core.c 262.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211 212 213

	WARN_ON_ONCE(!irqs_disabled());

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391 392
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

393
/*
394
 * perf event paranoia level:
395 396
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
397
 *   1 - disallow cpu events for unpriv
398
 *   2 - disallow kernel profiling for unpriv
399
 */
400
int sysctl_perf_event_paranoid __read_mostly = 2;
401

402 403
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
404 405

/*
406
 * max perf event sample rate
407
 */
408 409 410 411 412 413 414 415 416
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
417 418
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
419

420
static void update_perf_cpu_limits(void)
421 422 423 424
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
425 426 427 428 429
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
430
}
P
Peter Zijlstra 已提交
431

432 433
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
434 435 436 437
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
438
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
439 440 441 442

	if (ret || !write)
		return ret;

443 444 445 446 447 448 449
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
450
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
451 452 453 454 455 456 457 458 459 460 461 462
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
463
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 465 466 467

	if (ret || !write)
		return ret;

468 469
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
470 471 472 473 474 475
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
476 477 478

	return 0;
}
479

480 481 482 483 484 485 486
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
487
static DEFINE_PER_CPU(u64, running_sample_length);
488

489 490 491
static u64 __report_avg;
static u64 __report_allowed;

492
static void perf_duration_warn(struct irq_work *w)
493
{
494
	printk_ratelimited(KERN_INFO
495 496 497 498
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
499 500 501 502 503 504
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
505 506 507 508
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
509

510
	if (max_len == 0)
511 512
		return;

513 514 515 516 517
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
518 519

	/*
520 521
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
522 523
	 * from having to maintain a count.
	 */
524 525
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
526 527
		return;

528 529
	__report_avg = avg_len;
	__report_allowed = max_len;
530

531 532 533 534 535 536 537 538 539
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
540

541 542 543 544 545
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
546

547
	if (!irq_work_queue(&perf_duration_work)) {
548
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
549
			     "kernel.perf_event_max_sample_rate to %d\n",
550
			     __report_avg, __report_allowed,
551 552
			     sysctl_perf_event_sample_rate);
	}
553 554
}

555
static atomic64_t perf_event_id;
556

557 558 559 560
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
561 562 563 564 565
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
566

567
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
568

569
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
570
{
571
	return "pmu";
T
Thomas Gleixner 已提交
572 573
}

574 575 576 577 578
static inline u64 perf_clock(void)
{
	return local_clock();
}

579 580 581 582 583
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
584 585 586 587 588 589 590 591
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
608 609 610 611
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
612
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
651 652
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
653
	/*
654 655
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
656
	 */
657
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
658 659
		return;

660
	cgrp = perf_cgroup_from_task(current, event->ctx);
661 662 663 664 665
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
666 667 668
}

static inline void
669 670
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
671 672 673 674
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

675 676 677 678 679 680
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
681 682
		return;

683
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
684
	info = this_cpu_ptr(cgrp->info);
685
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
686 687
}

688 689
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
690 691 692 693 694 695 696 697 698
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
699
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
700 701
{
	struct perf_cpu_context *cpuctx;
702
	struct list_head *list;
S
Stephane Eranian 已提交
703 704 705
	unsigned long flags;

	/*
706 707
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
708 709 710
	 */
	local_irq_save(flags);

711 712 713
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
714

715 716
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
717

718 719 720 721 722 723 724 725
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
726

727 728 729 730 731 732 733 734 735 736 737 738
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
739
		}
740 741
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
742 743 744 745 746
	}

	local_irq_restore(flags);
}

747 748
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
749
{
750 751 752
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

753
	rcu_read_lock();
754 755
	/*
	 * we come here when we know perf_cgroup_events > 0
756 757
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
758
	 */
759
	cgrp1 = perf_cgroup_from_task(task, NULL);
760
	cgrp2 = perf_cgroup_from_task(next, NULL);
761 762 763 764 765 766 767 768

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
769 770

	rcu_read_unlock();
S
Stephane Eranian 已提交
771 772
}

773 774
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
775
{
776 777 778
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

779
	rcu_read_lock();
780 781
	/*
	 * we come here when we know perf_cgroup_events > 0
782 783
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
784
	 */
785 786
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
787 788 789 790 791 792 793 794

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
795 796

	rcu_read_unlock();
S
Stephane Eranian 已提交
797 798 799 800 801 802 803 804
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
805 806
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
807

808
	if (!f.file)
S
Stephane Eranian 已提交
809 810
		return -EBADF;

A
Al Viro 已提交
811
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
812
					 &perf_event_cgrp_subsys);
813 814 815 816
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
830
out:
831
	fdput(f);
S
Stephane Eranian 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
876 877 878 879 880 881 882 883 884 885

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
886
	struct list_head *cpuctx_entry;
887 888 889 890 891 892 893 894 895 896 897 898 899

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
900 901 902 903 904 905 906 907
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
			cpuctx->cgrp = event->cgrp;
	} else {
		list_del(cpuctx_entry);
908
		cpuctx->cgrp = NULL;
909
	}
910 911
}

S
Stephane Eranian 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

941 942
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
943 944 945
{
}

946 947
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
948 949 950 951 952 953 954 955 956 957 958
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
959 960
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
989 990 991 992 993 994 995

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
996 997
#endif

998 999 1000 1001 1002 1003
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1004
 * function must be called with interrupts disabled
1005
 */
1006
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1007 1008 1009 1010 1011 1012 1013 1014 1015
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1016 1017
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1018
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1019 1020 1021
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1022

P
Peter Zijlstra 已提交
1023
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1024 1025
}

1026
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1027
{
1028
	struct hrtimer *timer = &cpuctx->hrtimer;
1029
	struct pmu *pmu = cpuctx->ctx.pmu;
1030
	u64 interval;
1031 1032 1033 1034 1035

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1036 1037 1038 1039
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1040 1041 1042
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1043

1044
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1045

P
Peter Zijlstra 已提交
1046 1047
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1048
	timer->function = perf_mux_hrtimer_handler;
1049 1050
}

1051
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1052
{
1053
	struct hrtimer *timer = &cpuctx->hrtimer;
1054
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1055
	unsigned long flags;
1056 1057 1058

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1059
		return 0;
1060

P
Peter Zijlstra 已提交
1061 1062 1063 1064 1065 1066 1067
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1068

1069
	return 0;
1070 1071
}

P
Peter Zijlstra 已提交
1072
void perf_pmu_disable(struct pmu *pmu)
1073
{
P
Peter Zijlstra 已提交
1074 1075 1076
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1077 1078
}

P
Peter Zijlstra 已提交
1079
void perf_pmu_enable(struct pmu *pmu)
1080
{
P
Peter Zijlstra 已提交
1081 1082 1083
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1084 1085
}

1086
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1087 1088

/*
1089 1090 1091 1092
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1093
 */
1094
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1095
{
1096
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1097

1098
	WARN_ON(!irqs_disabled());
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1112 1113
}

1114
static void get_ctx(struct perf_event_context *ctx)
1115
{
1116
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1128
static void put_ctx(struct perf_event_context *ctx)
1129
{
1130 1131 1132
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1133
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1134
			put_task_struct(ctx->task);
1135
		call_rcu(&ctx->rcu_head, free_ctx);
1136
	}
1137 1138
}

P
Peter Zijlstra 已提交
1139 1140 1141 1142 1143 1144 1145
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1146 1147 1148 1149
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1150 1151
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1192
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1193 1194 1195
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1196
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1197 1198 1199
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1200 1201
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1214
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1224 1225 1226 1227 1228 1229
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1230 1231 1232 1233 1234 1235 1236
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1237 1238 1239 1240 1241 1242 1243
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1244
{
1245 1246 1247 1248 1249
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1250
		ctx->parent_ctx = NULL;
1251
	ctx->generation++;
1252 1253

	return parent_ctx;
1254 1255
}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1278
/*
1279
 * If we inherit events we want to return the parent event id
1280 1281
 * to userspace.
 */
1282
static u64 primary_event_id(struct perf_event *event)
1283
{
1284
	u64 id = event->id;
1285

1286 1287
	if (event->parent)
		id = event->parent->id;
1288 1289 1290 1291

	return id;
}

1292
/*
1293
 * Get the perf_event_context for a task and lock it.
1294
 *
1295 1296 1297
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1298
static struct perf_event_context *
P
Peter Zijlstra 已提交
1299
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1300
{
1301
	struct perf_event_context *ctx;
1302

P
Peter Zijlstra 已提交
1303
retry:
1304 1305 1306
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1307
	 * part of the read side critical section was irqs-enabled -- see
1308 1309 1310
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1311
	 * side critical section has interrupts disabled.
1312
	 */
1313
	local_irq_save(*flags);
1314
	rcu_read_lock();
P
Peter Zijlstra 已提交
1315
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1316 1317 1318 1319
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1320
		 * perf_event_task_sched_out, though the
1321 1322 1323 1324 1325 1326
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1327
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1328
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1329
			raw_spin_unlock(&ctx->lock);
1330
			rcu_read_unlock();
1331
			local_irq_restore(*flags);
1332 1333
			goto retry;
		}
1334

1335 1336
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1337
			raw_spin_unlock(&ctx->lock);
1338
			ctx = NULL;
P
Peter Zijlstra 已提交
1339 1340
		} else {
			WARN_ON_ONCE(ctx->task != task);
1341
		}
1342 1343
	}
	rcu_read_unlock();
1344 1345
	if (!ctx)
		local_irq_restore(*flags);
1346 1347 1348 1349 1350 1351 1352 1353
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1354 1355
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1356
{
1357
	struct perf_event_context *ctx;
1358 1359
	unsigned long flags;

P
Peter Zijlstra 已提交
1360
	ctx = perf_lock_task_context(task, ctxn, &flags);
1361 1362
	if (ctx) {
		++ctx->pin_count;
1363
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1364 1365 1366 1367
	}
	return ctx;
}

1368
static void perf_unpin_context(struct perf_event_context *ctx)
1369 1370 1371
{
	unsigned long flags;

1372
	raw_spin_lock_irqsave(&ctx->lock, flags);
1373
	--ctx->pin_count;
1374
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1388 1389 1390
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1391 1392 1393 1394

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1395 1396 1397
	return ctx ? ctx->time : 0;
}

1398 1399 1400 1401 1402 1403 1404 1405
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1406 1407
	lockdep_assert_held(&ctx->lock);

1408 1409 1410
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1411

S
Stephane Eranian 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1423
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1424 1425
	else if (ctx->is_active)
		run_end = ctx->time;
1426 1427 1428 1429
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1430 1431 1432 1433

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1434
		run_end = perf_event_time(event);
1435 1436

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1437

1438 1439
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1475
/*
1476
 * Add a event from the lists for its context.
1477 1478
 * Must be called with ctx->mutex and ctx->lock held.
 */
1479
static void
1480
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1481
{
P
Peter Zijlstra 已提交
1482 1483
	lockdep_assert_held(&ctx->lock);

1484 1485
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1486 1487

	/*
1488 1489 1490
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1491
	 */
1492
	if (event->group_leader == event) {
1493 1494
		struct list_head *list;

1495
		event->group_caps = event->event_caps;
1496

1497 1498
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1499
	}
P
Peter Zijlstra 已提交
1500

1501
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1502

1503 1504 1505
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1506
		ctx->nr_stat++;
1507 1508

	ctx->generation++;
1509 1510
}

J
Jiri Olsa 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1520
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1536
		nr += nr_siblings;
1537 1538 1539 1540 1541 1542 1543
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1544
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1545 1546 1547 1548 1549 1550 1551
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1552 1553 1554 1555 1556 1557
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1558 1559 1560
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1561 1562 1563
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1564 1565 1566
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1567 1568 1569
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1570 1571 1572
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1584 1585 1586 1587 1588 1589
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1590 1591 1592 1593 1594 1595
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1596 1597 1598
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1599 1600 1601 1602 1603 1604 1605 1606 1607
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1608
	event->id_header_size = size;
1609 1610
}

P
Peter Zijlstra 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1632 1633
static void perf_group_attach(struct perf_event *event)
{
1634
	struct perf_event *group_leader = event->group_leader, *pos;
1635

1636 1637
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1638 1639 1640 1641 1642 1643
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1644 1645 1646 1647 1648
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1649 1650
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1651
	group_leader->group_caps &= event->event_caps;
1652 1653 1654

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1655 1656 1657 1658 1659

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1660 1661
}

1662
/*
1663
 * Remove a event from the lists for its context.
1664
 * Must be called with ctx->mutex and ctx->lock held.
1665
 */
1666
static void
1667
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1668
{
P
Peter Zijlstra 已提交
1669 1670 1671
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1672 1673 1674 1675
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1676
		return;
1677 1678 1679

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1680
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1681

1682 1683
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1684
		ctx->nr_stat--;
1685

1686
	list_del_rcu(&event->event_entry);
1687

1688 1689
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1690

1691
	update_group_times(event);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1702 1703

	ctx->generation++;
1704 1705
}

1706
static void perf_group_detach(struct perf_event *event)
1707 1708
{
	struct perf_event *sibling, *tmp;
1709 1710
	struct list_head *list = NULL;

1711 1712
	lockdep_assert_held(&event->ctx->lock);

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1727
		goto out;
1728 1729 1730 1731
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1732

1733
	/*
1734 1735
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1736
	 * to whatever list we are on.
1737
	 */
1738
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 1740
		if (list)
			list_move_tail(&sibling->group_entry, list);
1741
		sibling->group_leader = sibling;
1742 1743

		/* Inherit group flags from the previous leader */
1744
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1745 1746

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1747
	}
1748 1749 1750 1751 1752 1753

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1754 1755
}

1756 1757
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1758
	return event->state == PERF_EVENT_STATE_DEAD;
1759 1760
}

1761
static inline int __pmu_filter_match(struct perf_event *event)
1762 1763 1764 1765 1766
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1788 1789 1790
static inline int
event_filter_match(struct perf_event *event)
{
1791 1792
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1793 1794
}

1795 1796
static void
event_sched_out(struct perf_event *event,
1797
		  struct perf_cpu_context *cpuctx,
1798
		  struct perf_event_context *ctx)
1799
{
1800
	u64 tstamp = perf_event_time(event);
1801
	u64 delta;
P
Peter Zijlstra 已提交
1802 1803 1804 1805

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1806 1807 1808 1809 1810 1811
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1812 1813
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1814
		delta = tstamp - event->tstamp_stopped;
1815
		event->tstamp_running += delta;
1816
		event->tstamp_stopped = tstamp;
1817 1818
	}

1819
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1820
		return;
1821

1822 1823
	perf_pmu_disable(event->pmu);

1824 1825 1826
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1827 1828 1829 1830
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1831
	}
1832

1833
	if (!is_software_event(event))
1834
		cpuctx->active_oncpu--;
1835 1836
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1837 1838
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1839
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1840
		cpuctx->exclusive = 0;
1841 1842

	perf_pmu_enable(event->pmu);
1843 1844
}

1845
static void
1846
group_sched_out(struct perf_event *group_event,
1847
		struct perf_cpu_context *cpuctx,
1848
		struct perf_event_context *ctx)
1849
{
1850
	struct perf_event *event;
1851
	int state = group_event->state;
1852

1853 1854
	perf_pmu_disable(ctx->pmu);

1855
	event_sched_out(group_event, cpuctx, ctx);
1856 1857 1858 1859

	/*
	 * Schedule out siblings (if any):
	 */
1860 1861
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1862

1863 1864
	perf_pmu_enable(ctx->pmu);

1865
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1866 1867 1868
		cpuctx->exclusive = 0;
}

1869
#define DETACH_GROUP	0x01UL
1870

T
Thomas Gleixner 已提交
1871
/*
1872
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1873
 *
1874
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1875 1876
 * remove it from the context list.
 */
1877 1878 1879 1880 1881
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1882
{
1883
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1884

1885
	event_sched_out(event, cpuctx, ctx);
1886
	if (flags & DETACH_GROUP)
1887
		perf_group_detach(event);
1888
	list_del_event(event, ctx);
1889 1890

	if (!ctx->nr_events && ctx->is_active) {
1891
		ctx->is_active = 0;
1892 1893 1894 1895
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1896
	}
T
Thomas Gleixner 已提交
1897 1898 1899
}

