
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4617
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4629
void
I
Ingo Molnar 已提交
4630
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4647
void complete(struct completion *x)
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4653
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4654 4655 4656 4657
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4658
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4659 4660 4661 4662 4663
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4664
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4665 4666 4667 4668
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4669 4670
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4671 4672 4673 4674 4675 4676 4677
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4678 4679 4680 4681
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4682 4683
				timeout = -ERESTARTSYS;
				break;
4684 4685
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4686 4687 4688
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4689
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4690
		__remove_wait_queue(&x->wait, &wait);
4691 4692
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4693 4694
	}
	x->done--;
4695
	return timeout ?: 1;
L
Linus Torvalds 已提交
4696 4697
}

4698 4699
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4700 4701 4702 4703
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4704
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4705
	spin_unlock_irq(&x->wait.lock);
4706 4707
	return timeout;
}
L
Linus Torvalds 已提交
4708

4709
void __sched wait_for_completion(struct completion *x)
4710 4711
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4712
}
4713
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4714

4715
unsigned long __sched
4716
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4717
{
4718
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4719
}
4720
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4721

4722
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4723
{
4724 4725 4726 4727
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4728
}
4729
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4730

4731
unsigned long __sched
4732 4733
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4734
{
4735
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4736
}
4737
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4738

M
Matthew Wilcox 已提交
4739 4740 4741 4742 4743 4744 4745 4746 4747
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4748 4749
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4750
{
I
Ingo Molnar 已提交
4751 4752 4753 4754
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4755

4756
	__set_current_state(state);
L
Linus Torvalds 已提交
4757

4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4772 4773 4774
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4775
long __sched
I
Ingo Molnar 已提交
4776
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4777
{
4778
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4779 4780 4781
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4782
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4783
{
4784
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4785 4786 4787
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4788
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4789
{
4790
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4791 4792 4793
}
EXPORT_SYMBOL(sleep_on_timeout);

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4806
void rt_mutex_setprio(struct task_struct *p, int prio)
4807 4808
{
	unsigned long flags;
4809
	int oldprio, on_rq, running;
4810
	struct rq *rq;
4811
	const struct sched_class *prev_class = p->sched_class;
4812 4813 4814 4815

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4816
	update_rq_clock(rq);
4817

4818
	oldprio = p->prio;
I
Ingo Molnar 已提交
4819
	on_rq = p->se.on_rq;
4820
	running = task_current(rq, p);
4821
	if (on_rq)
4822
		dequeue_task(rq, p, 0);
4823 4824
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4825 4826 4827 4828 4829 4830

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4831 4832
	p->prio = prio;

4833 4834
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4835
	if (on_rq) {
4836
		enqueue_task(rq, p, 0);
4837 4838

		check_class_changed(rq, p, prev_class, oldprio, running);
4839 4840 4841 4842 4843 4844
	}
	task_rq_unlock(rq, &flags);
}

#endif

4845
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4846
{
I
Ingo Molnar 已提交
4847
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4848
	unsigned long flags;
4849
	struct rq *rq;
L
Linus Torvalds 已提交
4850 4851 4852 4853 4854 4855 4856 4857

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4858
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4859 4860 4861 4862
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4863
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4864
	 */
4865
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4866 4867 4868
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4869
	on_rq = p->se.on_rq;
4870
	if (on_rq)
4871
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4872 4873

	p->static_prio = NICE_TO_PRIO(nice);
4874
	set_load_weight(p);
4875 4876 4877
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4878

I
Ingo Molnar 已提交
4879
	if (on_rq) {
4880
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4881
		/*
4882 4883
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4884
		 */
4885
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4886 4887 4888 4889 4890 4891 4892
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4893 4894 4895 4896 4897
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4898
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4899
{
4900 4901
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4902

M
Matt Mackall 已提交
4903 4904 4905 4906
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4918
	long nice, retval;
L
Linus Torvalds 已提交
4919 4920 4921 4922 4923 4924

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4925 4926
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4936 4937 4938
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4957
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4958 4959 4960 4961 4962 4963 4964 4965
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4966
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4967 4968 4969
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4970
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4985
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992 4993
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4994
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4995
{
4996
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4997 4998 4999
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5000 5001
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5002
{
I
Ingo Molnar 已提交
5003
	BUG_ON(p->se.on_rq);
5004

L
Linus Torvalds 已提交
5005
	p->policy = policy;
I
Ingo Molnar 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5018
	p->rt_priority = prio;
5019 5020 5021
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5022
	set_load_weight(p);
L
Linus Torvalds 已提交
5023 5024 5025
}

/**
5026
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
5027 5028 5029
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
5030
 *
5031
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
5032
 */
I
Ingo Molnar 已提交
5033 5034
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
5035
{
5036
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5037
	unsigned long flags;
5038
	const struct sched_class *prev_class = p->sched_class;
5039
	struct rq *rq;
L
Linus Torvalds 已提交
5040

5041 5042
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5043 5044 5045 5046 5047
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5048 5049
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5050
		return -EINVAL;
L
Linus Torvalds 已提交
5051 5052
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5053 5054
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5055 5056
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5057
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5058
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5059
		return -EINVAL;
5060
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5061 5062
		return -EINVAL;

5063 5064 5065 5066
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
5067
		if (rt_policy(policy)) {
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5084 5085 5086 5087 5088 5089
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5090

5091 5092 5093 5094 5095
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5096

5097 5098 5099 5100 5101
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5102
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5103 5104 5105
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5106 5107 5108
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5109 5110 5111 5112 5113
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5114 5115 5116 5117
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5118
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5119 5120 5121
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5122 5123
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5124 5125
		goto recheck;
	}
I
Ingo Molnar 已提交
5126
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5127
	on_rq = p->se.on_rq;
5128
	running = task_current(rq, p);
5129
	if (on_rq)
5130
		deactivate_task(rq, p, 0);
5131 5132
	if (running)
		p->sched_class->put_prev_task(rq, p);
5133

L
Linus Torvalds 已提交
5134
	oldprio = p->prio;
I
Ingo Molnar 已提交
5135
	__setscheduler(rq, p, policy, param->sched_priority);
5136

5137 5138
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5139 5140
	if (on_rq) {
		activate_task(rq, p, 0);
5141 5142

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5143
	}
5144 5145 5146
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5147 5148
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5149 5150 5151 5152
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5153 5154
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5155 5156 5157
{
	struct sched_param lparam;
	struct task_struct *p;
5158
	int retval;
L
Linus Torvalds 已提交
5159 5160 5161 5162 5163

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5164 5165 5166

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5167
	p = find_process_by_pid(pid);
5168 5169 5170
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5171

L
Linus Torvalds 已提交
5172 5173 5174 5175 5176 5177 5178 5179 5180
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5181 5182
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5183
{
5184 5185 5186 5187
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5207
	struct task_struct *p;
5208
	int retval;
L
Linus Torvalds 已提交
5209 5210

	if (pid < 0)
5211
		return -EINVAL;
L
Linus Torvalds 已提交
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5233
	struct task_struct *p;
5234
	int retval;
L
Linus Torvalds 已提交
5235 5236

	if (!param || pid < 0)
5237
		return -EINVAL;
L
Linus Torvalds 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5264
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5265 5266
{
	cpumask_t cpus_allowed;
5267
	cpumask_t new_mask = *in_mask;
5268 5269
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5270

