core.c 174.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
39
#include <linux/mm_types.h>
40
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
41

42 43
#include "internal.h"

44 45
#include <asm/irq_regs.h>

46
struct remote_function_call {
47 48 49 50
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
84 85 86 87
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
108 109 110 111
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
112 113 114 115 116 117 118
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
119 120 121 122
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

123 124 125 126 127 128 129
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

130 131 132 133 134 135
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
136 137 138 139
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
140
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
141
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
142
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
143

144 145 146
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
147

P
Peter Zijlstra 已提交
148 149 150 151
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

152
/*
153
 * perf event paranoia level:
154 155
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
156
 *   1 - disallow cpu events for unpriv
157
 *   2 - disallow kernel profiling for unpriv
158
 */
159
int sysctl_perf_event_paranoid __read_mostly = 1;
160

161 162
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
163 164

/*
165
 * max perf event sample rate
166
 */
P
Peter Zijlstra 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
185

186
static atomic64_t perf_event_id;
187

188 189 190 191
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
192 193 194 195 196
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
197

198 199 200
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

201
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
202

203
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
204
{
205
	return "pmu";
T
Thomas Gleixner 已提交
206 207
}

208 209 210 211 212
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
213 214 215 216 217 218
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
235 236
#ifdef CONFIG_CGROUP_PERF

237 238 239 240 241 242 243 244 245 246 247
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
248
	struct perf_cgroup_info	__percpu *info;
249 250
};

251 252 253 254 255
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

272
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
273
{
274
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
323 324
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
325
	/*
326 327
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
328
	 */
329
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
330 331
		return;

332 333 334 335 336 337
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
338 339 340
}

static inline void
341 342
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
343 344 345 346
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

347 348 349 350 351 352
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
353 354 355 356
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
357
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
390 391
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
392 393 394 395 396 397 398 399 400

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
401 402
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
403 404 405 406 407 408 409 410 411 412 413

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
414
				WARN_ON_ONCE(cpuctx->cgrp);
415 416 417 418
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
419 420 421 422
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
423 424
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
425 426 427 428 429 430 431 432
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

433 434
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
435
{
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
458 459
}

460 461
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
462
{
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
481 482 483 484 485 486 487 488
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
489 490
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
491

492
	if (!f.file)
S
Stephane Eranian 已提交
493 494
		return -EBADF;

495
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
496 497 498 499
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
500 501 502 503

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

504
	/* must be done before we fput() the file */
505 506 507 508 509
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
510

S
Stephane Eranian 已提交
511 512 513 514 515 516 517 518 519
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
520
out:
521
	fdput(f);
S
Stephane Eranian 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

595 596
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
597 598 599
{
}

600 601
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
602 603 604 605 606 607 608 609 610 611 612
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
613 614
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
645
void perf_pmu_disable(struct pmu *pmu)
646
{
P
Peter Zijlstra 已提交
647 648 649
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
650 651
}

P
Peter Zijlstra 已提交
652
void perf_pmu_enable(struct pmu *pmu)
653
{
P
Peter Zijlstra 已提交
654 655 656
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
657 658
}

659 660 661 662 663 664 665
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
666
static void perf_pmu_rotate_start(struct pmu *pmu)
667
{
P
Peter Zijlstra 已提交
668
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
669
	struct list_head *head = &__get_cpu_var(rotation_list);
670

671
	WARN_ON(!irqs_disabled());
672

673 674
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
675 676
}

677
static void get_ctx(struct perf_event_context *ctx)
678
{
679
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
680 681
}

682
static void put_ctx(struct perf_event_context *ctx)
683
{
684 685 686
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
687 688
		if (ctx->task)
			put_task_struct(ctx->task);
689
		kfree_rcu(ctx, rcu_head);
690
	}
691 692
}

693
static void unclone_ctx(struct perf_event_context *ctx)
694 695 696 697 698 699 700
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

723
/*
724
 * If we inherit events we want to return the parent event id
725 726
 * to userspace.
 */
727
static u64 primary_event_id(struct perf_event *event)
728
{
729
	u64 id = event->id;
730

731 732
	if (event->parent)
		id = event->parent->id;
733 734 735 736

	return id;
}

737
/*
738
 * Get the perf_event_context for a task and lock it.
739 740 741
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
742
static struct perf_event_context *
P
Peter Zijlstra 已提交
743
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
744
{
745
	struct perf_event_context *ctx;
746 747

	rcu_read_lock();
P
Peter Zijlstra 已提交
748
retry:
P
Peter Zijlstra 已提交
749
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
750 751 752 753
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
754
		 * perf_event_task_sched_out, though the
755 756 757 758 759 760
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
761
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
762
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
763
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
764 765
			goto retry;
		}
766 767

		if (!atomic_inc_not_zero(&ctx->refcount)) {
768
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
769 770
			ctx = NULL;
		}
771 772 773 774 775 776 777 778 779 780
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
781 782
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
783
{
784
	struct perf_event_context *ctx;
785 786
	unsigned long flags;

P
Peter Zijlstra 已提交
787
	ctx = perf_lock_task_context(task, ctxn, &flags);
788 789
	if (ctx) {
		++ctx->pin_count;
790
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
791 792 793 794
	}
	return ctx;
}

795
static void perf_unpin_context(struct perf_event_context *ctx)
796 797 798
{
	unsigned long flags;

799
	raw_spin_lock_irqsave(&ctx->lock, flags);
800
	--ctx->pin_count;
801
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
802 803
}

804 805 806 807 808 809 810 811 812 813 814
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

815 816 817
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
818 819 820 821

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

822 823 824
	return ctx ? ctx->time : 0;
}

825 826
/*
 * Update the total_time_enabled and total_time_running fields for a event.
827
 * The caller of this function needs to hold the ctx->lock.
828 829 830 831 832 833 834 835 836
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
837 838 839 840 841 842 843 844 845 846 847
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
848
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
849 850
	else if (ctx->is_active)
		run_end = ctx->time;
851 852 853 854
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
855 856 857 858

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
859
		run_end = perf_event_time(event);
860 861

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
862

863 864
}

865 866 867 868 869 870 871 872 873 874 875 876
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

877 878 879 880 881 882 883 884 885
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

886
/*
887
 * Add a event from the lists for its context.
888 889
 * Must be called with ctx->mutex and ctx->lock held.
 */
890
static void
891
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
892
{
893 894
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
895 896

	/*
897 898 899
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
900
	 */
901
	if (event->group_leader == event) {
902 903
		struct list_head *list;

904 905 906
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

907 908
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
909
	}
P
Peter Zijlstra 已提交
910

911
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
912 913
		ctx->nr_cgroups++;

914 915 916
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

917
	list_add_rcu(&event->event_entry, &ctx->event_list);
918
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
919
		perf_pmu_rotate_start(ctx->pmu);
920 921
	ctx->nr_events++;
	if (event->attr.inherit_stat)
922
		ctx->nr_stat++;
923 924
}

J
Jiri Olsa 已提交
925 926 927 928 929 930 931 932 933
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

973 974 975 976 977 978
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
979 980 981
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

982 983 984 985 986 987 988 989 990 991 992 993
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1009
	event->id_header_size = size;
1010 1011
}

1012 1013
static void perf_group_attach(struct perf_event *event)
{
1014
	struct perf_event *group_leader = event->group_leader, *pos;
1015

P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1033 1034 1035 1036 1037

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1038 1039
}

1040
/*
1041
 * Remove a event from the lists for its context.
1042
 * Must be called with ctx->mutex and ctx->lock held.
1043
 */
1044
static void
1045
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1046
{
1047
	struct perf_cpu_context *cpuctx;
1048 1049 1050 1051
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1052
		return;
1053 1054 1055

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1056
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1057
		ctx->nr_cgroups--;
1058 1059 1060 1061 1062 1063 1064 1065 1066
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1067

1068 1069 1070
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1071 1072
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1073
		ctx->nr_stat--;
1074

1075
	list_del_rcu(&event->event_entry);
1076

1077 1078
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1079

1080
	update_group_times(event);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1091 1092
}

1093
static void perf_group_detach(struct perf_event *event)
1094 1095
{
	struct perf_event *sibling, *tmp;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1112
		goto out;
1113 1114 1115 1116
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1117

1118
	/*
1119 1120
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1121
	 * to whatever list we are on.
1122
	 */
1123
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1124 1125
		if (list)
			list_move_tail(&sibling->group_entry, list);
1126
		sibling->group_leader = sibling;
1127 1128 1129

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1130
	}
1131 1132 1133 1134 1135 1136

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1137 1138
}

1139 1140 1141
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1142 1143
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1144 1145
}

1146 1147
static void
event_sched_out(struct perf_event *event,
1148
		  struct perf_cpu_context *cpuctx,
1149
		  struct perf_event_context *ctx)
1150
{
1151
	u64 tstamp = perf_event_time(event);
1152 1153 1154 1155 1156 1157 1158 1159 1160
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1161
		delta = tstamp - event->tstamp_stopped;
1162
		event->tstamp_running += delta;
1163
		event->tstamp_stopped = tstamp;
1164 1165
	}

1166
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1167
		return;
1168

1169 1170 1171 1172
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1173
	}
1174
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1175
	event->pmu->del(event, 0);
1176
	event->oncpu = -1;
1177

1178
	if (!is_software_event(event))
1179 1180
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1181 1182
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1183
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1184 1185 1186
		cpuctx->exclusive = 0;
}

1187
static void
1188
group_sched_out(struct perf_event *group_event,
1189
		struct perf_cpu_context *cpuctx,
1190
		struct perf_event_context *ctx)
1191
{
1192
	struct perf_event *event;
1193
	int state = group_event->state;
1194

1195
	event_sched_out(group_event, cpuctx, ctx);
1196 1197 1198 1199

	/*
	 * Schedule out siblings (if any):
	 */
1200 1201
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1202

1203
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1204 1205 1206
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1207
/*
1208
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1209
 *
1210
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1211 1212
 * remove it from the context list.
 */
1213
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1214
{
1215 1216
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1217
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1218

1219
	raw_spin_lock(&ctx->lock);
1220 1221
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1222 1223 1224 1225
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1226
	raw_spin_unlock(&ctx->lock);
1227 1228

	return 0;
T
Thomas Gleixner 已提交
1229 1230 1231 1232
}


/*
1233
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1234
 *
1235
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1236
 * call when the task is on a CPU.
1237
 *
1238 1239
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1240 1241
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1242
 * When called from perf_event_exit_task, it's OK because the
1243
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1244
 */
1245
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1246
{
1247
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1248 1249
	struct task_struct *task = ctx->task;

1250 1251
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1252 1253
	if (!task) {
		/*
1254
		 * Per cpu events are removed via an smp call and
1255
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1256
		 */
1257
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1258 1259 1260 1261
		return;
	}

retry:
1262 1263
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1264

1265
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1266
	/*
1267 1268
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1269
	 */
1270
	if (ctx->is_active) {
1271
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1272 1273 1274 1275
		goto retry;
	}

	/*
1276 1277
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1278
	 */
1279
	list_del_event(event, ctx);
1280
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1281 1282
}

1283
/*
1284
 * Cross CPU call to disable a performance event
1285
 */
1286
int __perf_event_disable(void *info)
1287
{
1288 1289
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1290
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1291 1292

	/*
1293 1294
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1295 1296 1297
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1298
	 */
1299
	if (ctx->task && cpuctx->task_ctx != ctx)
1300
		return -EINVAL;
1301

1302
	raw_spin_lock(&ctx->lock);
1303 1304

	/*
1305
	 * If the event is on, turn it off.
1306 1307
	 * If it is in error state, leave it in error state.
	 */
1308
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1309
		update_context_time(ctx);
S
Stephane Eranian 已提交
1310
		update_cgrp_time_from_event(event);
1311 1312 1313
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1314
		else
1315 1316
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1317 1318
	}

1319
	raw_spin_unlock(&ctx->lock);
1320 1321

	return 0;
1322 1323 1324
}

/*
1325
 * Disable a event.
1326
 *
1327 1328
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1329
 * remains valid.  This condition is satisifed when called through
1330 1331 1332 1333
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1334
 * is the current context on this CPU and preemption is disabled,
1335
 * hence we can't get into perf_event_task_sched_out for this context.
1336
 */
1337
void perf_event_disable(struct perf_event *event)
1338
{
1339
	struct perf_event_context *ctx = event->ctx;
1340 1341 1342 1343
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1344
		 * Disable the event on the cpu that it's on
1345
		 */
1346
		cpu_function_call(event->cpu, __perf_event_disable, event);
1347 1348 1349
		return;
	}

P
Peter Zijlstra 已提交
1350
retry:
1351 1352
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1353

1354
	raw_spin_lock_irq(&ctx->lock);
1355
	/*
1356
	 * If the event is still active, we need to retry the cross-call.
1357
	 */
1358
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1359
		raw_spin_unlock_irq(&ctx->lock);
1360 1361 1362 1363 1364
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1365 1366 1367 1368 1369 1370 1371
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1372 1373 1374
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1375
	}
1376
	raw_spin_unlock_irq(&ctx->lock);
1377
}
1378
EXPORT_SYMBOL_GPL(perf_event_disable);
1379

S
Stephane Eranian 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1415 1416 1417 1418
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1419
static int
1420
event_sched_in(struct perf_event *event,
1421
		 struct perf_cpu_context *cpuctx,
1422
		 struct perf_event_context *ctx)
1423
{
1424 1425
	u64 tstamp = perf_event_time(event);

1426
	if (event->state <= PERF_EVENT_STATE_OFF)
1427 1428
		return 0;