/*
1900
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1901
 *
1902 1903
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1904 1905
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1906
 * When called from perf_event_exit_task, it's OK because the
1907
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1908
 */
1909
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1910
{
1911 1912 1913
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1914

1915
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1934 1935
}

1936
/*
1937
 * Cross CPU call to disable a performance event
1938
 */
1939 1940 1941 1942
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1943
{
1944 1945
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1946

1947 1948 1949 1950 1951 1952 1953 1954
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1955 1956
}

1957
/*
1958
 * Disable a event.
1959
 *
1960 1961
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1962
 * remains valid.  This condition is satisifed when called through
1963 1964
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1965 1966
 * goes to exit will block in perf_event_exit_event().
 *
1967
 * When called from perf_pending_event it's OK because event->ctx
1968
 * is the current context on this CPU and preemption is disabled,
1969
 * hence we can't get into perf_event_task_sched_out for this context.
1970
 */
P
Peter Zijlstra 已提交
1971
static void _perf_event_disable(struct perf_event *event)
1972
{
1973
	struct perf_event_context *ctx = event->ctx;
1974

1975
	raw_spin_lock_irq(&ctx->lock);
1976
	if (event->state <= PERF_EVENT_STATE_OFF) {
1977
		raw_spin_unlock_irq(&ctx->lock);
1978
		return;
1979
	}
1980
	raw_spin_unlock_irq(&ctx->lock);
1981

1982 1983 1984 1985 1986 1987
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1988
}
P
Peter Zijlstra 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
2002
EXPORT_SYMBOL_GPL(perf_event_disable);
2003

2004 2005 2006 2007 2008 2009
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2045 2046 2047
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2048
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2049

2050
static int
2051
event_sched_in(struct perf_event *event,
2052
		 struct perf_cpu_context *cpuctx,
2053
		 struct perf_event_context *ctx)
2054
{
2055
	u64 tstamp = perf_event_time(event);
2056
	int ret = 0;
2057

2058 2059
	lockdep_assert_held(&ctx->lock);

2060
	if (event->state <= PERF_EVENT_STATE_OFF)
2061 2062
		return 0;

2063 2064 2065 2066 2067 2068 2069
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2081 2082 2083 2084 2085
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2086 2087
	perf_pmu_disable(event->pmu);

2088 2089
	perf_set_shadow_time(event, ctx, tstamp);

2090 2091
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2092
	if (event->pmu->add(event, PERF_EF_START)) {
2093 2094
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2095 2096
		ret = -EAGAIN;
		goto out;
2097 2098
	}

2099 2100
	event->tstamp_running += tstamp - event->tstamp_stopped;

2101
	if (!is_software_event(event))
2102
		cpuctx->active_oncpu++;
2103 2104
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2105 2106
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2107

2108
	if (event->attr.exclusive)
2109 2110
		cpuctx->exclusive = 1;

2111 2112 2113 2114
out:
	perf_pmu_enable(event->pmu);

	return ret;
2115 2116
}

2117
static int
2118
group_sched_in(struct perf_event *group_event,
2119
	       struct perf_cpu_context *cpuctx,
2120
	       struct perf_event_context *ctx)
2121
{
2122
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2123
	struct pmu *pmu = ctx->pmu;
2124 2125
	u64 now = ctx->time;
	bool simulate = false;
2126

2127
	if (group_event->state == PERF_EVENT_STATE_OFF)
2128 2129
		return 0;

2130
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2131

2132
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2133
		pmu->cancel_txn(pmu);
2134
		perf_mux_hrtimer_restart(cpuctx);
2135
		return -EAGAIN;
2136
	}
2137 2138 2139 2140

	/*
	 * Schedule in siblings as one group (if any):
	 */
2141
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2142
		if (event_sched_in(event, cpuctx, ctx)) {
2143
			partial_group = event;
2144 2145 2146 2147
			goto group_error;
		}
	}

2148
	if (!pmu->commit_txn(pmu))
2149
		return 0;
2150

2151 2152 2153 2154
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2165
	 */
2166 2167
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2168 2169 2170 2171 2172 2173 2174 2175
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2176
	}
2177
	event_sched_out(group_event, cpuctx, ctx);
2178

P
Peter Zijlstra 已提交
2179
	pmu->cancel_txn(pmu);
2180

2181
	perf_mux_hrtimer_restart(cpuctx);
2182

2183 2184 2185
	return -EAGAIN;
}

2186
/*
2187
 * Work out whether we can put this event group on the CPU now.
2188
 */
2189
static int group_can_go_on(struct perf_event *event,
2190 2191 2192 2193
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2194
	 * Groups consisting entirely of software events can always go on.
2195
	 */
2196
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2197 2198 2199
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2200
	 * events can go on.
2201 2202 2203 2204 2205
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2206
	 * events on the CPU, it can't go on.
2207
	 */
2208
	if (event->attr.exclusive && cpuctx->active_oncpu)
2209 2210 2211 2212 2213 2214 2215 2216
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2217 2218
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2219
{
2220 2221
	u64 tstamp = perf_event_time(event);

2222
	list_add_event(event, ctx);
2223
	perf_group_attach(event);
2224 2225 2226
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2227 2228
}

2229 2230 2231
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2232 2233 2234 2235 2236
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2237

2238
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2239 2240
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2241 2242 2243 2244 2245 2246 2247
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2248
	ctx_sched_out(ctx, cpuctx, event_type);
2249 2250
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2278
static void ctx_resched(struct perf_cpu_context *cpuctx,
2279 2280
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2281
{
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2292 2293
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2308 2309
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2310 2311
}

T
Thomas Gleixner 已提交
2312
/*
2313
 * Cross CPU call to install and enable a performance event
2314
 *
2315 2316
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2317
 */
2318
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2319
{
2320 2321
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2322
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2323
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2324
	bool reprogram = true;
2325
	int ret = 0;
T
Thomas Gleixner 已提交
2326

2327
	raw_spin_lock(&cpuctx->ctx.lock);
2328
	if (ctx->task) {
2329 2330
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2331

2332
		reprogram = (ctx->task == current);
2333

2334
		/*
2335 2336 2337 2338 2339
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2340
		 */
2341 2342 2343 2344
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2345

2346
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2347 2348
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2349
	}
2350

2351
	if (reprogram) {
2352 2353
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2354
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2355 2356 2357 2358
	} else {
		add_event_to_ctx(event, ctx);
	}

2359
unlock:
2360
	perf_ctx_unlock(cpuctx, task_ctx);
2361

2362
	return ret;
T
Thomas Gleixner 已提交
2363 2364 2365
}

/*
2366 2367 2368
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2369 2370
 */
static void
2371 2372
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2373 2374
			int cpu)
{
2375
	struct task_struct *task = READ_ONCE(ctx->task);
2376

2377 2378
	lockdep_assert_held(&ctx->mutex);

2379 2380
	if (event->cpu != -1)
		event->cpu = cpu;
2381

2382 2383 2384 2385 2386 2387
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2399 2400 2401
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2421
	 */
2422

2423
	/*
2424 2425 2426 2427
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2428
	 */
2429 2430 2431
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2432 2433 2434 2435
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2436
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2437 2438 2439 2440 2441
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2442 2443 2444
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2445
	/*
2446 2447
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2448
	 */
2449 2450 2451 2452 2453 2454
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2455 2456
}

2457
/*
2458
 * Put a event into inactive state and update time fields.
2459 2460 2461 2462 2463 2464
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2465
static void __perf_event_mark_enabled(struct perf_event *event)
2466
{
2467
	struct perf_event *sub;
2468
	u64 tstamp = perf_event_time(event);
2469

2470
	event->state = PERF_EVENT_STATE_INACTIVE;
2471
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2472
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2473 2474
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2475
	}
2476 2477
}

2478
/*
2479
 * Cross CPU call to enable a performance event
2480
 */
2481 2482 2483 2484
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2485
{
2486
	struct perf_event *leader = event->group_leader;
2487
	struct perf_event_context *task_ctx;
2488

P
Peter Zijlstra 已提交
2489 2490
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2491
		return;
2492

2493 2494 2495
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2496
	__perf_event_mark_enabled(event);
2497

2498 2499 2500
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2501
	if (!event_filter_match(event)) {
2502
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2503
			perf_cgroup_defer_enabled(event);
2504
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2505
		return;
S
Stephane Eranian 已提交
2506
	}
2507

2508
	/*
2509
	 * If the event is in a group and isn't the group leader,
2510
	 * then don't put it on unless the group is on.
2511
	 */
2512 2513
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2514
		return;
2515
	}
2516

2517 2518 2519
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2520

2521
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2522 2523
}

2524
/*
2525
 * Enable a event.
2526
 *
2527 2528
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2529
 * remains valid.  This condition is satisfied when called through
2530 2531
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2532
 */
P
Peter Zijlstra 已提交
2533
static void _perf_event_enable(struct perf_event *event)
2534
{
2535
	struct perf_event_context *ctx = event->ctx;
2536

2537
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2538 2539
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2540
		raw_spin_unlock_irq(&ctx->lock);
2541 2542 2543 2544
		return;
	}

	/*
2545
	 * If the event is in error state, clear that first.
2546 2547 2548 2549
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2550
	 */
2551 2552
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2553
	raw_spin_unlock_irq(&ctx->lock);
2554

2555
	event_function_call(event, __perf_event_enable, NULL);
2556
}
P
Peter Zijlstra 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2569
EXPORT_SYMBOL_GPL(perf_event_enable);
2570

2571 2572 2573 2574 2575
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2576 2577
static int __perf_event_stop(void *info)
{
2578 2579
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2580

2581
	/* if it's already INACTIVE, do nothing */
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2607
		event->pmu->start(event, 0);
2608

2609 2610 2611
	return 0;
}

2612
static int perf_event_stop(struct perf_event *event, int restart)
2613 2614 2615
{
	struct stop_event_data sd = {
		.event		= event,
2616
		.restart	= restart,
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2677
static int _perf_event_refresh(struct perf_event *event, int refresh)
2678
{
2679
	/*
2680
	 * not supported on inherited events
2681
	 */
2682
	if (event->attr.inherit || !is_sampling_event(event))
2683 2684
		return -EINVAL;

2685
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2686
	_perf_event_enable(event);
2687 2688

	return 0;
2689
}
P
Peter Zijlstra 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2705
EXPORT_SYMBOL_GPL(perf_event_refresh);
2706

2707 2708 2709
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2710
{
2711
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2712
	struct perf_event *event;
2713

P
Peter Zijlstra 已提交
2714
	lockdep_assert_held(&ctx->lock);
2715

2716 2717 2718 2719 2720 2721 2722
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2723
		return;
2724 2725
	}

2726
	ctx->is_active &= ~event_type;
2727 2728 2729
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2730 2731 2732 2733 2734
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2735

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2746 2747 2748 2749 2750 2751
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2752 2753
	is_active ^= ctx->is_active; /* changed bits */

2754
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2755
		return;
2756

P
Peter Zijlstra 已提交
2757
	perf_pmu_disable(ctx->pmu);
2758
	if (is_active & EVENT_PINNED) {
2759 2760
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2761
	}
2762

2763
	if (is_active & EVENT_FLEXIBLE) {
2764
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2765
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2766
	}
P
Peter Zijlstra 已提交
2767
	perf_pmu_enable(ctx->pmu);
2768 2769
}

2770
/*
2771 2772 2773 2774 2775 2776
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2777
 */
2778 2779
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2780
{
2781 2782 2783
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2806 2807
}

2808 2809
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2810 2811 2812
{
	u64 value;

2813
	if (!event->attr.inherit_stat)
2814 2815 2816
		return;

	/*
2817
	 * Update the event value, we cannot use perf_event_read()
2818 2819
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2820
	 * we know the event must be on the current CPU, therefore we
2821 2822
	 * don't need to use it.
	 */
2823 2824
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2825 2826
		event->pmu->read(event);
		/* fall-through */
2827

2828 2829
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2830 2831 2832 2833 2834 2835 2836
		break;

	default:
		break;
	}

	/*
2837
	 * In order to keep per-task stats reliable we need to flip the event
2838 2839
	 * values when we flip the contexts.
	 */
2840 2841 2842
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2843

2844 2845
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2846

2847
	/*
2848
	 * Since we swizzled the values, update the user visible data too.
2849
	 */
2850 2851
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2852 2853
}

2854 2855
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2856
{
2857
	struct perf_event *event, *next_event;
2858 2859 2860 2861

	if (!ctx->nr_stat)
		return;

2862 2863
	update_context_time(ctx);

2864 2865
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2866

2867 2868
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2869

2870 2871
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2872

2873
		__perf_event_sync_stat(event, next_event);
2874

2875 2876
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2877 2878 2879
	}
}

2880 2881
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2882
{
P
Peter Zijlstra 已提交
2883
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2884
	struct perf_event_context *next_ctx;
2885
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2886
	struct perf_cpu_context *cpuctx;
2887
	int do_switch = 1;
T
Thomas Gleixner 已提交
2888

P
Peter Zijlstra 已提交
2889 2890
	if (likely(!ctx))
		return;
2891

P
Peter Zijlstra 已提交
2892 2893
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2894 2895
		return;

2896
	rcu_read_lock();
P
Peter Zijlstra 已提交
2897
	next_ctx = next->perf_event_ctxp[ctxn];
2898 2899 2900 2901 2902 2903 2904
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2905
	if (!parent && !next_parent)
2906 2907 2908
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2909 2910 2911 2912 2913 2914 2915 2916 2917
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2918 2919
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2920
		if (context_equiv(ctx, next_ctx)) {
2921 2922
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2923 2924 2925

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2936
			do_switch = 0;
2937

2938
			perf_event_sync_stat(ctx, next_ctx);
2939
		}
2940 2941
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2942
	}
2943
unlock:
2944
	rcu_read_unlock();
2945

2946
	if (do_switch) {
2947
		raw_spin_lock(&ctx->lock);
2948
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2949
		raw_spin_unlock(&ctx->lock);
2950
	}
T
Thomas Gleixner 已提交
2951 2952
}

2953 2954
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2955 2956
void perf_sched_cb_dec(struct pmu *pmu)
{
2957 2958
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2959
	this_cpu_dec(perf_sched_cb_usages);
2960 2961 2962

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2963 2964
}

2965

2966 2967
void perf_sched_cb_inc(struct pmu *pmu)
{
2968 2969 2970 2971 2972
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2973 2974 2975 2976 2977 2978
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2979 2980 2981 2982
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2994
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2995
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2996

2997 2998
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
2999

3000 3001
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
3002

3003
		pmu->sched_task(cpuctx->task_ctx, sched_in);
3004

3005 3006
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3007 3008 3009
	}
}

3010 3011 3012
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3027 3028
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3029 3030 3031
{
	int ctxn;

3032 3033 3034
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3035 3036 3037
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3038 3039
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3040 3041 3042 3043 3044 3045

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3046
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3047
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3048 3049
}

3050 3051 3052 3053 3054 3055 3056
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3057 3058
}

3059
static void
3060
ctx_pinned_sched_in(struct perf_event_context *ctx,
3061
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
3062
{
3063
	struct perf_event *event;
T
Thomas Gleixner 已提交
3064

3065 3066
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3067
			continue;
3068
		if (!event_filter_match(event))
3069 3070
			continue;

S
Stephane Eranian 已提交
3071 3072 3073 3074
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

3075
		if (group_can_go_on(event, cpuctx, 1))
3076
			group_sched_in(event, cpuctx, ctx);
3077 3078 3079 3080 3081

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3082 3083 3084
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
3085
		}
3086
	}
3087 3088 3089 3090
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3091
		      struct perf_cpu_context *cpuctx)
3092 3093 3094
{
	struct perf_event *event;
	int can_add_hw = 1;
3095

3096 3097 3098
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3099
			continue;
3100 3101
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3102
		 * of events:
3103
		 */
3104
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3105 3106
			continue;

S
Stephane Eranian 已提交
3107 3108 3109 3110
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3111
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3112
			if (group_sched_in(event, cpuctx, ctx))
3113
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3114
		}
T
Thomas Gleixner 已提交
3115
	}
3116 3117 3118 3119 3120
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3121 3122
	     enum event_type_t event_type,
	     struct task_struct *task)
3123
{
3124
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3125 3126 3127
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3128