5271
	get_online_cpus();
L
Linus Torvalds 已提交
5272 5273 5274 5275 5276
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5277
		put_online_cpus();
L
Linus Torvalds 已提交
5278 5279 5280 5281 5282
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5283
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5294 5295 5296 5297
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5298
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5299
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5300
 again:
5301
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5302

P
Paul Menage 已提交
5303
	if (!retval) {
5304
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5315 5316
out_unlock:
	put_task_struct(p);
5317
	put_online_cpus();
L
Linus Torvalds 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5348
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5349 5350 5351 5352
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5353
	struct task_struct *p;
L
Linus Torvalds 已提交
5354 5355
	int retval;

5356
	get_online_cpus();
L
Linus Torvalds 已提交
5357 5358 5359 5360 5361 5362 5363
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5364 5365 5366 5367
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5368
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5369 5370 5371

out_unlock:
	read_unlock(&tasklist_lock);
5372
	put_online_cpus();
L
Linus Torvalds 已提交
5373

5374
	return retval;
L
Linus Torvalds 已提交
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5405 5406
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5407 5408 5409
 */
asmlinkage long sys_sched_yield(void)
{
5410
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5411

5412
	schedstat_inc(rq, yld_count);
5413
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5414 5415 5416 5417 5418 5419

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5420
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5421 5422 5423 5424 5425 5426 5427 5428
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5429
static void __cond_resched(void)
L
Linus Torvalds 已提交
5430
{
5431 5432 5433
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5434 5435 5436 5437 5438
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5439 5440 5441 5442 5443 5444 5445
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5446
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5447
{
5448 5449
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5450 5451 5452 5453 5454
		__cond_resched();
		return 1;
	}
	return 0;
}
5455
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5456 5457 5458 5459 5460

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5461
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5462 5463 5464
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5465
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5466
{
N
Nick Piggin 已提交
5467
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5468 5469
	int ret = 0;

N
Nick Piggin 已提交
5470
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5471
		spin_unlock(lock);
N
Nick Piggin 已提交
5472 5473 5474 5475
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5476
		ret = 1;
L
Linus Torvalds 已提交
5477 5478
		spin_lock(lock);
	}
J
Jan Kara 已提交
5479
	return ret;
L
Linus Torvalds 已提交
5480 5481 5482 5483 5484 5485 5486
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5487
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5488
		local_bh_enable();
L
Linus Torvalds 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5500
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5511
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5512 5513 5514 5515 5516 5517 5518
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5519
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5520

5521
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5522 5523 5524
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5525
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5526 5527 5528 5529 5530
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5531
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5532 5533
	long ret;

5534
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5535 5536 5537
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5538
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5559
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5560
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5584
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5585
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5602
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5603
	unsigned int time_slice;
5604
	int retval;
L
Linus Torvalds 已提交
5605 5606 5607
	struct timespec t;

	if (pid < 0)
5608
		return -EINVAL;
L
Linus Torvalds 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5620 5621 5622 5623 5624 5625
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5626
		time_slice = DEF_TIMESLICE;
5627
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5628 5629 5630 5631 5632
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5633 5634
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5635 5636
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5637
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5638
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5639 5640
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5641

L
Linus Torvalds 已提交
5642 5643 5644 5645 5646
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5647
static const char stat_nam[] = "RSDTtZX";
5648

5649
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5650 5651
{
	unsigned long free = 0;
5652
	unsigned state;
L
Linus Torvalds 已提交
5653 5654

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5655
	printk(KERN_INFO "%-13.13s %c", p->comm,
5656
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5657
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5658
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5659
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5660
	else
I
Ingo Molnar 已提交
5661
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5662 5663
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5664
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5665
	else
I
Ingo Molnar 已提交
5666
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5667 5668 5669
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5670
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5671 5672
		while (!*n)
			n++;
5673
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5674 5675
	}
#endif
5676
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5677
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5678

5679
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5680 5681
}

I
Ingo Molnar 已提交
5682
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5683
{
5684
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5685

5686 5687 5688
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5689
#else
5690 5691
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696 5697 5698 5699
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5700
		if (!state_filter || (p->state & state_filter))
5701
			sched_show_task(p);
L
Linus Torvalds 已提交
5702 5703
	} while_each_thread(g, p);

5704 5705
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5706 5707 5708
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5709
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5710 5711 5712 5713 5714
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5715 5716
}

I
Ingo Molnar 已提交
5717 5718
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5719
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5720 5721
}

5722 5723 5724 5725 5726 5727 5728 5729
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5730
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5731
{
5732
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5733 5734
	unsigned long flags;

I
Ingo Molnar 已提交
5735 5736 5737
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5738
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5739
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5740
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5741 5742 5743

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5744 5745 5746
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5747 5748 5749
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5750 5751 5752
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5753
	task_thread_info(idle)->preempt_count = 0;
5754
#endif
I
Ingo Molnar 已提交
5755 5756 5757 5758
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5795 5796 5797 5798
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5799
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5818
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5819 5820
 * call is not atomic; no spinlocks may be held.
 */
5821
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5822
{
5823
	struct migration_req req;
L
Linus Torvalds 已提交
5824
	unsigned long flags;
5825
	struct rq *rq;
5826
	int ret = 0;
L
Linus Torvalds 已提交
5827 5828

	rq = task_rq_lock(p, &flags);
5829
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5830 5831 5832 5833
		ret = -EINVAL;
		goto out;
	}

5834 5835 5836 5837 5838 5839
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5840
	if (p->sched_class->set_cpus_allowed)
5841
		p->sched_class->set_cpus_allowed(p, new_mask);
5842
	else {
5843 5844
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5845 5846
	}

L
Linus Torvalds 已提交
5847
	/* Can the task run on the task's current CPU? If so, we're done */
5848
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5849 5850
		goto out;

5851
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5852 5853 5854 5855 5856 5857 5858 5859 5860
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5861

L
Linus Torvalds 已提交
5862 5863
	return ret;
}
5864
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5865 5866

/*
I
Ingo Molnar 已提交
5867
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5868 5869 5870 5871 5872 5873
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5874 5875
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5876
 */
5877
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5878
{
5879
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5880
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5881 5882

	if (unlikely(cpu_is_offline(dest_cpu)))
5883
		return ret;
L
Linus Torvalds 已提交
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5896
	on_rq = p->se.on_rq;
5897
	if (on_rq)
5898
		deactivate_task(rq_src, p, 0);
5899

L
Linus Torvalds 已提交
5900
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5901 5902 5903
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5904
	}
5905
	ret = 1;
L
Linus Torvalds 已提交
5906 5907
out:
	double_rq_unlock(rq_src, rq_dest);
5908
	return ret;
L
Linus Torvalds 已提交
5909 5910 5911 5912 5913 5914 5915
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5916
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5917 5918
{
	int cpu = (long)data;
5919
	struct rq *rq;
L
Linus Torvalds 已提交
5920 5921 5922 5923 5924 5925