1429
	event->state = PERF_EVENT_STATE_ACTIVE;
1430
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1442 1443 1444 1445 1446
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1447
	if (event->pmu->add(event, PERF_EF_START)) {
1448 1449
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1450 1451 1452
		return -EAGAIN;
	}

1453
	event->tstamp_running += tstamp - event->tstamp_stopped;
1454

S
Stephane Eranian 已提交
1455
	perf_set_shadow_time(event, ctx, tstamp);
1456

1457
	if (!is_software_event(event))
1458
		cpuctx->active_oncpu++;
1459
	ctx->nr_active++;
1460 1461
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1462

1463
	if (event->attr.exclusive)
1464 1465
		cpuctx->exclusive = 1;

1466 1467 1468
	return 0;
}

1469
static int
1470
group_sched_in(struct perf_event *group_event,
1471
	       struct perf_cpu_context *cpuctx,
1472
	       struct perf_event_context *ctx)
1473
{
1474
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1475
	struct pmu *pmu = group_event->pmu;
1476 1477
	u64 now = ctx->time;
	bool simulate = false;
1478

1479
	if (group_event->state == PERF_EVENT_STATE_OFF)
1480 1481
		return 0;

P
Peter Zijlstra 已提交
1482
	pmu->start_txn(pmu);
1483

1484
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1485
		pmu->cancel_txn(pmu);
1486
		return -EAGAIN;
1487
	}
1488 1489 1490 1491

	/*
	 * Schedule in siblings as one group (if any):
	 */
1492
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1493
		if (event_sched_in(event, cpuctx, ctx)) {
1494
			partial_group = event;
1495 1496 1497 1498
			goto group_error;
		}
	}

1499
	if (!pmu->commit_txn(pmu))
1500
		return 0;
1501

1502 1503 1504 1505
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1516
	 */
1517 1518
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1519 1520 1521 1522 1523 1524 1525 1526
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1527
	}
1528
	event_sched_out(group_event, cpuctx, ctx);
1529

P
Peter Zijlstra 已提交
1530
	pmu->cancel_txn(pmu);
1531

1532 1533 1534
	return -EAGAIN;
}

1535
/*
1536
 * Work out whether we can put this event group on the CPU now.
1537
 */
1538
static int group_can_go_on(struct perf_event *event,
1539 1540 1541 1542
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1543
	 * Groups consisting entirely of software events can always go on.
1544
	 */
1545
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1546 1547 1548
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1549
	 * events can go on.
1550 1551 1552 1553 1554
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1555
	 * events on the CPU, it can't go on.
1556
	 */
1557
	if (event->attr.exclusive && cpuctx->active_oncpu)
1558 1559 1560 1561 1562 1563 1564 1565
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1566 1567
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1568
{
1569 1570
	u64 tstamp = perf_event_time(event);

1571
	list_add_event(event, ctx);
1572
	perf_group_attach(event);
1573 1574 1575
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1576 1577
}

1578 1579 1580 1581 1582 1583
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1597
/*
1598
 * Cross CPU call to install and enable a performance event
1599 1600
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1601
 */
1602
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1603
{
1604 1605
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1606
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1607 1608 1609
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1610
	perf_ctx_lock(cpuctx, task_ctx);
1611
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1612 1613

	/*
1614
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1615
	 */
1616
	if (task_ctx)
1617
		task_ctx_sched_out(task_ctx);
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1632 1633
		task = task_ctx->task;
	}
1634

1635
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1636

1637
	update_context_time(ctx);
S
Stephane Eranian 已提交
1638 1639 1640 1641 1642 1643
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1644

1645
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1646

1647
	/*
1648
	 * Schedule everything back in
1649
	 */
1650
	perf_event_sched_in(cpuctx, task_ctx, task);
1651 1652 1653

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1654 1655

	return 0;
T
Thomas Gleixner 已提交
1656 1657 1658
}

/*
1659
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1660
 *
1661 1662
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1663
 *
1664
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1665 1666 1667 1668
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1669 1670
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1671 1672 1673 1674
			int cpu)
{
	struct task_struct *task = ctx->task;

1675 1676
	lockdep_assert_held(&ctx->mutex);

1677
	event->ctx = ctx;
1678 1679
	if (event->cpu != -1)
		event->cpu = cpu;
1680

T
Thomas Gleixner 已提交
1681 1682
	if (!task) {
		/*
1683
		 * Per cpu events are installed via an smp call and
1684
		 * the install is always successful.
T
Thomas Gleixner 已提交
1685
		 */
1686
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1687 1688 1689 1690
		return;
	}

retry:
1691 1692
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1693

1694
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1695
	/*
1696 1697
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1698
	 */
1699
	if (ctx->is_active) {
1700
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1701 1702 1703 1704
		goto retry;
	}

	/*
1705 1706
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1707
	 */
1708
	add_event_to_ctx(event, ctx);
1709
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1710 1711
}

1712
/*
1713
 * Put a event into inactive state and update time fields.
1714 1715 1716 1717 1718 1719
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1720
static void __perf_event_mark_enabled(struct perf_event *event)
1721
{
1722
	struct perf_event *sub;
1723
	u64 tstamp = perf_event_time(event);
1724

1725
	event->state = PERF_EVENT_STATE_INACTIVE;
1726
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1727
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1728 1729
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1730
	}
1731 1732
}

1733
/*
1734
 * Cross CPU call to enable a performance event
1735
 */
1736
static int __perf_event_enable(void *info)
1737
{
1738 1739 1740
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1741
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1742
	int err;
1743

1744 1745
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1746

1747
	raw_spin_lock(&ctx->lock);
1748
	update_context_time(ctx);
1749

1750
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1751
		goto unlock;
S
Stephane Eranian 已提交
1752 1753 1754 1755

	/*
	 * set current task's cgroup time reference point
	 */
1756
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1757

1758
	__perf_event_mark_enabled(event);
1759

S
Stephane Eranian 已提交
1760 1761 1762
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1763
		goto unlock;
S
Stephane Eranian 已提交
1764
	}
1765

1766
	/*
1767
	 * If the event is in a group and isn't the group leader,
1768
	 * then don't put it on unless the group is on.
1769
	 */
1770
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1771
		goto unlock;
1772

1773
	if (!group_can_go_on(event, cpuctx, 1)) {
1774
		err = -EEXIST;
1775
	} else {
1776
		if (event == leader)
1777
			err = group_sched_in(event, cpuctx, ctx);
1778
		else
1779
			err = event_sched_in(event, cpuctx, ctx);
1780
	}
1781 1782 1783

	if (err) {
		/*
1784
		 * If this event can't go on and it's part of a
1785 1786
		 * group, then the whole group has to come off.
		 */
1787
		if (leader != event)
1788
			group_sched_out(leader, cpuctx, ctx);
1789
		if (leader->attr.pinned) {
1790
			update_group_times(leader);
1791
			leader->state = PERF_EVENT_STATE_ERROR;
1792
		}
1793 1794
	}

P
Peter Zijlstra 已提交
1795
unlock:
1796
	raw_spin_unlock(&ctx->lock);
1797 1798

	return 0;
1799 1800 1801
}

/*
1802
 * Enable a event.
1803
 *
1804 1805
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1806
 * remains valid.  This condition is satisfied when called through
1807 1808
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1809
 */
1810
void perf_event_enable(struct perf_event *event)
1811
{
1812
	struct perf_event_context *ctx = event->ctx;
1813 1814 1815 1816
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1817
		 * Enable the event on the cpu that it's on
1818
		 */
1819
		cpu_function_call(event->cpu, __perf_event_enable, event);
1820 1821 1822
		return;
	}

1823
	raw_spin_lock_irq(&ctx->lock);
1824
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1825 1826 1827
		goto out;

	/*
1828 1829
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1830 1831 1832 1833
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1834 1835
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1836

P
Peter Zijlstra 已提交
1837
retry:
1838
	if (!ctx->is_active) {
1839
		__perf_event_mark_enabled(event);
1840 1841 1842
		goto out;
	}

1843
	raw_spin_unlock_irq(&ctx->lock);
1844 1845 1846

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1847

1848
	raw_spin_lock_irq(&ctx->lock);
1849 1850

	/*
1851
	 * If the context is active and the event is still off,
1852 1853
	 * we need to retry the cross-call.
	 */
1854 1855 1856 1857 1858 1859
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1860
		goto retry;
1861
	}
1862

P
Peter Zijlstra 已提交
1863
out:
1864
	raw_spin_unlock_irq(&ctx->lock);
1865
}
1866
EXPORT_SYMBOL_GPL(perf_event_enable);
1867

1868
int perf_event_refresh(struct perf_event *event, int refresh)
1869
{
1870
	/*
1871
	 * not supported on inherited events
1872
	 */
1873
	if (event->attr.inherit || !is_sampling_event(event))
1874 1875
		return -EINVAL;

1876 1877
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1878 1879

	return 0;
1880
}
1881
EXPORT_SYMBOL_GPL(perf_event_refresh);
1882

1883 1884 1885
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1886
{
1887
	struct perf_event *event;
1888
	int is_active = ctx->is_active;
1889

1890
	ctx->is_active &= ~event_type;
1891
	if (likely(!ctx->nr_events))
1892 1893
		return;

1894
	update_context_time(ctx);
S
Stephane Eranian 已提交
1895
	update_cgrp_time_from_cpuctx(cpuctx);
1896
	if (!ctx->nr_active)
1897
		return;
1898

P
Peter Zijlstra 已提交
1899
	perf_pmu_disable(ctx->pmu);
1900
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1901 1902
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1903
	}
1904

1905
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1906
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1907
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1908
	}
P
Peter Zijlstra 已提交
1909
	perf_pmu_enable(ctx->pmu);
1910 1911
}

1912 1913 1914
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1915 1916 1917 1918
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1919
 * in them directly with an fd; we can only enable/disable all
1920
 * events via prctl, or enable/disable all events in a family
1921 1922
 * via ioctl, which will have the same effect on both contexts.
 */
1923 1924
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1925 1926
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1927
		&& ctx1->parent_gen == ctx2->parent_gen
1928
		&& !ctx1->pin_count && !ctx2->pin_count;
1929 1930
}

1931 1932
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1933 1934 1935
{
	u64 value;

1936
	if (!event->attr.inherit_stat)
1937 1938 1939
		return;

	/*
1940
	 * Update the event value, we cannot use perf_event_read()
1941 1942
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1943
	 * we know the event must be on the current CPU, therefore we
1944 1945
	 * don't need to use it.
	 */
1946 1947
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1948 1949
		event->pmu->read(event);
		/* fall-through */
1950

1951 1952
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1953 1954 1955 1956 1957 1958 1959
		break;

	default:
		break;
	}

	/*
1960
	 * In order to keep per-task stats reliable we need to flip the event
1961 1962
	 * values when we flip the contexts.
	 */
1963 1964 1965
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1966

1967 1968
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1969

1970
	/*
1971
	 * Since we swizzled the values, update the user visible data too.
1972
	 */
1973 1974
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1975 1976 1977 1978 1979
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1980 1981
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1982
{
1983
	struct perf_event *event, *next_event;
1984 1985 1986 1987

	if (!ctx->nr_stat)
		return;

1988 1989
	update_context_time(ctx);

1990 1991
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1992

1993 1994
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1995

1996 1997
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1998

1999
		__perf_event_sync_stat(event, next_event);
2000

2001 2002
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2003 2004 2005
	}
}

2006 2007
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2008
{
P
Peter Zijlstra 已提交
2009
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2010 2011
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2012
	struct perf_cpu_context *cpuctx;
2013
	int do_switch = 1;
T
Thomas Gleixner 已提交
2014

P
Peter Zijlstra 已提交
2015 2016
	if (likely(!ctx))
		return;
2017

P
Peter Zijlstra 已提交
2018 2019
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2020 2021
		return;

2022 2023
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2024
	next_ctx = next->perf_event_ctxp[ctxn];
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2036 2037
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2038
		if (context_equiv(ctx, next_ctx)) {
2039 2040
			/*
			 * XXX do we need a memory barrier of sorts
2041
			 * wrt to rcu_dereference() of perf_event_ctxp
2042
			 */
P
Peter Zijlstra 已提交
2043 2044
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2045 2046 2047
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2048

2049
			perf_event_sync_stat(ctx, next_ctx);
2050
		}
2051 2052
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2053
	}
2054
	rcu_read_unlock();
2055

2056
	if (do_switch) {
2057
		raw_spin_lock(&ctx->lock);
2058
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2059
		cpuctx->task_ctx = NULL;
2060
		raw_spin_unlock(&ctx->lock);
2061
	}
T
Thomas Gleixner 已提交
2062 2063
}

P
Peter Zijlstra 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2078 2079
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2080 2081 2082 2083 2084
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2085 2086 2087 2088 2089 2090 2091

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2092
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2093 2094
}

2095
static void task_ctx_sched_out(struct perf_event_context *ctx)
2096
{
P
Peter Zijlstra 已提交
2097
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2098

2099 2100
	if (!cpuctx->task_ctx)
		return;
2101 2102 2103 2104

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2105
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2106 2107 2108
	cpuctx->task_ctx = NULL;
}

2109 2110 2111 2112 2113 2114 2115
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2116 2117
}

2118
static void
2119
ctx_pinned_sched_in(struct perf_event_context *ctx,
2120
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2121
{
2122
	struct perf_event *event;
T
Thomas Gleixner 已提交
2123

2124 2125
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2126
			continue;
2127
		if (!event_filter_match(event))
2128 2129
			continue;

