core.c 160.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
131
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
132 133
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

134 135 136
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
137

P
Peter Zijlstra 已提交
138 139 140 141
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

142
/*
143
 * perf event paranoia level:
144 145
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
146
 *   1 - disallow cpu events for unpriv
147
 *   2 - disallow kernel profiling for unpriv
148
 */
149
int sysctl_perf_event_paranoid __read_mostly = 1;
150

151 152
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 154

/*
155
 * max perf event sample rate
156
 */
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
175

176
static atomic64_t perf_event_id;
177

178 179 180 181
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
182 183 184 185 186
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
187

188 189 190
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

191
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
192

193
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
194
{
195
	return "pmu";
T
Thomas Gleixner 已提交
196 197
}

198 199 200 201 202
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
203 204 205 206 207 208
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
225 226
#ifdef CONFIG_CGROUP_PERF

227 228 229 230 231
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
299 300
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
301
	/*
302 303
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
304
	 */
305
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
306 307
		return;

308 309 310 311 312 313
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
314 315 316
}

static inline void
317 318
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
319 320 321 322
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

323 324 325 326 327 328
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
329 330 331 332
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
333
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
375 376
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
377 378 379 380 381 382 383 384 385 386 387

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
388
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
389 390 391 392 393 394 395
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
396 397
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
398 399 400 401 402 403 404 405
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

406 407
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
408
{
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
431 432
}

433 434
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
435
{
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
470 471 472 473
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
474 475 476 477

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

478 479 480
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
481 482 483 484 485 486 487 488 489
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
490
out:
S
Stephane Eranian 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

565 566
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
567 568 569
{
}

570 571
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
572 573 574 575 576 577 578 579 580 581 582
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
583 584
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
615
void perf_pmu_disable(struct pmu *pmu)
616
{
P
Peter Zijlstra 已提交
617 618 619
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
620 621
}

P
Peter Zijlstra 已提交
622
void perf_pmu_enable(struct pmu *pmu)
623
{
P
Peter Zijlstra 已提交
624 625 626
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
627 628
}

629 630 631 632 633 634 635
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
636
static void perf_pmu_rotate_start(struct pmu *pmu)
637
{
P
Peter Zijlstra 已提交
638
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639
	struct list_head *head = &__get_cpu_var(rotation_list);
640

641
	WARN_ON(!irqs_disabled());
642

643 644
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
645 646
}

647
static void get_ctx(struct perf_event_context *ctx)
648
{
649
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 651
}

652
static void put_ctx(struct perf_event_context *ctx)
653
{
654 655 656
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
657 658
		if (ctx->task)
			put_task_struct(ctx->task);
659
		kfree_rcu(ctx, rcu_head);
660
	}
661 662
}

663
static void unclone_ctx(struct perf_event_context *ctx)
664 665 666 667 668 669 670
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

693
/*
694
 * If we inherit events we want to return the parent event id
695 696
 * to userspace.
 */
697
static u64 primary_event_id(struct perf_event *event)
698
{
699
	u64 id = event->id;
700

701 702
	if (event->parent)
		id = event->parent->id;
703 704 705 706

	return id;
}

707
/*
708
 * Get the perf_event_context for a task and lock it.
709 710 711
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
712
static struct perf_event_context *
P
Peter Zijlstra 已提交
713
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714
{
715
	struct perf_event_context *ctx;
716 717

	rcu_read_lock();
P
Peter Zijlstra 已提交
718
retry:
P
Peter Zijlstra 已提交
719
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 721 722 723
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
724
		 * perf_event_task_sched_out, though the
725 726 727 728 729 730
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
731
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
732
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 735
			goto retry;
		}
736 737

		if (!atomic_inc_not_zero(&ctx->refcount)) {
738
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 740
			ctx = NULL;
		}
741 742 743 744 745 746 747 748 749 750
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
751 752
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
753
{
754
	struct perf_event_context *ctx;
755 756
	unsigned long flags;

P
Peter Zijlstra 已提交
757
	ctx = perf_lock_task_context(task, ctxn, &flags);
758 759
	if (ctx) {
		++ctx->pin_count;
760
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 762 763 764
	}
	return ctx;
}

765
static void perf_unpin_context(struct perf_event_context *ctx)
766 767 768
{
	unsigned long flags;

769
	raw_spin_lock_irqsave(&ctx->lock, flags);
770
	--ctx->pin_count;
771
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 773
}

774 775 776 777 778 779 780 781 782 783 784
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

785 786 787
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
788 789 790 791

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

792 793 794
	return ctx ? ctx->time : 0;
}

795 796
/*
 * Update the total_time_enabled and total_time_running fields for a event.
797
 * The caller of this function needs to hold the ctx->lock.
798 799 800 801 802 803 804 805 806
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
807 808 809 810 811 812 813 814 815 816 817
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
818
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
819 820
	else if (ctx->is_active)
		run_end = ctx->time;
821 822 823 824
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
825 826 827 828

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
829
		run_end = perf_event_time(event);
830 831

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
832

833 834
}

835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

847 848 849 850 851 852 853 854 855
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

856
/*
857
 * Add a event from the lists for its context.
858 859
 * Must be called with ctx->mutex and ctx->lock held.
 */
860
static void
861
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862
{
863 864
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
865 866

	/*
867 868 869
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
870
	 */
871
	if (event->group_leader == event) {
872 873
		struct list_head *list;

874 875 876
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

877 878
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
879
	}
P
Peter Zijlstra 已提交
880

881
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
882 883
		ctx->nr_cgroups++;

884
	list_add_rcu(&event->event_entry, &ctx->event_list);
885
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
886
		perf_pmu_rotate_start(ctx->pmu);
887 888
	ctx->nr_events++;
	if (event->attr.inherit_stat)
889
		ctx->nr_stat++;
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

964
	event->id_header_size = size;
965 966
}

967 968
static void perf_group_attach(struct perf_event *event)
{
969
	struct perf_event *group_leader = event->group_leader, *pos;
970

P
Peter Zijlstra 已提交
971 972 973 974 975 976
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

977 978 979 980 981 982 983 984 985 986 987
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
988 989 990 991 992

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
993 994
}

995
/*
996
 * Remove a event from the lists for its context.
997
 * Must be called with ctx->mutex and ctx->lock held.
998
 */
999
static void
1000
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001
{
1002
	struct perf_cpu_context *cpuctx;
1003 1004 1005 1006
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007
		return;
1008 1009 1010

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1011
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1012
		ctx->nr_cgroups--;
1013 1014 1015 1016 1017 1018 1019 1020 1021
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1022

1023 1024
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1025
		ctx->nr_stat--;
1026

1027
	list_del_rcu(&event->event_entry);
1028

1029 1030
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1031

1032
	update_group_times(event);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1043 1044
}

1045
static void perf_group_detach(struct perf_event *event)
1046 1047
{
	struct perf_event *sibling, *tmp;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1064
		goto out;
1065 1066 1067 1068
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1069

1070
	/*
1071 1072
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1073
	 * to whatever list we are on.
1074
	 */
1075
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 1077
		if (list)
			list_move_tail(&sibling->group_entry, list);
1078
		sibling->group_leader = sibling;
1079 1080 1081

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1082
	}
1083 1084 1085 1086 1087 1088

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1089 1090
}

1091 1092 1093
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1094 1095
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1096 1097
}

1098 1099
static void
event_sched_out(struct perf_event *event,
1100
		  struct perf_cpu_context *cpuctx,
1101
		  struct perf_event_context *ctx)
1102
{
1103
	u64 tstamp = perf_event_time(event);
1104 1105 1106 1107 1108 1109 1110 1111 1112
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1113
		delta = tstamp - event->tstamp_stopped;
1114
		event->tstamp_running += delta;
1115
		event->tstamp_stopped = tstamp;
1116 1117
	}

1118
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1119
		return;
1120

1121 1122 1123 1124
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1125
	}
1126
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1127
	event->pmu->del(event, 0);
1128
	event->oncpu = -1;
1129

1130
	if (!is_software_event(event))
1131 1132
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1133 1134
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1135
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 1137 1138
		cpuctx->exclusive = 0;
}

1139
static void
1140
group_sched_out(struct perf_event *group_event,
1141
		struct perf_cpu_context *cpuctx,
1142
		struct perf_event_context *ctx)
1143
{
1144
	struct perf_event *event;
1145
	int state = group_event->state;
1146

1147
	event_sched_out(group_event, cpuctx, ctx);
1148 1149 1150 1151

	/*
	 * Schedule out siblings (if any):
	 */
1152 1153
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1154

1155
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 1157 1158
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1159
/*
1160
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1161
 *
1162
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1163 1164
 * remove it from the context list.
 */
1165
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1166
{
1167 1168
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1169
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1170

1171
	raw_spin_lock(&ctx->lock);
1172 1173
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1174 1175 1176 1177
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1178
	raw_spin_unlock(&ctx->lock);
1179 1180

	return 0;
T
Thomas Gleixner 已提交
1181 1182 1183 1184
}


/*
1185
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1186
 *
1187
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1188
 * call when the task is on a CPU.
1189
 *
1190 1191
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1192 1193
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1194
 * When called from perf_event_exit_task, it's OK because the
1195
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1196
 */
1197
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1198
{
1199
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1200 1201
	struct task_struct *task = ctx->task;

1202 1203
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1204 1205
	if (!task) {
		/*
1206
		 * Per cpu events are removed via an smp call and
1207
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1208
		 */
1209
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1210 1211 1212 1213
		return;
	}

retry:
1214 1215
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1216

1217
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1218
	/*
1219 1220
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1221
	 */
1222
	if (ctx->is_active) {
1223
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1224 1225 1226 1227
		goto retry;
	}

	/*
1228 1229
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1230
	 */
1231
	list_del_event(event, ctx);
1232
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1233 1234
}

1235
/*
1236
 * Cross CPU call to disable a performance event
1237
 */
1238
static int __perf_event_disable(void *info)
1239
{
1240 1241
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1242
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243 1244

	/*
1245 1246
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1247 1248 1249
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1250
	 */
1251
	if (ctx->task && cpuctx->task_ctx != ctx)
1252
		return -EINVAL;
1253

1254
	raw_spin_lock(&ctx->lock);
1255 1256

	/*
1257
	 * If the event is on, turn it off.
1258 1259
	 * If it is in error state, leave it in error state.
	 */
1260
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261
		update_context_time(ctx);
S
Stephane Eranian 已提交
1262
		update_cgrp_time_from_event(event);
1263 1264 1265
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1266
		else
1267 1268
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1269 1270
	}

1271
	raw_spin_unlock(&ctx->lock);
1272 1273

	return 0;
1274 1275 1276
}

/*
1277
 * Disable a event.
1278
 *
1279 1280
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1281
 * remains valid.  This condition is satisifed when called through
1282 1283 1284 1285
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1286
 * is the current context on this CPU and preemption is disabled,
1287
 * hence we can't get into perf_event_task_sched_out for this context.
1288
 */
1289
void perf_event_disable(struct perf_event *event)
1290
{
1291
	struct perf_event_context *ctx = event->ctx;
1292 1293 1294 1295
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1296
		 * Disable the event on the cpu that it's on
1297
		 */
1298
		cpu_function_call(event->cpu, __perf_event_disable, event);
1299 1300 1301
		return;
	}

P
Peter Zijlstra 已提交
1302
retry:
1303 1304
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1305

1306
	raw_spin_lock_irq(&ctx->lock);
1307
	/*
1308
	 * If the event is still active, we need to retry the cross-call.
1309
	 */
1310
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311
		raw_spin_unlock_irq(&ctx->lock);
1312 1313 1314 1315 1316
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1317 1318 1319 1320 1321 1322 1323
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1324 1325 1326
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1327
	}
1328
	raw_spin_unlock_irq(&ctx->lock);
1329
}
1330
EXPORT_SYMBOL_GPL(perf_event_disable);
1331

S
Stephane Eranian 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1367 1368 1369 1370
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1371
static int
1372
event_sched_in(struct perf_event *event,
1373
		 struct perf_cpu_context *cpuctx,
1374
		 struct perf_event_context *ctx)
1375
{
1376 1377
	u64 tstamp = perf_event_time(event);

1378
	if (event->state <= PERF_EVENT_STATE_OFF)
1379 1380
		return 0;

1381
	event->state = PERF_EVENT_STATE_ACTIVE;
1382
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1394 1395 1396 1397 1398
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1399
	if (event->pmu->add(event, PERF_EF_START)) {
1400 1401
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1402 1403 1404
		return -EAGAIN;
	}

1405
	event->tstamp_running += tstamp - event->tstamp_stopped;
1406

S
Stephane Eranian 已提交
1407
	perf_set_shadow_time(event, ctx, tstamp);
1408

1409
	if (!is_software_event(event))
1410
		cpuctx->active_oncpu++;
1411
	ctx->nr_active++;
1412 1413
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1414