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5926
		struct migration_req *req;
L
Linus Torvalds 已提交
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5949
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5950 5951
		list_del_init(head->next);

N
Nick Piggin 已提交
5952 5953 5954
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5984
/*
5985
 * Figure out where task on dead CPU should go, use force if necessary.
5986 5987
 * NOTE: interrupts should be disabled by the caller
 */
5988
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5989
{
5990
	unsigned long flags;
L
Linus Torvalds 已提交
5991
	cpumask_t mask;
5992 5993
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5994

5995 5996 5997 5998 5999 6000 6001
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6002
		if (dest_cpu >= nr_cpu_ids)
6003 6004 6005
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6006
		if (dest_cpu >= nr_cpu_ids) {
6007 6008 6009
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6010 6011 6012 6013
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6014
			 * cpuset_cpus_allowed() will not block. It must be
6015 6016
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6017
			rq = task_rq_lock(p, &flags);
6018
			p->cpus_allowed = cpus_allowed;
6019 6020
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6021

6022 6023 6024 6025 6026
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6027
			if (p->mm && printk_ratelimit()) {
6028 6029
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6030 6031
					task_pid_nr(p), p->comm, dead_cpu);
			}
6032
		}
6033
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6034 6035 6036 6037 6038 6039 6040 6041 6042
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6043
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6044
{
6045
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6059
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6060

6061
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6062

6063 6064
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6065 6066
			continue;

6067 6068 6069
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6070

6071
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6072 6073
}

I
Ingo Molnar 已提交
6074 6075
/*
 * Schedules idle task to be the next runnable task on current CPU.
6076 6077
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6078 6079 6080
 */
void sched_idle_next(void)
{
6081
	int this_cpu = smp_processor_id();
6082
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6083 6084 6085 6086
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6087
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6088

6089 6090 6091
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6092 6093 6094
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6095
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6096

6097 6098
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6099 6100 6101 6102

	spin_unlock_irqrestore(&rq->lock, flags);
}

6103 6104
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6118
/* called under rq->lock with disabled interrupts */
6119
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6120
{
6121
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6122 6123

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6124
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6125 6126

	/* Cannot have done final schedule yet: would have vanished. */
6127
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6128

6129
	get_task_struct(p);
L
Linus Torvalds 已提交
6130 6131 6132

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6133
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6134 6135
	 * fine.
	 */
6136
	spin_unlock_irq(&rq->lock);
6137
	move_task_off_dead_cpu(dead_cpu, p);
6138
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6139

6140
	put_task_struct(p);
L
Linus Torvalds 已提交
6141 6142 6143 6144 6145
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6146
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6147
	struct task_struct *next;
6148

I
Ingo Molnar 已提交
6149 6150 6151
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6152
		update_rq_clock(rq);
6153
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6154 6155 6156
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6157

L
Linus Torvalds 已提交
6158 6159 6160 6161
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6162 6163 6164
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6165 6166
	{
		.procname	= "sched_domain",
6167
		.mode		= 0555,
6168
	},
I
Ingo Molnar 已提交
6169
	{0, },
6170 6171 6172
};

static struct ctl_table sd_ctl_root[] = {
6173
	{
6174
		.ctl_name	= CTL_KERN,
6175
		.procname	= "kernel",
6176
		.mode		= 0555,
6177 6178
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6179
	{0, },
6180 6181 6182 6183 6184
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6185
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6186 6187 6188 6189

	return entry;
}

6190 6191
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6192
	struct ctl_table *entry;
6193

6194 6195 6196
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6197
	 * will always be set. In the lowest directory the names are
6198 6199 6200
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6201 6202
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6203 6204 6205
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6206 6207 6208 6209 6210

	kfree(*tablep);
	*tablep = NULL;
}

6211
static void
6212
set_table_entry(struct ctl_table *entry,
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6226
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6227

6228 6229 6230
	if (table == NULL)
		return NULL;

6231
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6232
		sizeof(long), 0644, proc_doulongvec_minmax);
6233
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6234
		sizeof(long), 0644, proc_doulongvec_minmax);
6235
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6236
		sizeof(int), 0644, proc_dointvec_minmax);
6237
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6238
		sizeof(int), 0644, proc_dointvec_minmax);
6239
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6240
		sizeof(int), 0644, proc_dointvec_minmax);
6241
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6242
		sizeof(int), 0644, proc_dointvec_minmax);
6243
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6244
		sizeof(int), 0644, proc_dointvec_minmax);
6245
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6246
		sizeof(int), 0644, proc_dointvec_minmax);
6247
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6248
		sizeof(int), 0644, proc_dointvec_minmax);
6249
	set_table_entry(&table[9], "cache_nice_tries",
6250 6251
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6252
	set_table_entry(&table[10], "flags", &sd->flags,
6253
		sizeof(int), 0644, proc_dointvec_minmax);
6254
	/* &table[11] is terminator */
6255 6256 6257 6258

	return table;
}

6259
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6260 6261 6262 6263 6264 6265 6266 6267 6268
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6269 6270
	if (table == NULL)
		return NULL;
6271 6272 6273 6274 6275

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6276
		entry->mode = 0555;
6277 6278 6279 6280 6281 6282 6283 6284
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6285
static void register_sched_domain_sysctl(void)
6286 6287 6288 6289 6290
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6291 6292 6293
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6294 6295 6296
	if (entry == NULL)
		return;

6297
	for_each_online_cpu(i) {
6298 6299
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6300
		entry->mode = 0555;
6301
		entry->child = sd_alloc_ctl_cpu_table(i);
6302
		entry++;
6303
	}
6304 6305

	WARN_ON(sd_sysctl_header);
6306 6307
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6308

6309
/* may be called multiple times per register */
6310 6311
static void unregister_sched_domain_sysctl(void)
{
6312 6313
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6314
	sd_sysctl_header = NULL;
6315 6316
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6317
}
6318
#else
6319 6320 6321 6322
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6323 6324 6325 6326
{
}
#endif

6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6357 6358 6359 6360
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6361 6362
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6363 6364
{
	struct task_struct *p;
6365
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6366
	unsigned long flags;
6367
	struct rq *rq;
L
Linus Torvalds 已提交
6368 6369

	switch (action) {
6370

L
Linus Torvalds 已提交
6371
	case CPU_UP_PREPARE:
6372
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6373
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6374 6375 6376 6377 6378
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6379
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6380 6381 6382
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6383

L
Linus Torvalds 已提交
6384
	case CPU_ONLINE:
6385
	case CPU_ONLINE_FROZEN:
6386
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6387
		wake_up_process(cpu_rq(cpu)->migration_thread);
6388 6389 6390 6391 6392 6393

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6394 6395

			set_rq_online(rq);
6396 6397
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6398
		break;
6399