S
Stephane Eranian 已提交
2130 2131 2132 2133
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2134
		if (group_can_go_on(event, cpuctx, 1))
2135
			group_sched_in(event, cpuctx, ctx);
2136 2137 2138 2139 2140

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2141 2142 2143
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2144
		}
2145
	}
2146 2147 2148 2149
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2150
		      struct perf_cpu_context *cpuctx)
2151 2152 2153
{
	struct perf_event *event;
	int can_add_hw = 1;
2154

2155 2156 2157
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2158
			continue;
2159 2160
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2161
		 * of events:
2162
		 */
2163
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2164 2165
			continue;

S
Stephane Eranian 已提交
2166 2167 2168 2169
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2170
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2171
			if (group_sched_in(event, cpuctx, ctx))
2172
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2173
		}
T
Thomas Gleixner 已提交
2174
	}
2175 2176 2177 2178 2179
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2180 2181
	     enum event_type_t event_type,
	     struct task_struct *task)
2182
{
S
Stephane Eranian 已提交
2183
	u64 now;
2184
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2185

2186
	ctx->is_active |= event_type;
2187
	if (likely(!ctx->nr_events))
2188
		return;
2189

S
Stephane Eranian 已提交
2190 2191
	now = perf_clock();
	ctx->timestamp = now;
2192
	perf_cgroup_set_timestamp(task, ctx);
2193 2194 2195 2196
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2197
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2198
		ctx_pinned_sched_in(ctx, cpuctx);
2199 2200

	/* Then walk through the lower prio flexible groups */
2201
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2202
		ctx_flexible_sched_in(ctx, cpuctx);
2203 2204
}

2205
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2206 2207
			     enum event_type_t event_type,
			     struct task_struct *task)
2208 2209 2210
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2211
	ctx_sched_in(ctx, cpuctx, event_type, task);
2212 2213
}

S
Stephane Eranian 已提交
2214 2215
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2216
{
P
Peter Zijlstra 已提交
2217
	struct perf_cpu_context *cpuctx;
2218

P
Peter Zijlstra 已提交
2219
	cpuctx = __get_cpu_context(ctx);
2220 2221 2222
	if (cpuctx->task_ctx == ctx)
		return;

2223
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2224
	perf_pmu_disable(ctx->pmu);
2225 2226 2227 2228 2229 2230 2231
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2232 2233
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2234

2235 2236
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2237 2238 2239
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2240 2241 2242 2243
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2244
	perf_pmu_rotate_start(ctx->pmu);
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2318 2319
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2329
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2330
	}
S
Stephane Eranian 已提交
2331 2332 2333 2334 2335 2336
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2337
		perf_cgroup_sched_in(prev, task);
2338 2339 2340 2341

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2342 2343
}

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2371
#define REDUCE_FLS(a, b)		\
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2411 2412 2413
	if (!divisor)
		return dividend;

2414 2415 2416
	return div64_u64(dividend, divisor);
}

2417 2418 2419
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2420
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2421
{
2422
	struct hw_perf_event *hwc = &event->hw;
2423
	s64 period, sample_period;
2424 2425
	s64 delta;

2426
	period = perf_calculate_period(event, nsec, count);
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2437

2438
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2439 2440 2441
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2442
		local64_set(&hwc->period_left, 0);
2443 2444 2445

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2446
	}
2447 2448
}

2449 2450 2451 2452 2453 2454 2455
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2456
{
2457 2458
	struct perf_event *event;
	struct hw_perf_event *hwc;
2459
	u64 now, period = TICK_NSEC;
2460
	s64 delta;
2461

2462 2463 2464 2465 2466 2467
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2468 2469
		return;

2470
	raw_spin_lock(&ctx->lock);
2471
	perf_pmu_disable(ctx->pmu);
2472

2473
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2474
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2475 2476
			continue;

2477
		if (!event_filter_match(event))
2478 2479
			continue;

2480
		hwc = &event->hw;
2481

2482 2483
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2484
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2485
			event->pmu->start(event, 0);
2486 2487
		}

2488
		if (!event->attr.freq || !event->attr.sample_freq)
2489 2490
			continue;

2491 2492 2493 2494 2495
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2496
		now = local64_read(&event->count);
2497 2498
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2499

2500 2501 2502
		/*
		 * restart the event
		 * reload only if value has changed
2503 2504 2505
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2506
		 */
2507
		if (delta > 0)
2508
			perf_adjust_period(event, period, delta, false);
2509 2510

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2511
	}
2512

2513
	perf_pmu_enable(ctx->pmu);
2514
	raw_spin_unlock(&ctx->lock);
2515 2516
}

2517
/*
2518
 * Round-robin a context's events:
2519
 */
2520
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2521
{
2522 2523 2524 2525 2526 2527
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2528 2529
}

2530
/*
2531 2532 2533
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2534
 */
2535
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2536
{
P
Peter Zijlstra 已提交
2537
	struct perf_event_context *ctx = NULL;
2538
	int rotate = 0, remove = 1;
2539

2540
	if (cpuctx->ctx.nr_events) {
2541
		remove = 0;
2542 2543 2544
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2545

P
Peter Zijlstra 已提交
2546
	ctx = cpuctx->task_ctx;
2547
	if (ctx && ctx->nr_events) {
2548
		remove = 0;
2549 2550 2551
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2552

2553
	if (!rotate)
2554 2555
		goto done;

2556
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2557
	perf_pmu_disable(cpuctx->ctx.pmu);
2558

2559 2560 2561
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2562

2563 2564 2565
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2566

2567
	perf_event_sched_in(cpuctx, ctx, current);
2568

2569 2570
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2571
done:
2572 2573 2574 2575 2576 2577 2578 2579
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2580 2581
	struct perf_event_context *ctx;
	int throttled;
2582

2583 2584
	WARN_ON(!irqs_disabled());

2585 2586 2587
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2588
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2589 2590 2591 2592 2593 2594 2595
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2596 2597 2598 2599
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2612
	__perf_event_mark_enabled(event);
2613 2614 2615 2616

	return 1;
}

2617
/*
2618
 * Enable all of a task's events that have been marked enable-on-exec.
2619 2620
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2621
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2622
{
2623
	struct perf_event *event;
2624 2625
	unsigned long flags;
	int enabled = 0;
2626
	int ret;
2627 2628

	local_irq_save(flags);
2629
	if (!ctx || !ctx->nr_events)
2630 2631
		goto out;

2632 2633 2634 2635 2636 2637 2638
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2639
	perf_cgroup_sched_out(current, NULL);
2640

2641
	raw_spin_lock(&ctx->lock);
2642
	task_ctx_sched_out(ctx);
2643

2644
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2645 2646 2647
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2648 2649 2650
	}

	/*
2651
	 * Unclone this context if we enabled any event.
2652
	 */
2653 2654
	if (enabled)
		unclone_ctx(ctx);
2655

2656
	raw_spin_unlock(&ctx->lock);
2657

2658 2659 2660
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2661
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2662
out:
2663 2664 2665
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2666
/*
2667
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2668
 */
2669
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2670
{
2671 2672
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2673
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2674

2675 2676 2677 2678
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2679 2680
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2681 2682 2683 2684
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2685
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2686
	if (ctx->is_active) {
2687
		update_context_time(ctx);
S
Stephane Eranian 已提交
2688 2689
		update_cgrp_time_from_event(event);
	}
2690
	update_event_times(event);
2691 2692
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2693
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2694 2695
}

P
Peter Zijlstra 已提交
2696 2697
static inline u64 perf_event_count(struct perf_event *event)
{
2698
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2699 2700
}

2701
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2702 2703
{
	/*
2704 2705
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2706
	 */
2707 2708 2709 2710
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2711 2712 2713
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2714
		raw_spin_lock_irqsave(&ctx->lock, flags);
2715 2716 2717 2718 2719
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2720
		if (ctx->is_active) {
2721
			update_context_time(ctx);
S
Stephane Eranian 已提交
2722 2723
			update_cgrp_time_from_event(event);
		}
2724
		update_event_times(event);
2725
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2726 2727
	}

P
Peter Zijlstra 已提交
2728
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2729 2730
}

2731
/*
2732
 * Initialize the perf_event context in a task_struct:
2733
 */
2734
static void __perf_event_init_context(struct perf_event_context *ctx)
2735
{
2736
	raw_spin_lock_init(&ctx->lock);
2737
	mutex_init(&ctx->mutex);
2738 2739
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2740 2741
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2757
	}
2758 2759 2760
	ctx->pmu = pmu;

	return ctx;
2761 2762
}

2763 2764 2765 2766 2767
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2768 2769

	rcu_read_lock();
2770
	if (!vpid)
T
Thomas Gleixner 已提交
2771 2772
		task = current;
	else
2773
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2774 2775 2776 2777 2778 2779 2780 2781
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2782 2783 2784 2785
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2786 2787 2788 2789 2790 2791 2792
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2793 2794 2795
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2796
static struct perf_event_context *
M
Matt Helsley 已提交
2797
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2798
{
2799
	struct perf_event_context *ctx;
2800
	struct perf_cpu_context *cpuctx;
2801
	unsigned long flags;
P
Peter Zijlstra 已提交
2802
	int ctxn, err;
T
Thomas Gleixner 已提交
2803

2804
	if (!task) {
2805
		/* Must be root to operate on a CPU event: */
2806
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2807 2808 2809
			return ERR_PTR(-EACCES);

		/*
2810
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2811 2812 2813
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2814
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2815 2816
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2817
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2818
		ctx = &cpuctx->ctx;
2819
		get_ctx(ctx);
2820
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2821 2822 2823 2824

		return ctx;
	}

P
Peter Zijlstra 已提交
2825 2826 2827 2828 2829
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2830
retry:
P
Peter Zijlstra 已提交
2831
	ctx = perf_lock_task_context(task, ctxn, &flags);
2832
	if (ctx) {
2833
		unclone_ctx(ctx);
2834
		++ctx->pin_count;
2835
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2836
	} else {
2837
		ctx = alloc_perf_context(pmu, task);
2838 2839 2840
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2841

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2852
		else {
2853
			get_ctx(ctx);
2854
			++ctx->pin_count;
2855
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2856
		}
2857 2858 2859
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2860
			put_ctx(ctx);
2861 2862 2863 2864

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2865 2866 2867
		}
	}

T
Thomas Gleixner 已提交
2868
	return ctx;
2869

P
Peter Zijlstra 已提交
2870
errout:
2871
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2872 2873
}

L
Li Zefan 已提交
2874 2875
static void perf_event_free_filter(struct perf_event *event);

2876
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2877
{
2878
	struct perf_event *event;
P
Peter Zijlstra 已提交
2879

2880 2881 2882
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2883
	perf_event_free_filter(event);
2884
	kfree(event);
P
Peter Zijlstra 已提交
2885 2886
}

2887
static void ring_buffer_put(struct ring_buffer *rb);
2888

2889
static void free_event(struct perf_event *event)
2890
{
2891
	irq_work_sync(&event->pending);
2892

2893
	if (!event->parent) {
2894
		if (event->attach_state & PERF_ATTACH_TASK)
2895
			static_key_slow_dec_deferred(&perf_sched_events);
2896
		if (event->attr.mmap || event->attr.mmap_data)
2897 2898 2899 2900 2901
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2902 2903
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2904 2905
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2906
			static_key_slow_dec_deferred(&perf_sched_events);
2907
		}
2908 2909 2910 2911 2912 2913 2914 2915

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2916
	}
2917

2918 2919 2920
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2921 2922
	}

S
Stephane Eranian 已提交
2923 2924 2925
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2926 2927
	if (event->destroy)
		event->destroy(event);
2928

P
Peter Zijlstra 已提交
2929 2930 2931
	if (event->ctx)
		put_ctx(event->ctx);

2932
	call_rcu(&event->rcu_head, free_event_rcu);
2933 2934
}

2935
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2936
{
2937
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2938

2939
	WARN_ON_ONCE(ctx->parent_ctx);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2953
	raw_spin_lock_irq(&ctx->lock);
2954
	perf_group_detach(event);
2955
	raw_spin_unlock_irq(&ctx->lock);
2956
	perf_remove_from_context(event);
2957
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2958

2959
	free_event(event);
T
Thomas Gleixner 已提交
2960 2961 2962

	return 0;
}
2963
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2964

2965 2966 2967
/*
 * Called when the last reference to the file is gone.
 */
2968
static void put_event(struct perf_event *event)
2969
{
P
Peter Zijlstra 已提交
2970
	struct task_struct *owner;
2971

2972 2973
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
2974

P
Peter Zijlstra 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3008 3009 3010 3011 3012 3013 3014
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3015 3016
}

3017
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3018
{
3019
	struct perf_event *child;
3020 3021
	u64 total = 0;

3022 3023 3024
	*enabled = 0;
	*running = 0;

3025
	mutex_lock(&event->child_mutex);
3026
	total += perf_event_read(event);
3027 3028 3029 3030 3031 3032
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3033
		total += perf_event_read(child);
3034 3035 3036
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3037
	mutex_unlock(&event->child_mutex);
3038 3039 3040

	return total;
}
3041
EXPORT_SYMBOL_GPL(perf_event_read_value);
3042

3043
static int perf_event_read_group(struct perf_event *event,
3044 3045
				   u64 read_format, char __user *buf)
{
3046
	struct perf_event *leader = event->group_leader, *sub;
3047 3048
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3049
	u64 values[5];
3050
	u64 count, enabled, running;
3051

3052
	mutex_lock(&ctx->mutex);
3053
	count = perf_event_read_value(leader, &enabled, &running);
3054 3055

	values[n++] = 1 + leader->nr_siblings;
3056 3057 3058 3059
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3060 3061 3062
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3063 3064 3065 3066