1415
	if (event->attr.exclusive)
1416 1417
		cpuctx->exclusive = 1;

1418 1419 1420
	return 0;
}

1421
static int
1422
group_sched_in(struct perf_event *group_event,
1423
	       struct perf_cpu_context *cpuctx,
1424
	       struct perf_event_context *ctx)
1425
{
1426
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1427
	struct pmu *pmu = group_event->pmu;
1428 1429
	u64 now = ctx->time;
	bool simulate = false;
1430

1431
	if (group_event->state == PERF_EVENT_STATE_OFF)
1432 1433
		return 0;

P
Peter Zijlstra 已提交
1434
	pmu->start_txn(pmu);
1435

1436
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1437
		pmu->cancel_txn(pmu);
1438
		return -EAGAIN;
1439
	}
1440 1441 1442 1443

	/*
	 * Schedule in siblings as one group (if any):
	 */
1444
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445
		if (event_sched_in(event, cpuctx, ctx)) {
1446
			partial_group = event;
1447 1448 1449 1450
			goto group_error;
		}
	}

1451
	if (!pmu->commit_txn(pmu))
1452
		return 0;
1453

1454 1455 1456 1457
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1468
	 */
1469 1470
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1471 1472 1473 1474 1475 1476 1477 1478
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1479
	}
1480
	event_sched_out(group_event, cpuctx, ctx);
1481

P
Peter Zijlstra 已提交
1482
	pmu->cancel_txn(pmu);
1483

1484 1485 1486
	return -EAGAIN;
}

1487
/*
1488
 * Work out whether we can put this event group on the CPU now.
1489
 */
1490
static int group_can_go_on(struct perf_event *event,
1491 1492 1493 1494
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1495
	 * Groups consisting entirely of software events can always go on.
1496
	 */
1497
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 1499 1500
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1501
	 * events can go on.
1502 1503 1504 1505 1506
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1507
	 * events on the CPU, it can't go on.
1508
	 */
1509
	if (event->attr.exclusive && cpuctx->active_oncpu)
1510 1511 1512 1513 1514 1515 1516 1517
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1518 1519
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1520
{
1521 1522
	u64 tstamp = perf_event_time(event);

1523
	list_add_event(event, ctx);
1524
	perf_group_attach(event);
1525 1526 1527
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1528 1529
}

1530 1531 1532 1533 1534 1535
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1549
/*
1550
 * Cross CPU call to install and enable a performance event
1551 1552
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1553
 */
1554
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1555
{
1556 1557
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1558
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 1560 1561
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1562
	perf_ctx_lock(cpuctx, task_ctx);
1563
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1564 1565

	/*
1566
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1567
	 */
1568
	if (task_ctx)
1569
		task_ctx_sched_out(task_ctx);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1584 1585
		task = task_ctx->task;
	}
1586

1587
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1588

1589
	update_context_time(ctx);
S
Stephane Eranian 已提交
1590 1591 1592 1593 1594 1595
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1596

1597
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1598

1599
	/*
1600
	 * Schedule everything back in
1601
	 */
1602
	perf_event_sched_in(cpuctx, task_ctx, task);
1603 1604 1605

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1606 1607

	return 0;
T
Thomas Gleixner 已提交
1608 1609 1610
}

/*
1611
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1612
 *
1613 1614
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1615
 *
1616
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1617 1618 1619 1620
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1621 1622
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1623 1624 1625 1626
			int cpu)
{
	struct task_struct *task = ctx->task;

1627 1628
	lockdep_assert_held(&ctx->mutex);

1629 1630
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1631 1632
	if (!task) {
		/*
1633
		 * Per cpu events are installed via an smp call and
1634
		 * the install is always successful.
T
Thomas Gleixner 已提交
1635
		 */
1636
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1637 1638 1639 1640
		return;
	}

retry:
1641 1642
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1643

1644
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1645
	/*
1646 1647
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1648
	 */
1649
	if (ctx->is_active) {
1650
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1651 1652 1653 1654
		goto retry;
	}

	/*
1655 1656
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1657
	 */
1658
	add_event_to_ctx(event, ctx);
1659
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1660 1661
}

1662
/*
1663
 * Put a event into inactive state and update time fields.
1664 1665 1666 1667 1668 1669
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1670 1671
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1672
{
1673
	struct perf_event *sub;
1674
	u64 tstamp = perf_event_time(event);
1675

1676
	event->state = PERF_EVENT_STATE_INACTIVE;
1677
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1678
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1679 1680
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1681
	}
1682 1683
}

1684
/*
1685
 * Cross CPU call to enable a performance event
1686
 */
1687
static int __perf_event_enable(void *info)
1688
{
1689 1690 1691
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1692
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1693
	int err;
1694

1695 1696
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1697

1698
	raw_spin_lock(&ctx->lock);
1699
	update_context_time(ctx);
1700

1701
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1702
		goto unlock;
S
Stephane Eranian 已提交
1703 1704 1705 1706

	/*
	 * set current task's cgroup time reference point
	 */
1707
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1708

1709
	__perf_event_mark_enabled(event, ctx);
1710

S
Stephane Eranian 已提交
1711 1712 1713
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1714
		goto unlock;
S
Stephane Eranian 已提交
1715
	}
1716

1717
	/*
1718
	 * If the event is in a group and isn't the group leader,
1719
	 * then don't put it on unless the group is on.
1720
	 */
1721
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1722
		goto unlock;
1723

1724
	if (!group_can_go_on(event, cpuctx, 1)) {
1725
		err = -EEXIST;
1726
	} else {
1727
		if (event == leader)
1728
			err = group_sched_in(event, cpuctx, ctx);
1729
		else
1730
			err = event_sched_in(event, cpuctx, ctx);
1731
	}
1732 1733 1734

	if (err) {
		/*
1735
		 * If this event can't go on and it's part of a
1736 1737
		 * group, then the whole group has to come off.
		 */
1738
		if (leader != event)
1739
			group_sched_out(leader, cpuctx, ctx);
1740
		if (leader->attr.pinned) {
1741
			update_group_times(leader);
1742
			leader->state = PERF_EVENT_STATE_ERROR;
1743
		}
1744 1745
	}

P
Peter Zijlstra 已提交
1746
unlock:
1747
	raw_spin_unlock(&ctx->lock);
1748 1749

	return 0;
1750 1751 1752
}

/*
1753
 * Enable a event.
1754
 *
1755 1756
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1757
 * remains valid.  This condition is satisfied when called through
1758 1759
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1760
 */
1761
void perf_event_enable(struct perf_event *event)
1762
{
1763
	struct perf_event_context *ctx = event->ctx;
1764 1765 1766 1767
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1768
		 * Enable the event on the cpu that it's on
1769
		 */
1770
		cpu_function_call(event->cpu, __perf_event_enable, event);
1771 1772 1773
		return;
	}

1774
	raw_spin_lock_irq(&ctx->lock);
1775
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1776 1777 1778
		goto out;

	/*
1779 1780
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1781 1782 1783 1784
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1785 1786
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1787

P
Peter Zijlstra 已提交
1788
retry:
1789 1790 1791 1792 1793
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1794
	raw_spin_unlock_irq(&ctx->lock);
1795 1796 1797

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1798

1799
	raw_spin_lock_irq(&ctx->lock);
1800 1801

	/*
1802
	 * If the context is active and the event is still off,
1803 1804
	 * we need to retry the cross-call.
	 */
1805 1806 1807 1808 1809 1810
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1811
		goto retry;
1812
	}
1813

P
Peter Zijlstra 已提交
1814
out:
1815
	raw_spin_unlock_irq(&ctx->lock);
1816
}
1817
EXPORT_SYMBOL_GPL(perf_event_enable);
1818

1819
int perf_event_refresh(struct perf_event *event, int refresh)
1820
{
1821
	/*
1822
	 * not supported on inherited events
1823
	 */
1824
	if (event->attr.inherit || !is_sampling_event(event))
1825 1826
		return -EINVAL;

1827 1828
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1829 1830

	return 0;
1831
}
1832
EXPORT_SYMBOL_GPL(perf_event_refresh);
1833

1834 1835 1836
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1837
{
1838
	struct perf_event *event;
1839
	int is_active = ctx->is_active;
1840

1841
	ctx->is_active &= ~event_type;
1842
	if (likely(!ctx->nr_events))
1843 1844
		return;

1845
	update_context_time(ctx);
S
Stephane Eranian 已提交
1846
	update_cgrp_time_from_cpuctx(cpuctx);
1847
	if (!ctx->nr_active)
1848
		return;
1849

P
Peter Zijlstra 已提交
1850
	perf_pmu_disable(ctx->pmu);
1851
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1852 1853
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1854
	}
1855

1856
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1857
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1858
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1859
	}
P
Peter Zijlstra 已提交
1860
	perf_pmu_enable(ctx->pmu);
1861 1862
}

1863 1864 1865
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1866 1867 1868 1869
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1870
 * in them directly with an fd; we can only enable/disable all
1871
 * events via prctl, or enable/disable all events in a family
1872 1873
 * via ioctl, which will have the same effect on both contexts.
 */
1874 1875
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1876 1877
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1878
		&& ctx1->parent_gen == ctx2->parent_gen
1879
		&& !ctx1->pin_count && !ctx2->pin_count;
1880 1881
}

1882 1883
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1884 1885 1886
{
	u64 value;

1887
	if (!event->attr.inherit_stat)
1888 1889 1890
		return;

	/*
1891
	 * Update the event value, we cannot use perf_event_read()
1892 1893
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1894
	 * we know the event must be on the current CPU, therefore we
1895 1896
	 * don't need to use it.
	 */
1897 1898
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1899 1900
		event->pmu->read(event);
		/* fall-through */
1901

1902 1903
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1904 1905 1906 1907 1908 1909 1910
		break;

	default:
		break;
	}

	/*
1911
	 * In order to keep per-task stats reliable we need to flip the event
1912 1913
	 * values when we flip the contexts.
	 */
1914 1915 1916
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1917

1918 1919
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1920

1921
	/*
1922
	 * Since we swizzled the values, update the user visible data too.
1923
	 */
1924 1925
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1926 1927 1928 1929 1930
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1931 1932
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1933
{
1934
	struct perf_event *event, *next_event;
1935 1936 1937 1938

	if (!ctx->nr_stat)
		return;

1939 1940
	update_context_time(ctx);

1941 1942
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1943

1944 1945
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1946

1947 1948
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1949

1950
		__perf_event_sync_stat(event, next_event);
1951

1952 1953
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1954 1955 1956
	}
}

1957 1958
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1959
{
P
Peter Zijlstra 已提交
1960
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1961 1962
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1963
	struct perf_cpu_context *cpuctx;
1964
	int do_switch = 1;
T
Thomas Gleixner 已提交
1965

P
Peter Zijlstra 已提交
1966 1967
	if (likely(!ctx))
		return;
1968

P
Peter Zijlstra 已提交
1969 1970
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1971 1972
		return;

1973 1974
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1975
	next_ctx = next->perf_event_ctxp[ctxn];
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1987 1988
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1989
		if (context_equiv(ctx, next_ctx)) {
1990 1991
			/*
			 * XXX do we need a memory barrier of sorts
1992
			 * wrt to rcu_dereference() of perf_event_ctxp
1993
			 */
P
Peter Zijlstra 已提交
1994 1995
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1996 1997 1998
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1999

2000
			perf_event_sync_stat(ctx, next_ctx);
2001
		}
2002 2003
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2004
	}
2005
	rcu_read_unlock();
2006

2007
	if (do_switch) {
2008
		raw_spin_lock(&ctx->lock);
2009
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2010
		cpuctx->task_ctx = NULL;
2011
		raw_spin_unlock(&ctx->lock);
2012
	}
T
Thomas Gleixner 已提交
2013 2014
}

P
Peter Zijlstra 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2029 2030
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2031 2032 2033 2034 2035
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2036 2037 2038 2039 2040 2041 2042

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2043
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2044 2045
}

2046
static void task_ctx_sched_out(struct perf_event_context *ctx)
2047
{
P
Peter Zijlstra 已提交
2048
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2049

2050 2051
	if (!cpuctx->task_ctx)
		return;
2052 2053 2054 2055

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2056
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2057 2058 2059
	cpuctx->task_ctx = NULL;
}

2060 2061 2062 2063 2064 2065 2066
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2067 2068
}

2069
static void
2070
ctx_pinned_sched_in(struct perf_event_context *ctx,
2071
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2072
{
2073
	struct perf_event *event;
T
Thomas Gleixner 已提交
2074

2075 2076
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2077
			continue;
2078
		if (!event_filter_match(event))
2079 2080
			continue;