L
Linus Torvalds 已提交
6400 6401
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6402
	case CPU_UP_CANCELED_FROZEN:
6403 6404
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6405
		/* Unbind it from offline cpu so it can run. Fall thru. */
6406 6407
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6408 6409 6410
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6411

L
Linus Torvalds 已提交
6412
	case CPU_DEAD:
6413
	case CPU_DEAD_FROZEN:
6414
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6415 6416 6417 6418 6419
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6420
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6421
		update_rq_clock(rq);
6422
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6423
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6424 6425
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6426
		migrate_dead_tasks(cpu);
6427
		spin_unlock_irq(&rq->lock);
6428
		cpuset_unlock();
L
Linus Torvalds 已提交
6429 6430 6431
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6432 6433 6434 6435 6436
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6437 6438
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6439 6440
			struct migration_req *req;

L
Linus Torvalds 已提交
6441
			req = list_entry(rq->migration_queue.next,
6442
					 struct migration_req, list);
L
Linus Torvalds 已提交
6443 6444 6445 6446 6447
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6448

6449 6450
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6451 6452 6453 6454 6455
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6456
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6457 6458 6459
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6460 6461 6462 6463 6464 6465 6466 6467
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6468
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6469 6470 6471 6472
	.notifier_call = migration_call,
	.priority = 10
};

6473
void __init migration_init(void)
L
Linus Torvalds 已提交
6474 6475
{
	void *cpu = (void *)(long)smp_processor_id();
6476
	int err;
6477 6478

	/* Start one for the boot CPU: */
6479 6480
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6481 6482 6483 6484 6485 6486
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6487

6488
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6489

6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6512 6513
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6514
{
I
Ingo Molnar 已提交
6515
	struct sched_group *group = sd->groups;
6516
	char str[256];
L
Linus Torvalds 已提交
6517

6518
	cpulist_scnprintf(str, sizeof(str), sd->span);
6519
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6520 6521 6522 6523 6524 6525 6526 6527 6528

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6529 6530
	}

6531 6532
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6533 6534 6535 6536 6537 6538 6539 6540 6541

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6542

I
Ingo Molnar 已提交
6543
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6544
	do {
I
Ingo Molnar 已提交
6545 6546 6547
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6548 6549 6550
			break;
		}

I
Ingo Molnar 已提交
6551 6552 6553 6554 6555 6556
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6557

I
Ingo Molnar 已提交
6558 6559 6560 6561 6562
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6563

6564
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6565 6566 6567 6568
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6569

6570
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6571

6572
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6573
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6574

I
Ingo Molnar 已提交
6575 6576 6577
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6578

6579
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6580
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6581

6582
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6583 6584 6585 6586
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6587

I
Ingo Molnar 已提交
6588 6589
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6590
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6591
	int level = 0;
L
Linus Torvalds 已提交
6592

I
Ingo Molnar 已提交
6593 6594 6595 6596
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6597

I
Ingo Molnar 已提交
6598 6599
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6600 6601 6602 6603 6604 6605
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6606
	for (;;) {
6607
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6608
			break;
L
Linus Torvalds 已提交
6609 6610
		level++;
		sd = sd->parent;
6611
		if (!sd)
I
Ingo Molnar 已提交
6612 6613
			break;
	}
6614
	kfree(groupmask);
L
Linus Torvalds 已提交
6615
}
6616
#else /* !CONFIG_SCHED_DEBUG */
6617
# define sched_domain_debug(sd, cpu) do { } while (0)
6618
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6619

6620
static int sd_degenerate(struct sched_domain *sd)
6621 6622 6623 6624 6625 6626 6627 6628
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6629 6630 6631
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6645 6646
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6665 6666 6667
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6668 6669 6670 6671 6672 6673 6674
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6684 6685
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6686

6687 6688
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6689 6690 6691 6692 6693 6694 6695
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6696
	cpu_set(rq->cpu, rd->span);
6697
	if (cpu_isset(rq->cpu, cpu_online_map))
6698
		set_rq_online(rq);
G
Gregory Haskins 已提交
6699 6700 6701 6702

	spin_unlock_irqrestore(&rq->lock, flags);
}

6703
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6704 6705 6706
{
	memset(rd, 0, sizeof(*rd));

6707 6708
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6709 6710

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6711 6712 6713 6714
}

static void init_defrootdomain(void)
{
6715
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6716 6717 6718
	atomic_set(&def_root_domain.refcount, 1);
}

6719
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6720 6721 6722 6723 6724 6725 6726
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6727
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6728 6729 6730 6731

	return rd;
}

L
Linus Torvalds 已提交
6732
/*
I
Ingo Molnar 已提交
6733
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6734 6735
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6736 6737
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6738
{
6739
	struct rq *rq = cpu_rq(cpu);
6740 6741 6742 6743 6744 6745 6746
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6747
		if (sd_parent_degenerate(tmp, parent)) {
6748
			tmp->parent = parent->parent;
6749 6750 6751
			if (parent->parent)
				parent->parent->child = tmp;
		}
6752 6753
	}

6754
	if (sd && sd_degenerate(sd)) {
6755
		sd = sd->parent;
6756 6757 6758
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6759 6760 6761

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6762
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6763
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6764 6765 6766
}

/* cpus with isolated domains */
6767
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6782
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6783 6784

/*
6785 6786 6787 6788
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6789 6790 6791 6792 6793
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6794
static void
6795
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6796
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6797 6798 6799
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6800 6801 6802 6803
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6804 6805 6806
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6807
		struct sched_group *sg;
6808
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6809 6810
		int j;

6811
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6812 6813
			continue;

6814
		cpus_clear(sg->cpumask);
6815
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6816

6817 6818
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6819 6820
				continue;

6821
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6833
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6834

6835
#ifdef CONFIG_NUMA
6836

6837 6838 6839 6840 6841
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6842
 * Find the next node to include in a given scheduling domain. Simply
6843 6844 6845 6846
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6847
static int find_next_best_node(int node, nodemask_t *used_nodes)
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6861
		if (node_isset(n, *used_nodes))
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6873
	node_set(best_node, *used_nodes);
6874 6875 6876 6877 6878 6879
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6880
 * @span: resulting cpumask
6881
 *
I
Ingo Molnar 已提交
6882
 * Given a node, construct a good cpumask for its sched_domain to span. It
6883 6884 6885
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6886
static void sched_domain_node_span(int node, cpumask_t *span)
6887
{
6888 6889
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6890
	int i;
6891

6892
	cpus_clear(*span);
6893
	nodes_clear(used_nodes);
6894

6895
	cpus_or(*span, *span, *nodemask);
6896
	node_set(node, used_nodes);
6897 6898

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6899
		int next_node = find_next_best_node(node, &used_nodes);
6900

6901
		node_to_cpumask_ptr_next(nodemask, next_node);
6902
		cpus_or(*span, *span, *nodemask);
6903 6904
	}
}
6905
#endif /* CONFIG_NUMA */
6906

6907
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6908

6909
/*
6910
 * SMT sched-domains:
6911
 */
L
Linus Torvalds 已提交
6912 6913
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6914
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6915