3129
	if (likely(!ctx->nr_events))
3130
		return;
3131

3132
	ctx->is_active |= (event_type | EVENT_TIME);
3133 3134 3135 3136 3137 3138 3139
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3140 3141 3142 3143 3144 3145 3146 3147 3148
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3149 3150 3151 3152
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3153
	if (is_active & EVENT_PINNED)
3154
		ctx_pinned_sched_in(ctx, cpuctx);
3155 3156

	/* Then walk through the lower prio flexible groups */
3157
	if (is_active & EVENT_FLEXIBLE)
3158
		ctx_flexible_sched_in(ctx, cpuctx);
3159 3160
}

3161
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3162 3163
			     enum event_type_t event_type,
			     struct task_struct *task)
3164 3165 3166
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3167
	ctx_sched_in(ctx, cpuctx, event_type, task);
3168 3169
}

S
Stephane Eranian 已提交
3170 3171
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3172
{
P
Peter Zijlstra 已提交
3173
	struct perf_cpu_context *cpuctx;
3174

P
Peter Zijlstra 已提交
3175
	cpuctx = __get_cpu_context(ctx);
3176 3177 3178
	if (cpuctx->task_ctx == ctx)
		return;

3179
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3180
	perf_pmu_disable(ctx->pmu);
3181 3182 3183 3184
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3185 3186 3187
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3188
	 */
3189 3190
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3191
	perf_event_sched_in(cpuctx, ctx, task);
3192 3193
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3194 3195
}

P
Peter Zijlstra 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3207 3208
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3209 3210 3211 3212
{
	struct perf_event_context *ctx;
	int ctxn;

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3223 3224 3225 3226 3227
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3228
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3229
	}
3230

3231 3232 3233
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3234 3235
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3236 3237
}

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3265
#define REDUCE_FLS(a, b)		\
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3305 3306 3307
	if (!divisor)
		return dividend;

3308 3309 3310
	return div64_u64(dividend, divisor);
}

3311 3312 3313
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3314
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3315
{
3316
	struct hw_perf_event *hwc = &event->hw;
3317
	s64 period, sample_period;
3318 3319
	s64 delta;

3320
	period = perf_calculate_period(event, nsec, count);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3331

3332
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3333 3334 3335
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3336
		local64_set(&hwc->period_left, 0);
3337 3338 3339

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3340
	}
3341 3342
}

3343 3344 3345 3346 3347 3348 3349
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3350
{
3351 3352
	struct perf_event *event;
	struct hw_perf_event *hwc;
3353
	u64 now, period = TICK_NSEC;
3354
	s64 delta;
3355

3356 3357 3358 3359 3360 3361
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3362 3363
		return;

3364
	raw_spin_lock(&ctx->lock);
3365
	perf_pmu_disable(ctx->pmu);
3366

3367
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3368
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3369 3370
			continue;

3371
		if (!event_filter_match(event))
3372 3373
			continue;

3374 3375
		perf_pmu_disable(event->pmu);

3376
		hwc = &event->hw;
3377

3378
		if (hwc->interrupts == MAX_INTERRUPTS) {
3379
			hwc->interrupts = 0;
3380
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3381
			event->pmu->start(event, 0);
3382 3383
		}

3384
		if (!event->attr.freq || !event->attr.sample_freq)
3385
			goto next;
3386

3387 3388 3389 3390 3391
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3392
		now = local64_read(&event->count);
3393 3394
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3395

3396 3397 3398
		/*
		 * restart the event
		 * reload only if value has changed
3399 3400 3401
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3402
		 */
3403
		if (delta > 0)
3404
			perf_adjust_period(event, period, delta, false);
3405 3406

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3407 3408
	next:
		perf_pmu_enable(event->pmu);
3409
	}
3410

3411
	perf_pmu_enable(ctx->pmu);
3412
	raw_spin_unlock(&ctx->lock);
3413 3414
}

3415
/*
3416
 * Round-robin a context's events:
3417
 */
3418
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3419
{
3420 3421 3422 3423 3424 3425
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3426 3427
}

3428
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3429
{
P
Peter Zijlstra 已提交
3430
	struct perf_event_context *ctx = NULL;
3431
	int rotate = 0;
3432

3433 3434 3435 3436
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3437

P
Peter Zijlstra 已提交
3438
	ctx = cpuctx->task_ctx;
3439 3440 3441 3442
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3443

3444
	if (!rotate)
3445 3446
		goto done;

3447
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3448
	perf_pmu_disable(cpuctx->ctx.pmu);
3449

3450 3451 3452
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3453

3454 3455 3456
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3457

3458
	perf_event_sched_in(cpuctx, ctx, current);
3459

3460 3461
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3462
done:
3463 3464

	return rotate;
3465 3466 3467 3468
}

void perf_event_task_tick(void)
{
3469 3470
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3471
	int throttled;
3472

3473 3474
	WARN_ON(!irqs_disabled());

3475 3476
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3477
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3478

3479
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3480
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3481 3482
}

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3493
	__perf_event_mark_enabled(event);
3494 3495 3496 3497

	return 1;
}

3498
/*
3499
 * Enable all of a task's events that have been marked enable-on-exec.
3500 3501
 * This expects task == current.
 */
3502
static void perf_event_enable_on_exec(int ctxn)
3503
{
3504
	struct perf_event_context *ctx, *clone_ctx = NULL;
3505
	enum event_type_t event_type = 0;
3506
	struct perf_cpu_context *cpuctx;
3507
	struct perf_event *event;
3508 3509 3510 3511
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3512
	ctx = current->perf_event_ctxp[ctxn];
3513
	if (!ctx || !ctx->nr_events)
3514 3515
		goto out;

3516 3517
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3518
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3519
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3520
		enabled |= event_enable_on_exec(event, ctx);
3521 3522
		event_type |= get_event_type(event);
	}
3523 3524

	/*
3525
	 * Unclone and reschedule this context if we enabled any event.
3526
	 */
3527
	if (enabled) {
3528
		clone_ctx = unclone_ctx(ctx);
3529
		ctx_resched(cpuctx, ctx, event_type);
3530 3531
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3532 3533
	}
	perf_ctx_unlock(cpuctx, ctx);
3534

P
Peter Zijlstra 已提交
3535
out:
3536
	local_irq_restore(flags);
3537 3538 3539

	if (clone_ctx)
		put_ctx(clone_ctx);
3540 3541
}

3542 3543 3544
struct perf_read_data {
	struct perf_event *event;
	bool group;
3545
	int ret;
3546 3547
};

3548
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3549 3550 3551 3552
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3553 3554 3555 3556
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3557 3558 3559 3560 3561 3562 3563 3564

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3565
/*
3566
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3567
 */
3568
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3569
{
3570 3571
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3572
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3573
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3574
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3575

3576 3577 3578 3579
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3580 3581
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3582 3583 3584 3585
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3586
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3587
	if (ctx->is_active) {
3588
		update_context_time(ctx);
S
Stephane Eranian 已提交
3589 3590
		update_cgrp_time_from_event(event);
	}
3591

3592
	update_event_times(event);
3593 3594
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3595

3596 3597 3598
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3599
		goto unlock;
3600 3601 3602 3603 3604
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3605 3606 3607

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3608 3609 3610 3611 3612
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3613
			sub->pmu->read(sub);
3614
		}
3615
	}
3616 3617

	data->ret = pmu->commit_txn(pmu);
3618 3619

unlock:
3620
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3621 3622
}

P
Peter Zijlstra 已提交
3623 3624
static inline u64 perf_event_count(struct perf_event *event)
{
3625 3626 3627 3628
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3629 3630
}

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3684
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3685
{
3686
	int event_cpu, ret = 0;
3687

T
Thomas Gleixner 已提交
3688
	/*
3689 3690
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3691
	 */
3692
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3693 3694 3695
		struct perf_read_data data = {
			.event = event,
			.group = group,
3696
			.ret = 0,
3697
		};
3698

3699 3700 3701 3702 3703 3704
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
3705

3706 3707 3708 3709
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
3710
		 * If event_cpu isn't a valid CPU it means the event got
3711 3712 3713 3714 3715
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3716 3717
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
3718
		ret = data.ret;
3719
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3720 3721 3722
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3723
		raw_spin_lock_irqsave(&ctx->lock, flags);
3724 3725 3726 3727 3728
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3729
		if (ctx->is_active) {
3730
			update_context_time(ctx);
S
Stephane Eranian 已提交
3731 3732
			update_cgrp_time_from_event(event);
		}
3733 3734 3735 3736
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3737
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3738
	}
3739 3740

	return ret;
T
Thomas Gleixner 已提交
3741 3742
}

3743
/*
3744
 * Initialize the perf_event context in a task_struct:
3745
 */
3746
static void __perf_event_init_context(struct perf_event_context *ctx)
3747
{
3748
	raw_spin_lock_init(&ctx->lock);
3749
	mutex_init(&ctx->mutex);
3750
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3751 3752
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3753 3754
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3770
	}
3771 3772 3773
	ctx->pmu = pmu;

	return ctx;
3774 3775
}

3776 3777 3778 3779
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3780 3781

	rcu_read_lock();
3782
	if (!vpid)
T
Thomas Gleixner 已提交
3783 3784
		task = current;
	else
3785
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3786 3787 3788 3789 3790 3791 3792
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3793 3794 3795
	return task;
}

3796 3797 3798
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3799
static struct perf_event_context *
3800 3801
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3802
{
3803
	struct perf_event_context *ctx, *clone_ctx = NULL;
3804
	struct perf_cpu_context *cpuctx;
3805
	void *task_ctx_data = NULL;
3806
	unsigned long flags;
P
Peter Zijlstra 已提交
3807
	int ctxn, err;
3808
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3809

3810
	if (!task) {
3811
		/* Must be root to operate on a CPU event: */
3812
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3813 3814 3815
			return ERR_PTR(-EACCES);

		/*
3816
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3817 3818 3819
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3820
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3821 3822
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3823
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3824
		ctx = &cpuctx->ctx;
3825
		get_ctx(ctx);
3826
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3827 3828 3829 3830

		return ctx;
	}

P
Peter Zijlstra 已提交
3831 3832 3833 3834 3835
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3836 3837 3838 3839 3840 3841 3842 3843
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3844
retry:
P
Peter Zijlstra 已提交
3845
	ctx = perf_lock_task_context(task, ctxn, &flags);
3846
	if (ctx) {
3847
		clone_ctx = unclone_ctx(ctx);
3848
		++ctx->pin_count;
3849 3850 3851 3852 3853

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3854
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3855 3856 3857

		if (clone_ctx)
			put_ctx(clone_ctx);
3858
	} else {
3859
		ctx = alloc_perf_context(pmu, task);
3860 3861 3862
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3863

3864 3865 3866 3867 3868
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3879
		else {
3880
			get_ctx(ctx);
3881
			++ctx->pin_count;
3882
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3883
		}
3884 3885 3886
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3887
			put_ctx(ctx);
3888 3889 3890 3891

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3892 3893 3894
		}
	}

3895
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3896
	return ctx;
3897

P
Peter Zijlstra 已提交
3898
errout:
3899
	kfree(task_ctx_data);
3900
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3901 3902
}

L
Li Zefan 已提交
3903
static void perf_event_free_filter(struct perf_event *event);
3904
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3905

3906
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3907
{
3908
	struct perf_event *event;
P
Peter Zijlstra 已提交
3909

3910 3911 3912
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3913
	perf_event_free_filter(event);
3914
	kfree(event);
P
Peter Zijlstra 已提交
3915 3916
}

3917 3918
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3919

3920 3921 3922 3923 3924 3925 3926 3927 3928
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3929
static bool is_sb_event(struct perf_event *event)
3930
{
3931 3932
	struct perf_event_attr *attr = &event->attr;

3933
	if (event->parent)
3934
		return false;
3935 3936

	if (event->attach_state & PERF_ATTACH_TASK)
3937
		return false;
3938

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3951 3952
}

3953
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3954
{
3955 3956 3957 3958 3959 3960
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3961

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3984 3985
static void unaccount_event(struct perf_event *event)
{
3986 3987
	bool dec = false;

3988 3989 3990 3991
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3992
		dec = true;
3993 3994 3995 3996
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
3997 3998
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
3999 4000
	if (event->attr.task)
		atomic_dec(&nr_task_events);
4001
	if (event->attr.freq)
4002
		unaccount_freq_event();
4003
	if (event->attr.context_switch) {
4004
		dec = true;
4005 4006
		atomic_dec(&nr_switch_events);
	}
4007
	if (is_cgroup_event(event))
4008
		dec = true;
4009
	if (has_branch_stack(event))
4010 4011
		dec = true;

4012 4013 4014 4015
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4016 4017

	unaccount_event_cpu(event, event->cpu);
4018 4019

	unaccount_pmu_sb_event(event);
4020
}
4021

4022 4023 4024 4025 4026 4027 4028 4029
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4040
 * _free_event()), the latter -- before the first perf_install_in_context().
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4089
	if ((e1->pmu == e2->pmu) &&
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4115 4116 4117
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4118
static void _free_event(struct perf_event *event)
4119
{
4120
	irq_work_sync(&event->pending);
4121

4122
	unaccount_event(event);
4123

4124
	if (event->rb) {
4125 4126 4127 4128 4129 4130 4131
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4132
		ring_buffer_attach(event, NULL);
4133
		mutex_unlock(&event->mmap_mutex);
4134 4135
	}

S
Stephane Eranian 已提交
4136 4137 4138
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4139 4140 4141 4142 4143 4144
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4145 4146
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4147 4148 4149 4150 4151 4152 4153

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4154 4155
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4156 4157

	call_rcu(&event->rcu_head, free_event_rcu);
4158 4159
}

P
Peter Zijlstra 已提交
4160 4161 4162 4163 4164
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4165
{
P
Peter Zijlstra 已提交
4166 4167 4168 4169 4170 4171
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4172

P
Peter Zijlstra 已提交
4173
	_free_event(event);
T
Thomas Gleixner 已提交
4174 4175
}

4176
/*
4177
 * Remove user event from the owner task.
4178
 */
4179
static void perf_remove_from_owner(struct perf_event *event)
4180
{
P
Peter Zijlstra 已提交
4181
	struct task_struct *owner;
4182

P
Peter Zijlstra 已提交
4183 4184
	rcu_read_lock();
	/*
4185 4186 4187
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4188 4189
	 * owner->perf_event_mutex.
	 */
4190
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4212 4213 4214 4215 4216 4217
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4218
		if (event->owner) {
P
Peter Zijlstra 已提交
4219
			list_del_init(&event->owner_entry);
4220 4221
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4222 4223 4224
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4225 4226 4227 4228 4229 4230 4231
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4242
	struct perf_event_context *ctx = event->ctx;
4243 4244
	struct perf_event *child, *tmp;

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4255 4256
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4257

4258
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4259
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4260
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4261

P
Peter Zijlstra 已提交
4262
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4263
	/*
4264
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4265
	 * anymore.
P
Peter Zijlstra 已提交
4266
	 *
P
Peter Zijlstra 已提交
4267 4268 4269
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4270
	 *
4271 4272
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4273
	 */
P
Peter Zijlstra 已提交
4274 4275 4276 4277
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4278

4279 4280 4281
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4282

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4332 4333
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4334 4335 4336 4337
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4338 4339 4340
/*
 * Called when the last reference to the file is gone.
 */
4341 4342
static int perf_release(struct inode *inode, struct file *file)
{
4343
	perf_event_release_kernel(file->private_data);
4344
	return 0;
4345 4346
}

4347
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4348
{
4349
	struct perf_event *child;
4350 4351
	u64 total = 0;

4352 4353 4354
	*enabled = 0;
	*running = 0;

4355
	mutex_lock(&event->child_mutex);
4356

4357
	(void)perf_event_read(event, false);
4358 4359
	total += perf_event_count(event);

4360 4361 4362 4363 4364 4365
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4366
		(void)perf_event_read(child, false);
4367
		total += perf_event_count(child);
4368 4369 4370
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4371
	mutex_unlock(&event->child_mutex);
4372 4373 4374

	return total;
}
4375
EXPORT_SYMBOL_GPL(perf_event_read_value);
4376

4377
static int __perf_read_group_add(struct perf_event *leader,
4378
					u64 read_format, u64 *values)
4379
{
4380 4381
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4382
	int ret;
P
Peter Zijlstra 已提交
4383

4384 4385 4386
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4387

4388 4389 4390 4391 4392 4393 4394 4395 4396
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4397

4398 4399 4400 4401 4402 4403 4404 4405 4406
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4407 4408
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4409

4410 4411 4412 4413 4414
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4415 4416

	return 0;
4417
}
4418

4419 4420 4421 4422 4423
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4424
	int ret;
4425
	u64 *values;
4426

4427
	lockdep_assert_held(&ctx->mutex);
4428

4429 4430 4431
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4432

4433 4434 4435 4436 4437 4438 4439
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4440

4441 4442 4443 4444 4445 4446 4447 4448 4449
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4450

4451
	mutex_unlock(&leader->child_mutex);
4452

4453
	ret = event->read_size;
4454 4455
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4456
	goto out;
4457

4458 4459 4460
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4461
	kfree(values);
4462
	return ret;
4463 4464
}

4465
static int perf_read_one(struct perf_event *event,
4466 4467
				 u64 read_format, char __user *buf)
{
4468
	u64 enabled, running;
4469 4470 4471
	u64 values[4];
	int n = 0;

4472 4473 4474 4475 4476
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4477
	if (read_format & PERF_FORMAT_ID)
4478
		values[n++] = primary_event_id(event);
4479 4480 4481 4482 4483 4484 4485

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4486 4487 4488 4489
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4490
	if (event->state > PERF_EVENT_STATE_EXIT)
4491 4492 4493 4494 4495 4496 4497 4498
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4499
/*
4500
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4501 4502
 */
static ssize_t
4503
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4504
{
4505
	u64 read_format = event->attr.read_format;
4506
	int ret;
T
Thomas Gleixner 已提交
4507

4508
	/*
4509
	 * Return end-of-file for a read on a event that is in
4510 4511 4512
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4513
	if (event->state == PERF_EVENT_STATE_ERROR)
4514 4515
		return 0;

4516
	if (count < event->read_size)
4517 4518
		return -ENOSPC;

4519
	WARN_ON_ONCE(event->ctx->parent_ctx);
4520
	if (read_format & PERF_FORMAT_GROUP)
4521
		ret = perf_read_group(event, read_format, buf);
4522
	else
4523
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4524

4525
	return ret;
T
Thomas Gleixner 已提交
4526 4527 4528 4529 4530
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4531
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4532 4533
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4534

P
Peter Zijlstra 已提交
4535
	ctx = perf_event_ctx_lock(event);
4536
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4537 4538 4539
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4540 4541 4542 4543
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4544
	struct perf_event *event = file->private_data;
4545
	struct ring_buffer *rb;
4546
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4547

4548
	poll_wait(file, &event->waitq, wait);
4549

4550
	if (is_event_hup(event))
4551
		return events;
P
Peter Zijlstra 已提交
4552

4553
	/*
4554 4555
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4556 4557
	 */
	mutex_lock(&event->mmap_mutex);
4558 4559
	rb = event->rb;
	if (rb)
4560
		events = atomic_xchg(&rb->poll, 0);
4561
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4562 4563 4564
	return events;
}

P
Peter Zijlstra 已提交
4565
static void _perf_event_reset(struct perf_event *event)
4566
{
4567
	(void)perf_event_read(event, false);
4568
	local64_set(&event->count, 0);
4569
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4570 4571
}

4572
/*
4573 4574
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4575
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4576
 * task existence requirements of perf_event_enable/disable.
4577
 */
4578 4579
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4580
{
4581
	struct perf_event *child;
P
Peter Zijlstra 已提交
4582

4583
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4584

4585 4586 4587
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4588
		func(child);
4589
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4590 4591
}

4592 4593
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4594
{
4595 4596
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4597

P
Peter Zijlstra 已提交
4598 4599
	lockdep_assert_held(&ctx->mutex);

4600
	event = event->group_leader;
4601

4602 4603
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4604
		perf_event_for_each_child(sibling, func);
4605 4606
}

4607 4608 4609 4610
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4611
{
4612
	u64 value = *((u64 *)info);
4613
	bool active;
4614

4615 4616
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4617
	} else {
4618 4619
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4620
	}
4621 4622 4623 4624

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4625 4626 4627 4628 4629 4630 4631 4632
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4633 4634 4635 4636 4637 4638 4639 4640 4641
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4660
	event_function_call(event, __perf_event_period, &value);
4661

4662
	return 0;
4663 4664
}

4665 4666
static const struct file_operations perf_fops;

4667
static inline int perf_fget_light(int fd, struct fd *p)
4668
{
4669 4670 4671
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4672

4673 4674 4675
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4676
	}
4677 4678
	*p = f;
	return 0;
4679 4680 4681 4682
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4683
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4684
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4685

P
Peter Zijlstra 已提交
4686
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4687
{
4688
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4689
	u32 flags = arg;
4690 4691

	switch (cmd) {
4692
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4693
		func = _perf_event_enable;
4694
		break;
4695
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4696
		func = _perf_event_disable;
4697
		break;
4698
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4699
		func = _perf_event_reset;
4700
		break;
P
Peter Zijlstra 已提交
4701

4702
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4703
		return _perf_event_refresh(event, arg);
4704

4705 4706
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4707

4708 4709 4710 4711 4712 4713 4714 4715 4716
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4717
	case PERF_EVENT_IOC_SET_OUTPUT:
4718 4719 4720
	{
		int ret;
		if (arg != -1) {
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4731 4732 4733
		}
		return ret;
	}
4734

L
Li Zefan 已提交
4735 4736 4737
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4738 4739 4740
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4754
	default:
P
Peter Zijlstra 已提交
4755
		return -ENOTTY;
4756
	}
P
Peter Zijlstra 已提交
4757 4758

	if (flags & PERF_IOC_FLAG_GROUP)
4759
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4760
	else
4761
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4762 4763

	return 0;
4764 4765
}

P
Peter Zijlstra 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4799
int perf_event_task_enable(void)
4800
{
P
Peter Zijlstra 已提交
4801
	struct perf_event_context *ctx;
4802
	struct perf_event *event;
4803

4804
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4805 4806 4807 4808 4809
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4810
	mutex_unlock(&current->perf_event_mutex);
4811 4812 4813 4814

	return 0;
}

4815
int perf_event_task_disable(void)
4816
{
P
Peter Zijlstra 已提交
4817
	struct perf_event_context *ctx;
4818
	struct perf_event *event;
4819

4820
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4821 4822 4823 4824 4825
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4826
	mutex_unlock(&current->perf_event_mutex);
4827 4828 4829 4830

	return 0;
}

4831
static int perf_event_index(struct perf_event *event)
4832
{
P
Peter Zijlstra 已提交
4833 4834 4835
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4836
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4837 4838
		return 0;

4839
	return event->pmu->event_idx(event);
4840 4841
}

4842
static void calc_timer_values(struct perf_event *event,
4843
				u64 *now,
4844 4845
				u64 *enabled,
				u64 *running)
4846
{
4847
	u64 ctx_time;
4848

4849 4850
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4851 4852 4853 4854
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4870 4871
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4872 4873 4874 4875 4876

unlock:
	rcu_read_unlock();
}

4877 4878
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4879 4880 4881
{
}

4882 4883 4884 4885 4886
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4887
void perf_event_update_userpage(struct perf_event *event)
4888
{
4889
	struct perf_event_mmap_page *userpg;
4890
	struct ring_buffer *rb;
4891
	u64 enabled, running, now;
4892 4893

	rcu_read_lock();
4894 4895 4896 4897
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4898 4899 4900 4901 4902 4903 4904 4905 4906
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4907
	calc_timer_values(event, &now, &enabled, &running);
4908

4909
	userpg = rb->user_page;
4910 4911 4912 4913 4914
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4915
	++userpg->lock;
4916
	barrier();
4917
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4918
	userpg->offset = perf_event_count(event);
4919
	if (userpg->index)
4920
		userpg->offset -= local64_read(&event->hw.prev_count);
4921

4922
	userpg->time_enabled = enabled +
4923
			atomic64_read(&event->child_total_time_enabled);
4924

4925
	userpg->time_running = running +
4926
			atomic64_read(&event->child_total_time_running);
4927

4928
	arch_perf_update_userpage(event, userpg, now);
4929

4930
	barrier();
4931
	++userpg->lock;
4932
	preempt_enable();
4933
unlock:
4934
	rcu_read_unlock();
4935 4936
}

4937
static int perf_mmap_fault(struct vm_fault *vmf)
4938
{
4939
	struct perf_event *event = vmf->vma->vm_file->private_data;
4940
	struct ring_buffer *rb;
4941 4942 4943 4944 4945 4946 4947 4948 4949
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4950 4951
	rb = rcu_dereference(event->rb);
	if (!rb)
4952 4953 4954 4955 4956
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4957
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4958 4959 4960 4961
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
4962
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4963 4964 4965 4966 4967 4968 4969 4970 4971
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4972 4973 4974
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4975
	struct ring_buffer *old_rb = NULL;
4976 4977
	unsigned long flags;

4978 4979 4980 4981 4982 4983
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4984

4985 4986 4987 4988
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4989

4990 4991
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4992
	}
4993

4994
	if (rb) {
4995 4996 4997 4998 4999
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

5000 5001 5002 5003 5004
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5029 5030 5031 5032 5033 5034 5035 5036
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5037 5038 5039 5040
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5041 5042 5043
	rcu_read_unlock();
}

5044
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5045
{
5046
	struct ring_buffer *rb;
5047

5048
	rcu_read_lock();
5049 5050 5051 5052
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5053 5054 5055
	}
	rcu_read_unlock();

5056
	return rb;
5057 5058
}

5059
void ring_buffer_put(struct ring_buffer *rb)
5060
{
5061
	if (!atomic_dec_and_test(&rb->refcount))
5062
		return;
5063

5064
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5065

5066
	call_rcu(&rb->rcu_head, rb_free_rcu);
5067 5068 5069 5070
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5071
	struct perf_event *event = vma->vm_file->private_data;
5072

5073
	atomic_inc(&event->mmap_count);
5074
	atomic_inc(&event->rb->mmap_count);
5075

5076 5077 5078
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5079 5080
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
5081 5082
}

5083 5084
static void perf_pmu_output_stop(struct perf_event *event);

5085 5086 5087 5088 5089 5090 5091 5092
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5093 5094
static void perf_mmap_close(struct vm_area_struct *vma)
{
5095
	struct perf_event *event = vma->vm_file->private_data;
5096

5097
	struct ring_buffer *rb = ring_buffer_get(event);
5098 5099 5100
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5101

5102 5103 5104
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

5105 5106 5107 5108 5109 5110 5111
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5112 5113 5114 5115 5116 5117 5118 5119 5120
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5121 5122 5123
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5124
		/* this has to be the last one */
5125
		rb_free_aux(rb);
5126 5127
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5128 5129 5130
		mutex_unlock(&event->mmap_mutex);
	}

5131 5132 5133
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5134
		goto out_put;
5135

5136
	ring_buffer_attach(event, NULL);
5137 5138 5139
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5140 5141
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5142

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5159

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5171 5172 5173
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5174
		mutex_unlock(&event->mmap_mutex);
5175
		put_event(event);
5176

5177 5178 5179 5180 5181
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5182
	}
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5198
out_put:
5199
	ring_buffer_put(rb); /* could be last */
5200 5201
}

5202
static const struct vm_operations_struct perf_mmap_vmops = {
5203
	.open		= perf_mmap_open,
5204
	.close		= perf_mmap_close, /* non mergable */
5205 5206
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5207 5208 5209 5210
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5211
	struct perf_event *event = file->private_data;
5212
	unsigned long user_locked, user_lock_limit;
5213
	struct user_struct *user = current_user();
5214
	unsigned long locked, lock_limit;
5215
	struct ring_buffer *rb = NULL;
5216 5217
	unsigned long vma_size;
	unsigned long nr_pages;
5218
	long user_extra = 0, extra = 0;
5219
	int ret = 0, flags = 0;
5220

5221 5222 5223
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5224
	 * same rb.
5225 5226 5227 5228
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5229
	if (!(vma->vm_flags & VM_SHARED))
5230
		return -EINVAL;
5231 5232

	vma_size = vma->vm_end - vma->vm_start;
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5293

5294
	/*
5295
	 * If we have rb pages ensure they're a power-of-two number, so we
5296 5297
	 * can do bitmasks instead of modulo.
	 */
5298
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5299 5300
		return -EINVAL;

5301
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5302 5303
		return -EINVAL;

5304
	WARN_ON_ONCE(event->ctx->parent_ctx);
5305
again:
5306
	mutex_lock(&event->mmap_mutex);
5307
	if (event->rb) {
5308
		if (event->rb->nr_pages != nr_pages) {
5309
			ret = -EINVAL;
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5323 5324 5325
		goto unlock;
	}

5326
	user_extra = nr_pages + 1;
5327 5328

accounting:
5329
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5330 5331 5332 5333 5334 5335

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5336
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5337

5338 5339
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5340

5341
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5342
	lock_limit >>= PAGE_SHIFT;
5343
	locked = vma->vm_mm->pinned_vm + extra;
5344

5345 5346
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5347 5348 5349
		ret = -EPERM;
		goto unlock;
	}
5350

5351
	WARN_ON(!rb && event->rb);
5352

5353
	if (vma->vm_flags & VM_WRITE)
5354
		flags |= RING_BUFFER_WRITABLE;
5355

5356
	if (!rb) {
5357 5358 5359
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5360

5361 5362 5363 5364
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5365

5366 5367 5368
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5369

5370
		ring_buffer_attach(event, rb);
5371

5372 5373 5374
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5375 5376
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5377 5378 5379
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5380

5381
unlock:
5382 5383 5384 5385
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5386
		atomic_inc(&event->mmap_count);
5387 5388 5389 5390
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5391
	mutex_unlock(&event->mmap_mutex);
5392

5393 5394 5395 5396
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5397
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5398
	vma->vm_ops = &perf_mmap_vmops;
5399

5400 5401 5402
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5403
	return ret;
5404 5405
}

P
Peter Zijlstra 已提交
5406 5407
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5408
	struct inode *inode = file_inode(filp);
5409
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5410 5411
	int retval;

A
Al Viro 已提交
5412
	inode_lock(inode);
5413
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5414
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5415 5416 5417 5418 5419 5420 5421

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5422
static const struct file_operations perf_fops = {
5423
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5424 5425 5426
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5427
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5428
	.compat_ioctl		= perf_compat_ioctl,
5429
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5430
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5431 5432
};

5433
/*
5434
 * Perf event wakeup
5435 5436 5437 5438 5439
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5440 5441 5442 5443 5444 5445 5446 5447
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5448
void perf_event_wakeup(struct perf_event *event)
5449
{
5450
	ring_buffer_wakeup(event);
5451

5452
	if (event->pending_kill) {
5453
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5454
		event->pending_kill = 0;
5455
	}
5456 5457
}

5458
static void perf_pending_event(struct irq_work *entry)
5459
{
5460 5461
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5462 5463 5464 5465 5466 5467 5468
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5469

5470 5471
	if (event->pending_disable) {
		event->pending_disable = 0;
5472
		perf_event_disable_local(event);
5473 5474
	}

5475 5476 5477
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5478
	}
5479 5480 5481

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5482 5483
}

5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5505 5506 5507 5508 5509
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5510
	DECLARE_BITMAP(_mask, 64);
5511

5512 5513
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5514 5515 5516 5517 5518 5519 5520
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5521
static void perf_sample_regs_user(struct perf_regs *regs_user,
5522 5523
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5524
{
5525 5526
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5527
		regs_user->regs = regs;
5528 5529
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5530 5531 5532
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5533 5534 5535
	}
}

5536 5537 5538 5539 5540 5541 5542 5543
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5639 5640 5641
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5655
		data->time = perf_event_clock(event);
5656

5657
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5669 5670 5671
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5696 5697 5698

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5699 5700
}

5701 5702 5703
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5704 5705 5706 5707 5708
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5709
static void perf_output_read_one(struct perf_output_handle *handle,
5710 5711
				 struct perf_event *event,
				 u64 enabled, u64 running)
5712
{
5713
	u64 read_format = event->attr.read_format;
5714 5715 5716
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5717
	values[n++] = perf_event_count(event);
5718
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5719
		values[n++] = enabled +
5720
			atomic64_read(&event->child_total_time_enabled);
5721 5722
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5723
		values[n++] = running +
5724
			atomic64_read(&event->child_total_time_running);
5725 5726
	}
	if (read_format & PERF_FORMAT_ID)
5727
		values[n++] = primary_event_id(event);
5728

5729
	__output_copy(handle, values, n * sizeof(u64));
5730 5731 5732
}

/*
5733
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5734 5735
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5736 5737
			    struct perf_event *event,
			    u64 enabled, u64 running)
5738
{
5739 5740
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5741 5742 5743 5744 5745 5746
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5747
		values[n++] = enabled;
5748 5749

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5750
		values[n++] = running;
5751

5752
	if (leader != event)
5753 5754
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5755
	values[n++] = perf_event_count(leader);
5756
	if (read_format & PERF_FORMAT_ID)
5757
		values[n++] = primary_event_id(leader);
5758

5759
	__output_copy(handle, values, n * sizeof(u64));
5760

5761
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5762 5763
		n = 0;

5764 5765
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5766 5767
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5768
		values[n++] = perf_event_count(sub);
5769
		if (read_format & PERF_FORMAT_ID)
5770
			values[n++] = primary_event_id(sub);
5771

5772
		__output_copy(handle, values, n * sizeof(u64));
5773 5774 5775
	}
}

5776 5777 5778
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5779
static void perf_output_read(struct perf_output_handle *handle,
5780
			     struct perf_event *event)
5781
{
5782
	u64 enabled = 0, running = 0, now;
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5794
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5795
		calc_timer_values(event, &now, &enabled, &running);
5796

5797
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5798
		perf_output_read_group(handle, event, enabled, running);
5799
	else
5800
		perf_output_read_one(handle, event, enabled, running);
5801 5802
}

5803 5804 5805
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5806
			struct perf_event *event)
5807 5808 5809 5810 5811
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5812 5813 5814
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5840
		perf_output_read(handle, event);
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5851
			__output_copy(handle, data->callchain, size);
5852 5853 5854 5855 5856 5857 5858
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5890

5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5925

5926
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5927 5928 5929
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5930
	}
A
Andi Kleen 已提交
5931 5932 5933

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5934 5935 5936

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5937

A
Andi Kleen 已提交
5938 5939 5940
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5971 5972 5973 5974
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5975
			 struct perf_event *event,
5976
			 struct pt_regs *regs)
5977
{
5978
	u64 sample_type = event->attr.sample_type;
5979

5980
	header->type = PERF_RECORD_SAMPLE;
5981
	header->size = sizeof(*header) + event->header_size;
5982 5983 5984

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5985

5986
	__perf_event_header__init_id(header, data, event);
5987

5988
	if (sample_type & PERF_SAMPLE_IP)
5989 5990
		data->ip = perf_instruction_pointer(regs);

5991
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5992
		int size = 1;
5993

5994
		data->callchain = perf_callchain(event, regs);
5995 5996 5997 5998 5999

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
6000 6001
	}

6002
	if (sample_type & PERF_SAMPLE_RAW) {
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6023

6024
		header->size += size;
6025
	}
6026 6027 6028 6029 6030 6031 6032 6033 6034

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6035

6036
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6037 6038
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6039

6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6063
						     data->regs_user.regs);
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6091
}
6092

6093 6094 6095 6096 6097 6098 6099
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6100 6101 6102
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6103

6104 6105 6106
	/* protect the callchain buffers */
	rcu_read_lock();

6107
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6108

6109
	if (output_begin(&handle, event, header.size))
6110
		goto exit;
6111

6112
	perf_output_sample(&handle, &header, data, event);
6113

6114
	perf_output_end(&handle);
6115 6116 6117

exit:
	rcu_read_unlock();
6118 6119
}

6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6144
/*
6145
 * read event_id
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6156
perf_event_read_event(struct perf_event *event,
6157 6158 6159
			struct task_struct *task)
{
	struct perf_output_handle handle;
6160
	struct perf_sample_data sample;
6161
	struct perf_read_event read_event = {
6162
		.header = {
6163
			.type = PERF_RECORD_READ,
6164
			.misc = 0,
6165
			.size = sizeof(read_event) + event->read_size,
6166
		},
6167 6168
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6169
	};
6170
	int ret;
6171

6172
	perf_event_header__init_id(&read_event.header, &sample, event);
6173
	ret = perf_output_begin(&handle, event, read_event.header.size);
6174 6175 6176
	if (ret)
		return;

6177
	perf_output_put(&handle, read_event);
6178
	perf_output_read(&handle, event);
6179
	perf_event__output_id_sample(event, &handle, &sample);
6180

6181 6182 6183
	perf_output_end(&handle);
}

6184
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6185 6186

static void
6187 6188
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6189
		   void *data, bool all)
6190 6191 6192 6193
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6194 6195 6196 6197 6198 6199 6200
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6201
		output(event, data);
6202 6203 6204
	}
}

6205
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6206 6207 6208 6209 6210
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6211 6212 6213 6214 6215 6216 6217 6218
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6219 6220 6221 6222 6223 6224 6225 6226
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6227 6228 6229 6230 6231 6232
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6233
static void
6234
perf_iterate_sb(perf_iterate_f output, void *data,
6235 6236 6237 6238 6239
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6240 6241 6242
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6243
	/*
6244 6245
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6246 6247 6248
	 * context.
	 */
	if (task_ctx) {
6249 6250
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6251 6252
	}

6253
	perf_iterate_sb_cpu(output, data);
6254 6255

	for_each_task_context_nr(ctxn) {
6256 6257
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6258
			perf_iterate_ctx(ctx, output, data, false);
6259
	}
6260
done:
6261
	preempt_enable();
6262
	rcu_read_unlock();
6263 6264
}

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6294
		perf_event_stop(event, 1);
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6310
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6311 6312 6313 6314 6315
				   true);
	}
	rcu_read_unlock();
}

6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6326 6327 6328
	struct stop_event_data sd = {
		.event	= event,
	};
6329 6330 6331 6332 6333 6334 6335 6336 6337

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6338 6339 6340 6341 6342 6343 6344
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6345 6346
	 */
	if (rcu_dereference(parent->rb) == rb)
6347
		ro->err = __perf_event_stop(&sd);
6348 6349 6350 6351 6352 6353
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6354
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6355 6356 6357 6358 6359
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6360
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6361
	if (cpuctx->task_ctx)
6362
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6363
				   &ro, false);
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6397 6398
}

P
Peter Zijlstra 已提交
6399
/*
P
Peter Zijlstra 已提交
6400 6401
 * task tracking -- fork/exit
 *
6402
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6403 6404
 */

P
Peter Zijlstra 已提交
6405
struct perf_task_event {
6406
	struct task_struct		*task;
6407
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6408 6409 6410 6411 6412 6413

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6414 6415
		u32				tid;
		u32				ptid;
6416
		u64				time;
6417
	} event_id;
P
Peter Zijlstra 已提交
6418 6419
};

6420 6421
static int perf_event_task_match(struct perf_event *event)
{
6422 6423 6424
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6425 6426
}

6427
static void perf_event_task_output(struct perf_event *event,
6428
				   void *data)
P
Peter Zijlstra 已提交
6429
{
6430
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6431
	struct perf_output_handle handle;
6432
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6433
	struct task_struct *task = task_event->task;
6434
	int ret, size = task_event->event_id.header.size;
6435

6436 6437 6438
	if (!perf_event_task_match(event))
		return;

6439
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6440

6441
	ret = perf_output_begin(&handle, event,
6442
				task_event->event_id.header.size);
6443
	if (ret)
6444
		goto out;
P
Peter Zijlstra 已提交
6445

6446 6447
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6448

6449 6450
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6451

6452 6453
	task_event->event_id.time = perf_event_clock(event);

6454
	perf_output_put(&handle, task_event->event_id);
6455

6456 6457
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6458
	perf_output_end(&handle);
6459 6460
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6461 6462
}

6463 6464
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6465
			      int new)
P
Peter Zijlstra 已提交
6466
{
P
Peter Zijlstra 已提交
6467
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6468

6469 6470 6471
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6472 6473
		return;

P
Peter Zijlstra 已提交
6474
	task_event = (struct perf_task_event){
6475 6476
		.task	  = task,
		.task_ctx = task_ctx,
6477
		.event_id    = {
P
Peter Zijlstra 已提交
6478
			.header = {
6479
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6480
				.misc = 0,
6481
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6482
			},
6483 6484
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6485 6486
			/* .tid  */
			/* .ptid */
6487
			/* .time */
P
Peter Zijlstra 已提交
6488 6489 6490
		},
	};

6491
	perf_iterate_sb(perf_event_task_output,
6492 6493
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6494 6495
}

6496
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6497
{
6498
	perf_event_task(task, NULL, 1);
6499
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6500 6501
}

6502 6503 6504 6505 6506
/*
 * comm tracking
 */

struct perf_comm_event {
6507 6508
	struct task_struct	*task;
	char			*comm;
6509 6510 6511 6512 6513 6514 6515
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6516
	} event_id;
6517 6518
};

6519 6520 6521 6522 6523
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6524
static void perf_event_comm_output(struct perf_event *event,
6525
				   void *data)
6526
{
6527
	struct perf_comm_event *comm_event = data;
6528
	struct perf_output_handle handle;
6529
	struct perf_sample_data sample;
6530
	int size = comm_event->event_id.header.size;
6531 6532
	int ret;

6533 6534 6535
	if (!perf_event_comm_match(event))
		return;

6536 6537
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6538
				comm_event->event_id.header.size);
6539 6540

	if (ret)
6541
		goto out;
6542

6543 6544
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6545

6546
	perf_output_put(&handle, comm_event->event_id);
6547
	__output_copy(&handle, comm_event->comm,
6548
				   comm_event->comm_size);
6549 6550 6551

	perf_event__output_id_sample(event, &handle, &sample);

6552
	perf_output_end(&handle);
6553 6554
out:
	comm_event->event_id.header.size = size;
6555 6556
}

6557
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6558
{
6559
	char comm[TASK_COMM_LEN];
6560 6561
	unsigned int size;

6562
	memset(comm, 0, sizeof(comm));
6563
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6564
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6565 6566 6567 6568

	comm_event->comm = comm;
	comm_event->comm_size = size;

6569
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6570

6571
	perf_iterate_sb(perf_event_comm_output,
6572 6573
		       comm_event,
		       NULL);
6574 6575
}

6576
void perf_event_comm(struct task_struct *task, bool exec)
6577
{
6578 6579
	struct perf_comm_event comm_event;

6580
	if (!atomic_read(&nr_comm_events))
6581
		return;
6582

6583
	comm_event = (struct perf_comm_event){
6584
		.task	= task,
6585 6586
		/* .comm      */
		/* .comm_size */
6587
		.event_id  = {
6588
			.header = {
6589
				.type = PERF_RECORD_COMM,
6590
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6591 6592 6593 6594
				/* .size */
			},
			/* .pid */
			/* .tid */
6595 6596 6597
		},
	};

6598
	perf_event_comm_event(&comm_event);
6599 6600
}

6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
		return;

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

6727 6728 6729 6730 6731
/*
 * mmap tracking
 */

struct perf_mmap_event {
6732 6733 6734 6735
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6736 6737 6738
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6739
	u32			prot, flags;
6740 6741 6742 6743 6744 6745 6746 6747 6748

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6749
	} event_id;
6750 6751
};

6752 6753 6754 6755 6756 6757 6758 6759
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6760
	       (executable && (event->attr.mmap || event->attr.mmap2));
6761 6762
}

6763
static void perf_event_mmap_output(struct perf_event *event,
6764
				   void *data)
6765
{
6766
	struct perf_mmap_event *mmap_event = data;
6767
	struct perf_output_handle handle;
6768
	struct perf_sample_data sample;
6769
	int size = mmap_event->event_id.header.size;
6770
	int ret;
6771

6772 6773 6774
	if (!perf_event_mmap_match(event, data))
		return;

6775 6776 6777 6778 6779
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6780
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6781 6782
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6783 6784
	}

6785 6786
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6787
				mmap_event->event_id.header.size);
6788
	if (ret)
6789
		goto out;
6790

6791 6792
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6793

6794
	perf_output_put(&handle, mmap_event->event_id);
6795 6796 6797 6798 6799 6800

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6801 6802
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6803 6804
	}

6805
	__output_copy(&handle, mmap_event->file_name,
6806
				   mmap_event->file_size);
6807 6808 6809

	perf_event__output_id_sample(event, &handle, &sample);

6810
	perf_output_end(&handle);
6811 6812
out:
	mmap_event->event_id.header.size = size;
6813 6814
}

6815
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6816
{
6817 6818
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6819 6820
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6821
	u32 prot = 0, flags = 0;
6822 6823 6824
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6825
	char *name;
6826

6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6848
	if (file) {
6849 6850
		struct inode *inode;
		dev_t dev;
6851

6852
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6853
		if (!buf) {
6854 6855
			name = "//enomem";
			goto cpy_name;
6856
		}
6857
		/*
6858
		 * d_path() works from the end of the rb backwards, so we
6859 6860 6861
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6862
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6863
		if (IS_ERR(name)) {
6864 6865
			name = "//toolong";
			goto cpy_name;
6866
		}
6867 6868 6869 6870 6871 6872
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6873

6874
		goto got_name;
6875
	} else {
6876 6877 6878 6879 6880 6881
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6882
		name = (char *)arch_vma_name(vma);
6883 6884
		if (name)
			goto cpy_name;
6885

6886
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6887
				vma->vm_end >= vma->vm_mm->brk) {
6888 6889
			name = "[heap]";
			goto cpy_name;
6890 6891
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6892
				vma->vm_end >= vma->vm_mm->start_stack) {
6893 6894
			name = "[stack]";
			goto cpy_name;
6895 6896
		}

6897 6898
		name = "//anon";
		goto cpy_name;
6899 6900
	}

6901 6902 6903
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6904
got_name:
6905 6906 6907 6908 6909 6910 6911 6912
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6913 6914 6915

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6916 6917 6918 6919
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6920 6921
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6922

6923 6924 6925
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6926
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6927

6928
	perf_iterate_sb(perf_event_mmap_output,
6929 6930
		       mmap_event,
		       NULL);
6931

6932 6933 6934
	kfree(buf);
}

6935 6936 6937 6938 6939 6940 6941
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
6942
	if (filter->inode != file_inode(file))
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6985
		perf_event_stop(event, 1);
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

6996 6997 6998 6999 7000 7001 7002
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7003 7004 7005 7006 7007 7008
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7009
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7010 7011 7012 7013
	}
	rcu_read_unlock();
}

7014
void perf_event_mmap(struct vm_area_struct *vma)
7015
{
7016 7017
	struct perf_mmap_event mmap_event;

7018
	if (!atomic_read(&nr_mmap_events))
7019 7020 7021
		return;

	mmap_event = (struct perf_mmap_event){
7022
		.vma	= vma,
7023 7024
		/* .file_name */
		/* .file_size */
7025
		.event_id  = {
7026
			.header = {
7027
				.type = PERF_RECORD_MMAP,
7028
				.misc = PERF_RECORD_MISC_USER,
7029 7030 7031 7032
				/* .size */
			},
			/* .pid */
			/* .tid */
7033 7034
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7035
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7036
		},
7037 7038 7039 7040
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7041 7042
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7043 7044
	};

7045
	perf_addr_filters_adjust(vma);
7046
	perf_event_mmap_event(&mmap_event);
7047 7048
}

A
Alexander Shishkin 已提交
7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7196
	perf_iterate_sb(perf_event_switch_output,
7197 7198 7199 7200
		       &switch_event,
		       NULL);
}

7201 7202 7203 7204
/*
 * IRQ throttle logging
 */

7205
static void perf_log_throttle(struct perf_event *event, int enable)
7206 7207
{
	struct perf_output_handle handle;
7208
	struct perf_sample_data sample;
7209 7210 7211 7212 7213
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7214
		u64				id;
7215
		u64				stream_id;
7216 7217
	} throttle_event = {
		.header = {
7218
			.type = PERF_RECORD_THROTTLE,
7219 7220 7221
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7222
		.time		= perf_event_clock(event),
7223 7224
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7225 7226
	};

7227
	if (enable)
7228
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7229

7230 7231 7232
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7233
				throttle_event.header.size);
7234 7235 7236 7237
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7238
	perf_event__output_id_sample(event, &handle, &sample);
7239 7240 7241
	perf_output_end(&handle);
}

7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7278 7279
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7280
{
7281
	struct hw_perf_event *hwc = &event->hw;
7282
	int ret = 0;
7283
	u64 seq;
7284

7285 7286 7287 7288 7289 7290 7291 7292 7293
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7294
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7295 7296
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7297 7298
			ret = 1;
		}
7299
	}
7300

7301
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7302
		u64 now = perf_clock();
7303
		s64 delta = now - hwc->freq_time_stamp;
7304

7305
		hwc->freq_time_stamp = now;
7306

7307
		if (delta > 0 && delta < 2*TICK_NSEC)
7308
			perf_adjust_period(event, delta, hwc->last_period, true);
7309 7310
	}

7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);

7339 7340
	/*
	 * XXX event_limit might not quite work as expected on inherited
7341
	 * events
7342 7343
	 */

7344 7345
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7346
		ret = 1;
7347
		event->pending_kill = POLL_HUP;
7348 7349

		perf_event_disable_inatomic(event);
7350 7351
	}

7352
	READ_ONCE(event->overflow_handler)(event, data, regs);
7353

7354
	if (*perf_event_fasync(event) && event->pending_kill) {
7355 7356
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7357 7358
	}

7359
	return ret;
7360 7361
}

7362
int perf_event_overflow(struct perf_event *event,
7363 7364
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7365
{
7366
	return __perf_event_overflow(event, 1, data, regs);
7367 7368
}

7369
/*
7370
 * Generic software event infrastructure
7371 7372
 */

7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7384
/*
7385 7386
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7387 7388 7389 7390
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7391
u64 perf_swevent_set_period(struct perf_event *event)
7392
{
7393
	struct hw_perf_event *hwc = &event->hw;
7394 7395 7396 7397 7398
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7399 7400

again:
7401
	old = val = local64_read(&hwc->period_left);
7402 7403
	if (val < 0)
		return 0;
7404

7405 7406 7407
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7408
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7409
		goto again;
7410

7411
	return nr;
7412 7413
}

7414
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7415
				    struct perf_sample_data *data,
7416
				    struct pt_regs *regs)
7417
{
7418
	struct hw_perf_event *hwc = &event->hw;
7419
	int throttle = 0;
7420

7421 7422
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7423

7424 7425
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7426

7427
	for (; overflow; overflow--) {
7428
		if (__perf_event_overflow(event, throttle,
7429
					    data, regs)) {
7430 7431 7432 7433 7434 7435
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7436
		throttle = 1;
7437
	}
7438 7439
}

P
Peter Zijlstra 已提交
7440
static void perf_swevent_event(struct perf_event *event, u64 nr,
7441
			       struct perf_sample_data *data,
7442
			       struct pt_regs *regs)
7443
{
7444
	struct hw_perf_event *hwc = &event->hw;
7445

7446
	local64_add(nr, &event->count);
7447

7448 7449 7450
	if (!regs)
		return;

7451
	if (!is_sampling_event(event))
7452
		return;
7453

7454 7455 7456 7457 7458 7459
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7460
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7461
		return perf_swevent_overflow(event, 1, data, regs);
7462

7463
	if (local64_add_negative(nr, &hwc->period_left))
7464
		return;
7465

7466
	perf_swevent_overflow(event, 0, data, regs);
7467 7468
}

7469 7470 7471
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7472
	if (event->hw.state & PERF_HES_STOPPED)
7473
		return 1;
P
Peter Zijlstra 已提交
7474

7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7486
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7487
				enum perf_type_id type,
L
Li Zefan 已提交
7488 7489 7490
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7491
{
7492
	if (event->attr.type != type)
7493
		return 0;
7494

7495
	if (event->attr.config != event_id)
7496 7497
		return 0;

7498 7499
	if (perf_exclude_event(event, regs))
		return 0;
7500 7501 7502 7503

	return 1;
}

7504 7505 7506 7507 7508 7509 7510
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7511 7512
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7513
{
7514 7515 7516 7517
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7518

7519 7520
/* For the read side: events when they trigger */
static inline struct hlist_head *
7521
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7522 7523
{
	struct swevent_hlist *hlist;
7524

7525
	hlist = rcu_dereference(swhash->swevent_hlist);
7526 7527 7528
	if (!hlist)
		return NULL;

7529 7530 7531 7532 7533
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7534
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7545
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7546 7547 7548 7549 7550
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7551 7552 7553
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7554
				    u64 nr,
7555 7556
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7557
{
7558
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7559
	struct perf_event *event;
7560
	struct hlist_head *head;
7561

7562
	rcu_read_lock();
7563
	head = find_swevent_head_rcu(swhash, type, event_id);
7564 7565 7566
	if (!head)
		goto end;

7567
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7568
		if (perf_swevent_match(event, type, event_id, data, regs))
7569
			perf_swevent_event(event, nr, data, regs);
7570
	}
7571 7572
end:
	rcu_read_unlock();
7573 7574
}

7575 7576
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7577
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7578
{
7579
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7580

7581
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7582
}
I
Ingo Molnar 已提交
7583
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7584

7585
void perf_swevent_put_recursion_context(int rctx)
7586
{
7587
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7588

7589
	put_recursion_context(swhash->recursion, rctx);
7590
}
7591

7592
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7593
{
7594
	struct perf_sample_data data;
7595

7596
	if (WARN_ON_ONCE(!regs))
7597
		return;
7598

7599
	perf_sample_data_init(&data, addr, 0);
7600
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7613 7614

	perf_swevent_put_recursion_context(rctx);
7615
fail:
7616
	preempt_enable_notrace();
7617 7618
}

7619
static void perf_swevent_read(struct perf_event *event)
7620 7621 7622
{
}

P
Peter Zijlstra 已提交
7623
static int perf_swevent_add(struct perf_event *event, int flags)
7624
{
7625
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7626
	struct hw_perf_event *hwc = &event->hw;
7627 7628
	struct hlist_head *head;

7629
	if (is_sampling_event(event)) {
7630
		hwc->last_period = hwc->sample_period;
7631
		perf_swevent_set_period(event);
7632
	}
7633

P
Peter Zijlstra 已提交
7634 7635
	hwc->state = !(flags & PERF_EF_START);

7636
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7637
	if (WARN_ON_ONCE(!head))
7638 7639 7640
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7641
	perf_event_update_userpage(event);
7642

7643 7644 7645
	return 0;
}

P
Peter Zijlstra 已提交
7646
static void perf_swevent_del(struct perf_event *event, int flags)
7647
{
7648
	hlist_del_rcu(&event->hlist_entry);
7649 7650
}

P
Peter Zijlstra 已提交
7651
static void perf_swevent_start(struct perf_event *event, int flags)
7652
{
P
Peter Zijlstra 已提交
7653
	event->hw.state = 0;
7654
}
I
Ingo Molnar 已提交
7655

P
Peter Zijlstra 已提交
7656
static void perf_swevent_stop(struct perf_event *event, int flags)
7657
{
P
Peter Zijlstra 已提交
7658
	event->hw.state = PERF_HES_STOPPED;
7659 7660
}

7661 7662
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7663
swevent_hlist_deref(struct swevent_htable *swhash)
7664
{
7665 7666
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7667 7668
}

7669
static void swevent_hlist_release(struct swevent_htable *swhash)
7670
{
7671
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7672

7673
	if (!hlist)
7674 7675
		return;

7676
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7677
	kfree_rcu(hlist, rcu_head);
7678 7679
}

7680
static void swevent_hlist_put_cpu(int cpu)
7681
{
7682
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7683

7684
	mutex_lock(&swhash->hlist_mutex);
7685

7686 7687
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7688

7689
	mutex_unlock(&swhash->hlist_mutex);
7690 7691
}

7692
static void swevent_hlist_put(void)
7693 7694 7695 7696
{
	int cpu;

	for_each_possible_cpu(cpu)
7697
		swevent_hlist_put_cpu(cpu);
7698 7699
}

7700
static int swevent_hlist_get_cpu(int cpu)
7701
{
7702
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7703 7704
	int err = 0;

7705 7706
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7707 7708 7709 7710 7711 7712 7713
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7714
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7715
	}
7716
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7717
exit:
7718
	mutex_unlock(&swhash->hlist_mutex);
7719 7720 7721 7722

	return err;
}

7723
static int swevent_hlist_get(void)
7724
{
7725
	int err, cpu, failed_cpu;
7726 7727 7728

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7729
		err = swevent_hlist_get_cpu(cpu);
7730 7731 7732 7733 7734 7735 7736 7737
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7738
fail:
7739 7740 7741
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7742
		swevent_hlist_put_cpu(cpu);
7743 7744 7745 7746 7747 7748
	}

	put_online_cpus();
	return err;
}

7749
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7750

7751 7752 7753
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7754

7755 7756
	WARN_ON(event->parent);

7757
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7758
	swevent_hlist_put();
7759 7760 7761 7762
}

static int perf_swevent_init(struct perf_event *event)
{
7763
	u64 event_id = event->attr.config;
7764 7765 7766 7767

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7768 7769 7770 7771 7772 7773
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7774 7775 7776 7777 7778 7779 7780 7781 7782
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7783
	if (event_id >= PERF_COUNT_SW_MAX)
7784 7785 7786 7787 7788
		return -ENOENT;

	if (!event->parent) {
		int err;

7789
		err = swevent_hlist_get();
7790 7791 7792
		if (err)
			return err;

7793
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7794 7795 7796 7797 7798 7799 7800
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7801
	.task_ctx_nr	= perf_sw_context,
7802

7803 7804
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7805
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7806 7807 7808 7809
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7810 7811 7812
	.read		= perf_swevent_read,
};

7813 7814
#ifdef CONFIG_EVENT_TRACING

7815 7816 7817
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7818
	void *record = data->raw->frag.data;
7819

7820 7821 7822 7823
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7824 7825 7826 7827 7828 7829 7830 7831 7832
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7833 7834
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7835 7836 7837 7838
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7839 7840 7841 7842 7843 7844 7845 7846
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7866
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7867 7868
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7869 7870
{
	struct perf_sample_data data;
7871 7872
	struct perf_event *event;

7873
	struct perf_raw_record raw = {
7874 7875 7876 7877
		.frag = {
			.size = entry_size,
			.data = record,
		},
7878 7879
	};

7880
	perf_sample_data_init(&data, 0, 0);
7881 7882
	data.raw = &raw;

7883 7884
	perf_trace_buf_update(record, event_type);

7885
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7886
		if (perf_tp_event_match(event, &data, regs))
7887
			perf_swevent_event(event, count, &data, regs);
7888
	}
7889

7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7915
	perf_swevent_put_recursion_context(rctx);
7916 7917 7918
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7919
static void tp_perf_event_destroy(struct perf_event *event)
7920
{
7921
	perf_trace_destroy(event);
7922 7923
}

7924
static int perf_tp_event_init(struct perf_event *event)
7925
{
7926 7927
	int err;

7928 7929 7930
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7931 7932 7933 7934 7935 7936
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7937 7938
	err = perf_trace_init(event);
	if (err)
7939
		return err;
7940

7941
	event->destroy = tp_perf_event_destroy;
7942

7943 7944 7945 7946
	return 0;
}

static struct pmu perf_tracepoint = {
7947 7948
	.task_ctx_nr	= perf_sw_context,

7949
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7950 7951 7952 7953
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7954 7955 7956 7957 7958
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7959
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7960
}
L
Li Zefan 已提交
7961 7962 7963 7964 7965 7966

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
7982
	ret = BPF_PROG_RUN(event->prog, &ctx);
7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8035 8036
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8037
	bool is_kprobe, is_tracepoint;
8038 8039
	struct bpf_prog *prog;

8040 8041 8042 8043
	if (event->attr.type == PERF_TYPE_HARDWARE ||
	    event->attr.type == PERF_TYPE_SOFTWARE)
		return perf_event_set_bpf_handler(event, prog_fd);

8044 8045 8046 8047 8048 8049
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

8050 8051 8052 8053
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8054 8055 8056 8057 8058 8059
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8060 8061
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8062 8063 8064 8065 8066
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8067 8068 8069 8070 8071 8072 8073 8074
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8075 8076 8077 8078 8079 8080 8081 8082 8083
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

8084 8085
	perf_event_free_bpf_handler(event);

8086 8087 8088 8089 8090 8091
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
8092
		bpf_prog_put(prog);
8093 8094 8095
	}
}

8096
#else
L
Li Zefan 已提交
8097

8098
static inline void perf_tp_register(void)
8099 8100
{
}
L
Li Zefan 已提交
8101 8102 8103 8104 8105

static void perf_event_free_filter(struct perf_event *event)
{
}

8106 8107 8108 8109 8110 8111 8112 8113
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8114
#endif /* CONFIG_EVENT_TRACING */
8115

8116
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8117
void perf_bp_event(struct perf_event *bp, void *data)
8118
{
8119 8120 8121
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8122
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8123

P
Peter Zijlstra 已提交
8124
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8125
		perf_swevent_event(bp, 1, &sample, regs);
8126 8127 8128
}
#endif

8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8234 8235 8236
	if (!ifh->nr_file_filters)
		return;

8237 8238 8239 8240 8241 8242 8243 8244 8245 8246
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8247 8248 8249 8250 8251
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8266
	perf_event_stop(event, 1);
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8288
	IF_ACT_NONE = -1,
8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8312
	{ IF_ACT_NONE,		NULL },
8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8384 8385 8386 8387
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8407
			ret = -EINVAL;
8408 8409 8410 8411 8412 8413 8414
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8442 8443

				event->addr_filters.nr_file_filters++;
8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
8485
		goto fail_clear_files;
8486 8487

	ret = event->pmu->addr_filters_validate(&filters);
8488 8489
	if (ret)
		goto fail_free_filters;
8490 8491 8492 8493 8494 8495 8496

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

8497 8498 8499 8500 8501 8502 8503 8504
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

8505 8506 8507
	return ret;
}

8508 8509 8510 8511 8512
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8513 8514 8515
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8516 8517 8518 8519 8520 8521 8522 8523 8524 8525
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8526 8527
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8528 8529 8530 8531 8532

	kfree(filter_str);
	return ret;
}

8533 8534 8535
/*
 * hrtimer based swevent callback
 */
8536

8537
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8538
{
8539 8540 8541 8542 8543
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8544

8545
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8546 8547 8548 8549

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8550
	event->pmu->read(event);
8551

8552
	perf_sample_data_init(&data, 0, event->hw.last_period);
8553 8554 8555
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8556
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8557
			if (__perf_event_overflow(event, 1, &data, regs))
8558 8559
				ret = HRTIMER_NORESTART;
	}
8560

8561 8562
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8563

8564
	return ret;
8565 8566
}

8567
static void perf_swevent_start_hrtimer(struct perf_event *event)
8568
{
8569
	struct hw_perf_event *hwc = &event->hw;
8570 8571 8572 8573
	s64 period;

	if (!is_sampling_event(event))
		return;
8574

8575 8576 8577 8578
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8579

8580 8581 8582 8583
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8584 8585
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8586
}
8587 8588

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8589
{
8590 8591
	struct hw_perf_event *hwc = &event->hw;

8592
	if (is_sampling_event(event)) {
8593
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8594
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8595 8596 8597

		hrtimer_cancel(&hwc->hrtimer);
	}
8598 8599
}

P
Peter Zijlstra 已提交
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8620
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8621 8622 8623 8624
		event->attr.freq = 0;
	}
}

8625 8626 8627 8628 8629
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8630
{
8631 8632 8633
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8634
	now = local_clock();
8635 8636
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8637 8638
}

P
Peter Zijlstra 已提交
8639
static void cpu_clock_event_start(struct perf_event *event, int flags)
8640
{
P
Peter Zijlstra 已提交
8641
	local64_set(&event->hw.prev_count, local_clock());
8642 8643 8644
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8645
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8646
{
8647 8648 8649
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8650

P
Peter Zijlstra 已提交
8651 8652 8653 8654
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8655
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8656 8657 8658 8659 8660 8661 8662 8663 8664

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8665 8666 8667 8668
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8669

8670 8671 8672 8673 8674 8675 8676 8677
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8678 8679 8680 8681 8682 8683
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8684 8685
	perf_swevent_init_hrtimer(event);

8686
	return 0;
8687 8688
}

8689
static struct pmu perf_cpu_clock = {
8690 8691
	.task_ctx_nr	= perf_sw_context,

8692 8693
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8694
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8695 8696 8697 8698
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8699 8700 8701 8702 8703 8704 8705 8706
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8707
{
8708 8709
	u64 prev;
	s64 delta;
8710

8711 8712 8713 8714
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8715

P
Peter Zijlstra 已提交
8716
static void task_clock_event_start(struct perf_event *event, int flags)
8717
{
P
Peter Zijlstra 已提交
8718
	local64_set(&event->hw.prev_count, event->ctx->time);
8719 8720 8721
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8722
static void task_clock_event_stop(struct perf_event *event, int flags)
8723 8724 8725
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8726 8727 8728 8729 8730 8731
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8732
	perf_event_update_userpage(event);
8733

P
Peter Zijlstra 已提交
8734 8735 8736 8737 8738 8739
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8740 8741 8742 8743
}

static void task_clock_event_read(struct perf_event *event)
{
8744 8745 8746
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8747 8748 8749 8750 8751

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8752
{
8753 8754 8755 8756 8757 8758
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8759 8760 8761 8762 8763 8764
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8765 8766
	perf_swevent_init_hrtimer(event);

8767
	return 0;
L
Li Zefan 已提交
8768 8769
}

8770
static struct pmu perf_task_clock = {
8771 8772
	.task_ctx_nr	= perf_sw_context,

8773 8774
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8775
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8776 8777 8778 8779
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8780 8781
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8782

P
Peter Zijlstra 已提交
8783
static void perf_pmu_nop_void(struct pmu *pmu)
8784 8785
{
}
L
Li Zefan 已提交
8786

8787 8788 8789 8790
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8791
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8792
{
P
Peter Zijlstra 已提交
8793
	return 0;
L
Li Zefan 已提交
8794 8795
}

8796
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8797 8798

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8799
{
8800 8801 8802 8803 8804
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8805
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8806 8807
}

P
Peter Zijlstra 已提交
8808 8809
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8810 8811 8812 8813 8814 8815 8816
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8817 8818 8819
	perf_pmu_enable(pmu);
	return 0;
}
8820

P
Peter Zijlstra 已提交
8821
static void perf_pmu_cancel_txn(struct pmu *pmu)
8822
{
8823 8824 8825 8826 8827 8828 8829
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8830
	perf_pmu_enable(pmu);
8831 8832
}

8833 8834
static int perf_event_idx_default(struct perf_event *event)
{
8835
	return 0;
8836 8837
}

P
Peter Zijlstra 已提交
8838 8839 8840 8841
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8842
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8843
{
P
Peter Zijlstra 已提交
8844
	struct pmu *pmu;
8845

P
Peter Zijlstra 已提交
8846 8847
	if (ctxn < 0)
		return NULL;
8848

P
Peter Zijlstra 已提交
8849 8850 8851 8852
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8853

P
Peter Zijlstra 已提交
8854
	return NULL;
8855 8856
}

8857 8858
static void free_pmu_context(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
8859
	mutex_lock(&pmus_lock);
8860
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8861
	mutex_unlock(&pmus_lock);
8862
}
8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8877
static struct idr pmu_idr;
8878

P
Peter Zijlstra 已提交
8879 8880 8881 8882 8883 8884 8885
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8886
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8887

8888 8889 8890 8891 8892 8893 8894 8895 8896 8897
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8898 8899
static DEFINE_MUTEX(mux_interval_mutex);

8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8919
	mutex_lock(&mux_interval_mutex);
8920 8921 8922
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8923 8924
	get_online_cpus();
	for_each_online_cpu(cpu) {
8925 8926 8927 8928
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8929 8930
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8931
	}
8932 8933
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
8934 8935 8936

	return count;
}
8937
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8938

8939 8940 8941 8942
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8943
};
8944
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8945 8946 8947 8948

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8949
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8965
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8978 8979 8980 8981 8982 8983 8984
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8985 8986 8987
out:
	return ret;

8988 8989 8990
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8991 8992 8993 8994 8995
free_dev:
	put_device(pmu->dev);
	goto out;
}

8996
static struct lock_class_key cpuctx_mutex;
8997
static struct lock_class_key cpuctx_lock;
8998

8999
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9000
{
P
Peter Zijlstra 已提交
9001
	int cpu, ret;
9002

9003
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9004 9005 9006 9007
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9008

P
Peter Zijlstra 已提交
9009 9010 9011 9012 9013 9014
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9015 9016 9017
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9018 9019 9020 9021 9022
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9023 9024 9025 9026 9027 9028
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9029
skip_type:
9030 9031 9032
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9033 9034 9035 9036 9037 9038 9039
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9040 9041 9042 9043 9044
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9045 9046 9047
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9048

W
Wei Yongjun 已提交
9049
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9050 9051
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9052
		goto free_dev;
9053

P
Peter Zijlstra 已提交
9054 9055 9056 9057
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9058
		__perf_event_init_context(&cpuctx->ctx);
9059
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9060
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9061
		cpuctx->ctx.pmu = pmu;
9062

9063
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9064
	}
9065

P
Peter Zijlstra 已提交
9066
got_cpu_context:
P
Peter Zijlstra 已提交
9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9078
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9079 9080
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9081
		}
9082
	}
9083

P
Peter Zijlstra 已提交
9084 9085 9086 9087 9088
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9089 9090 9091
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9092
	list_add_rcu(&pmu->entry, &pmus);
9093
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9094 9095
	ret = 0;
unlock:
9096 9097
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9098
	return ret;
P
Peter Zijlstra 已提交
9099

P
Peter Zijlstra 已提交
9100 9101 9102 9103
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9104 9105 9106 9107
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9108 9109 9110
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9111
}
9112
EXPORT_SYMBOL_GPL(perf_pmu_register);
9113

9114
void perf_pmu_unregister(struct pmu *pmu)
9115
{
9116 9117
	int remove_device;

9118
	mutex_lock(&pmus_lock);
9119
	remove_device = pmu_bus_running;
9120 9121
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9122

9123
	/*
P
Peter Zijlstra 已提交
9124 9125
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9126
	 */
9127
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9128
	synchronize_rcu();
9129

P
Peter Zijlstra 已提交
9130
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9131 9132
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9133 9134 9135 9136 9137 9138
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9139
	free_pmu_context(pmu);
9140
}
9141
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9142

9143 9144
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9145
	struct perf_event_context *ctx = NULL;
9146 9147 9148 9149
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9150 9151

	if (event->group_leader != event) {
9152 9153 9154 9155 9156 9157
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9158 9159 9160
		BUG_ON(!ctx);
	}

9161 9162
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9163 9164 9165 9166

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9167 9168 9169 9170 9171 9172
	if (ret)
		module_put(pmu->module);

	return ret;
}

9173
static struct pmu *perf_init_event(struct perf_event *event)
9174 9175 9176
{
	struct pmu *pmu = NULL;
	int idx;
9177
	int ret;
9178 9179

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9180

9181 9182 9183 9184 9185 9186 9187 9188
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9189 9190 9191
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9192
	if (pmu) {
9193
		ret = perf_try_init_event(pmu, event);
9194 9195
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9196
		goto unlock;
9197
	}
P
Peter Zijlstra 已提交
9198

9199
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9200
		ret = perf_try_init_event(pmu, event);
9201
		if (!ret)
P
Peter Zijlstra 已提交
9202
			goto unlock;
9203

9204 9205
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9206
			goto unlock;
9207
		}
9208
	}
P
Peter Zijlstra 已提交
9209 9210
	pmu = ERR_PTR(-ENOENT);
unlock:
9211
	srcu_read_unlock(&pmus_srcu, idx);
9212

9213
	return pmu;
9214 9215
}

9216 9217 9218 9219 9220 9221 9222 9223 9224
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9225 9226 9227 9228 9229 9230 9231
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9232 9233
static void account_pmu_sb_event(struct perf_event *event)
{
9234
	if (is_sb_event(event))
9235 9236 9237
		attach_sb_event(event);
}

9238 9239 9240 9241 9242 9243 9244 9245 9246
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9268 9269
static void account_event(struct perf_event *event)
{
9270 9271
	bool inc = false;

9272 9273 9274
	if (event->parent)
		return;

9275
	if (event->attach_state & PERF_ATTACH_TASK)
9276
		inc = true;
9277 9278 9279 9280
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9281 9282
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9283 9284
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9285 9286
	if (event->attr.freq)
		account_freq_event();
9287 9288
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9289
		inc = true;
9290
	}
9291
	if (has_branch_stack(event))
9292
		inc = true;
9293
	if (is_cgroup_event(event))
9294 9295
		inc = true;

9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9318 9319

	account_event_cpu(event, event->cpu);
9320 9321

	account_pmu_sb_event(event);
9322 9323
}

T
Thomas Gleixner 已提交
9324
/*
9325
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9326
 */
9327
static struct perf_event *
9328
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9329 9330 9331
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9332
		 perf_overflow_handler_t overflow_handler,
9333
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9334
{
P
Peter Zijlstra 已提交
9335
	struct pmu *pmu;
9336 9337
	struct perf_event *event;
	struct hw_perf_event *hwc;
9338
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9339

9340 9341 9342 9343 9344
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9345
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9346
	if (!event)
9347
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9348

9349
	/*
9350
	 * Single events are their own group leaders, with an
9351 9352 9353
	 * empty sibling list:
	 */
	if (!group_leader)
9354
		group_leader = event;
9355

9356 9357
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9358

9359 9360 9361
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9362
	INIT_LIST_HEAD(&event->rb_entry);
9363
	INIT_LIST_HEAD(&event->active_entry);
9364
	INIT_LIST_HEAD(&event->addr_filters.list);
9365 9366
	INIT_HLIST_NODE(&event->hlist_entry);

9367

9368
	init_waitqueue_head(&event->waitq);
9369
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9370

9371
	mutex_init(&event->mmap_mutex);
9372
	raw_spin_lock_init(&event->addr_filters.lock);
9373

9374
	atomic_long_set(&event->refcount, 1);
9375 9376 9377 9378 9379
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9380

9381
	event->parent		= parent_event;
9382

9383
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9384
	event->id		= atomic64_inc_return(&perf_event_id);
9385

9386
	event->state		= PERF_EVENT_STATE_INACTIVE;
9387

9388 9389 9390
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9391 9392 9393
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9394
		 */
9395
		event->hw.target = task;
9396 9397
	}

9398 9399 9400 9401
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9402
	if (!overflow_handler && parent_event) {
9403
		overflow_handler = parent_event->overflow_handler;
9404
		context = parent_event->overflow_handler_context;
9405
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9418
	}
9419

9420 9421 9422
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9423 9424 9425
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9426
	} else {
9427
		event->overflow_handler = perf_event_output_forward;
9428 9429
		event->overflow_handler_context = NULL;
	}
9430

J
Jiri Olsa 已提交
9431
	perf_event__state_init(event);
9432

9433
	pmu = NULL;
9434

9435
	hwc = &event->hw;
9436
	hwc->sample_period = attr->sample_period;
9437
	if (attr->freq && attr->sample_freq)
9438
		hwc->sample_period = 1;
9439
	hwc->last_period = hwc->sample_period;
9440

9441
	local64_set(&hwc->period_left, hwc->sample_period);
9442

9443
	/*
9444
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9445
	 */
9446
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9447
		goto err_ns;
9448 9449 9450

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9451

9452 9453 9454 9455 9456 9457
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9458
	pmu = perf_init_event(event);
9459
	if (!pmu)
9460 9461
		goto err_ns;
	else if (IS_ERR(pmu)) {
9462
		err = PTR_ERR(pmu);
9463
		goto err_ns;
I
Ingo Molnar 已提交
9464
	}
9465

9466 9467 9468 9469
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
		if (!event->addr_filters_offs)
			goto err_per_task;

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9481
	if (!event->parent) {
9482
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9483
			err = get_callchain_buffers(attr->sample_max_stack);
9484
			if (err)
9485
				goto err_addr_filters;
9486
		}
9487
	}
9488

9489 9490 9491
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9492
	return event;
9493

9494 9495 9496
err_addr_filters:
	kfree(event->addr_filters_offs);

9497 9498 9499
err_per_task:
	exclusive_event_destroy(event);

9500 9501 9502
err_pmu:
	if (event->destroy)
		event->destroy(event);
9503
	module_put(pmu->module);
9504
err_ns:
9505 9506
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9507 9508 9509 9510 9511
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9512 9513
}

9514 9515
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9516 9517
{
	u32 size;
9518
	int ret;
9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9543 9544 9545
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9546 9547
	 */
	if (size > sizeof(*attr)) {
9548 9549 9550
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9551

9552 9553
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9554

9555
		for (; addr < end; addr++) {
9556 9557 9558 9559 9560 9561
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9562
		size = sizeof(*attr);
9563 9564 9565 9566 9567 9568
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9569
	if (attr->__reserved_1)
9570 9571 9572 9573 9574 9575 9576 9577
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9606 9607
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9608 9609
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9610
	}
9611

9612
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9613
		ret = perf_reg_validate(attr->sample_regs_user);
9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9632

9633 9634
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9635 9636 9637 9638 9639 9640 9641 9642 9643
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9644 9645
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9646
{
9647
	struct ring_buffer *rb = NULL;
9648 9649
	int ret = -EINVAL;

9650
	if (!output_event)
9651 9652
		goto set;

9653 9654
	/* don't allow circular references */
	if (event == output_event)
9655 9656
		goto out;

9657 9658 9659 9660 9661 9662 9663
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9664
	 * If its not a per-cpu rb, it must be the same task.
9665 9666 9667 9668
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9669 9670 9671 9672 9673 9674
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9675 9676 9677 9678 9679 9680 9681
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9682 9683 9684 9685 9686 9687 9688
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9689
set:
9690
	mutex_lock(&event->mmap_mutex);
9691 9692 9693
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9694

9695
	if (output_event) {
9696 9697 9698
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9699
			goto unlock;
9700 9701
	}

9702
	ring_buffer_attach(event, rb);
9703

9704
	ret = 0;
9705 9706 9707
unlock:
	mutex_unlock(&event->mmap_mutex);

9708 9709 9710 9711
out:
	return ret;
}

P
Peter Zijlstra 已提交
9712 9713 9714 9715 9716 9717 9718 9719 9720
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9789
/**
9790
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9791
 *
9792
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9793
 * @pid:		target pid
I
Ingo Molnar 已提交
9794
 * @cpu:		target cpu
9795
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9796
 */
9797 9798
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9799
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9800
{
9801 9802
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9803
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9804
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9805
	struct file *event_file = NULL;
9806
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9807
	struct task_struct *task = NULL;
9808
	struct pmu *pmu;
9809
	int event_fd;
9810
	int move_group = 0;
9811
	int err;
9812
	int f_flags = O_RDWR;
9813
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9814

9815
	/* for future expandability... */
S
Stephane Eranian 已提交
9816
	if (flags & ~PERF_FLAG_ALL)
9817 9818
		return -EINVAL;

9819 9820 9821
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9822

9823 9824 9825 9826 9827
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9828 9829 9830 9831 9832
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9833
	if (attr.freq) {
9834
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9835
			return -EINVAL;
9836 9837 9838
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9839 9840
	}

9841 9842 9843
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9844 9845 9846 9847 9848 9849 9850 9851 9852
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9853 9854 9855 9856
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9857 9858 9859
	if (event_fd < 0)
		return event_fd;

9860
	if (group_fd != -1) {
9861 9862
		err = perf_fget_light(group_fd, &group);
		if (err)
9863
			goto err_fd;
9864
		group_leader = group.file->private_data;
9865 9866 9867 9868 9869 9870
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9871
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9872 9873 9874 9875 9876 9877 9878
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9879 9880 9881 9882 9883 9884
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9885 9886
	get_online_cpus();

9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9905 9906 9907
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9908
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9909
				 NULL, NULL, cgroup_fd);
9910 9911
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9912
		goto err_cred;
9913 9914
	}

9915 9916
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9917
			err = -EOPNOTSUPP;
9918 9919 9920 9921
			goto err_alloc;
		}
	}

9922 9923 9924 9925 9926
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9927

9928 9929 9930 9931 9932 9933
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9934 9935 9936
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9950
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9951 9952 9953 9954 9955 9956 9957 9958
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9959 9960 9961 9962

	/*
	 * Get the target context (task or percpu):
	 */
9963
	ctx = find_get_context(pmu, task, event);
9964 9965
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9966
		goto err_alloc;
9967 9968
	}

9969 9970 9971 9972 9973
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9974
	/*
9975
	 * Look up the group leader (we will attach this event to it):
9976
	 */
9977
	if (group_leader) {
9978
		err = -EINVAL;
9979 9980

		/*
I
Ingo Molnar 已提交
9981 9982 9983 9984
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9985
			goto err_context;
9986 9987 9988 9989 9990

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9991 9992 9993
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9994
		 */
9995
		if (move_group) {
9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
10009 10010 10011 10012 10013 10014
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

10015 10016 10017
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10018
		if (attr.exclusive || attr.pinned)
10019
			goto err_context;
10020 10021 10022 10023 10024
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10025
			goto err_context;
10026
	}
T
Thomas Gleixner 已提交
10027

10028 10029
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10030 10031
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10032
		event_file = NULL;
10033
		goto err_context;
10034
	}
10035

10036
	if (move_group) {
10037 10038
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10039 10040 10041 10042
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10062 10063 10064 10065
	} else {
		mutex_lock(&ctx->mutex);
	}

10066 10067 10068 10069 10070
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10071 10072 10073 10074 10075
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10076 10077 10078 10079 10080 10081 10082
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10083

10084 10085 10086
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10087

10088 10089
	WARN_ON_ONCE(ctx->parent_ctx);

10090 10091 10092 10093 10094
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10095
	if (move_group) {
P
Peter Zijlstra 已提交
10096 10097 10098 10099
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10100
		perf_remove_from_context(group_leader, 0);
10101
		put_ctx(gctx);
J
Jiri Olsa 已提交
10102

10103 10104
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10105
			perf_remove_from_context(sibling, 0);
10106 10107 10108
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10109 10110 10111 10112
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10113
		synchronize_rcu();
P
Peter Zijlstra 已提交
10114

10115 10116 10117 10118 10119 10120 10121 10122 10123 10124
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
10125 10126
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10127
			perf_event__state_init(sibling);
10128
			perf_install_in_context(ctx, sibling, sibling->cpu);
10129 10130
			get_ctx(ctx);
		}
10131 10132 10133 10134 10135 10136 10137 10138 10139

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10140 10141
	}

10142 10143 10144 10145 10146 10147 10148 10149 10150
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10151 10152
	event->owner = current;

10153
	perf_install_in_context(ctx, event, event->cpu);
10154
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10155

10156
	if (move_group)
10157
		perf_event_ctx_unlock(group_leader, gctx);
10158
	mutex_unlock(&ctx->mutex);
10159

10160 10161 10162 10163 10164
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10165 10166
	put_online_cpus();

10167 10168 10169
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10170

10171 10172 10173 10174 10175 10176
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10177
	fdput(group);
10178 10179
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10180

10181 10182
err_locked:
	if (move_group)
10183
		perf_event_ctx_unlock(group_leader, gctx);
10184 10185 10186
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10187
err_context:
10188
	perf_unpin_context(ctx);
10189
	put_ctx(ctx);
10190
err_alloc:
P
Peter Zijlstra 已提交
10191 10192 10193 10194 10195 10196
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10197 10198 10199
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10200
err_cpus:
10201
	put_online_cpus();
10202
err_task:
P
Peter Zijlstra 已提交
10203 10204
	if (task)
		put_task_struct(task);
10205
err_group_fd:
10206
	fdput(group);
10207 10208
err_fd:
	put_unused_fd(event_fd);
10209
	return err;
T
Thomas Gleixner 已提交
10210 10211
}

10212 10213 10214 10215 10216
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10217
 * @task: task to profile (NULL for percpu)
10218 10219 10220
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10221
				 struct task_struct *task,
10222 10223
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10224 10225
{
	struct perf_event_context *ctx;
10226
	struct perf_event *event;
10227
	int err;
10228

10229 10230 10231
	/*
	 * Get the target context (task or percpu):
	 */
10232

10233
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10234
				 overflow_handler, context, -1);
10235 10236 10237 10238
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10239

10240
	/* Mark owner so we could distinguish it from user events. */
10241
	event->owner = TASK_TOMBSTONE;
10242

10243
	ctx = find_get_context(event->pmu, task, event);
10244 10245
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10246
		goto err_free;
10247
	}
10248 10249 10250

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10251 10252 10253 10254 10255
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10256 10257
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10258
		goto err_unlock;
10259 10260
	}

10261
	perf_install_in_context(ctx, event, cpu);
10262
	perf_unpin_context(ctx);
10263 10264 10265 10266
	mutex_unlock(&ctx->mutex);

	return event;

10267 10268 10269 10270
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10271 10272 10273
err_free:
	free_event(event);
err:
10274
	return ERR_PTR(err);
10275
}
10276
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10277

10278 10279 10280 10281 10282 10283 10284 10285 10286 10287
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10288 10289 10290 10291 10292
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10293 10294
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10295
		perf_remove_from_context(event, 0);
10296
		unaccount_event_cpu(event, src_cpu);
10297
		put_ctx(src_ctx);
10298
		list_add(&event->migrate_entry, &events);
10299 10300
	}

10301 10302 10303
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10304 10305
	synchronize_rcu();

10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10330 10331
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10332 10333
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10334
		account_event_cpu(event, dst_cpu);
10335 10336 10337 10338
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10339
	mutex_unlock(&src_ctx->mutex);
10340 10341 10342
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10343
static void sync_child_event(struct perf_event *child_event,
10344
			       struct task_struct *child)
10345
{
10346
	struct perf_event *parent_event = child_event->parent;
10347
	u64 child_val;
10348

10349 10350
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10351

P
Peter Zijlstra 已提交
10352
	child_val = perf_event_count(child_event);
10353 10354 10355 10356

	/*
	 * Add back the child's count to the parent's count:
	 */
10357
	atomic64_add(child_val, &parent_event->child_count);
10358 10359 10360 10361
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10362 10363
}

10364
static void
10365 10366 10367
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10368
{
10369 10370
	struct perf_event *parent_event = child_event->parent;

10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10383 10384 10385
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10386
	if (parent_event)
10387 10388
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10389
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10390
	raw_spin_unlock_irq(&child_ctx->lock);
10391

10392
	/*
10393
	 * Parent events are governed by their filedesc, retain them.
10394
	 */
10395
	if (!parent_event) {
10396
		perf_event_wakeup(child_event);
10397
		return;
10398
	}
10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10419 10420
}

P
Peter Zijlstra 已提交
10421
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10422
{
10423
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10424 10425 10426
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10427

10428
	child_ctx = perf_pin_task_context(child, ctxn);
10429
	if (!child_ctx)
10430 10431
		return;

10432
	/*
10433 10434 10435 10436 10437 10438 10439 10440
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10441
	 */
10442
	mutex_lock(&child_ctx->mutex);
10443 10444

	/*
10445 10446 10447
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10448
	 */
10449
	raw_spin_lock_irq(&child_ctx->lock);
10450
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10451

10452
	/*
10453 10454
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10455
	 */
10456 10457 10458 10459
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10460

10461
	clone_ctx = unclone_ctx(child_ctx);
10462
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10463

10464 10465
	if (clone_ctx)
		put_ctx(clone_ctx);
10466

P
Peter Zijlstra 已提交
10467
	/*
10468 10469 10470
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10471
	 */
10472
	perf_event_task(child, child_ctx, 0);
10473

10474
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10475
		perf_event_exit_event(child_event, child_ctx, child);
10476

10477 10478 10479
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10480 10481
}

P
Peter Zijlstra 已提交
10482 10483
/*
 * When a child task exits, feed back event values to parent events.
10484 10485 10486
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10487 10488 10489
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10490
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10491 10492
	int ctxn;

P
Peter Zijlstra 已提交
10493 10494 10495 10496 10497 10498 10499 10500 10501 10502
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10503
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10504 10505 10506
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10507 10508
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10509 10510 10511 10512 10513 10514 10515 10516

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10517 10518
}

10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10531
	put_event(parent);
10532

P
Peter Zijlstra 已提交
10533
	raw_spin_lock_irq(&ctx->lock);
10534
	perf_group_detach(event);
10535
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10536
	raw_spin_unlock_irq(&ctx->lock);
10537 10538 10539
	free_event(event);
}

10540
/*
P
Peter Zijlstra 已提交
10541
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10542
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10543 10544 10545
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10546
 */
10547
void perf_event_free_task(struct task_struct *task)
10548
{
P
Peter Zijlstra 已提交
10549
	struct perf_event_context *ctx;
10550
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10551
	int ctxn;
10552

P
Peter Zijlstra 已提交
10553 10554 10555 10556
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10557

P
Peter Zijlstra 已提交
10558
		mutex_lock(&ctx->mutex);
10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
10570

10571
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
10572
			perf_free_event(event, ctx);
10573

P
Peter Zijlstra 已提交
10574 10575 10576
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
10577 10578
}

10579 10580 10581 10582 10583 10584 10585 10586
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10587
struct file *perf_event_get(unsigned int fd)
10588
{
10589
	struct file *file;
10590

10591 10592 10593
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10594

10595 10596 10597 10598
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10599

10600
	return file;
10601 10602 10603 10604 10605 10606 10607 10608 10609 10610
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10611
/*
10612 10613 10614 10615 10616 10617
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
10618 10619 10620 10621 10622 10623 10624 10625 10626
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10627
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10628
	struct perf_event *child_event;
10629
	unsigned long flags;
P
Peter Zijlstra 已提交
10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10642
					   child,
P
Peter Zijlstra 已提交
10643
					   group_leader, parent_event,
10644
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10645 10646
	if (IS_ERR(child_event))
		return child_event;
10647

10648 10649 10650 10651 10652 10653 10654
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10655 10656
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10657
		mutex_unlock(&parent_event->child_mutex);
10658 10659 10660 10661
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10662 10663 10664 10665 10666 10667 10668
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10669
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10686 10687
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10688

10689 10690 10691 10692
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10693
	perf_event__id_header_size(child_event);
10694

P
Peter Zijlstra 已提交
10695 10696 10697
	/*
	 * Link it up in the child's context:
	 */
10698
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10699
	add_event_to_ctx(child_event, child_ctx);
10700
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10701 10702 10703 10704 10705 10706 10707 10708 10709 10710

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

10711 10712 10713 10714 10715 10716 10717 10718 10719 10720
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
10735 10736 10737 10738 10739
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
10740 10741 10742 10743 10744 10745 10746
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10747 10748
}

10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
10760 10761 10762
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10763
		   struct task_struct *child, int ctxn,
10764 10765 10766
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10767
	struct perf_event_context *child_ctx;
10768 10769 10770 10771

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10772 10773
	}

10774
	child_ctx = child->perf_event_ctxp[ctxn];
10775 10776 10777 10778 10779 10780 10781
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10782
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10783 10784
		if (!child_ctx)
			return -ENOMEM;
10785

P
Peter Zijlstra 已提交
10786
		child->perf_event_ctxp[ctxn] = child_ctx;
10787 10788 10789 10790 10791 10792 10793 10794 10795
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10796 10797
}

10798
/*
10799
 * Initialize the perf_event context in task_struct
10800
 */
10801
static int perf_event_init_context(struct task_struct *child, int ctxn)
10802
{
10803
	struct perf_event_context *child_ctx, *parent_ctx;
10804 10805
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10806
	struct task_struct *parent = current;
10807
	int inherited_all = 1;
10808
	unsigned long flags;
10809
	int ret = 0;
10810

P
Peter Zijlstra 已提交
10811
	if (likely(!parent->perf_event_ctxp[ctxn]))
10812 10813
		return 0;

10814
	/*
10815 10816
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10817
	 */
P
Peter Zijlstra 已提交
10818
	parent_ctx = perf_pin_task_context(parent, ctxn);
10819 10820
	if (!parent_ctx)
		return 0;
10821

10822 10823 10824 10825 10826 10827 10828
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10829 10830 10831 10832
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10833
	mutex_lock(&parent_ctx->mutex);
10834 10835 10836 10837 10838

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10839
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10840 10841
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10842
		if (ret)
10843
			goto out_unlock;
10844
	}
10845

10846 10847 10848 10849 10850 10851 10852 10853 10854
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10855
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10856 10857
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10858
		if (ret)
10859
			goto out_unlock;
10860 10861
	}

10862 10863 10864
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10865
	child_ctx = child->perf_event_ctxp[ctxn];
10866

10867
	if (child_ctx && inherited_all) {
10868 10869 10870
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10871 10872 10873
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10874
		 */
P
Peter Zijlstra 已提交
10875
		cloned_ctx = parent_ctx->parent_ctx;
10876 10877
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10878
			child_ctx->parent_gen = parent_ctx->parent_gen;
10879 10880 10881 10882 10883
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10884 10885
	}

P
Peter Zijlstra 已提交
10886
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10887
out_unlock:
10888
	mutex_unlock(&parent_ctx->mutex);
10889

10890
	perf_unpin_context(parent_ctx);
10891
	put_ctx(parent_ctx);
10892

10893
	return ret;
10894 10895
}

P
Peter Zijlstra 已提交
10896 10897 10898 10899 10900 10901 10902
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10903 10904 10905 10906
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10907 10908
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10909 10910
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10911
			return ret;
P
Peter Zijlstra 已提交
10912
		}
P
Peter Zijlstra 已提交
10913 10914 10915 10916 10917
	}

	return 0;
}

10918 10919
static void __init perf_event_init_all_cpus(void)
{
10920
	struct swevent_htable *swhash;
10921 10922 10923
	int cpu;

	for_each_possible_cpu(cpu) {
10924 10925
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10926
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10927 10928 10929

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10930

10931 10932 10933
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
10934
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10935 10936 10937
	}
}

10938
int perf_event_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10939
{
P
Peter Zijlstra 已提交
10940
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10941

10942
	mutex_lock(&swhash->hlist_mutex);
10943
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10944 10945
		struct swevent_hlist *hlist;

10946 10947 10948
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10949
	}
10950
	mutex_unlock(&swhash->hlist_mutex);
10951
	return 0;
T
Thomas Gleixner 已提交
10952 10953
}

10954
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10955
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10956
{
P
Peter Zijlstra 已提交
10957
	struct perf_event_context *ctx = __info;
10958 10959
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10960

10961 10962
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10963
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10964
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10965
}
P
Peter Zijlstra 已提交
10966 10967 10968 10969 10970 10971 10972 10973 10974

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
10975
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
10976 10977 10978 10979 10980 10981 10982

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}
10983 10984 10985 10986 10987
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
10988

10989
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10990
{
P
Peter Zijlstra 已提交
10991
	perf_event_exit_cpu_context(cpu);
10992
	return 0;
T
Thomas Gleixner 已提交
10993 10994
}

P
Peter Zijlstra 已提交
10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11015
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11016
{
11017 11018
	int ret;

P
Peter Zijlstra 已提交
11019 11020
	idr_init(&pmu_idr);

11021
	perf_event_init_all_cpus();
11022
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11023 11024 11025
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11026
	perf_tp_register();
11027
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11028
	register_reboot_notifier(&perf_reboot_notifier);
11029 11030 11031

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11032

11033 11034 11035 11036 11037 11038
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11039
}
P
Peter Zijlstra 已提交
11040

11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11052
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11053

P
Peter Zijlstra 已提交
11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11081 11082

#ifdef CONFIG_CGROUP_PERF
11083 11084
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11085 11086 11087
{
	struct perf_cgroup *jc;

11088
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11101
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11102
{
11103 11104
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11105 11106 11107 11108 11109 11110 11111
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11112
	rcu_read_lock();
S
Stephane Eranian 已提交
11113
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11114
	rcu_read_unlock();
S
Stephane Eranian 已提交
11115 11116 11117
	return 0;
}

11118
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11119
{
11120
	struct task_struct *task;
11121
	struct cgroup_subsys_state *css;
11122

11123
	cgroup_taskset_for_each(task, css, tset)
11124
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11125 11126
}

11127
struct cgroup_subsys perf_event_cgrp_subsys = {
11128 11129
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11130
	.attach		= perf_cgroup_attach,
11131 11132 11133 11134 11135 11136
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
S
Stephane Eranian 已提交
11137 11138
};
#endif /* CONFIG_CGROUP_PERF */