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3067
		goto unlock;
3068

3069
	ret = size;
3070

3071
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3072
		n = 0;
3073

3074
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3075 3076 3077 3078 3079
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3080
		if (copy_to_user(buf + ret, values, size)) {
3081 3082 3083
			ret = -EFAULT;
			goto unlock;
		}
3084 3085

		ret += size;
3086
	}
3087 3088
unlock:
	mutex_unlock(&ctx->mutex);
3089

3090
	return ret;
3091 3092
}

3093
static int perf_event_read_one(struct perf_event *event,
3094 3095
				 u64 read_format, char __user *buf)
{
3096
	u64 enabled, running;
3097 3098 3099
	u64 values[4];
	int n = 0;

3100 3101 3102 3103 3104
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3105
	if (read_format & PERF_FORMAT_ID)
3106
		values[n++] = primary_event_id(event);
3107 3108 3109 3110 3111 3112 3113

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3114
/*
3115
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3116 3117
 */
static ssize_t
3118
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3119
{
3120
	u64 read_format = event->attr.read_format;
3121
	int ret;
T
Thomas Gleixner 已提交
3122

3123
	/*
3124
	 * Return end-of-file for a read on a event that is in
3125 3126 3127
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3128
	if (event->state == PERF_EVENT_STATE_ERROR)
3129 3130
		return 0;

3131
	if (count < event->read_size)
3132 3133
		return -ENOSPC;

3134
	WARN_ON_ONCE(event->ctx->parent_ctx);
3135
	if (read_format & PERF_FORMAT_GROUP)
3136
		ret = perf_event_read_group(event, read_format, buf);
3137
	else
3138
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3139

3140
	return ret;
T
Thomas Gleixner 已提交
3141 3142 3143 3144 3145
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3146
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3147

3148
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3149 3150 3151 3152
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3153
	struct perf_event *event = file->private_data;
3154
	struct ring_buffer *rb;
3155
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3156

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3174
	rcu_read_lock();
3175
	rb = rcu_dereference(event->rb);
3176 3177
	if (rb) {
		ring_buffer_attach(event, rb);
3178
		events = atomic_xchg(&rb->poll, 0);
3179
	}
P
Peter Zijlstra 已提交
3180
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3181

3182 3183
	mutex_unlock(&event->mmap_mutex);

3184
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3185 3186 3187 3188

	return events;
}

3189
static void perf_event_reset(struct perf_event *event)
3190
{
3191
	(void)perf_event_read(event);
3192
	local64_set(&event->count, 0);
3193
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3194 3195
}

3196
/*
3197 3198 3199 3200
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3201
 */
3202 3203
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3204
{
3205
	struct perf_event *child;
P
Peter Zijlstra 已提交
3206

3207 3208 3209 3210
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3211
		func(child);
3212
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3213 3214
}

3215 3216
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3217
{
3218 3219
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3220

3221 3222
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3223
	event = event->group_leader;
3224

3225 3226
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3227
		perf_event_for_each_child(sibling, func);
3228
	mutex_unlock(&ctx->mutex);
3229 3230
}

3231
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3232
{
3233
	struct perf_event_context *ctx = event->ctx;
3234 3235 3236
	int ret = 0;
	u64 value;

3237
	if (!is_sampling_event(event))
3238 3239
		return -EINVAL;

3240
	if (copy_from_user(&value, arg, sizeof(value)))
3241 3242 3243 3244 3245
		return -EFAULT;

	if (!value)
		return -EINVAL;

3246
	raw_spin_lock_irq(&ctx->lock);
3247 3248
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3249 3250 3251 3252
			ret = -EINVAL;
			goto unlock;
		}

3253
		event->attr.sample_freq = value;
3254
	} else {
3255 3256
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3257 3258
	}
unlock:
3259
	raw_spin_unlock_irq(&ctx->lock);
3260 3261 3262 3263

	return ret;
}

3264 3265
static const struct file_operations perf_fops;

3266
static inline int perf_fget_light(int fd, struct fd *p)
3267
{
3268 3269 3270
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3271

3272 3273 3274
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3275
	}
3276 3277
	*p = f;
	return 0;
3278 3279 3280 3281
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3282
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3283

3284 3285
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3286 3287
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3288
	u32 flags = arg;
3289 3290

	switch (cmd) {
3291 3292
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3293
		break;
3294 3295
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3296
		break;
3297 3298
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3299
		break;
P
Peter Zijlstra 已提交
3300

3301 3302
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3303

3304 3305
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3306

3307
	case PERF_EVENT_IOC_SET_OUTPUT:
3308 3309 3310
	{
		int ret;
		if (arg != -1) {
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3321 3322 3323
		}
		return ret;
	}
3324

L
Li Zefan 已提交
3325 3326 3327
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3328
	default:
P
Peter Zijlstra 已提交
3329
		return -ENOTTY;
3330
	}
P
Peter Zijlstra 已提交
3331 3332

	if (flags & PERF_IOC_FLAG_GROUP)
3333
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3334
	else
3335
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3336 3337

	return 0;
3338 3339
}

3340
int perf_event_task_enable(void)
3341
{
3342
	struct perf_event *event;
3343

3344 3345 3346 3347
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3348 3349 3350 3351

	return 0;
}

3352
int perf_event_task_disable(void)
3353
{
3354
	struct perf_event *event;
3355

3356 3357 3358 3359
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3360 3361 3362 3363

	return 0;
}

3364
static int perf_event_index(struct perf_event *event)
3365
{
P
Peter Zijlstra 已提交
3366 3367 3368
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3369
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3370 3371
		return 0;

3372
	return event->pmu->event_idx(event);
3373 3374
}

3375
static void calc_timer_values(struct perf_event *event,
3376
				u64 *now,
3377 3378
				u64 *enabled,
				u64 *running)
3379
{
3380
	u64 ctx_time;
3381

3382 3383
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3384 3385 3386 3387
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3388
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3389 3390 3391
{
}

3392 3393 3394 3395 3396
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3397
void perf_event_update_userpage(struct perf_event *event)
3398
{
3399
	struct perf_event_mmap_page *userpg;
3400
	struct ring_buffer *rb;
3401
	u64 enabled, running, now;
3402 3403

	rcu_read_lock();
3404 3405 3406 3407 3408 3409 3410 3411 3412
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3413
	calc_timer_values(event, &now, &enabled, &running);
3414 3415
	rb = rcu_dereference(event->rb);
	if (!rb)
3416 3417
		goto unlock;

3418
	userpg = rb->user_page;
3419

3420 3421 3422 3423 3424
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3425
	++userpg->lock;
3426
	barrier();
3427
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3428
	userpg->offset = perf_event_count(event);
3429
	if (userpg->index)
3430
		userpg->offset -= local64_read(&event->hw.prev_count);
3431

3432
	userpg->time_enabled = enabled +
3433
			atomic64_read(&event->child_total_time_enabled);
3434

3435
	userpg->time_running = running +
3436
			atomic64_read(&event->child_total_time_running);
3437

3438
	arch_perf_update_userpage(userpg, now);
3439

3440
	barrier();
3441
	++userpg->lock;
3442
	preempt_enable();
3443
unlock:
3444
	rcu_read_unlock();
3445 3446
}

3447 3448 3449
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3450
	struct ring_buffer *rb;
3451 3452 3453 3454 3455 3456 3457 3458 3459
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3460 3461
	rb = rcu_dereference(event->rb);
	if (!rb)
3462 3463 3464 3465 3466
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3467
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3519 3520 3521 3522
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3523
		wake_up_all(&event->waitq);
3524 3525

unlock:
3526 3527 3528
	rcu_read_unlock();
}

3529
static void rb_free_rcu(struct rcu_head *rcu_head)
3530
{
3531
	struct ring_buffer *rb;
3532

3533 3534
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3535 3536
}

3537
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3538
{
3539
	struct ring_buffer *rb;
3540

3541
	rcu_read_lock();
3542 3543 3544 3545
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3546 3547 3548
	}
	rcu_read_unlock();

3549
	return rb;
3550 3551
}

3552
static void ring_buffer_put(struct ring_buffer *rb)
3553
{
3554 3555 3556
	struct perf_event *event, *n;
	unsigned long flags;

3557
	if (!atomic_dec_and_test(&rb->refcount))
3558
		return;
3559

3560 3561 3562 3563 3564 3565 3566
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3567
	call_rcu(&rb->rcu_head, rb_free_rcu);
3568 3569 3570 3571
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3572
	struct perf_event *event = vma->vm_file->private_data;
3573

3574
	atomic_inc(&event->mmap_count);
3575 3576 3577 3578
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3579
	struct perf_event *event = vma->vm_file->private_data;
3580

3581
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3582
		unsigned long size = perf_data_size(event->rb);
3583
		struct user_struct *user = event->mmap_user;
3584
		struct ring_buffer *rb = event->rb;
3585

3586
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3587
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3588
		rcu_assign_pointer(event->rb, NULL);
3589
		ring_buffer_detach(event, rb);
3590
		mutex_unlock(&event->mmap_mutex);
3591

3592
		ring_buffer_put(rb);
3593
		free_uid(user);
3594
	}
3595 3596
}

3597
static const struct vm_operations_struct perf_mmap_vmops = {
3598 3599 3600 3601
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3602 3603 3604 3605
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3606
	struct perf_event *event = file->private_data;
3607
	unsigned long user_locked, user_lock_limit;
3608
	struct user_struct *user = current_user();
3609
	unsigned long locked, lock_limit;
3610
	struct ring_buffer *rb;
3611 3612
	unsigned long vma_size;
	unsigned long nr_pages;
3613
	long user_extra, extra;
3614
	int ret = 0, flags = 0;
3615

3616 3617 3618
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3619
	 * same rb.
3620 3621 3622 3623
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3624
	if (!(vma->vm_flags & VM_SHARED))
3625
		return -EINVAL;
3626 3627 3628 3629

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3630
	/*
3631
	 * If we have rb pages ensure they're a power-of-two number, so we
3632 3633 3634
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3635 3636
		return -EINVAL;

3637
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3638 3639
		return -EINVAL;

3640 3641
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3642

3643 3644
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3645 3646 3647
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3648
		else
3649 3650 3651 3652
			ret = -EINVAL;
		goto unlock;
	}

3653
	user_extra = nr_pages + 1;
3654
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3655 3656 3657 3658 3659 3660

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3661
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3662

3663 3664 3665
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3666

3667
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3668
	lock_limit >>= PAGE_SHIFT;
3669
	locked = vma->vm_mm->pinned_vm + extra;
3670

3671 3672
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3673 3674 3675
		ret = -EPERM;
		goto unlock;
	}
3676

3677
	WARN_ON(event->rb);
3678

3679
	if (vma->vm_flags & VM_WRITE)
3680
		flags |= RING_BUFFER_WRITABLE;
3681

3682 3683 3684 3685
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3686
	if (!rb) {
3687
		ret = -ENOMEM;
3688
		goto unlock;
3689
	}
3690
	rcu_assign_pointer(event->rb, rb);
3691

3692 3693 3694
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3695
	vma->vm_mm->pinned_vm += event->mmap_locked;
3696

3697 3698
	perf_event_update_userpage(event);

3699
unlock:
3700 3701
	if (!ret)
		atomic_inc(&event->mmap_count);
3702
	mutex_unlock(&event->mmap_mutex);
3703

3704
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3705
	vma->vm_ops = &perf_mmap_vmops;
3706 3707

	return ret;
3708 3709
}

P
Peter Zijlstra 已提交
3710 3711
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3712
	struct inode *inode = file_inode(filp);
3713
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3714 3715 3716
	int retval;

	mutex_lock(&inode->i_mutex);
3717
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3718 3719 3720 3721 3722 3723 3724 3725
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3726
static const struct file_operations perf_fops = {
3727
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3728 3729 3730
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3731 3732
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3733
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3734
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3735 3736
};

3737
/*
3738
 * Perf event wakeup
3739 3740 3741 3742 3743
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3744
void perf_event_wakeup(struct perf_event *event)
3745
{
3746
	ring_buffer_wakeup(event);
3747

3748 3749 3750
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3751
	}
3752 3753
}

3754
static void perf_pending_event(struct irq_work *entry)
3755
{
3756 3757
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3758

3759 3760 3761
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3762 3763
	}

3764 3765 3766
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3767 3768 3769
	}
}

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3917 3918 3919
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3947 3948 3949
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3976 3977 3978
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3979 3980 3981 3982 3983
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3984
static void perf_output_read_one(struct perf_output_handle *handle,
3985 3986
				 struct perf_event *event,
				 u64 enabled, u64 running)
3987
{
3988
	u64 read_format = event->attr.read_format;
3989 3990 3991
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3992
	values[n++] = perf_event_count(event);
3993
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3994
		values[n++] = enabled +
3995
			atomic64_read(&event->child_total_time_enabled);
3996 3997
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3998
		values[n++] = running +
3999
			atomic64_read(&event->child_total_time_running);
4000 4001
	}
	if (read_format & PERF_FORMAT_ID)
4002
		values[n++] = primary_event_id(event);
4003

4004
	__output_copy(handle, values, n * sizeof(u64));
4005 4006 4007
}

/*
4008
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4009 4010
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4011 4012
			    struct perf_event *event,
			    u64 enabled, u64 running)
4013
{
4014 4015
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4016 4017 4018 4019 4020 4021
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4022
		values[n++] = enabled;
4023 4024

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4025
		values[n++] = running;
4026

4027
	if (leader != event)
4028 4029
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4030
	values[n++] = perf_event_count(leader);
4031
	if (read_format & PERF_FORMAT_ID)
4032
		values[n++] = primary_event_id(leader);
4033