I
Ingo Molnar 已提交
6916
static int
6917 6918
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6919
{
6920 6921
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6922 6923
	return cpu;
}
6924
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6925

6926 6927 6928
/*
 * multi-core sched-domains:
 */
6929 6930
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6931
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6932
#endif /* CONFIG_SCHED_MC */
6933 6934

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6935
static int
6936 6937
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6938
{
6939
	int group;
6940 6941 6942 6943

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6944 6945 6946
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6947 6948
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6949
static int
6950 6951
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6952
{
6953 6954
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6955 6956 6957 6958
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6959
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6960
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6961

I
Ingo Molnar 已提交
6962
static int
6963 6964
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6965
{
6966
	int group;
6967
#ifdef CONFIG_SCHED_MC
6968 6969 6970
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6971
#elif defined(CONFIG_SCHED_SMT)
6972 6973 6974
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6975
#else
6976
	group = cpu;
L
Linus Torvalds 已提交
6977
#endif
6978 6979 6980
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6981 6982 6983 6984
}

#ifdef CONFIG_NUMA
/*
6985 6986 6987
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6988
 */
6989
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6990
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6991

6992
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6993
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6994

6995
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6996
				 struct sched_group **sg, cpumask_t *nodemask)
6997
{
6998 6999
	int group;

7000 7001 7002
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7003 7004 7005 7006

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7007
}
7008

7009 7010 7011 7012 7013 7014 7015
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7016 7017 7018
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
7019

7020 7021 7022 7023 7024 7025 7026 7027
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7028

7029 7030 7031 7032
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7033
}
7034
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7035

7036
#ifdef CONFIG_NUMA
7037
/* Free memory allocated for various sched_group structures */
7038
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7039
{
7040
	int cpu, i;
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7052 7053 7054
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7071
#else /* !CONFIG_NUMA */
7072
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7073 7074
{
}
7075
#endif /* CONFIG_NUMA */
7076

7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7103 7104
	sd->groups->__cpu_power = 0;

7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7115
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7116 7117 7118 7119 7120 7121 7122 7123
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7124
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7125 7126 7127 7128
		group = group->next;
	} while (group != child->groups);
}

7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7140
	sd->level = SD_LV_##type;				\
7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7189 7190 7191 7192
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7193 7194 7195 7196 7197 7198
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7224
/*
7225 7226
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7227
 */
7228 7229
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7230 7231
{
	int i;
G
Gregory Haskins 已提交
7232
	struct root_domain *rd;
7233 7234
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7235 7236
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7237
	int sd_allnodes = 0;
7238 7239 7240 7241

	/*
	 * Allocate the per-node list of sched groups
	 */
7242
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7243
				    GFP_KERNEL);
7244 7245
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7246
		return -ENOMEM;
7247 7248
	}
#endif
L
Linus Torvalds 已提交
7249

7250
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7251 7252
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7253 7254 7255
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7256 7257 7258
		return -ENOMEM;
	}

7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7278
	/*
7279
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7280
	 */
7281
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7282
		struct sched_domain *sd = NULL, *p;
7283
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7284

7285 7286
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7287 7288

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7289
		if (cpus_weight(*cpu_map) >
7290
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7291
			sd = &per_cpu(allnodes_domains, i);
7292
			SD_INIT(sd, ALLNODES);
7293
			set_domain_attribute(sd, attr);
7294
			sd->span = *cpu_map;
7295
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7296
			p = sd;
7297
			sd_allnodes = 1;
7298 7299 7300
		} else
			p = NULL;

L
Linus Torvalds 已提交
7301
		sd = &per_cpu(node_domains, i);
7302
		SD_INIT(sd, NODE);
7303
		set_domain_attribute(sd, attr);
7304
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7305
		sd->parent = p;
7306 7307
		if (p)
			p->child = sd;
7308
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7309 7310 7311 7312
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7313
		SD_INIT(sd, CPU);
7314
		set_domain_attribute(sd, attr);
7315
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7316
		sd->parent = p;
7317 7318
		if (p)
			p->child = sd;
7319
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7320

7321 7322 7323
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7324
		SD_INIT(sd, MC);
7325
		set_domain_attribute(sd, attr);
7326 7327 7328
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7329
		p->child = sd;
7330
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7331 7332
#endif

L
Linus Torvalds 已提交
7333 7334 7335
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7336
		SD_INIT(sd, SIBLING);
7337
		set_domain_attribute(sd, attr);
7338
		sd->span = per_cpu(cpu_sibling_map, i);
7339
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7340
		sd->parent = p;
7341
		p->child = sd;
7342
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7343 7344 7345 7346 7347
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7348
	for_each_cpu_mask(i, *cpu_map) {
7349 7350 7351 7352 7353 7354
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7355 7356
			continue;

I
Ingo Molnar 已提交
7357
		init_sched_build_groups(this_sibling_map, cpu_map,
7358 7359
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7360 7361 7362
	}
#endif

7363 7364 7365
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7366 7367 7368 7369 7370 7371
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7372
			continue;
7373

I
Ingo Molnar 已提交
7374
		init_sched_build_groups(this_core_map, cpu_map,
7375 7376
					&cpu_to_core_group,
					send_covered, tmpmask);
7377 7378 7379
	}
#endif

L
Linus Torvalds 已提交
7380 7381
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7382 7383
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7384

7385 7386 7387
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7388 7389
			continue;

7390 7391 7392
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7393 7394 7395 7396
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7397 7398 7399 7400 7401 7402 7403
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7404 7405 7406 7407

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7408 7409 7410
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7411 7412
		int j;

7413 7414 7415 7416 7417
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7418
			sched_group_nodes[i] = NULL;
7419
			continue;
7420
		}
7421

7422
		sched_domain_node_span(i, domainspan);
7423
		cpus_and(*domainspan, *domainspan, *cpu_map);
7424

7425
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7426 7427 7428 7429 7430
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7431
		sched_group_nodes[i] = sg;
7432
		for_each_cpu_mask(j, *nodemask) {
7433
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7434

7435 7436 7437
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7438
		sg->__cpu_power = 0;
7439
		sg->cpumask = *nodemask;
7440
		sg->next = sg;
7441
		cpus_or(*covered, *covered, *nodemask);
7442 7443 7444
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7445
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7446
			int n = (i + j) % MAX_NUMNODES;
7447
			node_to_cpumask_ptr(pnodemask, n);
7448

7449 7450 7451 7452
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7453 7454
				break;

7455 7456
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7457 7458
				continue;

7459 7460
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7461 7462 7463
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7464
				goto error;
7465
			}
7466
			sg->__cpu_power = 0;
7467
			sg->cpumask = *tmpmask;
7468
			sg->next = prev->next;
7469
			cpus_or(*covered, *covered, *tmpmask);
7470 7471 7472 7473
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7474 7475 7476
#endif

	/* Calculate CPU power for physical packages and nodes */
7477
#ifdef CONFIG_SCHED_SMT
7478
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7479 7480
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7481
		init_sched_groups_power(i, sd);
7482
	}
L
Linus Torvalds 已提交
7483
#endif
7484
#ifdef CONFIG_SCHED_MC
7485
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7486 7487
		struct sched_domain *sd = &per_cpu(core_domains, i);