S
Stephane Eranian 已提交
2081 2082 2083 2084
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2085
		if (group_can_go_on(event, cpuctx, 1))
2086
			group_sched_in(event, cpuctx, ctx);
2087 2088 2089 2090 2091

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2092 2093 2094
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2095
		}
2096
	}
2097 2098 2099 2100
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2101
		      struct perf_cpu_context *cpuctx)
2102 2103 2104
{
	struct perf_event *event;
	int can_add_hw = 1;
2105

2106 2107 2108
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2109
			continue;
2110 2111
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2112
		 * of events:
2113
		 */
2114
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2115 2116
			continue;

S
Stephane Eranian 已提交
2117 2118 2119 2120
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2121
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2122
			if (group_sched_in(event, cpuctx, ctx))
2123
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2124
		}
T
Thomas Gleixner 已提交
2125
	}
2126 2127 2128 2129 2130
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2131 2132
	     enum event_type_t event_type,
	     struct task_struct *task)
2133
{
S
Stephane Eranian 已提交
2134
	u64 now;
2135
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2136

2137
	ctx->is_active |= event_type;
2138
	if (likely(!ctx->nr_events))
2139
		return;
2140

S
Stephane Eranian 已提交
2141 2142
	now = perf_clock();
	ctx->timestamp = now;
2143
	perf_cgroup_set_timestamp(task, ctx);
2144 2145 2146 2147
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2148
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2149
		ctx_pinned_sched_in(ctx, cpuctx);
2150 2151

	/* Then walk through the lower prio flexible groups */
2152
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2153
		ctx_flexible_sched_in(ctx, cpuctx);
2154 2155
}

2156
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2157 2158
			     enum event_type_t event_type,
			     struct task_struct *task)
2159 2160 2161
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2162
	ctx_sched_in(ctx, cpuctx, event_type, task);
2163 2164
}

S
Stephane Eranian 已提交
2165 2166
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2167
{
P
Peter Zijlstra 已提交
2168
	struct perf_cpu_context *cpuctx;
2169

P
Peter Zijlstra 已提交
2170
	cpuctx = __get_cpu_context(ctx);
2171 2172 2173
	if (cpuctx->task_ctx == ctx)
		return;

2174
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2175
	perf_pmu_disable(ctx->pmu);
2176 2177 2178 2179 2180 2181 2182
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2183
	perf_event_sched_in(cpuctx, ctx, task);
2184

2185 2186
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2187

2188 2189 2190
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2191 2192 2193 2194
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2195
	perf_pmu_rotate_start(ctx->pmu);
2196 2197
}

P
Peter Zijlstra 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2209 2210
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2220
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2221
	}
S
Stephane Eranian 已提交
2222 2223 2224 2225 2226 2227
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2228
		perf_cgroup_sched_in(prev, task);
2229 2230
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2258
#define REDUCE_FLS(a, b)		\
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2298 2299 2300
	if (!divisor)
		return dividend;

2301 2302 2303 2304
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2305
{
2306
	struct hw_perf_event *hwc = &event->hw;
2307
	s64 period, sample_period;
2308 2309
	s64 delta;

2310
	period = perf_calculate_period(event, nsec, count);
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2321

2322
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2323
		event->pmu->stop(event, PERF_EF_UPDATE);
2324
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2325
		event->pmu->start(event, PERF_EF_RELOAD);
2326
	}
2327 2328
}

2329
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2330
{
2331 2332
	struct perf_event *event;
	struct hw_perf_event *hwc;
2333 2334
	u64 interrupts, now;
	s64 delta;
2335

2336 2337 2338
	if (!ctx->nr_freq)
		return;

2339
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2340
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2341 2342
			continue;

2343
		if (!event_filter_match(event))
2344 2345
			continue;

2346
		hwc = &event->hw;
2347 2348 2349

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2350

2351
		/*
2352
		 * unthrottle events on the tick
2353
		 */
2354
		if (interrupts == MAX_INTERRUPTS) {
2355
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2356
			event->pmu->start(event, 0);
2357 2358
		}

2359
		if (!event->attr.freq || !event->attr.sample_freq)
2360 2361
			continue;

2362
		event->pmu->read(event);
2363
		now = local64_read(&event->count);
2364 2365
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2366

2367
		if (delta > 0)
2368
			perf_adjust_period(event, period, delta);
2369 2370 2371
	}
}

2372
/*
2373
 * Round-robin a context's events:
2374
 */
2375
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2376
{
2377 2378 2379 2380 2381 2382
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2383 2384
}

2385
/*
2386 2387 2388
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2389
 */
2390
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2391
{
2392
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2393
	struct perf_event_context *ctx = NULL;
2394
	int rotate = 0, remove = 1, freq = 0;
2395

2396
	if (cpuctx->ctx.nr_events) {
2397
		remove = 0;
2398 2399
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
2400 2401
		if (cpuctx->ctx.nr_freq)
			freq = 1;
2402
	}
2403

P
Peter Zijlstra 已提交
2404
	ctx = cpuctx->task_ctx;
2405
	if (ctx && ctx->nr_events) {
2406
		remove = 0;
2407 2408
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
2409 2410
		if (ctx->nr_freq)
			freq = 1;
2411
	}
2412

2413 2414 2415
	if (!rotate && !freq)
		goto done;

2416
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2417
	perf_pmu_disable(cpuctx->ctx.pmu);
2418

2419 2420 2421 2422 2423
	if (freq) {
		perf_ctx_adjust_freq(&cpuctx->ctx, interval);
		if (ctx)
			perf_ctx_adjust_freq(ctx, interval);
	}
2424

2425 2426 2427 2428
	if (rotate) {
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
		if (ctx)
			ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2429

2430 2431 2432 2433 2434 2435
		rotate_ctx(&cpuctx->ctx);
		if (ctx)
			rotate_ctx(ctx);

		perf_event_sched_in(cpuctx, ctx, current);
	}
2436

2437 2438
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2439 2440

done:
2441 2442 2443 2444 2445 2446 2447 2448
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2449

2450 2451 2452 2453 2454 2455 2456
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2457 2458
}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2474
/*
2475
 * Enable all of a task's events that have been marked enable-on-exec.
2476 2477
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2478
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2479
{
2480
	struct perf_event *event;
2481 2482
	unsigned long flags;
	int enabled = 0;
2483
	int ret;
2484 2485

	local_irq_save(flags);
2486
	if (!ctx || !ctx->nr_events)
2487 2488
		goto out;

2489 2490 2491 2492 2493 2494 2495
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2496
	perf_cgroup_sched_out(current, NULL);
2497

2498
	raw_spin_lock(&ctx->lock);
2499
	task_ctx_sched_out(ctx);
2500

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2511 2512 2513
	}

	/*
2514
	 * Unclone this context if we enabled any event.
2515
	 */
2516 2517
	if (enabled)
		unclone_ctx(ctx);
2518

2519
	raw_spin_unlock(&ctx->lock);
2520

2521 2522 2523
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2524
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2525
out:
2526 2527 2528
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2529
/*
2530
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2531
 */
2532
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2533
{
2534 2535
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2536
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2537

2538 2539 2540 2541
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2542 2543
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2544 2545 2546 2547
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2548
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2549
	if (ctx->is_active) {
2550
		update_context_time(ctx);
S
Stephane Eranian 已提交
2551 2552
		update_cgrp_time_from_event(event);
	}
2553
	update_event_times(event);
2554 2555
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2556
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2557 2558
}

P
Peter Zijlstra 已提交
2559 2560
static inline u64 perf_event_count(struct perf_event *event)
{
2561
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2562 2563
}

2564
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2565 2566
{
	/*
2567 2568
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2569
	 */
2570 2571 2572 2573
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2574 2575 2576
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2577
		raw_spin_lock_irqsave(&ctx->lock, flags);
2578 2579 2580 2581 2582
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2583
		if (ctx->is_active) {
2584
			update_context_time(ctx);
S
Stephane Eranian 已提交
2585 2586
			update_cgrp_time_from_event(event);
		}
2587
		update_event_times(event);
2588
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2589 2590
	}

P
Peter Zijlstra 已提交
2591
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2592 2593
}

2594
/*
2595
 * Initialize the perf_event context in a task_struct:
2596
 */
2597
static void __perf_event_init_context(struct perf_event_context *ctx)
2598
{
2599
	raw_spin_lock_init(&ctx->lock);
2600
	mutex_init(&ctx->mutex);
2601 2602
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2603 2604
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2620
	}
2621 2622 2623
	ctx->pmu = pmu;

	return ctx;
2624 2625
}

2626 2627 2628 2629 2630
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2631 2632

	rcu_read_lock();
2633
	if (!vpid)
T
Thomas Gleixner 已提交
2634 2635
		task = current;
	else
2636
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2637 2638 2639 2640 2641 2642 2643 2644
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2645 2646 2647 2648
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2649 2650 2651 2652 2653 2654 2655
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2656 2657 2658
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2659
static struct perf_event_context *
M
Matt Helsley 已提交
2660
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2661
{
2662
	struct perf_event_context *ctx;
2663
	struct perf_cpu_context *cpuctx;
2664
	unsigned long flags;
P
Peter Zijlstra 已提交
2665
	int ctxn, err;
T
Thomas Gleixner 已提交
2666

2667
	if (!task) {
2668
		/* Must be root to operate on a CPU event: */
2669
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2670 2671 2672
			return ERR_PTR(-EACCES);

		/*
2673
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2674 2675 2676
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2677
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2678 2679
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2680
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2681
		ctx = &cpuctx->ctx;
2682
		get_ctx(ctx);
2683
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2684 2685 2686 2687

		return ctx;
	}

P
Peter Zijlstra 已提交
2688 2689 2690 2691 2692
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2693
retry:
P
Peter Zijlstra 已提交
2694
	ctx = perf_lock_task_context(task, ctxn, &flags);
2695
	if (ctx) {
2696
		unclone_ctx(ctx);
2697
		++ctx->pin_count;
2698
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2699
	} else {
2700
		ctx = alloc_perf_context(pmu, task);
2701 2702 2703
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2715
		else {
2716
			get_ctx(ctx);
2717
			++ctx->pin_count;
2718
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2719
		}
2720 2721 2722
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2723
			put_ctx(ctx);
2724 2725 2726 2727

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2728 2729 2730
		}
	}

T
Thomas Gleixner 已提交
2731
	return ctx;
2732

P
Peter Zijlstra 已提交
2733
errout:
2734
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2735 2736
}

L
Li Zefan 已提交
2737 2738
static void perf_event_free_filter(struct perf_event *event);

2739
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2740
{
2741
	struct perf_event *event;
P
Peter Zijlstra 已提交
2742

2743 2744 2745
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2746
	perf_event_free_filter(event);
2747
	kfree(event);
P
Peter Zijlstra 已提交
2748 2749
}

2750
static void ring_buffer_put(struct ring_buffer *rb);
2751

2752
static void free_event(struct perf_event *event)
2753
{
2754
	irq_work_sync(&event->pending);
2755

2756
	if (!event->parent) {
2757
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2758
			jump_label_dec(&perf_sched_events);
2759
		if (event->attr.mmap || event->attr.mmap_data)
2760 2761 2762 2763 2764
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2765 2766
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2767 2768 2769 2770
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2771
	}
2772

2773 2774 2775
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2776 2777
	}

S
Stephane Eranian 已提交
2778 2779 2780
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2781 2782
	if (event->destroy)
		event->destroy(event);
2783

P
Peter Zijlstra 已提交
2784 2785 2786
	if (event->ctx)
		put_ctx(event->ctx);

2787
	call_rcu(&event->rcu_head, free_event_rcu);
2788 2789
}

2790
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2791
{
2792
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2793

2794
	WARN_ON_ONCE(ctx->parent_ctx);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2808
	raw_spin_lock_irq(&ctx->lock);
2809
	perf_group_detach(event);
2810
	raw_spin_unlock_irq(&ctx->lock);
2811
	perf_remove_from_context(event);
2812
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2813

2814
	free_event(event);
T
Thomas Gleixner 已提交
2815 2816 2817

	return 0;
}
2818
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2819

2820 2821 2822 2823
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2824
{
2825
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2826
	struct task_struct *owner;
2827

2828
	file->private_data = NULL;
2829

P
Peter Zijlstra 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2863
	return perf_event_release_kernel(event);
2864 2865
}

2866
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2867
{
2868
	struct perf_event *child;
2869 2870
	u64 total = 0;

2871 2872 2873
	*enabled = 0;
	*running = 0;

2874
	mutex_lock(&event->child_mutex);
2875
	total += perf_event_read(event);
2876 2877 2878 2879 2880 2881
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2882
		total += perf_event_read(child);
2883 2884 2885
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2886
	mutex_unlock(&event->child_mutex);
2887 2888 2889

	return total;
}
2890
EXPORT_SYMBOL_GPL(perf_event_read_value);
2891

2892
static int perf_event_read_group(struct perf_event *event,
2893 2894
				   u64 read_format, char __user *buf)
{
2895
	struct perf_event *leader = event->group_leader, *sub;
2896 2897
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2898
	u64 values[5];
2899
	u64 count, enabled, running;
2900