4034
	__output_copy(handle, values, n * sizeof(u64));
4035

4036
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4037 4038
		n = 0;

4039
		if (sub != event)
4040 4041
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4042
		values[n++] = perf_event_count(sub);
4043
		if (read_format & PERF_FORMAT_ID)
4044
			values[n++] = primary_event_id(sub);
4045

4046
		__output_copy(handle, values, n * sizeof(u64));
4047 4048 4049
	}
}

4050 4051 4052
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4053
static void perf_output_read(struct perf_output_handle *handle,
4054
			     struct perf_event *event)
4055
{
4056
	u64 enabled = 0, running = 0, now;
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4068
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4069
		calc_timer_values(event, &now, &enabled, &running);
4070

4071
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4072
		perf_output_read_group(handle, event, enabled, running);
4073
	else
4074
		perf_output_read_one(handle, event, enabled, running);
4075 4076
}

4077 4078 4079
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4080
			struct perf_event *event)
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4111
		perf_output_read(handle, event);
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4122
			__output_copy(handle, data->callchain, size);
4123 4124 4125 4126 4127 4128 4129 4130 4131
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4132 4133
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4194 4195 4196 4197 4198

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
A
Andi Kleen 已提交
4199 4200 4201

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4202 4203 4204 4205
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4206
			 struct perf_event *event,
4207
			 struct pt_regs *regs)
4208
{
4209
	u64 sample_type = event->attr.sample_type;
4210

4211
	header->type = PERF_RECORD_SAMPLE;
4212
	header->size = sizeof(*header) + event->header_size;
4213 4214 4215

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4216

4217
	__perf_event_header__init_id(header, data, event);
4218

4219
	if (sample_type & PERF_SAMPLE_IP)
4220 4221
		data->ip = perf_instruction_pointer(regs);

4222
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4223
		int size = 1;
4224

4225
		data->callchain = perf_callchain(event, regs);
4226 4227 4228 4229 4230

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4231 4232
	}

4233
	if (sample_type & PERF_SAMPLE_RAW) {
4234 4235 4236 4237 4238 4239 4240 4241
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4242
		header->size += size;
4243
	}
4244 4245 4246 4247 4248 4249 4250 4251 4252

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4296
}
4297

4298
static void perf_event_output(struct perf_event *event,
4299 4300 4301 4302 4303
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4304

4305 4306 4307
	/* protect the callchain buffers */
	rcu_read_lock();

4308
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4309

4310
	if (perf_output_begin(&handle, event, header.size))
4311
		goto exit;
4312

4313
	perf_output_sample(&handle, &header, data, event);
4314

4315
	perf_output_end(&handle);
4316 4317 4318

exit:
	rcu_read_unlock();
4319 4320
}

4321
/*
4322
 * read event_id
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4333
perf_event_read_event(struct perf_event *event,
4334 4335 4336
			struct task_struct *task)
{
	struct perf_output_handle handle;
4337
	struct perf_sample_data sample;
4338
	struct perf_read_event read_event = {
4339
		.header = {
4340
			.type = PERF_RECORD_READ,
4341
			.misc = 0,
4342
			.size = sizeof(read_event) + event->read_size,
4343
		},
4344 4345
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4346
	};
4347
	int ret;
4348

4349
	perf_event_header__init_id(&read_event.header, &sample, event);
4350
	ret = perf_output_begin(&handle, event, read_event.header.size);
4351 4352 4353
	if (ret)
		return;

4354
	perf_output_put(&handle, read_event);
4355
	perf_output_read(&handle, event);
4356
	perf_event__output_id_sample(event, &handle, &sample);
4357

4358 4359 4360
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4361
/*
P
Peter Zijlstra 已提交
4362 4363
 * task tracking -- fork/exit
 *
4364
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4365 4366
 */

P
Peter Zijlstra 已提交
4367
struct perf_task_event {
4368
	struct task_struct		*task;
4369
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4370 4371 4372 4373 4374 4375

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4376 4377
		u32				tid;
		u32				ptid;
4378
		u64				time;
4379
	} event_id;
P
Peter Zijlstra 已提交
4380 4381
};

4382
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4383
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4384 4385
{
	struct perf_output_handle handle;
4386
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4387
	struct task_struct *task = task_event->task;
4388
	int ret, size = task_event->event_id.header.size;
4389

4390
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4391

4392
	ret = perf_output_begin(&handle, event,
4393
				task_event->event_id.header.size);
4394
	if (ret)
4395
		goto out;
P
Peter Zijlstra 已提交
4396

4397 4398
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4399

4400 4401
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4402

4403
	perf_output_put(&handle, task_event->event_id);
4404

4405 4406
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4407
	perf_output_end(&handle);
4408 4409
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4410 4411
}

4412
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4413
{
P
Peter Zijlstra 已提交
4414
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4415 4416
		return 0;

4417
	if (!event_filter_match(event))
4418 4419
		return 0;

4420 4421
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4422 4423 4424 4425 4426
		return 1;

	return 0;
}

4427
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4428
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4429
{
4430
	struct perf_event *event;
P
Peter Zijlstra 已提交
4431

4432 4433 4434
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4435 4436 4437
	}
}

4438
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4439 4440
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4441
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4442
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4443
	int ctxn;
P
Peter Zijlstra 已提交
4444

4445
	rcu_read_lock();
P
Peter Zijlstra 已提交
4446
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4447
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4448
		if (cpuctx->unique_pmu != pmu)
4449
			goto next;
P
Peter Zijlstra 已提交
4450
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4451 4452 4453 4454 4455

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4456
				goto next;
P
Peter Zijlstra 已提交
4457
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4458 4459
			if (ctx)
				perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
4460
		}
4461 4462
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4463
	}
4464 4465 4466
	if (task_event->task_ctx)
		perf_event_task_ctx(task_event->task_ctx, task_event);

P
Peter Zijlstra 已提交
4467 4468 4469
	rcu_read_unlock();
}

4470 4471
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4472
			      int new)
P
Peter Zijlstra 已提交
4473
{
P
Peter Zijlstra 已提交
4474
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4475

4476 4477 4478
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4479 4480
		return;

P
Peter Zijlstra 已提交
4481
	task_event = (struct perf_task_event){
4482 4483
		.task	  = task,
		.task_ctx = task_ctx,
4484
		.event_id    = {
P
Peter Zijlstra 已提交
4485
			.header = {
4486
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4487
				.misc = 0,
4488
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4489
			},
4490 4491
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4492 4493
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4494
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4495 4496 4497
		},
	};

4498
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4499 4500
}

4501
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4502
{
4503
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4504 4505
}

4506 4507 4508 4509 4510
/*
 * comm tracking
 */

struct perf_comm_event {
4511 4512
	struct task_struct	*task;
	char			*comm;
4513 4514 4515 4516 4517 4518 4519
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4520
	} event_id;
4521 4522
};

4523
static void perf_event_comm_output(struct perf_event *event,
4524 4525 4526
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4527
	struct perf_sample_data sample;
4528
	int size = comm_event->event_id.header.size;
4529 4530 4531 4532
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4533
				comm_event->event_id.header.size);
4534 4535

	if (ret)
4536
		goto out;
4537

4538 4539
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4540

4541
	perf_output_put(&handle, comm_event->event_id);
4542
	__output_copy(&handle, comm_event->comm,
4543
				   comm_event->comm_size);
4544 4545 4546

	perf_event__output_id_sample(event, &handle, &sample);

4547
	perf_output_end(&handle);
4548 4549
out:
	comm_event->event_id.header.size = size;
4550 4551
}

4552
static int perf_event_comm_match(struct perf_event *event)
4553
{
P
Peter Zijlstra 已提交
4554
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4555 4556
		return 0;

4557
	if (!event_filter_match(event))
4558 4559
		return 0;

4560
	if (event->attr.comm)
4561 4562 4563 4564 4565
		return 1;

	return 0;
}

4566
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4567 4568
				  struct perf_comm_event *comm_event)
{
4569
	struct perf_event *event;
4570

4571 4572 4573
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4574 4575 4576
	}
}

4577
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4578 4579
{
	struct perf_cpu_context *cpuctx;
4580
	struct perf_event_context *ctx;
4581
	char comm[TASK_COMM_LEN];
4582
	unsigned int size;
P
Peter Zijlstra 已提交
4583
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4584
	int ctxn;
4585

4586
	memset(comm, 0, sizeof(comm));
4587
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4588
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4589 4590 4591 4592

	comm_event->comm = comm;
	comm_event->comm_size = size;

4593
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4594
	rcu_read_lock();
P
Peter Zijlstra 已提交
4595
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4596
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4597
		if (cpuctx->unique_pmu != pmu)
4598
			goto next;
P
Peter Zijlstra 已提交
4599
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4600 4601 4602

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4603
			goto next;
P
Peter Zijlstra 已提交
4604 4605 4606 4607

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4608 4609
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4610
	}
4611
	rcu_read_unlock();
4612 4613
}

4614
void perf_event_comm(struct task_struct *task)
4615
{
4616
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4617 4618
	struct perf_event_context *ctx;
	int ctxn;
4619

P
Peter Zijlstra 已提交
4620 4621 4622 4623
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4624

P
Peter Zijlstra 已提交
4625 4626
		perf_event_enable_on_exec(ctx);
	}
4627

4628
	if (!atomic_read(&nr_comm_events))
4629
		return;
4630

4631
	comm_event = (struct perf_comm_event){
4632
		.task	= task,
4633 4634
		/* .comm      */
		/* .comm_size */
4635
		.event_id  = {
4636
			.header = {
4637
				.type = PERF_RECORD_COMM,
4638 4639 4640 4641 4642
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4643 4644 4645
		},
	};

4646
	perf_event_comm_event(&comm_event);
4647 4648
}

4649 4650 4651 4652 4653
/*
 * mmap tracking
 */

struct perf_mmap_event {
4654 4655 4656 4657
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4658 4659 4660 4661 4662 4663 4664 4665 4666

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4667
	} event_id;
4668 4669
};

4670
static void perf_event_mmap_output(struct perf_event *event,
4671 4672 4673
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4674
	struct perf_sample_data sample;
4675
	int size = mmap_event->event_id.header.size;
4676
	int ret;
4677

4678 4679
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4680
				mmap_event->event_id.header.size);
4681
	if (ret)
4682
		goto out;
4683

4684 4685
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4686

4687
	perf_output_put(&handle, mmap_event->event_id);
4688
	__output_copy(&handle, mmap_event->file_name,
4689
				   mmap_event->file_size);
4690 4691 4692

	perf_event__output_id_sample(event, &handle, &sample);

4693
	perf_output_end(&handle);
4694 4695
out:
	mmap_event->event_id.header.size = size;
4696 4697
}

4698
static int perf_event_mmap_match(struct perf_event *event,
4699 4700
				   struct perf_mmap_event *mmap_event,
				   int executable)
4701
{
P
Peter Zijlstra 已提交
4702
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4703 4704
		return 0;

4705
	if (!event_filter_match(event))
4706 4707
		return 0;

4708 4709
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4710 4711 4712 4713 4714
		return 1;

	return 0;
}

4715
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4716 4717
				  struct perf_mmap_event *mmap_event,
				  int executable)
4718
{
4719
	struct perf_event *event;
4720

4721
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4722
		if (perf_event_mmap_match(event, mmap_event, executable))
4723
			perf_event_mmap_output(event, mmap_event);
4724 4725 4726
	}
}

4727
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4728 4729
{
	struct perf_cpu_context *cpuctx;
4730
	struct perf_event_context *ctx;
4731 4732
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4733 4734 4735
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4736
	const char *name;
P
Peter Zijlstra 已提交
4737
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4738
	int ctxn;
4739

4740 4741
	memset(tmp, 0, sizeof(tmp));

4742
	if (file) {
4743
		/*
4744
		 * d_path works from the end of the rb backwards, so we
4745 4746 4747 4748
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4749 4750 4751 4752
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4753
		name = d_path(&file->f_path, buf, PATH_MAX);
4754 4755 4756 4757 4758
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4759 4760 4761
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4762
			goto got_name;
4763
		}
4764 4765 4766 4767

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4768 4769 4770 4771 4772 4773 4774 4775
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4776 4777
		}

4778 4779 4780 4781 4782
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4783
	size = ALIGN(strlen(name)+1, sizeof(u64));
4784 4785 4786 4787

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4788
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4789

4790
	rcu_read_lock();
P
Peter Zijlstra 已提交
4791
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4792
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4793
		if (cpuctx->unique_pmu != pmu)
4794
			goto next;
P
Peter Zijlstra 已提交
4795 4796
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4797 4798 4799

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4800
			goto next;
P
Peter Zijlstra 已提交
4801 4802 4803 4804 4805 4806

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4807 4808
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4809
	}
4810 4811
	rcu_read_unlock();

4812 4813 4814
	kfree(buf);
}

4815
void perf_event_mmap(struct vm_area_struct *vma)
4816
{
4817 4818
	struct perf_mmap_event mmap_event;

4819
	if (!atomic_read(&nr_mmap_events))
4820 4821 4822
		return;

	mmap_event = (struct perf_mmap_event){
4823
		.vma	= vma,
4824 4825
		/* .file_name */
		/* .file_size */
4826
		.event_id  = {
4827
			.header = {
4828
				.type = PERF_RECORD_MMAP,
4829
				.misc = PERF_RECORD_MISC_USER,
4830 4831 4832 4833
				/* .size */
			},
			/* .pid */
			/* .tid */
4834 4835
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4836
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4837 4838 4839
		},
	};

4840
	perf_event_mmap_event(&mmap_event);
4841 4842
}

4843 4844 4845 4846
/*
 * IRQ throttle logging
 */

4847
static void perf_log_throttle(struct perf_event *event, int enable)
4848 4849
{
	struct perf_output_handle handle;
4850
	struct perf_sample_data sample;
4851 4852 4853 4854 4855
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4856
		u64				id;
4857
		u64				stream_id;
4858 4859
	} throttle_event = {
		.header = {
4860
			.type = PERF_RECORD_THROTTLE,
4861 4862 4863
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4864
		.time		= perf_clock(),
4865 4866
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4867 4868
	};

4869
	if (enable)
4870
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4871

4872 4873 4874
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4875
				throttle_event.header.size);
4876 4877 4878 4879
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4880
	perf_event__output_id_sample(event, &handle, &sample);
4881 4882 4883
	perf_output_end(&handle);
}

4884
/*
4885
 * Generic event overflow handling, sampling.
4886 4887
 */

4888
static int __perf_event_overflow(struct perf_event *event,
4889 4890
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4891
{
4892 4893
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4894
	u64 seq;
4895 4896
	int ret = 0;

4897 4898 4899 4900 4901 4902 4903
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4904 4905 4906 4907 4908 4909 4910 4911 4912
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4913 4914
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4915 4916
			ret = 1;
		}
4917
	}
4918

4919
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4920
		u64 now = perf_clock();
4921
		s64 delta = now - hwc->freq_time_stamp;
4922

4923
		hwc->freq_time_stamp = now;
4924

4925
		if (delta > 0 && delta < 2*TICK_NSEC)
4926
			perf_adjust_period(event, delta, hwc->last_period, true);
4927 4928
	}

4929 4930
	/*
	 * XXX event_limit might not quite work as expected on inherited
4931
	 * events
4932 4933
	 */

4934 4935
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4936
		ret = 1;
4937
		event->pending_kill = POLL_HUP;
4938 4939
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4940 4941
	}

4942
	if (event->overflow_handler)
4943
		event->overflow_handler(event, data, regs);
4944
	else
4945
		perf_event_output(event, data, regs);
4946

P
Peter Zijlstra 已提交
4947
	if (event->fasync && event->pending_kill) {
4948 4949
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4950 4951
	}

4952
	return ret;
4953 4954
}

4955
int perf_event_overflow(struct perf_event *event,
4956 4957
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4958
{
4959
	return __perf_event_overflow(event, 1, data, regs);
4960 4961
}

4962
/*
4963
 * Generic software event infrastructure
4964 4965
 */

4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4977
/*
4978 4979
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4980 4981 4982 4983
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4984
static u64 perf_swevent_set_period(struct perf_event *event)
4985
{
4986
	struct hw_perf_event *hwc = &event->hw;
4987 4988 4989 4990 4991
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4992 4993

again:
4994
	old = val = local64_read(&hwc->period_left);
4995 4996
	if (val < 0)
		return 0;
4997

4998 4999 5000
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5001
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5002
		goto again;
5003

5004
	return nr;
5005 5006
}

5007
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5008
				    struct perf_sample_data *data,
5009
				    struct pt_regs *regs)
5010
{
5011
	struct hw_perf_event *hwc = &event->hw;
5012
	int throttle = 0;
5013

5014 5015
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5016

5017 5018
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5019

5020
	for (; overflow; overflow--) {
5021
		if (__perf_event_overflow(event, throttle,
5022
					    data, regs)) {
5023 5024 5025 5026 5027 5028
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5029
		throttle = 1;
5030
	}
5031 5032
}

P
Peter Zijlstra 已提交
5033
static void perf_swevent_event(struct perf_event *event, u64 nr,
5034
			       struct perf_sample_data *data,
5035
			       struct pt_regs *regs)
5036
{
5037
	struct hw_perf_event *hwc = &event->hw;
5038

5039
	local64_add(nr, &event->count);
5040

5041 5042 5043
	if (!regs)
		return;

5044
	if (!is_sampling_event(event))
5045
		return;
5046

5047 5048 5049 5050 5051 5052
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5053
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5054
		return perf_swevent_overflow(event, 1, data, regs);
5055

5056
	if (local64_add_negative(nr, &hwc->period_left))
5057
		return;
5058

5059
	perf_swevent_overflow(event, 0, data, regs);
5060 5061
}

5062 5063 5064
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5065
	if (event->hw.state & PERF_HES_STOPPED)
5066
		return 1;
P
Peter Zijlstra 已提交
5067

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5079
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5080
				enum perf_type_id type,
L
Li Zefan 已提交
5081 5082 5083
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5084
{
5085
	if (event->attr.type != type)
5086
		return 0;
5087

5088
	if (event->attr.config != event_id)
5089 5090
		return 0;

5091 5092
	if (perf_exclude_event(event, regs))
		return 0;
5093 5094 5095 5096

	return 1;
}

5097 5098 5099 5100 5101 5102 5103
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5104 5105
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5106
{
5107 5108 5109 5110
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5111

5112 5113
/* For the read side: events when they trigger */
static inline struct hlist_head *
5114
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5115 5116
{
	struct swevent_hlist *hlist;
5117

5118
	hlist = rcu_dereference(swhash->swevent_hlist);
5119 5120 5121
	if (!hlist)
		return NULL;

5122 5123 5124 5125 5126
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5127
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5138
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5139 5140 5141 5142 5143
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5144 5145 5146
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5147
				    u64 nr,
5148 5149
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5150
{
5151
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5152
	struct perf_event *event;
5153
	struct hlist_head *head;
5154

5155
	rcu_read_lock();
5156
	head = find_swevent_head_rcu(swhash, type, event_id);
5157 5158 5159
	if (!head)
		goto end;

5160
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5161
		if (perf_swevent_match(event, type, event_id, data, regs))
5162
			perf_swevent_event(event, nr, data, regs);
5163
	}
5164 5165
end:
	rcu_read_unlock();
5166 5167
}

5168
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5169
{
5170
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5171

5172
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5173
}
I
Ingo Molnar 已提交
5174
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5175

5176
inline void perf_swevent_put_recursion_context(int rctx)
5177
{
5178
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5179

5180
	put_recursion_context(swhash->recursion, rctx);
5181
}
5182

5183
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5184
{
5185
	struct perf_sample_data data;
5186 5187
	int rctx;

5188
	preempt_disable_notrace();
5189 5190 5191
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5192

5193
	perf_sample_data_init(&data, addr, 0);
5194

5195
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5196 5197

	perf_swevent_put_recursion_context(rctx);
5198
	preempt_enable_notrace();
5199 5200
}

5201
static void perf_swevent_read(struct perf_event *event)
5202 5203 5204
{
}

P
Peter Zijlstra 已提交
5205
static int perf_swevent_add(struct perf_event *event, int flags)
5206
{
5207
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5208
	struct hw_perf_event *hwc = &event->hw;
5209 5210
	struct hlist_head *head;

5211
	if (is_sampling_event(event)) {
5212
		hwc->last_period = hwc->sample_period;
5213
		perf_swevent_set_period(event);
5214
	}
5215

P
Peter Zijlstra 已提交
5216 5217
	hwc->state = !(flags & PERF_EF_START);

5218
	head = find_swevent_head(swhash, event);
5219 5220 5221 5222 5223
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5224 5225 5226
	return 0;
}

P
Peter Zijlstra 已提交
5227
static void perf_swevent_del(struct perf_event *event, int flags)
5228
{
5229
	hlist_del_rcu(&event->hlist_entry);
5230 5231
}

P
Peter Zijlstra 已提交
5232
static void perf_swevent_start(struct perf_event *event, int flags)
5233
{
P
Peter Zijlstra 已提交
5234
	event->hw.state = 0;
5235
}
I
Ingo Molnar 已提交
5236

P
Peter Zijlstra 已提交
5237
static void perf_swevent_stop(struct perf_event *event, int flags)
5238
{
P
Peter Zijlstra 已提交
5239
	event->hw.state = PERF_HES_STOPPED;
5240 5241
}

5242 5243
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5244
swevent_hlist_deref(struct swevent_htable *swhash)
5245
{
5246 5247
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5248 5249
}

5250
static void swevent_hlist_release(struct swevent_htable *swhash)
5251
{
5252
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5253

5254
	if (!hlist)
5255 5256
		return;

5257
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5258
	kfree_rcu(hlist, rcu_head);
5259 5260 5261 5262
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5263
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5264

5265
	mutex_lock(&swhash->hlist_mutex);
5266

5267 5268
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5269

5270
	mutex_unlock(&swhash->hlist_mutex);
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5288
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5289 5290
	int err = 0;

5291
	mutex_lock(&swhash->hlist_mutex);
5292

5293
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5294 5295 5296 5297 5298 5299 5300
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5301
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5302
	}
5303
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5304
exit:
5305
	mutex_unlock(&swhash->hlist_mutex);
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5329
fail:
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5340
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5341

5342 5343 5344
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5345

5346 5347
	WARN_ON(event->parent);

5348
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5359 5360 5361 5362 5363 5364
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5365 5366 5367 5368 5369 5370 5371 5372 5373
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5374
	if (event_id >= PERF_COUNT_SW_MAX)
5375 5376 5377 5378 5379 5380 5381 5382 5383
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5384
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5385 5386 5387 5388 5389 5390
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5391 5392 5393 5394 5395
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5396
static struct pmu perf_swevent = {
5397
	.task_ctx_nr	= perf_sw_context,
5398

5399
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5400 5401 5402 5403
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5404
	.read		= perf_swevent_read,
5405 5406

	.event_idx	= perf_swevent_event_idx,
5407 5408
};

5409 5410
#ifdef CONFIG_EVENT_TRACING

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5425 5426
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5427 5428 5429 5430
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5431 5432 5433 5434 5435 5436 5437 5438 5439
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5440 5441
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5442 5443
{
	struct perf_sample_data data;
5444 5445
	struct perf_event *event;

5446 5447 5448 5449 5450
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5451
	perf_sample_data_init(&data, addr, 0);
5452 5453
	data.raw = &raw;

5454
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5455
		if (perf_tp_event_match(event, &data, regs))
5456
			perf_swevent_event(event, count, &data, regs);
5457
	}
5458

5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5484
	perf_swevent_put_recursion_context(rctx);
5485 5486 5487
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5488
static void tp_perf_event_destroy(struct perf_event *event)
5489
{
5490
	perf_trace_destroy(event);
5491 5492
}

5493
static int perf_tp_event_init(struct perf_event *event)
5494
{
5495 5496
	int err;

5497 5498 5499
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5500 5501 5502 5503 5504 5505
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5506 5507
	err = perf_trace_init(event);
	if (err)
5508
		return err;
5509

5510
	event->destroy = tp_perf_event_destroy;
5511

5512 5513 5514 5515
	return 0;
}

static struct pmu perf_tracepoint = {
5516 5517
	.task_ctx_nr	= perf_sw_context,

5518
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5519 5520 5521 5522
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5523
	.read		= perf_swevent_read,
5524 5525

	.event_idx	= perf_swevent_event_idx,
5526 5527 5528 5529
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5530
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5531
}
L
Li Zefan 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5556
#else
L
Li Zefan 已提交
5557

5558
static inline void perf_tp_register(void)
5559 5560
{
}
L
Li Zefan 已提交
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5571
#endif /* CONFIG_EVENT_TRACING */
5572

5573
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5574
void perf_bp_event(struct perf_event *bp, void *data)
5575
{
5576 5577 5578
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5579
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5580

P
Peter Zijlstra 已提交
5581
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5582
		perf_swevent_event(bp, 1, &sample, regs);
5583 5584 5585
}
#endif

5586 5587 5588
/*
 * hrtimer based swevent callback
 */
5589

5590
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5591
{
5592 5593 5594 5595 5596
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5597

5598
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5599 5600 5601 5602

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5603
	event->pmu->read(event);
5604

5605
	perf_sample_data_init(&data, 0, event->hw.last_period);
5606 5607 5608
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5609
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5610
			if (__perf_event_overflow(event, 1, &data, regs))
5611 5612
				ret = HRTIMER_NORESTART;
	}
5613

5614 5615
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5616

5617
	return ret;
5618 5619
}

5620
static void perf_swevent_start_hrtimer(struct perf_event *event)
5621
{
5622
	struct hw_perf_event *hwc = &event->hw;
5623 5624 5625 5626
	s64 period;

	if (!is_sampling_event(event))
		return;
5627

5628 5629 5630 5631
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5632

5633 5634 5635 5636 5637
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5638
				ns_to_ktime(period), 0,
5639
				HRTIMER_MODE_REL_PINNED, 0);
5640
}
5641 5642

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5643
{
5644 5645
	struct hw_perf_event *hwc = &event->hw;

5646
	if (is_sampling_event(event)) {
5647
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5648
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5649 5650 5651

		hrtimer_cancel(&hwc->hrtimer);
	}
5652 5653
}

P
Peter Zijlstra 已提交
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5674
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5675 5676 5677 5678
		event->attr.freq = 0;
	}
}

5679 5680 5681 5682 5683
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5684
{
5685 5686 5687
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5688
	now = local_clock();
5689 5690
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5691 5692
}

P
Peter Zijlstra 已提交
5693
static void cpu_clock_event_start(struct perf_event *event, int flags)
5694
{
P
Peter Zijlstra 已提交
5695
	local64_set(&event->hw.prev_count, local_clock());
5696 5697 5698
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5699
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5700
{
5701 5702 5703
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5704

P
Peter Zijlstra 已提交
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5718 5719 5720 5721
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5722

5723 5724 5725 5726 5727 5728 5729 5730
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5731 5732 5733 5734 5735 5736
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5737 5738
	perf_swevent_init_hrtimer(event);

5739
	return 0;
5740 5741
}

5742
static struct pmu perf_cpu_clock = {
5743 5744
	.task_ctx_nr	= perf_sw_context,

5745
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5746 5747 5748 5749
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5750
	.read		= cpu_clock_event_read,
5751 5752

	.event_idx	= perf_swevent_event_idx,
5753 5754 5755 5756 5757 5758 5759
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5760
{
5761 5762
	u64 prev;
	s64 delta;
5763

5764 5765 5766 5767
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5768

P
Peter Zijlstra 已提交
5769
static void task_clock_event_start(struct perf_event *event, int flags)
5770
{
P
Peter Zijlstra 已提交
5771
	local64_set(&event->hw.prev_count, event->ctx->time);
5772 5773 5774
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5775
static void task_clock_event_stop(struct perf_event *event, int flags)
5776 5777 5778
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5779 5780 5781 5782 5783 5784
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5785

P
Peter Zijlstra 已提交
5786 5787 5788 5789 5790 5791
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5792 5793 5794 5795
}

static void task_clock_event_read(struct perf_event *event)
{
5796 5797 5798
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5799 5800 5801 5802 5803

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5804
{
5805 5806 5807 5808 5809 5810
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5811 5812 5813 5814 5815 5816
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5817 5818
	perf_swevent_init_hrtimer(event);

5819
	return 0;
L
Li Zefan 已提交
5820 5821
}

5822
static struct pmu perf_task_clock = {
5823 5824
	.task_ctx_nr	= perf_sw_context,

5825
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5826 5827 5828 5829
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5830
	.read		= task_clock_event_read,
5831 5832

	.event_idx	= perf_swevent_event_idx,
5833
};
L
Li Zefan 已提交
5834

P
Peter Zijlstra 已提交
5835
static void perf_pmu_nop_void(struct pmu *pmu)
5836 5837
{
}
L
Li Zefan 已提交
5838

P
Peter Zijlstra 已提交
5839
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5840
{
P
Peter Zijlstra 已提交
5841
	return 0;
L
Li Zefan 已提交
5842 5843
}

P
Peter Zijlstra 已提交
5844
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5845
{
P
Peter Zijlstra 已提交
5846
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5847 5848
}

P
Peter Zijlstra 已提交
5849 5850 5851 5852 5853
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5854

P
Peter Zijlstra 已提交
5855
static void perf_pmu_cancel_txn(struct pmu *pmu)
5856
{
P
Peter Zijlstra 已提交
5857
	perf_pmu_enable(pmu);
5858 5859
}

5860 5861 5862 5863 5864
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5865 5866 5867 5868 5869
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5870
{
P
Peter Zijlstra 已提交
5871
	struct pmu *pmu;
5872

P
Peter Zijlstra 已提交
5873 5874
	if (ctxn < 0)
		return NULL;
5875

P
Peter Zijlstra 已提交
5876 5877 5878 5879
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5880

P
Peter Zijlstra 已提交
5881
	return NULL;
5882 5883
}

5884
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5885
{
5886 5887 5888 5889 5890 5891 5892
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5893 5894
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5895 5896 5897 5898 5899 5900
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5901

P
Peter Zijlstra 已提交
5902
	mutex_lock(&pmus_lock);
5903
	/*
P
Peter Zijlstra 已提交
5904
	 * Like a real lame refcount.
5905
	 */
5906 5907 5908
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5909
			goto out;
5910
		}
P
Peter Zijlstra 已提交
5911
	}
5912

5913
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5914 5915
out:
	mutex_unlock(&pmus_lock);
5916
}
P
Peter Zijlstra 已提交
5917
static struct idr pmu_idr;
5918

P
Peter Zijlstra 已提交
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5951
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5972
static struct lock_class_key cpuctx_mutex;
5973
static struct lock_class_key cpuctx_lock;
5974

P
Peter Zijlstra 已提交
5975
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5976
{
P
Peter Zijlstra 已提交
5977
	int cpu, ret;
5978

5979
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5980 5981 5982 5983
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5984

P
Peter Zijlstra 已提交
5985 5986 5987 5988 5989 5990
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
5991 5992 5993
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
5994 5995 5996 5997 5998
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5999 6000 6001 6002 6003 6004
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6005
skip_type:
P
Peter Zijlstra 已提交
6006 6007 6008
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6009

P
Peter Zijlstra 已提交
6010 6011
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6012
		goto free_dev;
6013

P
Peter Zijlstra 已提交
6014 6015 6016 6017
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6018
		__perf_event_init_context(&cpuctx->ctx);
6019
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6020
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6021
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6022
		cpuctx->ctx.pmu = pmu;
6023 6024
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6025
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6026
	}
6027

P
Peter Zijlstra 已提交
6028
got_cpu_context:
P
Peter Zijlstra 已提交
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6043
		}
6044
	}
6045

P
Peter Zijlstra 已提交
6046 6047 6048 6049 6050
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6051 6052 6053
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6054
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6055 6056
	ret = 0;
unlock:
6057 6058
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6059
	return ret;
P
Peter Zijlstra 已提交
6060

P
Peter Zijlstra 已提交
6061 6062 6063 6064
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6065 6066 6067 6068
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6069 6070 6071
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6072 6073
}

6074
void perf_pmu_unregister(struct pmu *pmu)
6075
{
6076 6077 6078
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6079

6080
	/*
P
Peter Zijlstra 已提交
6081 6082
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6083
	 */
6084
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6085
	synchronize_rcu();
6086

P
Peter Zijlstra 已提交
6087
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6088 6089
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6090 6091
	device_del(pmu->dev);
	put_device(pmu->dev);
6092
	free_pmu_context(pmu);
6093
}
6094

6095 6096 6097 6098
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6099
	int ret;
6100 6101

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6102 6103 6104 6105

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6106
	if (pmu) {
6107
		event->pmu = pmu;
6108 6109 6110
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6111
		goto unlock;
6112
	}
P
Peter Zijlstra 已提交
6113

6114
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6115
		event->pmu = pmu;
6116
		ret = pmu->event_init(event);
6117
		if (!ret)
P
Peter Zijlstra 已提交
6118
			goto unlock;
6119

6120 6121
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6122
			goto unlock;
6123
		}
6124
	}
P
Peter Zijlstra 已提交
6125 6126
	pmu = ERR_PTR(-ENOENT);
unlock:
6127
	srcu_read_unlock(&pmus_srcu, idx);
6128

6129
	return pmu;
6130 6131
}

T
Thomas Gleixner 已提交
6132
/*
6133
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6134
 */
6135
static struct perf_event *
6136
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6137 6138 6139
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6140 6141
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6142
{
P
Peter Zijlstra 已提交
6143
	struct pmu *pmu;
6144 6145
	struct perf_event *event;
	struct hw_perf_event *hwc;
6146
	long err;
T
Thomas Gleixner 已提交
6147

6148 6149 6150 6151 6152
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6153
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6154
	if (!event)
6155
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6156

6157
	/*
6158
	 * Single events are their own group leaders, with an
6159 6160 6161
	 * empty sibling list:
	 */
	if (!group_leader)
6162
		group_leader = event;
6163

6164 6165
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6166

6167 6168 6169
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6170 6171
	INIT_LIST_HEAD(&event->rb_entry);

6172
	init_waitqueue_head(&event->waitq);
6173
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6174

6175
	mutex_init(&event->mmap_mutex);
6176

6177
	atomic_long_set(&event->refcount, 1);
6178 6179 6180 6181 6182
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6183

6184
	event->parent		= parent_event;
6185

6186
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6187
	event->id		= atomic64_inc_return(&perf_event_id);
6188

6189
	event->state		= PERF_EVENT_STATE_INACTIVE;
6190

6191 6192
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6193 6194 6195

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6196 6197 6198 6199
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6200
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6201 6202 6203 6204
			event->hw.bp_target = task;
#endif
	}

6205
	if (!overflow_handler && parent_event) {
6206
		overflow_handler = parent_event->overflow_handler;
6207 6208
		context = parent_event->overflow_handler_context;
	}
6209

6210
	event->overflow_handler	= overflow_handler;
6211
	event->overflow_handler_context = context;
6212

J
Jiri Olsa 已提交
6213
	perf_event__state_init(event);
6214

6215
	pmu = NULL;
6216

6217
	hwc = &event->hw;
6218
	hwc->sample_period = attr->sample_period;
6219
	if (attr->freq && attr->sample_freq)
6220
		hwc->sample_period = 1;
6221
	hwc->last_period = hwc->sample_period;
6222

6223
	local64_set(&hwc->period_left, hwc->sample_period);
6224

6225
	/*
6226
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6227
	 */
6228
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6229 6230
		goto done;

6231
	pmu = perf_init_event(event);
6232

6233 6234
done:
	err = 0;
6235
	if (!pmu)
6236
		err = -EINVAL;
6237 6238
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6239

6240
	if (err) {
6241 6242 6243
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6244
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6245
	}
6246

6247
	if (!event->parent) {
6248
		if (event->attach_state & PERF_ATTACH_TASK)
6249
			static_key_slow_inc(&perf_sched_events.key);
6250
		if (event->attr.mmap || event->attr.mmap_data)
6251 6252 6253 6254 6255
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6256 6257 6258 6259 6260 6261 6262
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6263 6264 6265 6266 6267 6268
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6269
	}
6270

6271
	return event;
T
Thomas Gleixner 已提交
6272 6273
}

6274 6275
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6276 6277
{
	u32 size;
6278
	int ret;
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6303 6304 6305
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6306 6307
	 */
	if (size > sizeof(*attr)) {
6308 6309 6310
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6311

6312 6313
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6314

6315
		for (; addr < end; addr++) {
6316 6317 6318 6319 6320 6321
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6322
		size = sizeof(*attr);
6323 6324 6325 6326 6327 6328
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6329
	if (attr->__reserved_1)
6330 6331 6332 6333 6334 6335 6336 6337
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6372

6373
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6374
		ret = perf_reg_validate(attr->sample_regs_user);
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6393

6394 6395 6396 6397 6398 6399 6400 6401 6402
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6403 6404
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6405
{
6406
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6407 6408
	int ret = -EINVAL;

6409
	if (!output_event)
6410 6411
		goto set;

6412 6413
	/* don't allow circular references */
	if (event == output_event)
6414 6415
		goto out;

6416 6417 6418 6419 6420 6421 6422
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6423
	 * If its not a per-cpu rb, it must be the same task.
6424 6425 6426 6427
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6428
set:
6429
	mutex_lock(&event->mmap_mutex);
6430 6431 6432
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6433

6434
	if (output_event) {
6435 6436 6437
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6438
			goto unlock;
6439 6440
	}

6441 6442
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6443 6444
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6445
	ret = 0;
6446 6447 6448
unlock:
	mutex_unlock(&event->mmap_mutex);

6449 6450
	if (old_rb)
		ring_buffer_put(old_rb);
6451 6452 6453 6454
out:
	return ret;
}

T
Thomas Gleixner 已提交
6455
/**
6456
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6457
 *
6458
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6459
 * @pid:		target pid
I
Ingo Molnar 已提交
6460
 * @cpu:		target cpu
6461
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6462
 */
6463 6464
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6465
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6466
{
6467 6468
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6469 6470 6471
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6472
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6473
	struct task_struct *task = NULL;
6474
	struct pmu *pmu;
6475
	int event_fd;
6476
	int move_group = 0;
6477
	int err;
T
Thomas Gleixner 已提交
6478

6479
	/* for future expandability... */
S
Stephane Eranian 已提交
6480
	if (flags & ~PERF_FLAG_ALL)
6481 6482
		return -EINVAL;

6483 6484 6485
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6486

6487 6488 6489 6490 6491
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6492
	if (attr.freq) {
6493
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6494 6495 6496
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6497 6498 6499 6500 6501 6502 6503 6504 6505
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6506
	event_fd = get_unused_fd();
6507 6508 6509
	if (event_fd < 0)
		return event_fd;

6510
	if (group_fd != -1) {
6511 6512
		err = perf_fget_light(group_fd, &group);
		if (err)
6513
			goto err_fd;
6514
		group_leader = group.file->private_data;
6515 6516 6517 6518 6519 6520
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6521
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6522 6523 6524 6525 6526 6527 6528
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6529 6530
	get_online_cpus();

6531 6532
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6533 6534
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6535
		goto err_task;
6536 6537
	}

S
Stephane Eranian 已提交
6538 6539 6540 6541
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6542 6543 6544 6545 6546 6547
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6548
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6549 6550
	}

6551 6552 6553 6554 6555
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6579 6580 6581 6582

	/*
	 * Get the target context (task or percpu):
	 */
6583
	ctx = find_get_context(pmu, task, event->cpu);
6584 6585
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6586
		goto err_alloc;
6587 6588
	}

6589 6590 6591 6592 6593
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6594
	/*
6595
	 * Look up the group leader (we will attach this event to it):
6596
	 */
6597
	if (group_leader) {
6598
		err = -EINVAL;
6599 6600

		/*
I
Ingo Molnar 已提交
6601 6602 6603 6604
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6605
			goto err_context;
I
Ingo Molnar 已提交
6606 6607 6608
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6609
		 */
6610 6611 6612 6613 6614 6615 6616 6617
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6618 6619 6620
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6621
		if (attr.exclusive || attr.pinned)
6622
			goto err_context;
6623 6624 6625 6626 6627
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6628
			goto err_context;
6629
	}
T
Thomas Gleixner 已提交
6630