7488
		init_sched_groups_power(i, sd);
7489 7490
	}
#endif
7491

7492
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7493 7494
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7495
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7496 7497
	}

7498
#ifdef CONFIG_NUMA
7499 7500
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7501

7502 7503
	if (sd_allnodes) {
		struct sched_group *sg;
7504

7505 7506
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7507 7508
		init_numa_sched_groups_power(sg);
	}
7509 7510
#endif

L
Linus Torvalds 已提交
7511
	/* Attach the domains */
7512
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7513 7514 7515
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7516 7517
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7518 7519 7520
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7521
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7522
	}
7523

7524
	SCHED_CPUMASK_FREE((void *)allmasks);
7525 7526
	return 0;

7527
#ifdef CONFIG_NUMA
7528
error:
7529 7530
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7531
	return -ENOMEM;
7532
#endif
L
Linus Torvalds 已提交
7533
}
P
Paul Jackson 已提交
7534

7535 7536 7537 7538 7539
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7540 7541
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7542 7543
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7544 7545 7546 7547 7548 7549 7550 7551

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7552 7553 7554 7555
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7568
/*
I
Ingo Molnar 已提交
7569
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7570 7571
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7572
 */
7573
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7574
{
7575 7576
	int err;

7577
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7578 7579 7580 7581 7582
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7583
	dattr_cur = NULL;
7584
	err = build_sched_domains(doms_cur);
7585
	register_sched_domain_sysctl();
7586 7587

	return err;
7588 7589
}

7590 7591
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7592
{
7593
	free_sched_groups(cpu_map, tmpmask);
7594
}
L
Linus Torvalds 已提交
7595

7596 7597 7598 7599
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7600
static void detach_destroy_domains(const cpumask_t *cpu_map)
7601
{
7602
	cpumask_t tmpmask;
7603 7604
	int i;

7605 7606
	unregister_sched_domain_sysctl();

7607
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7608
		cpu_attach_domain(NULL, &def_root_domain, i);
7609
	synchronize_sched();
7610
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7611 7612
}

7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7629 7630
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7631
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7632 7633 7634 7635
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7636 7637 7638
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7639 7640 7641
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7642 7643
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7644 7645 7646 7647 7648 7649
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7650 7651
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7652 7653 7654
{
	int i, j;

7655
	mutex_lock(&sched_domains_mutex);
7656

7657 7658 7659
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7660 7661 7662 7663
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7664
		dattr_new = NULL;
P
Paul Jackson 已提交
7665 7666 7667 7668 7669
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7670 7671
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7683 7684
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7685 7686 7687
				goto match2;
		}
		/* no match - add a new doms_new */
7688 7689
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7690 7691 7692 7693 7694 7695 7696
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7697
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7698
	doms_cur = doms_new;
7699
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7700
	ndoms_cur = ndoms_new;
7701 7702

	register_sched_domain_sysctl();
7703

7704
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7705 7706
}

7707
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7708
int arch_reinit_sched_domains(void)
7709 7710 7711
{
	int err;

7712
	get_online_cpus();
7713
	mutex_lock(&sched_domains_mutex);
7714
	detach_destroy_domains(&cpu_online_map);
7715
	free_sched_domains();
7716
	err = arch_init_sched_domains(&cpu_online_map);
7717
	mutex_unlock(&sched_domains_mutex);
7718
	put_online_cpus();
7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7745 7746
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7747 7748 7749
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7750 7751
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7752 7753 7754 7755 7756 7757 7758
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7759 7760
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7761 7762 7763
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7784
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7785

L
Linus Torvalds 已提交
7786
/*
I
Ingo Molnar 已提交
7787
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7788
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7789
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7790 7791 7792 7793 7794
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7795 7796
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7797 7798
	switch (action) {
	case CPU_DOWN_PREPARE:
7799
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7800 7801 7802 7803
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7804
		detach_destroy_domains(&cpu_online_map);
7805
		free_sched_domains();
L
Linus Torvalds 已提交
7806 7807
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7808

L
Linus Torvalds 已提交
7809
	case CPU_DOWN_FAILED:
7810
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7811
	case CPU_ONLINE:
7812
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7813 7814 7815 7816
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7817
	case CPU_DEAD:
7818
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7819 7820 7821 7822 7823 7824 7825 7826
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7827 7828 7829 7830 7831 7832 7833
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7834
	/* The hotplug lock is already held by cpu_up/cpu_down */
7835
	arch_init_sched_domains(&cpu_online_map);
7836
#endif
L
Linus Torvalds 已提交
7837 7838 7839 7840 7841 7842

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7843 7844
	cpumask_t non_isolated_cpus;

7845 7846 7847 7848 7849
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7850
	get_online_cpus();
7851
	mutex_lock(&sched_domains_mutex);
7852
	arch_init_sched_domains(&cpu_online_map);
7853
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7854 7855
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7856
	mutex_unlock(&sched_domains_mutex);
7857
	put_online_cpus();
L
Linus Torvalds 已提交
7858 7859
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7860
	init_hrtick();
7861 7862

	/* Move init over to a non-isolated CPU */
7863
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7864
		BUG();
I
Ingo Molnar 已提交
7865
	sched_init_granularity();
L
Linus Torvalds 已提交
7866 7867 7868 7869
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7870
	sched_init_granularity();
L
Linus Torvalds 已提交
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7881
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7882 7883
{
	cfs_rq->tasks_timeline = RB_ROOT;
7884
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7885 7886 7887
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7888
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7889 7890
}

P
Peter Zijlstra 已提交
7891 7892 7893 7894 7895 7896 7897
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7898
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7899 7900 7901 7902 7903
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7904
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7905 7906
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7907 7908 7909 7910 7911 7912 7913
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7914 7915
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7916

7917
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7918
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7919 7920
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7921 7922
}

P
Peter Zijlstra 已提交
7923
#ifdef CONFIG_FAIR_GROUP_SCHED
7924 7925 7926
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7927
{
7928
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7929 7930 7931 7932 7933 7934 7935
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7936 7937 7938 7939
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7940 7941 7942 7943 7944
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7945 7946
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7947
	se->load.inv_weight = 0;
7948
	se->parent = parent;
P
Peter Zijlstra 已提交
7949
}
7950
#endif
P
Peter Zijlstra 已提交
7951

7952
#ifdef CONFIG_RT_GROUP_SCHED
7953 7954 7955
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7956
{
7957 7958
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7959 7960 7961 7962
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7963
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7964 7965 7966 7967
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7968 7969 7970
	if (!rt_se)
		return;

7971 7972 7973 7974 7975
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7976
	rt_se->my_q = rt_rq;
7977
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7978 7979 7980 7981
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7982 7983
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7984
	int i, j;
7985 7986 7987 7988 7989 7990 7991
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7992 7993 7994
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7995 7996 7997 7998 7999 8000
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8001
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8002 8003 8004 8005 8006 8007 8008