2901
	mutex_lock(&ctx->mutex);
2902
	count = perf_event_read_value(leader, &enabled, &running);
2903 2904

	values[n++] = 1 + leader->nr_siblings;
2905 2906 2907 2908
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2909 2910 2911
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2912 2913 2914 2915

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2916
		goto unlock;
2917

2918
	ret = size;
2919

2920
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2921
		n = 0;
2922

2923
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2924 2925 2926 2927 2928
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2929
		if (copy_to_user(buf + ret, values, size)) {
2930 2931 2932
			ret = -EFAULT;
			goto unlock;
		}
2933 2934

		ret += size;
2935
	}
2936 2937
unlock:
	mutex_unlock(&ctx->mutex);
2938

2939
	return ret;
2940 2941
}

2942
static int perf_event_read_one(struct perf_event *event,
2943 2944
				 u64 read_format, char __user *buf)
{
2945
	u64 enabled, running;
2946 2947 2948
	u64 values[4];
	int n = 0;

2949 2950 2951 2952 2953
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2954
	if (read_format & PERF_FORMAT_ID)
2955
		values[n++] = primary_event_id(event);
2956 2957 2958 2959 2960 2961 2962

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2963
/*
2964
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2965 2966
 */
static ssize_t
2967
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2968
{
2969
	u64 read_format = event->attr.read_format;
2970
	int ret;
T
Thomas Gleixner 已提交
2971

2972
	/*
2973
	 * Return end-of-file for a read on a event that is in
2974 2975 2976
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2977
	if (event->state == PERF_EVENT_STATE_ERROR)
2978 2979
		return 0;

2980
	if (count < event->read_size)
2981 2982
		return -ENOSPC;

2983
	WARN_ON_ONCE(event->ctx->parent_ctx);
2984
	if (read_format & PERF_FORMAT_GROUP)
2985
		ret = perf_event_read_group(event, read_format, buf);
2986
	else
2987
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2988

2989
	return ret;
T
Thomas Gleixner 已提交
2990 2991 2992 2993 2994
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2995
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2996

2997
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2998 2999 3000 3001
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3002
	struct perf_event *event = file->private_data;
3003
	struct ring_buffer *rb;
3004
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3005

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3023
	rcu_read_lock();
3024
	rb = rcu_dereference(event->rb);
3025 3026
	if (rb) {
		ring_buffer_attach(event, rb);
3027
		events = atomic_xchg(&rb->poll, 0);
3028
	}
P
Peter Zijlstra 已提交
3029
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3030

3031 3032
	mutex_unlock(&event->mmap_mutex);

3033
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3034 3035 3036 3037

	return events;
}

3038
static void perf_event_reset(struct perf_event *event)
3039
{
3040
	(void)perf_event_read(event);
3041
	local64_set(&event->count, 0);
3042
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3043 3044
}

3045
/*
3046 3047 3048 3049
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3050
 */
3051 3052
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3053
{
3054
	struct perf_event *child;
P
Peter Zijlstra 已提交
3055

3056 3057 3058 3059
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3060
		func(child);
3061
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3062 3063
}

3064 3065
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3066
{
3067 3068
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3069

3070 3071
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3072
	event = event->group_leader;
3073

3074 3075 3076 3077
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3078
	mutex_unlock(&ctx->mutex);
3079 3080
}

3081
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3082
{
3083
	struct perf_event_context *ctx = event->ctx;
3084 3085 3086
	int ret = 0;
	u64 value;

3087
	if (!is_sampling_event(event))
3088 3089
		return -EINVAL;

3090
	if (copy_from_user(&value, arg, sizeof(value)))
3091 3092 3093 3094 3095
		return -EFAULT;

	if (!value)
		return -EINVAL;

3096
	raw_spin_lock_irq(&ctx->lock);
3097 3098
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3099 3100 3101 3102
			ret = -EINVAL;
			goto unlock;
		}

3103
		event->attr.sample_freq = value;
3104
	} else {
3105 3106
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3107 3108
	}
unlock:
3109
	raw_spin_unlock_irq(&ctx->lock);
3110 3111 3112 3113

	return ret;
}

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3135
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3136

3137 3138
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3139 3140
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3141
	u32 flags = arg;
3142 3143

	switch (cmd) {
3144 3145
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3146
		break;
3147 3148
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3149
		break;
3150 3151
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3152
		break;
P
Peter Zijlstra 已提交
3153

3154 3155
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3156

3157 3158
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3159

3160
	case PERF_EVENT_IOC_SET_OUTPUT:
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3178

L
Li Zefan 已提交
3179 3180 3181
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3182
	default:
P
Peter Zijlstra 已提交
3183
		return -ENOTTY;
3184
	}
P
Peter Zijlstra 已提交
3185 3186

	if (flags & PERF_IOC_FLAG_GROUP)
3187
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3188
	else
3189
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3190 3191

	return 0;
3192 3193
}

3194
int perf_event_task_enable(void)
3195
{
3196
	struct perf_event *event;
3197

3198 3199 3200 3201
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3202 3203 3204 3205

	return 0;
}

3206
int perf_event_task_disable(void)
3207
{
3208
	struct perf_event *event;
3209

3210 3211 3212 3213
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3214 3215 3216 3217

	return 0;
}

3218 3219
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3220 3221
#endif

3222
static int perf_event_index(struct perf_event *event)
3223
{
P
Peter Zijlstra 已提交
3224 3225 3226
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3227
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3228 3229
		return 0;

3230
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3231 3232
}

3233
static void calc_timer_values(struct perf_event *event,
3234 3235
				u64 *enabled,
				u64 *running)
3236 3237 3238 3239 3240 3241 3242 3243 3244
{
	u64 now, ctx_time;

	now = perf_clock();
	ctx_time = event->shadow_ctx_time + now;
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3245 3246 3247 3248 3249
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3250
void perf_event_update_userpage(struct perf_event *event)
3251
{
3252
	struct perf_event_mmap_page *userpg;
3253
	struct ring_buffer *rb;
3254
	u64 enabled, running;
3255 3256

	rcu_read_lock();
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
	calc_timer_values(event, &enabled, &running);
3267 3268
	rb = rcu_dereference(event->rb);
	if (!rb)
3269 3270
		goto unlock;

3271
	userpg = rb->user_page;
3272

3273 3274 3275 3276 3277
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3278
	++userpg->lock;
3279
	barrier();
3280
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3281
	userpg->offset = perf_event_count(event);
3282
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3283
		userpg->offset -= local64_read(&event->hw.prev_count);
3284

3285
	userpg->time_enabled = enabled +
3286
			atomic64_read(&event->child_total_time_enabled);
3287

3288
	userpg->time_running = running +
3289
			atomic64_read(&event->child_total_time_running);
3290

3291
	barrier();
3292
	++userpg->lock;
3293
	preempt_enable();
3294
unlock:
3295
	rcu_read_unlock();
3296 3297
}

3298 3299 3300
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3301
	struct ring_buffer *rb;
3302 3303 3304 3305 3306 3307 3308 3309 3310
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3311 3312
	rb = rcu_dereference(event->rb);
	if (!rb)
3313 3314 3315 3316 3317
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3318
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		wake_up_all(&event->waitq);
	}
	rcu_read_unlock();
}

3376
static void rb_free_rcu(struct rcu_head *rcu_head)
3377
{
3378
	struct ring_buffer *rb;
3379

3380 3381
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3382 3383
}

3384
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3385
{
3386
	struct ring_buffer *rb;
3387

3388
	rcu_read_lock();
3389 3390 3391 3392
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3393 3394 3395
	}
	rcu_read_unlock();

3396
	return rb;
3397 3398
}

3399
static void ring_buffer_put(struct ring_buffer *rb)
3400
{
3401 3402 3403
	struct perf_event *event, *n;
	unsigned long flags;

3404
	if (!atomic_dec_and_test(&rb->refcount))
3405
		return;
3406

3407 3408 3409 3410 3411 3412 3413
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3414
	call_rcu(&rb->rcu_head, rb_free_rcu);
3415 3416 3417 3418
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3419
	struct perf_event *event = vma->vm_file->private_data;
3420

3421
	atomic_inc(&event->mmap_count);
3422 3423 3424 3425
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3426
	struct perf_event *event = vma->vm_file->private_data;
3427

3428
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3429
		unsigned long size = perf_data_size(event->rb);
3430
		struct user_struct *user = event->mmap_user;
3431
		struct ring_buffer *rb = event->rb;
3432

3433
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3434
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3435
		rcu_assign_pointer(event->rb, NULL);
3436
		ring_buffer_detach(event, rb);
3437
		mutex_unlock(&event->mmap_mutex);
3438

3439
		ring_buffer_put(rb);
3440
		free_uid(user);
3441
	}
3442 3443
}

3444
static const struct vm_operations_struct perf_mmap_vmops = {
3445 3446 3447 3448
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3449 3450 3451 3452
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3453
	struct perf_event *event = file->private_data;
3454
	unsigned long user_locked, user_lock_limit;
3455
	struct user_struct *user = current_user();
3456
	unsigned long locked, lock_limit;
3457
	struct ring_buffer *rb;
3458 3459
	unsigned long vma_size;
	unsigned long nr_pages;
3460
	long user_extra, extra;
3461
	int ret = 0, flags = 0;
3462

3463 3464 3465
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3466
	 * same rb.
3467 3468 3469 3470
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3471
	if (!(vma->vm_flags & VM_SHARED))
3472
		return -EINVAL;
3473 3474 3475 3476

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3477
	/*
3478
	 * If we have rb pages ensure they're a power-of-two number, so we
3479 3480 3481
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3482 3483
		return -EINVAL;

3484
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3485 3486
		return -EINVAL;

3487 3488
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3489

3490 3491
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3492 3493 3494
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3495
		else
3496 3497 3498 3499
			ret = -EINVAL;
		goto unlock;
	}

3500
	user_extra = nr_pages + 1;
3501
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3502 3503 3504 3505 3506 3507

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3508
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3509

3510 3511 3512
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3513

3514
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3515
	lock_limit >>= PAGE_SHIFT;
3516
	locked = vma->vm_mm->pinned_vm + extra;
3517

3518 3519
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3520 3521 3522
		ret = -EPERM;
		goto unlock;
	}
3523

3524
	WARN_ON(event->rb);
3525

3526
	if (vma->vm_flags & VM_WRITE)
3527
		flags |= RING_BUFFER_WRITABLE;
3528

3529 3530 3531 3532
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3533
	if (!rb) {
3534
		ret = -ENOMEM;
3535
		goto unlock;
3536
	}
3537
	rcu_assign_pointer(event->rb, rb);
3538

3539 3540 3541
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3542
	vma->vm_mm->pinned_vm += event->mmap_locked;
3543

3544
unlock:
3545 3546
	if (!ret)
		atomic_inc(&event->mmap_count);
3547
	mutex_unlock(&event->mmap_mutex);
3548 3549 3550

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3551 3552

	return ret;
3553 3554
}

P
Peter Zijlstra 已提交
3555 3556 3557
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3558
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3559 3560 3561
	int retval;

	mutex_lock(&inode->i_mutex);
3562
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3563 3564 3565 3566 3567 3568 3569 3570
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3571
static const struct file_operations perf_fops = {
3572
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3573 3574 3575
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3576 3577
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3578
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3579
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3580 3581
};

3582
/*
3583
 * Perf event wakeup
3584 3585 3586 3587 3588
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3589
void perf_event_wakeup(struct perf_event *event)
3590
{
3591
	ring_buffer_wakeup(event);
3592

3593 3594 3595
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3596
	}
3597 3598
}

3599
static void perf_pending_event(struct irq_work *entry)
3600
{
3601 3602
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3603

3604 3605 3606
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3607 3608
	}

3609 3610 3611
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3612 3613 3614
	}
}

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3636 3637 3638
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3666 3667 3668
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3695 3696 3697
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3698 3699 3700 3701 3702
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3703
static void perf_output_read_one(struct perf_output_handle *handle,
3704 3705
				 struct perf_event *event,
				 u64 enabled, u64 running)
3706
{
3707
	u64 read_format = event->attr.read_format;
3708 3709 3710
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3711
	values[n++] = perf_event_count(event);
3712
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3713
		values[n++] = enabled +
3714
			atomic64_read(&event->child_total_time_enabled);
3715 3716
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3717
		values[n++] = running +
3718
			atomic64_read(&event->child_total_time_running);
3719 3720
	}
	if (read_format & PERF_FORMAT_ID)
3721
		values[n++] = primary_event_id(event);
3722

3723
	__output_copy(handle, values, n * sizeof(u64));
3724 3725 3726
}

/*
3727
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3728 3729
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3730 3731
			    struct perf_event *event,
			    u64 enabled, u64 running)
3732
{
3733 3734
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3735 3736 3737 3738 3739 3740
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3741
		values[n++] = enabled;
3742 3743

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3744
		values[n++] = running;
3745

3746
	if (leader != event)
3747 3748
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3749
	values[n++] = perf_event_count(leader);
3750
	if (read_format & PERF_FORMAT_ID)
3751
		values[n++] = primary_event_id(leader);
3752

3753
	__output_copy(handle, values, n * sizeof(u64));
3754

3755
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3756 3757
		n = 0;

3758
		if (sub != event)
3759 3760
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3761
		values[n++] = perf_event_count(sub);
3762
		if (read_format & PERF_FORMAT_ID)
3763
			values[n++] = primary_event_id(sub);
3764

3765
		__output_copy(handle, values, n * sizeof(u64));
3766 3767 3768
	}
}

3769 3770 3771
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3772
static void perf_output_read(struct perf_output_handle *handle,
3773
			     struct perf_event *event)
3774
{
3775
	u64 enabled = 0, running = 0;
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3787 3788
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
		calc_timer_values(event, &enabled, &running);
3789

3790
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3791
		perf_output_read_group(handle, event, enabled, running);
3792
	else
3793
		perf_output_read_one(handle, event, enabled, running);
3794 3795
}

3796 3797 3798
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3799
			struct perf_event *event)
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3830
		perf_output_read(handle, event);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3841
			__output_copy(handle, data->callchain, size);
3842 3843 3844 3845 3846 3847 3848 3849 3850
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3851 3852
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3878 3879 3880 3881
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3882
			 struct perf_event *event,
3883
			 struct pt_regs *regs)
3884
{
3885
	u64 sample_type = event->attr.sample_type;
3886

3887
	header->type = PERF_RECORD_SAMPLE;
3888
	header->size = sizeof(*header) + event->header_size;
3889 3890 3891

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3892

3893
	__perf_event_header__init_id(header, data, event);
3894

3895
	if (sample_type & PERF_SAMPLE_IP)
3896 3897
		data->ip = perf_instruction_pointer(regs);

3898
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3899
		int size = 1;
3900

3901 3902 3903 3904 3905 3906
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3907 3908
	}

3909
	if (sample_type & PERF_SAMPLE_RAW) {
3910 3911 3912 3913 3914 3915 3916 3917
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3918
		header->size += size;
3919
	}
3920
}
3921

3922
static void perf_event_output(struct perf_event *event,
3923 3924 3925 3926 3927
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3928

3929 3930 3931
	/* protect the callchain buffers */
	rcu_read_lock();

3932
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3933

3934
	if (perf_output_begin(&handle, event, header.size))
3935
		goto exit;
3936

3937
	perf_output_sample(&handle, &header, data, event);
3938

3939
	perf_output_end(&handle);
3940 3941 3942

exit:
	rcu_read_unlock();
3943 3944
}

3945
/*
3946
 * read event_id
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3957
perf_event_read_event(struct perf_event *event,
3958 3959 3960
			struct task_struct *task)
{
	struct perf_output_handle handle;
3961
	struct perf_sample_data sample;
3962
	struct perf_read_event read_event = {
3963
		.header = {
3964
			.type = PERF_RECORD_READ,
3965
			.misc = 0,
3966
			.size = sizeof(read_event) + event->read_size,
3967
		},
3968 3969
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3970
	};
3971
	int ret;
3972

3973
	perf_event_header__init_id(&read_event.header, &sample, event);
3974
	ret = perf_output_begin(&handle, event, read_event.header.size);
3975 3976 3977
	if (ret)
		return;

3978
	perf_output_put(&handle, read_event);
3979
	perf_output_read(&handle, event);
3980
	perf_event__output_id_sample(event, &handle, &sample);
3981

3982 3983 3984
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3985
/*
P
Peter Zijlstra 已提交
3986 3987
 * task tracking -- fork/exit
 *
3988
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3989 3990
 */

P
Peter Zijlstra 已提交
3991
struct perf_task_event {
3992
	struct task_struct		*task;
3993
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3994 3995 3996 3997 3998 3999

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4000 4001
		u32				tid;
		u32				ptid;
4002
		u64				time;
4003
	} event_id;
P
Peter Zijlstra 已提交
4004 4005
};

4006
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4007
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4008 4009
{
	struct perf_output_handle handle;
4010
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4011
	struct task_struct *task = task_event->task;
4012
	int ret, size = task_event->event_id.header.size;
4013

4014
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4015

4016
	ret = perf_output_begin(&handle, event,
4017
				task_event->event_id.header.size);
4018
	if (ret)
4019
		goto out;
P
Peter Zijlstra 已提交
4020

4021 4022
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4023

4024 4025
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4026

4027
	perf_output_put(&handle, task_event->event_id);
4028

4029 4030
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4031
	perf_output_end(&handle);
4032 4033
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4034 4035
}

4036
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4037
{
P
Peter Zijlstra 已提交
4038
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4039 4040
		return 0;

4041
	if (!event_filter_match(event))
4042 4043
		return 0;

4044 4045
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4046 4047 4048 4049 4050
		return 1;

	return 0;
}

4051
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4052
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4053
{
4054
	struct perf_event *event;
P
Peter Zijlstra 已提交
4055

4056 4057 4058
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4059 4060 4061
	}
}

4062
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4063 4064
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4065
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4066
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4067
	int ctxn;
P
Peter Zijlstra 已提交
4068

4069
	rcu_read_lock();
P
Peter Zijlstra 已提交
4070
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4071
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4072 4073
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4074
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4075 4076 4077 4078 4079

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4080
				goto next;
P
Peter Zijlstra 已提交
4081 4082 4083 4084
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4085 4086
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4087
	}
P
Peter Zijlstra 已提交
4088 4089 4090
	rcu_read_unlock();
}

4091 4092
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4093
			      int new)
P
Peter Zijlstra 已提交
4094
{
P
Peter Zijlstra 已提交
4095
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4096

4097 4098 4099
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4100 4101
		return;

P
Peter Zijlstra 已提交
4102
	task_event = (struct perf_task_event){
4103 4104
		.task	  = task,
		.task_ctx = task_ctx,
4105
		.event_id    = {
P
Peter Zijlstra 已提交
4106
			.header = {
4107
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4108
				.misc = 0,
4109
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4110
			},
4111 4112
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4113 4114
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4115
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4116 4117 4118
		},
	};

4119
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4120 4121
}

4122
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4123
{
4124
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4125 4126
}

4127 4128 4129 4130 4131
/*
 * comm tracking
 */

struct perf_comm_event {
4132 4133
	struct task_struct	*task;
	char			*comm;
4134 4135 4136 4137 4138 4139 4140
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4141
	} event_id;
4142 4143
};

4144
static void perf_event_comm_output(struct perf_event *event,
4145 4146 4147
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4148
	struct perf_sample_data sample;
4149
	int size = comm_event->event_id.header.size;
4150 4151 4152 4153
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4154
				comm_event->event_id.header.size);
4155 4156

	if (ret)
4157
		goto out;
4158

4159 4160
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4161

4162
	perf_output_put(&handle, comm_event->event_id);
4163
	__output_copy(&handle, comm_event->comm,
4164
				   comm_event->comm_size);
4165 4166 4167

	perf_event__output_id_sample(event, &handle, &sample);

4168
	perf_output_end(&handle);
4169 4170
out:
	comm_event->event_id.header.size = size;
4171 4172
}

4173
static int perf_event_comm_match(struct perf_event *event)
4174
{
P
Peter Zijlstra 已提交
4175
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4176 4177
		return 0;

4178
	if (!event_filter_match(event))
4179 4180
		return 0;

4181
	if (event->attr.comm)
4182 4183 4184 4185 4186
		return 1;

	return 0;
}

4187
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4188 4189
				  struct perf_comm_event *comm_event)
{
4190
	struct perf_event *event;
4191

4192 4193 4194
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4195 4196 4197
	}
}

4198
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4199 4200
{
	struct perf_cpu_context *cpuctx;
4201
	struct perf_event_context *ctx;
4202
	char comm[TASK_COMM_LEN];
4203
	unsigned int size;
P
Peter Zijlstra 已提交
4204
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4205
	int ctxn;
4206

4207
	memset(comm, 0, sizeof(comm));
4208
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4209
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4210 4211 4212 4213

	comm_event->comm = comm;
	comm_event->comm_size = size;

4214
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4215
	rcu_read_lock();
P
Peter Zijlstra 已提交
4216
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4217
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4218 4219
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4220
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4221 4222 4223

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4224
			goto next;
P
Peter Zijlstra 已提交
4225 4226 4227 4228

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4229 4230
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4231
	}
4232
	rcu_read_unlock();
4233 4234
}

4235
void perf_event_comm(struct task_struct *task)
4236
{
4237
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4238 4239
	struct perf_event_context *ctx;
	int ctxn;
4240

P
Peter Zijlstra 已提交
4241 4242 4243 4244
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4245

P
Peter Zijlstra 已提交
4246 4247
		perf_event_enable_on_exec(ctx);
	}
4248

4249
	if (!atomic_read(&nr_comm_events))
4250
		return;
4251

4252
	comm_event = (struct perf_comm_event){
4253
		.task	= task,
4254 4255
		/* .comm      */
		/* .comm_size */
4256
		.event_id  = {
4257
			.header = {
4258
				.type = PERF_RECORD_COMM,
4259 4260 4261 4262 4263
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4264 4265 4266
		},
	};

4267
	perf_event_comm_event(&comm_event);
4268 4269
}

4270 4271 4272 4273 4274
/*
 * mmap tracking
 */

struct perf_mmap_event {
4275 4276 4277 4278
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4279 4280 4281 4282 4283 4284 4285 4286 4287

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4288
	} event_id;
4289 4290
};

4291
static void perf_event_mmap_output(struct perf_event *event,
4292 4293 4294
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4295
	struct perf_sample_data sample;
4296
	int size = mmap_event->event_id.header.size;
4297
	int ret;
4298

4299 4300
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4301
				mmap_event->event_id.header.size);
4302
	if (ret)
4303
		goto out;
4304

4305 4306
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4307

4308
	perf_output_put(&handle, mmap_event->event_id);
4309
	__output_copy(&handle, mmap_event->file_name,
4310
				   mmap_event->file_size);
4311 4312 4313

	perf_event__output_id_sample(event, &handle, &sample);

4314
	perf_output_end(&handle);
4315 4316
out:
	mmap_event->event_id.header.size = size;
4317 4318
}

4319
static int perf_event_mmap_match(struct perf_event *event,
4320 4321
				   struct perf_mmap_event *mmap_event,
				   int executable)
4322
{
P
Peter Zijlstra 已提交
4323
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4324 4325
		return 0;

4326
	if (!event_filter_match(event))
4327 4328
		return 0;

4329 4330
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4331 4332 4333 4334 4335
		return 1;

	return 0;
}

4336
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4337 4338
				  struct perf_mmap_event *mmap_event,
				  int executable)
4339
{
4340
	struct perf_event *event;
4341

4342
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4343
		if (perf_event_mmap_match(event, mmap_event, executable))
4344
			perf_event_mmap_output(event, mmap_event);
4345 4346 4347
	}
}

4348
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4349 4350
{
	struct perf_cpu_context *cpuctx;
4351
	struct perf_event_context *ctx;
4352 4353
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4354 4355 4356
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4357
	const char *name;
P
Peter Zijlstra 已提交
4358
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4359
	int ctxn;
4360

4361 4362
	memset(tmp, 0, sizeof(tmp));

4363
	if (file) {
4364
		/*
4365
		 * d_path works from the end of the rb backwards, so we
4366 4367 4368 4369
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4370 4371 4372 4373
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4374
		name = d_path(&file->f_path, buf, PATH_MAX);
4375 4376 4377 4378 4379
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4380 4381 4382
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4383
			goto got_name;
4384
		}
4385 4386 4387 4388

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4389 4390 4391 4392 4393 4394 4395 4396
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4397 4398
		}

4399 4400 4401 4402 4403
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4404
	size = ALIGN(strlen(name)+1, sizeof(u64));
4405 4406 4407 4408

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4409
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4410

4411
	rcu_read_lock();
P
Peter Zijlstra 已提交
4412
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4413
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4414 4415
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4416 4417
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4418 4419 4420

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4421
			goto next;
P
Peter Zijlstra 已提交
4422 4423 4424 4425 4426 4427

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4428 4429
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4430
	}
4431 4432
	rcu_read_unlock();

4433 4434 4435
	kfree(buf);
}

4436
void perf_event_mmap(struct vm_area_struct *vma)
4437
{
4438 4439
	struct perf_mmap_event mmap_event;

4440
	if (!atomic_read(&nr_mmap_events))
4441 4442 4443
		return;

	mmap_event = (struct perf_mmap_event){
4444
		.vma	= vma,
4445 4446
		/* .file_name */
		/* .file_size */
4447
		.event_id  = {
4448
			.header = {
4449
				.type = PERF_RECORD_MMAP,
4450
				.misc = PERF_RECORD_MISC_USER,
4451 4452 4453 4454
				/* .size */
			},
			/* .pid */
			/* .tid */
4455 4456
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4457
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4458 4459 4460
		},
	};

4461
	perf_event_mmap_event(&mmap_event);
4462 4463
}

4464 4465 4466 4467
/*
 * IRQ throttle logging
 */

4468
static void perf_log_throttle(struct perf_event *event, int enable)
4469 4470
{
	struct perf_output_handle handle;
4471
	struct perf_sample_data sample;
4472 4473 4474 4475 4476
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4477
		u64				id;
4478
		u64				stream_id;
4479 4480
	} throttle_event = {
		.header = {
4481
			.type = PERF_RECORD_THROTTLE,
4482 4483 4484
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4485
		.time		= perf_clock(),
4486 4487
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4488 4489
	};

4490
	if (enable)
4491
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4492

4493 4494 4495
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4496
				throttle_event.header.size);
4497 4498 4499 4500
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4501
	perf_event__output_id_sample(event, &handle, &sample);
4502 4503 4504
	perf_output_end(&handle);
}

4505
/*
4506
 * Generic event overflow handling, sampling.
4507 4508
 */

4509
static int __perf_event_overflow(struct perf_event *event,
4510 4511
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4512
{
4513 4514
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4515 4516
	int ret = 0;

4517 4518 4519 4520 4521 4522 4523
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4524 4525 4526 4527
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4528 4529
			ret = 1;
		}
P
Peter Zijlstra 已提交
4530 4531
	} else
		hwc->interrupts++;
4532

4533
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4534
		u64 now = perf_clock();
4535
		s64 delta = now - hwc->freq_time_stamp;
4536

4537
		hwc->freq_time_stamp = now;
4538

4539 4540
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4541 4542
	}

4543 4544
	/*
	 * XXX event_limit might not quite work as expected on inherited
4545
	 * events
4546 4547
	 */

4548 4549
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4550
		ret = 1;
4551
		event->pending_kill = POLL_HUP;
4552 4553
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4554 4555
	}

4556
	if (event->overflow_handler)
4557
		event->overflow_handler(event, data, regs);
4558
	else
4559
		perf_event_output(event, data, regs);
4560

P
Peter Zijlstra 已提交
4561
	if (event->fasync && event->pending_kill) {
4562 4563
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4564 4565
	}

4566
	return ret;
4567 4568
}

4569
int perf_event_overflow(struct perf_event *event,
4570 4571
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4572
{
4573
	return __perf_event_overflow(event, 1, data, regs);
4574 4575
}

4576
/*
4577
 * Generic software event infrastructure
4578 4579
 */

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4591
/*
4592 4593
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4594 4595 4596 4597
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4598
static u64 perf_swevent_set_period(struct perf_event *event)
4599
{
4600
	struct hw_perf_event *hwc = &event->hw;
4601 4602 4603 4604 4605
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4606 4607

again:
4608
	old = val = local64_read(&hwc->period_left);
4609 4610
	if (val < 0)
		return 0;
4611

4612 4613 4614
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4615
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4616
		goto again;
4617

4618
	return nr;
4619 4620
}

4621
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4622
				    struct perf_sample_data *data,
4623
				    struct pt_regs *regs)
4624
{
4625
	struct hw_perf_event *hwc = &event->hw;
4626
	int throttle = 0;
4627

4628 4629
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4630

4631 4632
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4633

4634
	for (; overflow; overflow--) {
4635
		if (__perf_event_overflow(event, throttle,
4636
					    data, regs)) {
4637 4638 4639 4640 4641 4642
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4643
		throttle = 1;
4644
	}
4645 4646
}

P
Peter Zijlstra 已提交
4647
static void perf_swevent_event(struct perf_event *event, u64 nr,
4648
			       struct perf_sample_data *data,
4649
			       struct pt_regs *regs)
4650
{
4651
	struct hw_perf_event *hwc = &event->hw;
4652

4653
	local64_add(nr, &event->count);
4654

4655 4656 4657
	if (!regs)
		return;

4658
	if (!is_sampling_event(event))
4659
		return;
4660

4661 4662 4663 4664 4665 4666
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

4667
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4668
		return perf_swevent_overflow(event, 1, data, regs);
4669

4670
	if (local64_add_negative(nr, &hwc->period_left))
4671
		return;
4672

4673
	perf_swevent_overflow(event, 0, data, regs);
4674 4675
}

4676 4677 4678
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4679
	if (event->hw.state & PERF_HES_STOPPED)
4680
		return 1;
P
Peter Zijlstra 已提交
4681

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4693
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4694
				enum perf_type_id type,
L
Li Zefan 已提交
4695 4696 4697
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4698
{
4699
	if (event->attr.type != type)
4700
		return 0;
4701

4702
	if (event->attr.config != event_id)
4703 4704
		return 0;

4705 4706
	if (perf_exclude_event(event, regs))
		return 0;
4707 4708 4709 4710

	return 1;
}

4711 4712 4713 4714 4715 4716 4717
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4718 4719
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4720
{
4721 4722 4723 4724
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4725

4726 4727
/* For the read side: events when they trigger */
static inline struct hlist_head *
4728
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4729 4730
{
	struct swevent_hlist *hlist;
4731

4732
	hlist = rcu_dereference(swhash->swevent_hlist);
4733 4734 4735
	if (!hlist)
		return NULL;

4736 4737 4738 4739 4740
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4741
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4752
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4753 4754 4755 4756 4757
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4758 4759 4760
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4761
				    u64 nr,
4762 4763
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4764
{
4765
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4766
	struct perf_event *event;
4767 4768
	struct hlist_node *node;
	struct hlist_head *head;
4769

4770
	rcu_read_lock();
4771
	head = find_swevent_head_rcu(swhash, type, event_id);
4772 4773 4774 4775
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4776
		if (perf_swevent_match(event, type, event_id, data, regs))
4777
			perf_swevent_event(event, nr, data, regs);
4778
	}
4779 4780
end:
	rcu_read_unlock();
4781 4782
}

4783
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4784
{
4785
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4786

4787
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4788
}
I
Ingo Molnar 已提交
4789
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4790

4791
inline void perf_swevent_put_recursion_context(int rctx)
4792
{
4793
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4794

4795
	put_recursion_context(swhash->recursion, rctx);
4796
}
4797

4798
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4799
{
4800
	struct perf_sample_data data;
4801 4802
	int rctx;

4803
	preempt_disable_notrace();
4804 4805 4806
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4807

4808
	perf_sample_data_init(&data, addr);
4809

4810
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4811 4812

	perf_swevent_put_recursion_context(rctx);
4813
	preempt_enable_notrace();
4814 4815
}

4816
static void perf_swevent_read(struct perf_event *event)
4817 4818 4819
{
}

P
Peter Zijlstra 已提交
4820
static int perf_swevent_add(struct perf_event *event, int flags)
4821
{
4822
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4823
	struct hw_perf_event *hwc = &event->hw;
4824 4825
	struct hlist_head *head;

4826
	if (is_sampling_event(event)) {
4827
		hwc->last_period = hwc->sample_period;
4828
		perf_swevent_set_period(event);
4829
	}
4830

P
Peter Zijlstra 已提交
4831 4832
	hwc->state = !(flags & PERF_EF_START);

4833
	head = find_swevent_head(swhash, event);
4834 4835 4836 4837 4838
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4839 4840 4841
	return 0;
}

P
Peter Zijlstra 已提交
4842
static void perf_swevent_del(struct perf_event *event, int flags)
4843
{
4844
	hlist_del_rcu(&event->hlist_entry);
4845 4846
}

P
Peter Zijlstra 已提交
4847
static void perf_swevent_start(struct perf_event *event, int flags)
4848
{
P
Peter Zijlstra 已提交
4849
	event->hw.state = 0;
4850
}
I
Ingo Molnar 已提交
4851

P
Peter Zijlstra 已提交
4852
static void perf_swevent_stop(struct perf_event *event, int flags)
4853
{
P
Peter Zijlstra 已提交
4854
	event->hw.state = PERF_HES_STOPPED;
4855 4856
}

4857 4858
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4859
swevent_hlist_deref(struct swevent_htable *swhash)
4860
{
4861 4862
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4863 4864
}

4865
static void swevent_hlist_release(struct swevent_htable *swhash)
4866
{
4867
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4868

4869
	if (!hlist)
4870 4871
		return;

4872
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4873
	kfree_rcu(hlist, rcu_head);
4874 4875 4876 4877
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4878
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4879

4880
	mutex_lock(&swhash->hlist_mutex);
4881

4882 4883
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4884

4885
	mutex_unlock(&swhash->hlist_mutex);
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4903
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4904 4905
	int err = 0;

4906
	mutex_lock(&swhash->hlist_mutex);
4907

4908
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4909 4910 4911 4912 4913 4914 4915
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4916
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4917
	}
4918
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4919
exit:
4920
	mutex_unlock(&swhash->hlist_mutex);
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4944
fail:
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4955
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4956

4957 4958 4959
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4960

4961 4962
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
4963
	jump_label_dec(&perf_swevent_enabled[event_id]);
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

4983
	if (event_id >= PERF_COUNT_SW_MAX)
4984 4985 4986 4987 4988 4989 4990 4991 4992
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
4993
		jump_label_inc(&perf_swevent_enabled[event_id]);
4994 4995 4996 4997 4998 4999 5000
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5001
	.task_ctx_nr	= perf_sw_context,
5002

5003
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5004 5005 5006 5007
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5008 5009 5010
	.read		= perf_swevent_read,
};

5011 5012
#ifdef CONFIG_EVENT_TRACING

5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5027 5028
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5029 5030 5031 5032
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5033 5034 5035 5036 5037 5038 5039 5040 5041
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5042
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5043 5044
{
	struct perf_sample_data data;
5045 5046 5047
	struct perf_event *event;
	struct hlist_node *node;

5048 5049 5050 5051 5052 5053 5054 5055
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5056 5057
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5058
			perf_swevent_event(event, count, &data, regs);
5059
	}
5060 5061

	perf_swevent_put_recursion_context(rctx);
5062 5063 5064
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5065
static void tp_perf_event_destroy(struct perf_event *event)
5066
{
5067
	perf_trace_destroy(event);
5068 5069
}

5070
static int perf_tp_event_init(struct perf_event *event)
5071
{
5072 5073
	int err;

5074 5075 5076
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5077 5078
	err = perf_trace_init(event);
	if (err)
5079
		return err;
5080

5081
	event->destroy = tp_perf_event_destroy;
5082

5083 5084 5085 5086
	return 0;
}

static struct pmu perf_tracepoint = {
5087 5088
	.task_ctx_nr	= perf_sw_context,

5089
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5090 5091 5092 5093
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5094 5095 5096 5097 5098
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5099
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5100
}
L
Li Zefan 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5125
#else
L
Li Zefan 已提交
5126

5127
static inline void perf_tp_register(void)
5128 5129
{
}
L
Li Zefan 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5140
#endif /* CONFIG_EVENT_TRACING */
5141

5142
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5143
void perf_bp_event(struct perf_event *bp, void *data)
5144
{
5145 5146 5147
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5148
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5149

P
Peter Zijlstra 已提交
5150
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5151
		perf_swevent_event(bp, 1, &sample, regs);
5152 5153 5154
}
#endif

5155 5156 5157
/*
 * hrtimer based swevent callback
 */
5158

5159
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5160
{
5161 5162 5163 5164 5165
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5166

5167
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5168 5169 5170 5171

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5172
	event->pmu->read(event);
5173

5174 5175 5176 5177 5178 5179
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
5180
			if (perf_event_overflow(event, &data, regs))
5181 5182
				ret = HRTIMER_NORESTART;
	}
5183

5184 5185
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5186

5187
	return ret;
5188 5189
}

5190
static void perf_swevent_start_hrtimer(struct perf_event *event)
5191
{
5192
	struct hw_perf_event *hwc = &event->hw;
5193 5194 5195 5196
	s64 period;

	if (!is_sampling_event(event))
		return;
5197

5198 5199 5200 5201
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5202

5203 5204 5205 5206 5207
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5208
				ns_to_ktime(period), 0,
5209
				HRTIMER_MODE_REL_PINNED, 0);
5210
}
5211 5212

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5213
{
5214 5215
	struct hw_perf_event *hwc = &event->hw;

5216
	if (is_sampling_event(event)) {
5217
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5218
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5219 5220 5221

		hrtimer_cancel(&hwc->hrtimer);
	}
5222 5223
}

P
Peter Zijlstra 已提交
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5248 5249 5250 5251 5252
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5253
{
5254 5255 5256
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5257
	now = local_clock();
5258 5259
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5260 5261
}

P
Peter Zijlstra 已提交
5262
static void cpu_clock_event_start(struct perf_event *event, int flags)
5263
{
P
Peter Zijlstra 已提交
5264
	local64_set(&event->hw.prev_count, local_clock());
5265 5266 5267
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5268
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5269
{
5270 5271 5272
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5273

P
Peter Zijlstra 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5287 5288 5289 5290
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5291

5292 5293 5294 5295 5296 5297 5298 5299
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5300 5301
	perf_swevent_init_hrtimer(event);

5302
	return 0;
5303 5304
}

5305
static struct pmu perf_cpu_clock = {
5306 5307
	.task_ctx_nr	= perf_sw_context,

5308
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5309 5310 5311 5312
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5313 5314 5315 5316 5317 5318 5319 5320
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5321
{
5322 5323
	u64 prev;
	s64 delta;
5324

5325 5326 5327 5328
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5329

P
Peter Zijlstra 已提交
5330
static void task_clock_event_start(struct perf_event *event, int flags)
5331
{
P
Peter Zijlstra 已提交
5332
	local64_set(&event->hw.prev_count, event->ctx->time);
5333 5334 5335
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5336
static void task_clock_event_stop(struct perf_event *event, int flags)
5337 5338 5339
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5340 5341 5342 5343 5344 5345
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5346

P
Peter Zijlstra 已提交
5347 5348 5349 5350 5351 5352
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5353 5354 5355 5356
}

static void task_clock_event_read(struct perf_event *event)
{
5357 5358 5359
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5360 5361 5362 5363 5364

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5365
{
5366 5367 5368 5369 5370 5371
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5372 5373
	perf_swevent_init_hrtimer(event);

5374
	return 0;
L
Li Zefan 已提交
5375 5376
}

5377
static struct pmu perf_task_clock = {
5378 5379
	.task_ctx_nr	= perf_sw_context,

5380
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5381 5382 5383 5384
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5385 5386
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5387

P
Peter Zijlstra 已提交
5388
static void perf_pmu_nop_void(struct pmu *pmu)
5389 5390
{
}
L
Li Zefan 已提交
5391

P
Peter Zijlstra 已提交
5392
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5393
{
P
Peter Zijlstra 已提交
5394
	return 0;
L
Li Zefan 已提交
5395 5396
}

P
Peter Zijlstra 已提交
5397
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5398
{
P
Peter Zijlstra 已提交
5399
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5400 5401
}

P
Peter Zijlstra 已提交
5402 5403 5404 5405 5406
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5407

P
Peter Zijlstra 已提交
5408
static void perf_pmu_cancel_txn(struct pmu *pmu)
5409
{
P
Peter Zijlstra 已提交
5410
	perf_pmu_enable(pmu);
5411 5412
}

P
Peter Zijlstra 已提交
5413 5414 5415 5416 5417
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5418
{
P
Peter Zijlstra 已提交
5419
	struct pmu *pmu;
5420

P
Peter Zijlstra 已提交
5421 5422
	if (ctxn < 0)
		return NULL;
5423

P
Peter Zijlstra 已提交
5424 5425 5426 5427
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5428

P
Peter Zijlstra 已提交
5429
	return NULL;
5430 5431
}

5432
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5433
{
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5449

P
Peter Zijlstra 已提交
5450
	mutex_lock(&pmus_lock);
5451
	/*
P
Peter Zijlstra 已提交
5452
	 * Like a real lame refcount.
5453
	 */
5454 5455 5456
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5457
			goto out;
5458
		}
P
Peter Zijlstra 已提交
5459
	}
5460

5461
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5462 5463
out:
	mutex_unlock(&pmus_lock);
5464
}
P
Peter Zijlstra 已提交
5465
static struct idr pmu_idr;
5466

P
Peter Zijlstra 已提交
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5519
static struct lock_class_key cpuctx_mutex;
5520
static struct lock_class_key cpuctx_lock;
5521

P
Peter Zijlstra 已提交
5522
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5523
{
P
Peter Zijlstra 已提交
5524
	int cpu, ret;
5525

5526
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5527 5528 5529 5530
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5531

P
Peter Zijlstra 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5550 5551 5552 5553 5554 5555
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5556
skip_type:
P
Peter Zijlstra 已提交
5557 5558 5559
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5560

P
Peter Zijlstra 已提交
5561 5562
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5563
		goto free_dev;
5564

P
Peter Zijlstra 已提交
5565 5566 5567 5568
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5569
		__perf_event_init_context(&cpuctx->ctx);
5570
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5571
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5572
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5573
		cpuctx->ctx.pmu = pmu;
5574 5575
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5576
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5577
	}
5578

P
Peter Zijlstra 已提交
5579
got_cpu_context:
P
Peter Zijlstra 已提交
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5594
		}
5595
	}
5596

P
Peter Zijlstra 已提交
5597 5598 5599 5600 5601
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5602
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5603 5604
	ret = 0;
unlock:
5605 5606
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5607
	return ret;
P
Peter Zijlstra 已提交
5608

P
Peter Zijlstra 已提交
5609 5610 5611 5612
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5613 5614 5615 5616
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5617 5618 5619
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5620 5621
}

5622
void perf_pmu_unregister(struct pmu *pmu)
5623
{
5624 5625 5626
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5627

5628
	/*
P
Peter Zijlstra 已提交
5629 5630
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5631
	 */
5632
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5633
	synchronize_rcu();
5634

P
Peter Zijlstra 已提交
5635
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5636 5637
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5638 5639
	device_del(pmu->dev);
	put_device(pmu->dev);
5640
	free_pmu_context(pmu);
5641
}
5642

5643 5644 5645 5646
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5647
	int ret;
5648 5649

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5650 5651 5652 5653

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5654
	if (pmu) {
5655
		event->pmu = pmu;
5656 5657 5658
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5659
		goto unlock;
5660
	}
P
Peter Zijlstra 已提交
5661

5662
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5663
		event->pmu = pmu;
5664
		ret = pmu->event_init(event);
5665
		if (!ret)
P
Peter Zijlstra 已提交
5666
			goto unlock;
5667

5668 5669
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5670
			goto unlock;
5671
		}
5672
	}
P
Peter Zijlstra 已提交
5673 5674
	pmu = ERR_PTR(-ENOENT);
unlock:
5675
	srcu_read_unlock(&pmus_srcu, idx);
5676

5677
	return pmu;
5678 5679
}

T
Thomas Gleixner 已提交
5680
/*
5681
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5682
 */
5683
static struct perf_event *
5684
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5685 5686 5687
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5688 5689
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5690
{
P
Peter Zijlstra 已提交
5691
	struct pmu *pmu;
5692 5693
	struct perf_event *event;
	struct hw_perf_event *hwc;
5694
	long err;
T
Thomas Gleixner 已提交
5695

5696 5697 5698 5699 5700
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5701
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5702
	if (!event)
5703
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5704

5705
	/*
5706
	 * Single events are their own group leaders, with an
5707 5708 5709
	 * empty sibling list:
	 */
	if (!group_leader)
5710
		group_leader = event;
5711

5712 5713
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5714

5715 5716 5717
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
5718 5719
	INIT_LIST_HEAD(&event->rb_entry);

5720
	init_waitqueue_head(&event->waitq);
5721
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5722

5723
	mutex_init(&event->mmap_mutex);
5724

5725 5726 5727 5728 5729
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5730

5731
	event->parent		= parent_event;
5732

5733 5734
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5735

5736
	event->state		= PERF_EVENT_STATE_INACTIVE;
5737

5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5749
	if (!overflow_handler && parent_event) {
5750
		overflow_handler = parent_event->overflow_handler;
5751 5752
		context = parent_event->overflow_handler_context;
	}
5753

5754
	event->overflow_handler	= overflow_handler;
5755
	event->overflow_handler_context = context;
5756

5757
	if (attr->disabled)
5758
		event->state = PERF_EVENT_STATE_OFF;
5759

5760
	pmu = NULL;
5761

5762
	hwc = &event->hw;
5763
	hwc->sample_period = attr->sample_period;
5764
	if (attr->freq && attr->sample_freq)
5765
		hwc->sample_period = 1;
5766
	hwc->last_period = hwc->sample_period;
5767

5768
	local64_set(&hwc->period_left, hwc->sample_period);
5769

5770
	/*
5771
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5772
	 */
5773
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5774 5775
		goto done;

5776
	pmu = perf_init_event(event);
5777

5778 5779
done:
	err = 0;
5780
	if (!pmu)
5781
		err = -EINVAL;
5782 5783
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5784

5785
	if (err) {
5786 5787 5788
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5789
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5790
	}
5791

5792
	if (!event->parent) {
5793
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
5794
			jump_label_inc(&perf_sched_events);
5795
		if (event->attr.mmap || event->attr.mmap_data)
5796 5797 5798 5799 5800
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5801 5802 5803 5804 5805 5806 5807
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5808
	}
5809

5810
	return event;
T
Thomas Gleixner 已提交
5811 5812
}

5813 5814
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5815 5816
{
	u32 size;
5817
	int ret;
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5842 5843 5844
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5845 5846
	 */
	if (size > sizeof(*attr)) {
5847 5848 5849
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5850

5851 5852
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5853

5854
		for (; addr < end; addr++) {
5855 5856 5857 5858 5859 5860
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5861
		size = sizeof(*attr);
5862 5863 5864 5865 5866 5867
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5868
	if (attr->__reserved_1)
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5886 5887
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5888
{
5889
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5890 5891
	int ret = -EINVAL;

5892
	if (!output_event)
5893 5894
		goto set;

5895 5896
	/* don't allow circular references */
	if (event == output_event)
5897 5898
		goto out;

5899 5900 5901 5902 5903 5904 5905
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
5906
	 * If its not a per-cpu rb, it must be the same task.
5907 5908 5909 5910
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5911
set:
5912
	mutex_lock(&event->mmap_mutex);
5913 5914 5915
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5916

5917
	if (output_event) {
5918 5919 5920
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
5921
			goto unlock;
5922 5923
	}

5924 5925
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
5926 5927
	if (old_rb)
		ring_buffer_detach(event, old_rb);
5928
	ret = 0;
5929 5930 5931
unlock:
	mutex_unlock(&event->mmap_mutex);

5932 5933
	if (old_rb)
		ring_buffer_put(old_rb);
5934 5935 5936 5937
out:
	return ret;
}

T
Thomas Gleixner 已提交
5938
/**
5939
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5940
 *
5941
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5942
 * @pid:		target pid
I
Ingo Molnar 已提交
5943
 * @cpu:		target cpu
5944
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5945
 */
5946 5947
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5948
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5949
{
5950 5951
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5952 5953 5954
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5955
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5956
	struct task_struct *task = NULL;
5957
	struct pmu *pmu;
5958
	int event_fd;
5959
	int move_group = 0;
5960
	int fput_needed = 0;
5961
	int err;
T
Thomas Gleixner 已提交
5962

5963
	/* for future expandability... */
S
Stephane Eranian 已提交
5964
	if (flags & ~PERF_FLAG_ALL)
5965 5966
		return -EINVAL;

5967 5968 5969
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5970

5971 5972 5973 5974 5975
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5976
	if (attr.freq) {
5977
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5978 5979 5980
			return -EINVAL;
	}

S
Stephane Eranian 已提交
5981 5982 5983 5984 5985 5986 5987 5988 5989
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

5990 5991 5992 5993
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5994 5995 5996 5997
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5998
			goto err_fd;
5999 6000 6001 6002 6003 6004 6005 6006
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6007
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6008 6009 6010 6011 6012 6013 6014
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6015 6016
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6017 6018
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6019
		goto err_task;
6020 6021
	}

S
Stephane Eranian 已提交
6022 6023 6024 6025
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6026 6027 6028 6029 6030 6031 6032
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6033 6034
	}

6035 6036 6037 6038 6039
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6063 6064 6065 6066

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6067
	ctx = find_get_context(pmu, task, cpu);
6068 6069
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6070
		goto err_alloc;
6071 6072
	}

6073 6074 6075 6076 6077
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6078
	/*
6079
	 * Look up the group leader (we will attach this event to it):
6080
	 */
6081
	if (group_leader) {
6082
		err = -EINVAL;
6083 6084

		/*
I
Ingo Molnar 已提交
6085 6086 6087 6088
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6089
			goto err_context;
I
Ingo Molnar 已提交
6090 6091 6092
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6093
		 */
6094 6095 6096 6097 6098 6099 6100 6101
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6102 6103 6104
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6105
		if (attr.exclusive || attr.pinned)
6106
			goto err_context;
6107 6108 6109 6110 6111
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6112
			goto err_context;
6113
	}
T
Thomas Gleixner 已提交
6114

6115 6116 6117
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6118
		goto err_context;
6119
	}
6120

6121 6122 6123 6124
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6125
		perf_remove_from_context(group_leader);
6126 6127
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6128
			perf_remove_from_context(sibling);
6129 6130 6131 6132
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6133
	}
6134

6135
	event->filp = event_file;
6136
	WARN_ON_ONCE(ctx->parent_ctx);
6137
	mutex_lock(&ctx->mutex);
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6149
	perf_install_in_context(ctx, event, cpu);
6150
	++ctx->generation;
6151
	perf_unpin_context(ctx);
6152
	mutex_unlock(&ctx->mutex);
6153

6154
	event->owner = current;
P
Peter Zijlstra 已提交
6155

6156 6157 6158
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6159

6160 6161 6162 6163
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6164
	perf_event__id_header_size(event);
6165

6166 6167 6168 6169 6170 6171
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6172 6173 6174
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6175

6176
err_context:
6177
	perf_unpin_context(ctx);
6178
	put_ctx(ctx);
6179
err_alloc:
6180
	free_event(event);
P
Peter Zijlstra 已提交
6181 6182 6183
err_task:
	if (task)
		put_task_struct(task);
6184
err_group_fd:
6185
	fput_light(group_file, fput_needed);
6186 6187
err_fd:
	put_unused_fd(event_fd);
6188
	return err;
T
Thomas Gleixner 已提交
6189 6190
}

6191 6192 6193 6194 6195
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6196
 * @task: task to profile (NULL for percpu)
6197 6198 6199
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6200
				 struct task_struct *task,
6201 6202
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6203 6204
{
	struct perf_event_context *ctx;
6205
	struct perf_event *event;
6206
	int err;
6207

6208 6209 6210
	/*
	 * Get the target context (task or percpu):
	 */
6211

6212 6213
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6214 6215 6216 6217
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6218

M
Matt Helsley 已提交
6219
	ctx = find_get_context(event->pmu, task, cpu);
6220 6221
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6222
		goto err_free;
6223
	}
6224 6225 6226 6227 6228 6229

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6230
	perf_unpin_context(ctx);
6231 6232 6233 6234
	mutex_unlock(&ctx->mutex);

	return event;

6235 6236 6237
err_free:
	free_event(event);
err:
6238
	return ERR_PTR(err);
6239
}
6240
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6241

6242
static void sync_child_event(struct perf_event *child_event,
6243
			       struct task_struct *child)
6244
{
6245
	struct perf_event *parent_event = child_event->parent;
6246
	u64 child_val;
6247

6248 6249
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6250

P
Peter Zijlstra 已提交
6251
	child_val = perf_event_count(child_event);
6252 6253 6254 6255

	/*
	 * Add back the child's count to the parent's count:
	 */
6256
	atomic64_add(child_val, &parent_event->child_count);
6257 6258 6259 6260
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6261 6262

	/*
6263
	 * Remove this event from the parent's list
6264
	 */
6265 6266 6267 6268
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6269 6270

	/*
6271
	 * Release the parent event, if this was the last
6272 6273
	 * reference to it.
	 */
6274
	fput(parent_event->filp);
6275 6276
}

6277
static void
6278 6279
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6280
			 struct task_struct *child)
6281
{
6282 6283 6284 6285 6286
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6287

6288
	perf_remove_from_context(child_event);
6289

6290
	/*
6291
	 * It can happen that the parent exits first, and has events
6292
	 * that are still around due to the child reference. These
6293
	 * events need to be zapped.
6294
	 */
6295
	if (child_event->parent) {
6296 6297
		sync_child_event(child_event, child);
		free_event(child_event);
6298
	}
6299 6300
}

P
Peter Zijlstra 已提交
6301
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6302
{
6303 6304
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6305
	unsigned long flags;
6306

P
Peter Zijlstra 已提交
6307
	if (likely(!child->perf_event_ctxp[ctxn])) {
6308
		perf_event_task(child, NULL, 0);
6309
		return;
P
Peter Zijlstra 已提交
6310
	}
6311

6312
	local_irq_save(flags);
6313 6314 6315 6316 6317 6318
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6319
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6320 6321 6322

	/*
	 * Take the context lock here so that if find_get_context is
6323
	 * reading child->perf_event_ctxp, we wait until it has
6324 6325
	 * incremented the context's refcount before we do put_ctx below.
	 */
6326
	raw_spin_lock(&child_ctx->lock);
6327
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6328
	child->perf_event_ctxp[ctxn] = NULL;
6329 6330 6331
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6332
	 * the events from it.
6333 6334
	 */
	unclone_ctx(child_ctx);
6335
	update_context_time(child_ctx);
6336
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6337 6338

	/*
6339 6340 6341
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6342
	 */
6343
	perf_event_task(child, child_ctx, 0);
6344

6345 6346 6347
	/*
	 * We can recurse on the same lock type through:
	 *
6348 6349 6350
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6351 6352 6353 6354 6355
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6356
	mutex_lock(&child_ctx->mutex);
6357

6358
again:
6359 6360 6361 6362 6363
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6364
				 group_entry)
6365
		__perf_event_exit_task(child_event, child_ctx, child);
6366 6367

	/*
6368
	 * If the last event was a group event, it will have appended all
6369 6370 6371
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6372 6373
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6374
		goto again;
6375 6376 6377 6378

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6379 6380
}

P
Peter Zijlstra 已提交
6381 6382 6383 6384 6385
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6386
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6387 6388
	int ctxn;

P
Peter Zijlstra 已提交
6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6404 6405 6406 6407
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6422
	perf_group_detach(event);
6423 6424 6425 6426
	list_del_event(event, ctx);
	free_event(event);
}

6427 6428
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6429
 * perf_event_init_task below, used by fork() in case of fail.
6430
 */
6431
void perf_event_free_task(struct task_struct *task)
6432
{
P
Peter Zijlstra 已提交
6433
	struct perf_event_context *ctx;
6434
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6435
	int ctxn;
6436

P
Peter Zijlstra 已提交
6437 6438 6439 6440
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6441

P
Peter Zijlstra 已提交
6442
		mutex_lock(&ctx->mutex);
6443
again:
P
Peter Zijlstra 已提交
6444 6445 6446
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6447

P
Peter Zijlstra 已提交
6448 6449 6450
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6451

P
Peter Zijlstra 已提交
6452 6453 6454
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6455

P
Peter Zijlstra 已提交
6456
		mutex_unlock(&ctx->mutex);
6457

P
Peter Zijlstra 已提交
6458 6459
		put_ctx(ctx);
	}
6460 6461
}

6462 6463 6464 6465 6466 6467 6468 6469
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6482
	unsigned long flags;
P
Peter Zijlstra 已提交
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6495
					   child,
P
Peter Zijlstra 已提交
6496
					   group_leader, parent_event,
6497
				           NULL, NULL);
P
Peter Zijlstra 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6524 6525
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6526

6527 6528 6529 6530
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6531
	perf_event__id_header_size(child_event);
6532

P
Peter Zijlstra 已提交
6533 6534 6535
	/*
	 * Link it up in the child's context:
	 */
6536
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6537
	add_event_to_ctx(child_event, child_ctx);
6538
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6580 6581 6582 6583 6584
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6585
		   struct task_struct *child, int ctxn,
6586 6587 6588
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6589
	struct perf_event_context *child_ctx;
6590 6591 6592 6593

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6594 6595
	}

6596
	child_ctx = child->perf_event_ctxp[ctxn];
6597 6598 6599 6600 6601 6602 6603
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6604

6605
		child_ctx = alloc_perf_context(event->pmu, child);
6606 6607
		if (!child_ctx)
			return -ENOMEM;
6608

P
Peter Zijlstra 已提交
6609
		child->perf_event_ctxp[ctxn] = child_ctx;
6610 6611 6612 6613 6614 6615 6616 6617 6618
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6619 6620
}

6621
/*
6622
 * Initialize the perf_event context in task_struct
6623
 */
P
Peter Zijlstra 已提交
6624
int perf_event_init_context(struct task_struct *child, int ctxn)
6625
{
6626
	struct perf_event_context *child_ctx, *parent_ctx;
6627 6628
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6629
	struct task_struct *parent = current;
6630
	int inherited_all = 1;
6631
	unsigned long flags;
6632
	int ret = 0;
6633

P
Peter Zijlstra 已提交
6634
	if (likely(!parent->perf_event_ctxp[ctxn]))
6635 6636
		return 0;

6637
	/*
6638 6639
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6640
	 */
P
Peter Zijlstra 已提交
6641
	parent_ctx = perf_pin_task_context(parent, ctxn);
6642

6643 6644 6645 6646 6647 6648 6649
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6650 6651 6652 6653
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6654
	mutex_lock(&parent_ctx->mutex);
6655 6656 6657 6658 6659

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6660
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6661 6662
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6663 6664 6665
		if (ret)
			break;
	}
6666

6667 6668 6669 6670 6671 6672 6673 6674 6675
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6676
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6677 6678
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6679
		if (ret)
6680
			break;
6681 6682
	}

6683 6684 6685
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6686
	child_ctx = child->perf_event_ctxp[ctxn];
6687

6688
	if (child_ctx && inherited_all) {
6689 6690 6691
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6692 6693 6694
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6695
		 */
P
Peter Zijlstra 已提交
6696
		cloned_ctx = parent_ctx->parent_ctx;
6697 6698
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6699
			child_ctx->parent_gen = parent_ctx->parent_gen;
6700 6701 6702 6703 6704
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6705 6706
	}

P
Peter Zijlstra 已提交
6707
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6708
	mutex_unlock(&parent_ctx->mutex);
6709

6710
	perf_unpin_context(parent_ctx);
6711
	put_ctx(parent_ctx);
6712

6713
	return ret;
6714 6715
}

P
Peter Zijlstra 已提交
6716 6717 6718 6719 6720 6721 6722
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6723 6724 6725 6726
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6727 6728 6729 6730 6731 6732 6733 6734 6735
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6736 6737
static void __init perf_event_init_all_cpus(void)
{
6738
	struct swevent_htable *swhash;
6739 6740 6741
	int cpu;

	for_each_possible_cpu(cpu) {
6742 6743
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6744
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6745 6746 6747
	}
}

6748
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6749
{
P
Peter Zijlstra 已提交
6750
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6751

6752
	mutex_lock(&swhash->hlist_mutex);
6753
	if (swhash->hlist_refcount > 0) {
6754 6755
		struct swevent_hlist *hlist;

6756 6757 6758
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6759
	}
6760
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6761 6762
}

P
Peter Zijlstra 已提交
6763
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6764
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6765
{
6766 6767 6768 6769 6770 6771 6772
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6773
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6774
{
P
Peter Zijlstra 已提交
6775
	struct perf_event_context *ctx = __info;
6776
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6777

P
Peter Zijlstra 已提交
6778
	perf_pmu_rotate_stop(ctx->pmu);
6779

6780
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6781
		__perf_remove_from_context(event);
6782
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6783
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6784
}
P
Peter Zijlstra 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6794
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6795 6796 6797 6798 6799 6800 6801 6802

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6803
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6804
{
6805
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6806

6807 6808 6809
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6810

P
Peter Zijlstra 已提交
6811
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6812 6813
}
#else
6814
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6815 6816
#endif

P
Peter Zijlstra 已提交
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6837 6838 6839 6840 6841
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

6842
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6843 6844

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6845
	case CPU_DOWN_FAILED:
6846
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6847 6848
		break;

P
Peter Zijlstra 已提交
6849
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6850
	case CPU_DOWN_PREPARE:
6851
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6861
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6862
{
6863 6864
	int ret;

P
Peter Zijlstra 已提交
6865 6866
	idr_init(&pmu_idr);

6867
	perf_event_init_all_cpus();
6868
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6869 6870 6871
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6872 6873
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6874
	register_reboot_notifier(&perf_reboot_notifier);
6875 6876 6877

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6878
}
P
Peter Zijlstra 已提交
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
6907 6908 6909 6910 6911 6912 6913

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

6914
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

6944 6945
static void
perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
S
Stephane Eranian 已提交
6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

6961
	perf_cgroup_attach_task(cgrp, task);
S
Stephane Eranian 已提交
6962 6963 6964
}

struct cgroup_subsys perf_subsys = {
6965 6966 6967 6968 6969
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
6970
	.attach_task	= perf_cgroup_attach_task,
S
Stephane Eranian 已提交
6971 6972
};
#endif /* CONFIG_CGROUP_PERF */