6631 6632 6633
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6634
		goto err_context;
6635
	}
6636

6637 6638 6639 6640
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6641
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6642 6643 6644 6645 6646 6647 6648

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6649 6650
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6651
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6652
			perf_event__state_init(sibling);
6653 6654 6655 6656
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6657
	}
6658

6659
	WARN_ON_ONCE(ctx->parent_ctx);
6660
	mutex_lock(&ctx->mutex);
6661 6662

	if (move_group) {
6663
		synchronize_rcu();
6664
		perf_install_in_context(ctx, group_leader, event->cpu);
6665 6666 6667
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6668
			perf_install_in_context(ctx, sibling, event->cpu);
6669 6670 6671 6672
			get_ctx(ctx);
		}
	}

6673
	perf_install_in_context(ctx, event, event->cpu);
6674
	++ctx->generation;
6675
	perf_unpin_context(ctx);
6676
	mutex_unlock(&ctx->mutex);
6677

6678 6679
	put_online_cpus();

6680
	event->owner = current;
P
Peter Zijlstra 已提交
6681

6682 6683 6684
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6685

6686 6687 6688 6689
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6690
	perf_event__id_header_size(event);
6691

6692 6693 6694 6695 6696 6697
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6698
	fdput(group);
6699 6700
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6701

6702
err_context:
6703
	perf_unpin_context(ctx);
6704
	put_ctx(ctx);
6705
err_alloc:
6706
	free_event(event);
P
Peter Zijlstra 已提交
6707
err_task:
6708
	put_online_cpus();
P
Peter Zijlstra 已提交
6709 6710
	if (task)
		put_task_struct(task);
6711
err_group_fd:
6712
	fdput(group);
6713 6714
err_fd:
	put_unused_fd(event_fd);
6715
	return err;
T
Thomas Gleixner 已提交
6716 6717
}

6718 6719 6720 6721 6722
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6723
 * @task: task to profile (NULL for percpu)
6724 6725 6726
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6727
				 struct task_struct *task,
6728 6729
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6730 6731
{
	struct perf_event_context *ctx;
6732
	struct perf_event *event;
6733
	int err;
6734

6735 6736 6737
	/*
	 * Get the target context (task or percpu):
	 */
6738

6739 6740
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6741 6742 6743 6744
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6745

M
Matt Helsley 已提交
6746
	ctx = find_get_context(event->pmu, task, cpu);
6747 6748
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6749
		goto err_free;
6750
	}
6751 6752 6753 6754 6755

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6756
	perf_unpin_context(ctx);
6757 6758 6759 6760
	mutex_unlock(&ctx->mutex);

	return event;

6761 6762 6763
err_free:
	free_event(event);
err:
6764
	return ERR_PTR(err);
6765
}
6766
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6767

6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6801
static void sync_child_event(struct perf_event *child_event,
6802
			       struct task_struct *child)
6803
{
6804
	struct perf_event *parent_event = child_event->parent;
6805
	u64 child_val;
6806

6807 6808
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6809

P
Peter Zijlstra 已提交
6810
	child_val = perf_event_count(child_event);
6811 6812 6813 6814

	/*
	 * Add back the child's count to the parent's count:
	 */
6815
	atomic64_add(child_val, &parent_event->child_count);
6816 6817 6818 6819
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6820 6821

	/*
6822
	 * Remove this event from the parent's list
6823
	 */
6824 6825 6826 6827
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6828 6829

	/*
6830
	 * Release the parent event, if this was the last
6831 6832
	 * reference to it.
	 */
6833
	put_event(parent_event);
6834 6835
}

6836
static void
6837 6838
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6839
			 struct task_struct *child)
6840
{
6841 6842 6843 6844 6845
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6846

6847
	perf_remove_from_context(child_event);
6848

6849
	/*
6850
	 * It can happen that the parent exits first, and has events
6851
	 * that are still around due to the child reference. These
6852
	 * events need to be zapped.
6853
	 */
6854
	if (child_event->parent) {
6855 6856
		sync_child_event(child_event, child);
		free_event(child_event);
6857
	}
6858 6859
}

P
Peter Zijlstra 已提交
6860
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6861
{
6862 6863
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6864
	unsigned long flags;
6865

P
Peter Zijlstra 已提交
6866
	if (likely(!child->perf_event_ctxp[ctxn])) {
6867
		perf_event_task(child, NULL, 0);
6868
		return;
P
Peter Zijlstra 已提交
6869
	}
6870

6871
	local_irq_save(flags);
6872 6873 6874 6875 6876 6877
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6878
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6879 6880 6881

	/*
	 * Take the context lock here so that if find_get_context is
6882
	 * reading child->perf_event_ctxp, we wait until it has
6883 6884
	 * incremented the context's refcount before we do put_ctx below.
	 */
6885
	raw_spin_lock(&child_ctx->lock);
6886
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6887
	child->perf_event_ctxp[ctxn] = NULL;
6888 6889 6890
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6891
	 * the events from it.
6892 6893
	 */
	unclone_ctx(child_ctx);
6894
	update_context_time(child_ctx);
6895
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6896 6897

	/*
6898 6899 6900
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6901
	 */
6902
	perf_event_task(child, child_ctx, 0);
6903

6904 6905 6906
	/*
	 * We can recurse on the same lock type through:
	 *
6907 6908
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6909 6910
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6911 6912 6913
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6914
	mutex_lock(&child_ctx->mutex);
6915

6916
again:
6917 6918 6919 6920 6921
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6922
				 group_entry)
6923
		__perf_event_exit_task(child_event, child_ctx, child);
6924 6925

	/*
6926
	 * If the last event was a group event, it will have appended all
6927 6928 6929
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6930 6931
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6932
		goto again;
6933 6934 6935 6936

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6937 6938
}

P
Peter Zijlstra 已提交
6939 6940 6941 6942 6943
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6944
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6945 6946
	int ctxn;

P
Peter Zijlstra 已提交
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6962 6963 6964 6965
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6978
	put_event(parent);
6979

6980
	perf_group_detach(event);
6981 6982 6983 6984
	list_del_event(event, ctx);
	free_event(event);
}

6985 6986
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6987
 * perf_event_init_task below, used by fork() in case of fail.
6988
 */
6989
void perf_event_free_task(struct task_struct *task)
6990
{
P
Peter Zijlstra 已提交
6991
	struct perf_event_context *ctx;
6992
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6993
	int ctxn;
6994

P
Peter Zijlstra 已提交
6995 6996 6997 6998
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6999

P
Peter Zijlstra 已提交
7000
		mutex_lock(&ctx->mutex);
7001
again:
P
Peter Zijlstra 已提交
7002 7003 7004
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7005

P
Peter Zijlstra 已提交
7006 7007 7008
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7009

P
Peter Zijlstra 已提交
7010 7011 7012
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7013

P
Peter Zijlstra 已提交
7014
		mutex_unlock(&ctx->mutex);
7015

P
Peter Zijlstra 已提交
7016 7017
		put_ctx(ctx);
	}
7018 7019
}

7020 7021 7022 7023 7024 7025 7026 7027
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7040
	unsigned long flags;
P
Peter Zijlstra 已提交
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7053
					   child,
P
Peter Zijlstra 已提交
7054
					   group_leader, parent_event,
7055
				           NULL, NULL);
P
Peter Zijlstra 已提交
7056 7057
	if (IS_ERR(child_event))
		return child_event;
7058 7059 7060 7061 7062 7063

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7088 7089
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7090

7091 7092 7093 7094
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7095
	perf_event__id_header_size(child_event);
7096

P
Peter Zijlstra 已提交
7097 7098 7099
	/*
	 * Link it up in the child's context:
	 */
7100
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7101
	add_event_to_ctx(child_event, child_ctx);
7102
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7136 7137 7138 7139 7140
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7141
		   struct task_struct *child, int ctxn,
7142 7143 7144
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7145
	struct perf_event_context *child_ctx;
7146 7147 7148 7149

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7150 7151
	}

7152
	child_ctx = child->perf_event_ctxp[ctxn];
7153 7154 7155 7156 7157 7158 7159
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7160

7161
		child_ctx = alloc_perf_context(event->pmu, child);
7162 7163
		if (!child_ctx)
			return -ENOMEM;
7164

P
Peter Zijlstra 已提交
7165
		child->perf_event_ctxp[ctxn] = child_ctx;
7166 7167 7168 7169 7170 7171 7172 7173 7174
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7175 7176
}

7177
/*
7178
 * Initialize the perf_event context in task_struct
7179
 */
P
Peter Zijlstra 已提交
7180
int perf_event_init_context(struct task_struct *child, int ctxn)
7181
{
7182
	struct perf_event_context *child_ctx, *parent_ctx;
7183 7184
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7185
	struct task_struct *parent = current;
7186
	int inherited_all = 1;
7187
	unsigned long flags;
7188
	int ret = 0;
7189

P
Peter Zijlstra 已提交
7190
	if (likely(!parent->perf_event_ctxp[ctxn]))
7191 7192
		return 0;

7193
	/*
7194 7195
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7196
	 */
P
Peter Zijlstra 已提交
7197
	parent_ctx = perf_pin_task_context(parent, ctxn);
7198

7199 7200 7201 7202 7203 7204 7205
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7206 7207 7208 7209
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7210
	mutex_lock(&parent_ctx->mutex);
7211 7212 7213 7214 7215

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7216
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7217 7218
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7219 7220 7221
		if (ret)
			break;
	}
7222

7223 7224 7225 7226 7227 7228 7229 7230 7231
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7232
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7233 7234
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7235
		if (ret)
7236
			break;
7237 7238
	}

7239 7240 7241
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7242
	child_ctx = child->perf_event_ctxp[ctxn];
7243

7244
	if (child_ctx && inherited_all) {
7245 7246 7247
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7248 7249 7250
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7251
		 */
P
Peter Zijlstra 已提交
7252
		cloned_ctx = parent_ctx->parent_ctx;
7253 7254
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7255
			child_ctx->parent_gen = parent_ctx->parent_gen;
7256 7257 7258 7259 7260
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7261 7262
	}

P
Peter Zijlstra 已提交
7263
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7264
	mutex_unlock(&parent_ctx->mutex);
7265

7266
	perf_unpin_context(parent_ctx);
7267
	put_ctx(parent_ctx);
7268

7269
	return ret;
7270 7271
}

P
Peter Zijlstra 已提交
7272 7273 7274 7275 7276 7277 7278
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7279 7280 7281 7282
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7283 7284 7285 7286 7287 7288 7289 7290 7291
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7292 7293
static void __init perf_event_init_all_cpus(void)
{
7294
	struct swevent_htable *swhash;
7295 7296 7297
	int cpu;

	for_each_possible_cpu(cpu) {
7298 7299
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7300
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7301 7302 7303
	}
}

7304
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7305
{
P
Peter Zijlstra 已提交
7306
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7307

7308
	mutex_lock(&swhash->hlist_mutex);
7309
	if (swhash->hlist_refcount > 0) {
7310 7311
		struct swevent_hlist *hlist;

7312 7313 7314
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7315
	}
7316
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7317 7318
}

P
Peter Zijlstra 已提交
7319
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7320
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7321
{
7322 7323 7324 7325 7326 7327 7328
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7329
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7330
{
P
Peter Zijlstra 已提交
7331
	struct perf_event_context *ctx = __info;
7332
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7333

P
Peter Zijlstra 已提交
7334
	perf_pmu_rotate_stop(ctx->pmu);
7335

7336
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7337
		__perf_remove_from_context(event);
7338
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7339
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7340
}
P
Peter Zijlstra 已提交
7341 7342 7343 7344 7345 7346 7347 7348 7349

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7350
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7351 7352 7353 7354 7355 7356 7357 7358

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7359
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7360
{
7361
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7362

7363 7364 7365
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7366

P
Peter Zijlstra 已提交
7367
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7368 7369
}
#else
7370
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7371 7372
#endif

P
Peter Zijlstra 已提交
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7393 7394 7395 7396 7397
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7398
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7399 7400

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7401
	case CPU_DOWN_FAILED:
7402
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7403 7404
		break;

P
Peter Zijlstra 已提交
7405
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7406
	case CPU_DOWN_PREPARE:
7407
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7417
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7418
{
7419 7420
	int ret;

P
Peter Zijlstra 已提交
7421 7422
	idr_init(&pmu_idr);

7423
	perf_event_init_all_cpus();
7424
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7425 7426 7427
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7428 7429
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7430
	register_reboot_notifier(&perf_reboot_notifier);
7431 7432 7433

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7434 7435 7436

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7437 7438 7439 7440 7441 7442 7443

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7444
}
P
Peter Zijlstra 已提交
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7473 7474

#ifdef CONFIG_CGROUP_PERF
7475
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7476 7477 7478
{
	struct perf_cgroup *jc;

7479
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7492
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7508
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7509
{
7510 7511 7512 7513
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7514 7515
}

7516 7517
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7518 7519 7520 7521 7522 7523 7524 7525 7526
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7527
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7528 7529 7530
}

struct cgroup_subsys perf_subsys = {
7531 7532
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7533 7534
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7535
	.exit		= perf_cgroup_exit,
7536
	.attach		= perf_cgroup_attach,
7537 7538 7539 7540 7541 7542 7543

	/*
	 * perf_event cgroup doesn't handle nesting correctly.
	 * ctx->nr_cgroups adjustments should be propagated through the
	 * cgroup hierarchy.  Fix it and remove the following.
	 */
	.broken_hierarchy = true,
S
Stephane Eranian 已提交
7544 7545
};
#endif /* CONFIG_CGROUP_PERF */