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8009 8010 8011 8012 8013 8014 8015

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8016 8017
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8018 8019 8020 8021 8022
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8023 8024 8025 8026 8027 8028 8029 8030
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8031 8032
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8033
	}
I
Ingo Molnar 已提交
8034

G
Gregory Haskins 已提交
8035
#ifdef CONFIG_SMP
8036
	init_aggregate();
G
Gregory Haskins 已提交
8037 8038 8039
	init_defrootdomain();
#endif

8040 8041 8042 8043 8044 8045
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8046 8047 8048
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8049 8050
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8051

8052
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8053
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8054 8055 8056 8057 8058 8059
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8060 8061
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8062

8063
	for_each_possible_cpu(i) {
8064
		struct rq *rq;
L
Linus Torvalds 已提交
8065 8066 8067

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8068
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8069
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8070
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8071
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8072
#ifdef CONFIG_FAIR_GROUP_SCHED
8073
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8074
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8095
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8096
#elif defined CONFIG_USER_SCHED
8097 8098
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8110
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8111
				&per_cpu(init_cfs_rq, i),
8112 8113
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8114

8115
#endif
D
Dhaval Giani 已提交
8116 8117 8118
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8119
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8120
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8121
#ifdef CONFIG_CGROUP_SCHED
8122
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8123
#elif defined CONFIG_USER_SCHED
8124
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8125
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8126
				&per_cpu(init_rt_rq, i),
8127 8128
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8129
#endif
I
Ingo Molnar 已提交
8130
#endif
L
Linus Torvalds 已提交
8131

I
Ingo Molnar 已提交
8132 8133
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8134
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8135
		rq->sd = NULL;
G
Gregory Haskins 已提交
8136
		rq->rd = NULL;
L
Linus Torvalds 已提交
8137
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8138
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8139
		rq->push_cpu = 0;
8140
		rq->cpu = i;
8141
		rq->online = 0;
L
Linus Torvalds 已提交
8142 8143
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8144
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8145
#endif
P
Peter Zijlstra 已提交
8146
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8147 8148 8149
		atomic_set(&rq->nr_iowait, 0);
	}

8150
	set_load_weight(&init_task);
8151

8152 8153 8154 8155
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8156 8157 8158 8159
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8160 8161 8162 8163
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8177 8178 8179 8180
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8181 8182

	scheduler_running = 1;
L
Linus Torvalds 已提交
8183 8184 8185 8186 8187
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8188
#ifdef in_atomic
L
Linus Torvalds 已提交
8189 8190 8191 8192 8193 8194 8195
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8196
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8197 8198 8199
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8200
		debug_show_held_locks(current);
8201 8202
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8203 8204 8205 8206 8207 8208 8209 8210
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8211 8212 8213
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8214

8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8226 8227
void normalize_rt_tasks(void)
{
8228
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8229
	unsigned long flags;
8230
	struct rq *rq;
L
Linus Torvalds 已提交
8231

8232
	read_lock_irqsave(&tasklist_lock, flags);
8233
	do_each_thread(g, p) {
8234 8235 8236 8237 8238 8239
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8240 8241
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8242 8243 8244
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8245
#endif
I
Ingo Molnar 已提交
8246 8247 8248 8249 8250 8251 8252 8253

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8254
			continue;
I
Ingo Molnar 已提交
8255
		}
L
Linus Torvalds 已提交
8256

8257
		spin_lock(&p->pi_lock);
8258
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8259

8260
		normalize_task(rq, p);
8261

8262
		__task_rq_unlock(rq);
8263
		spin_unlock(&p->pi_lock);
8264 8265
	} while_each_thread(g, p);

8266
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8267 8268 8269
}

#endif /* CONFIG_MAGIC_SYSRQ */
8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8288
struct task_struct *curr_task(int cpu)
8289 8290 8291 8292 8293 8294 8295 8296 8297 8298
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8299 8300
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8301 8302 8303 8304 8305 8306 8307
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8308
void set_curr_task(int cpu, struct task_struct *p)
8309 8310 8311 8312 8313
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8314

8315 8316
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8331 8332
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8333 8334
{
	struct cfs_rq *cfs_rq;
8335
	struct sched_entity *se, *parent_se;
8336
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8337 8338
	int i;

8339
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8340 8341
	if (!tg->cfs_rq)
		goto err;
8342
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8343 8344
	if (!tg->se)
		goto err;
8345 8346

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8347 8348

	for_each_possible_cpu(i) {
8349
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8350

P
Peter Zijlstra 已提交
8351 8352
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8353 8354 8355
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8356 8357
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8358 8359 8360
		if (!se)
			goto err;

8361 8362
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8381
#else /* !CONFG_FAIR_GROUP_SCHED */
8382 8383 8384 8385
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8386 8387
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8399
#endif /* CONFIG_FAIR_GROUP_SCHED */
8400 8401

#ifdef CONFIG_RT_GROUP_SCHED
8402 8403 8404 8405
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8406 8407
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8419 8420
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8421 8422
{
	struct rt_rq *rt_rq;
8423
	struct sched_rt_entity *rt_se, *parent_se;
8424 8425 8426
	struct rq *rq;
	int i;

8427
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8428 8429
	if (!tg->rt_rq)
		goto err;
8430
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8431 8432 8433
	if (!tg->rt_se)
		goto err;

8434 8435
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8436 8437 8438 8439

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8440 8441 8442 8443
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8444

P
Peter Zijlstra 已提交
8445 8446 8447 8448
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8449

8450 8451
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8452 8453
	}

8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8470
#else /* !CONFIG_RT_GROUP_SCHED */
8471 8472 8473 8474
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8475 8476
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8488
#endif /* CONFIG_RT_GROUP_SCHED */
8489

8490
#ifdef CONFIG_GROUP_SCHED
8491 8492 8493 8494 8495 8496 8497 8498
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8499
struct task_group *sched_create_group(struct task_group *parent)
8500 8501 8502 8503 8504 8505 8506 8507 8508
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8509
	if (!alloc_fair_sched_group(tg, parent))
8510 8511
		goto err;

8512
	if (!alloc_rt_sched_group(tg, parent))
8513 8514
		goto err;

8515
	spin_lock_irqsave(&task_group_lock, flags);
8516
	for_each_possible_cpu(i) {
8517 8518
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8519
	}
P
Peter Zijlstra 已提交
8520
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8521 8522 8523 8524 8525 8526

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8527
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8528

8529
	return tg;
S
Srivatsa Vaddagiri 已提交
8530 8531

err:
P
Peter Zijlstra 已提交
8532
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8533 8534 8535
	return ERR_PTR(-ENOMEM);
}

8536
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8537
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8538 8539
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8540
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8541 8542
}

8543
/* Destroy runqueue etc associated with a task group */
8544
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8545
{
8546
	unsigned long flags;
8547
	int i;
S
Srivatsa Vaddagiri 已提交
8548

8549
	spin_lock_irqsave(&task_group_lock, flags);
8550
	for_each_possible_cpu(i) {
8551 8552
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8553
	}
P
Peter Zijlstra 已提交
8554
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8555
	list_del_rcu(&tg->siblings);
8556
	spin_unlock_irqrestore(&task_group_lock, flags);
8557 8558

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8559
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8560 8561
}

8562
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8563 8564 8565
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8566 8567
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8568 8569 8570 8571 8572 8573 8574 8575 8576
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8577
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8578 8579
	on_rq = tsk->se.on_rq;

8580
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8581
		dequeue_task(rq, tsk, 0);
8582 8583
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8584

P
Peter Zijlstra 已提交
8585
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8586

P
Peter Zijlstra 已提交
8587 8588 8589 8590 8591
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8592 8593 8594
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8595
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8596 8597 8598

	task_rq_unlock(rq, &flags);
}
8599
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8600

8601
#ifdef CONFIG_FAIR_GROUP_SCHED
8602
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8603 8604 8605 8606 8607
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8608
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8609 8610 8611
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8612
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8613

8614
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8615
		enqueue_entity(cfs_rq, se, 0);
8616
}
8617

8618 8619 8620 8621 8622 8623 8624 8625 8626
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8627 8628
}

8629 8630
static DEFINE_MUTEX(shares_mutex);

8631
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8632 8633
{
	int i;
8634
	unsigned long flags;
8635

8636 8637 8638 8639 8640 8641
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8642 8643
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8644 8645
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8646

8647
	mutex_lock(&shares_mutex);
8648
	if (tg->shares == shares)
8649
		goto done;
S
Srivatsa Vaddagiri 已提交
8650

8651
	spin_lock_irqsave(&task_group_lock, flags);
8652 8653
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8654
	list_del_rcu(&tg->siblings);
8655
	spin_unlock_irqrestore(&task_group_lock, flags);
8656 8657 8658 8659 8660 8661 8662 8663

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8664
	tg->shares = shares;
8665 8666 8667 8668 8669
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8670
		set_se_shares(tg->se[i], shares);
8671
	}
S
Srivatsa Vaddagiri 已提交
8672

8673 8674 8675 8676
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8677
	spin_lock_irqsave(&task_group_lock, flags);
8678 8679
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8680
	list_add_rcu(&tg->siblings, &tg->parent->children);
8681
	spin_unlock_irqrestore(&task_group_lock, flags);
8682
done:
8683
	mutex_unlock(&shares_mutex);
8684
	return 0;
S
Srivatsa Vaddagiri 已提交
8685 8686
}

8687 8688 8689 8690
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8691
#endif
8692

8693
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8694
/*
P
Peter Zijlstra 已提交
8695
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8696
 */
P
Peter Zijlstra 已提交
8697 8698 8699 8700 8701 8702 8703
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8704
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8705 8706
}

8707 8708 8709
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8710
	struct task_group *tgi, *parent = tg->parent;
8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8734
	return total + to_ratio(period, runtime) <=
8735 8736 8737 8738
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8739
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8740 8741 8742
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8743
	unsigned long global_ratio =
8744
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8745 8746

	rcu_read_lock();
P
Peter Zijlstra 已提交
8747 8748 8749
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8750

8751 8752
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8753 8754
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8755

P
Peter Zijlstra 已提交
8756
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8757
}
8758
#endif
P
Peter Zijlstra 已提交
8759

8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8771 8772
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8773
{
P
Peter Zijlstra 已提交
8774
	int i, err = 0;
P
Peter Zijlstra 已提交
8775 8776

	mutex_lock(&rt_constraints_mutex);
8777
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8778
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8779 8780 8781
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8782 8783 8784 8785
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8786 8787

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8788 8789
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8790 8791 8792 8793 8794 8795 8796 8797 8798

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8799
 unlock:
8800
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8801 8802 8803
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8804 8805
}

8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8818 8819 8820 8821
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8822
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8823 8824
		return -1;

8825
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8826 8827 8828
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8851 8852
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8853 8854
	int ret = 0;

8855 8856 8857
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8858
	mutex_lock(&rt_constraints_mutex);
8859
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8860 8861 8862 8863 8864
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8865
#else /* !CONFIG_RT_GROUP_SCHED */
8866 8867
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8881 8882
	return 0;
}
8883
#endif /* CONFIG_RT_GROUP_SCHED */
8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8914

8915
#ifdef CONFIG_CGROUP_SCHED
8916 8917

/* return corresponding task_group object of a cgroup */
8918
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8919
{
8920 8921
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8922 8923 8924
}

static struct cgroup_subsys_state *
8925
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8926
{
8927
	struct task_group *tg, *parent;
8928

8929
	if (!cgrp->parent) {
8930
		/* This is early initialization for the top cgroup */
8931
		init_task_group.css.cgroup = cgrp;
8932 8933 8934
		return &init_task_group.css;
	}

8935 8936
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8937 8938 8939 8940
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8941
	tg->css.cgroup = cgrp;
8942 8943 8944 8945

	return &tg->css;
}

I
Ingo Molnar 已提交
8946 8947
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8948
{
8949
	struct task_group *tg = cgroup_tg(cgrp);
8950 8951 8952 8953

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8954 8955 8956
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8957
{
8958 8959
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8960
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8961 8962
		return -EINVAL;
#else
8963 8964 8965
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8966
#endif
8967 8968 8969 8970 8971

	return 0;
}

static void
8972
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8973 8974 8975 8976 8977
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8978
#ifdef CONFIG_FAIR_GROUP_SCHED
8979
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8980
				u64 shareval)
8981
{
8982
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8983 8984
}

8985
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8986
{
8987
	struct task_group *tg = cgroup_tg(cgrp);
8988 8989 8990

	return (u64) tg->shares;
}
8991
#endif /* CONFIG_FAIR_GROUP_SCHED */
8992

8993
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8994
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8995
				s64 val)
P
Peter Zijlstra 已提交
8996
{
8997
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8998 8999
}

9000
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9001
{
9002
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9003
}
9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9015
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9016

9017
static struct cftype cpu_files[] = {
9018
#ifdef CONFIG_FAIR_GROUP_SCHED
9019 9020
	{
		.name = "shares",
9021 9022
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9023
	},
9024 9025
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9026
	{
P
Peter Zijlstra 已提交
9027
		.name = "rt_runtime_us",
9028 9029
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9030
	},
9031 9032
	{
		.name = "rt_period_us",
9033 9034
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9035
	},
9036
#endif
9037 9038 9039 9040
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9041
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9042 9043 9044
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9045 9046 9047 9048 9049 9050 9051
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9052 9053 9054
	.early_init	= 1,
};

9055
#endif	/* CONFIG_CGROUP_SCHED */
9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9076
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9077
{
9078
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9091
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9108
static void
9109
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9110
{
9111
	struct cpuacct *ca = cgroup_ca(cgrp);
9112 9113 9114 9115 9116 9117

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9118
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9119
{
9120
	struct cpuacct *ca = cgroup_ca(cgrp);
9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9162 9163 9164
static struct cftype files[] = {
	{
		.name = "usage",
9165 9166
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9167 9168 9169
	},
};

9170
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9171
{
9172
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */