core.c 200.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
406
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
445 446
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
447
	/*
448 449
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
450
	 */
451
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
452 453
		return;

454 455 456 457 458 459
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
460 461 462
}

static inline void
463 464
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
465 466 467 468
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

469 470 471 472 473 474
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
475 476 477 478
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
479
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 513
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
514 515 516 517 518 519 520 521 522

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
523 524
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532 533 534 535

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
536
				WARN_ON_ONCE(cpuctx->cgrp);
537 538 539 540
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
541 542 543 544
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
545 546
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
547 548 549 550 551 552 553 554
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

555 556
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
580 581
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
603 604 605 606 607 608 609 610
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
611 612
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
613

614
	if (!f.file)
S
Stephane Eranian 已提交
615 616
		return -EBADF;

A
Al Viro 已提交
617
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618
					 &perf_event_cgrp_subsys);
619 620 621 622
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
636
out:
637
	fdput(f);
S
Stephane Eranian 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

711 712
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
713 714 715
{
}

716 717
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
729 730
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
824
	int timer;
825 826 827 828 829

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

830 831 832 833 834 835 836 837 838
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
861
void perf_pmu_disable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
866 867
}

P
Peter Zijlstra 已提交
868
void perf_pmu_enable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
873 874
}

875 876 877 878 879 880 881
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
882
static void perf_pmu_rotate_start(struct pmu *pmu)
883
{
P
Peter Zijlstra 已提交
884
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885
	struct list_head *head = this_cpu_ptr(&rotation_list);
886

887
	WARN_ON(!irqs_disabled());
888

889
	if (list_empty(&cpuctx->rotation_list))
890
		list_add(&cpuctx->rotation_list, head);
891 892
}

893
static void get_ctx(struct perf_event_context *ctx)
894
{
895
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 897
}

898
static void put_ctx(struct perf_event_context *ctx)
899
{
900 901 902
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
903 904
		if (ctx->task)
			put_task_struct(ctx->task);
905
		kfree_rcu(ctx, rcu_head);
906
	}
907 908
}

P
Peter Zijlstra 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
950 951
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
952 953 954 955 956 957 958 959 960 961 962 963
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
964
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
965 966 967 968 969 970 971 972 973
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
974 975 976 977 978 979
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
980 981 982 983 984 985 986
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

987 988 989 990 991 992 993
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
994
{
995 996 997 998 999
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1000
		ctx->parent_ctx = NULL;
1001
	ctx->generation++;
1002 1003

	return parent_ctx;
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1028
/*
1029
 * If we inherit events we want to return the parent event id
1030 1031
 * to userspace.
 */
1032
static u64 primary_event_id(struct perf_event *event)
1033
{
1034
	u64 id = event->id;
1035

1036 1037
	if (event->parent)
		id = event->parent->id;
1038 1039 1040 1041

	return id;
}

1042
/*
1043
 * Get the perf_event_context for a task and lock it.
1044 1045 1046
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1047
static struct perf_event_context *
P
Peter Zijlstra 已提交
1048
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1049
{
1050
	struct perf_event_context *ctx;
1051

P
Peter Zijlstra 已提交
1052
retry:
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1064
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1065 1066 1067 1068
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1069
		 * perf_event_task_sched_out, though the
1070 1071 1072 1073 1074 1075
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1076
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1077
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1078
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1079 1080
			rcu_read_unlock();
			preempt_enable();
1081 1082
			goto retry;
		}
1083 1084

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1085
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1086 1087
			ctx = NULL;
		}
1088 1089
	}
	rcu_read_unlock();
1090
	preempt_enable();
1091 1092 1093 1094 1095 1096 1097 1098
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1099 1100
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1101
{
1102
	struct perf_event_context *ctx;
1103 1104
	unsigned long flags;

P
Peter Zijlstra 已提交
1105
	ctx = perf_lock_task_context(task, ctxn, &flags);
1106 1107
	if (ctx) {
		++ctx->pin_count;
1108
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1109 1110 1111 1112
	}
	return ctx;
}

1113
static void perf_unpin_context(struct perf_event_context *ctx)
1114 1115 1116
{
	unsigned long flags;

1117
	raw_spin_lock_irqsave(&ctx->lock, flags);
1118
	--ctx->pin_count;
1119
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1120 1121
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1133 1134 1135
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1136 1137 1138 1139

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1140 1141 1142
	return ctx ? ctx->time : 0;
}

1143 1144
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1145
 * The caller of this function needs to hold the ctx->lock.
1146 1147 1148 1149 1150 1151 1152 1153 1154
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1166
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1167 1168
	else if (ctx->is_active)
		run_end = ctx->time;
1169 1170 1171 1172
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1173 1174 1175 1176

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1177
		run_end = perf_event_time(event);
1178 1179

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1180

1181 1182
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1195 1196 1197 1198 1199 1200 1201 1202 1203
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1204
/*
1205
 * Add a event from the lists for its context.
1206 1207
 * Must be called with ctx->mutex and ctx->lock held.
 */
1208
static void
1209
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1210
{
1211 1212
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1213 1214

	/*
1215 1216 1217
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1218
	 */
1219
	if (event->group_leader == event) {
1220 1221
		struct list_head *list;

1222 1223 1224
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1225 1226
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1227
	}
P
Peter Zijlstra 已提交
1228

1229
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1230 1231
		ctx->nr_cgroups++;

1232 1233 1234
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1235
	list_add_rcu(&event->event_entry, &ctx->event_list);
1236
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1237
		perf_pmu_rotate_start(ctx->pmu);
1238 1239
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1240
		ctx->nr_stat++;
1241 1242

	ctx->generation++;
1243 1244
}

J
Jiri Olsa 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1293 1294 1295 1296 1297 1298
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1299 1300 1301
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1302 1303 1304
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1305 1306 1307
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1308 1309 1310
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1311 1312 1313 1314 1315 1316 1317 1318 1319
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1320 1321 1322 1323 1324 1325
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1326 1327 1328
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1329 1330 1331 1332 1333 1334 1335 1336 1337
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1338
	event->id_header_size = size;
1339 1340
}

1341 1342
static void perf_group_attach(struct perf_event *event)
{
1343
	struct perf_event *group_leader = event->group_leader, *pos;
1344

P
Peter Zijlstra 已提交
1345 1346 1347 1348 1349 1350
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1351 1352 1353 1354 1355
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1356 1357
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1358 1359 1360 1361 1362 1363
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1364 1365 1366 1367 1368

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1369 1370
}

1371
/*
1372
 * Remove a event from the lists for its context.
1373
 * Must be called with ctx->mutex and ctx->lock held.
1374
 */
1375
static void
1376
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1377
{
1378
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1379 1380 1381 1382

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1383 1384 1385 1386
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1387
		return;
1388 1389 1390

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1391
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1392
		ctx->nr_cgroups--;
1393 1394 1395 1396 1397 1398 1399 1400 1401
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1402

1403 1404 1405
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1406 1407
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1408
		ctx->nr_stat--;
1409

1410
	list_del_rcu(&event->event_entry);
1411

1412 1413
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1414

1415
	update_group_times(event);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1426 1427

	ctx->generation++;
1428 1429
}

1430
static void perf_group_detach(struct perf_event *event)
1431 1432
{
	struct perf_event *sibling, *tmp;
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1449
		goto out;
1450 1451 1452 1453
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1454

1455
	/*
1456 1457
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1458
	 * to whatever list we are on.
1459
	 */
1460
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1461 1462
		if (list)
			list_move_tail(&sibling->group_entry, list);
1463
		sibling->group_leader = sibling;
1464 1465 1466

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1467 1468

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1469
	}
1470 1471 1472 1473 1474 1475

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1476 1477
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1517 1518 1519
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1520 1521
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1522 1523
}

1524 1525
static void
event_sched_out(struct perf_event *event,
1526
		  struct perf_cpu_context *cpuctx,
1527
		  struct perf_event_context *ctx)
1528
{
1529
	u64 tstamp = perf_event_time(event);
1530
	u64 delta;
P
Peter Zijlstra 已提交
1531 1532 1533 1534

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1535 1536 1537 1538 1539 1540 1541 1542
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1543
		delta = tstamp - event->tstamp_stopped;
1544
		event->tstamp_running += delta;
1545
		event->tstamp_stopped = tstamp;
1546 1547
	}

1548
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1549
		return;
1550

1551 1552
	perf_pmu_disable(event->pmu);

1553 1554 1555 1556
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1557
	}
1558
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1559
	event->pmu->del(event, 0);
1560
	event->oncpu = -1;
1561

1562
	if (!is_software_event(event))
1563 1564
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1565 1566
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1567
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1568
		cpuctx->exclusive = 0;
1569

1570 1571 1572
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1573
	perf_pmu_enable(event->pmu);
1574 1575
}

1576
static void
1577
group_sched_out(struct perf_event *group_event,
1578
		struct perf_cpu_context *cpuctx,
1579
		struct perf_event_context *ctx)
1580
{
1581
	struct perf_event *event;
1582
	int state = group_event->state;
1583

1584
	event_sched_out(group_event, cpuctx, ctx);
1585 1586 1587 1588

	/*
	 * Schedule out siblings (if any):
	 */
1589 1590
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1591

1592
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1593 1594 1595
		cpuctx->exclusive = 0;
}

1596 1597 1598 1599 1600
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1601
/*
1602
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1603
 *
1604
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1605 1606
 * remove it from the context list.
 */
1607
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1608
{
1609 1610
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1611
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1612
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1613

1614
	raw_spin_lock(&ctx->lock);
1615
	event_sched_out(event, cpuctx, ctx);
1616 1617
	if (re->detach_group)
		perf_group_detach(event);
1618
	list_del_event(event, ctx);
1619 1620 1621 1622
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1623
	raw_spin_unlock(&ctx->lock);
1624 1625

	return 0;
T
Thomas Gleixner 已提交
1626 1627 1628 1629
}


/*
1630
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1631
 *
1632
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1633
 * call when the task is on a CPU.
1634
 *
1635 1636
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1637 1638
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1639
 * When called from perf_event_exit_task, it's OK because the
1640
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1641
 */
1642
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1643
{
1644
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1645
	struct task_struct *task = ctx->task;
1646 1647 1648 1649
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1650

1651 1652
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1653 1654
	if (!task) {
		/*
1655 1656 1657 1658
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1659
		 */
1660
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1661 1662 1663 1664
		return;
	}

retry:
1665
	if (!task_function_call(task, __perf_remove_from_context, &re))
1666
		return;
T
Thomas Gleixner 已提交
1667

1668
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1669
	/*
1670 1671
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1672
	 */
1673
	if (ctx->is_active) {
1674
		raw_spin_unlock_irq(&ctx->lock);
1675 1676 1677 1678 1679
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1680 1681 1682 1683
		goto retry;
	}

	/*
1684 1685
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1686
	 */
1687 1688
	if (detach_group)
		perf_group_detach(event);
1689
	list_del_event(event, ctx);
1690
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1691 1692
}

1693
/*
1694
 * Cross CPU call to disable a performance event
1695
 */
1696
int __perf_event_disable(void *info)
1697
{
1698 1699
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1700
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1701 1702

	/*
1703 1704
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1705 1706 1707
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1708
	 */
1709
	if (ctx->task && cpuctx->task_ctx != ctx)
1710
		return -EINVAL;
1711

1712
	raw_spin_lock(&ctx->lock);
1713 1714

	/*
1715
	 * If the event is on, turn it off.
1716 1717
	 * If it is in error state, leave it in error state.
	 */
1718
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1719
		update_context_time(ctx);
S
Stephane Eranian 已提交
1720
		update_cgrp_time_from_event(event);
1721 1722 1723
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1724
		else
1725 1726
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1727 1728
	}

1729
	raw_spin_unlock(&ctx->lock);
1730 1731

	return 0;
1732 1733 1734
}

/*
1735
 * Disable a event.
1736
 *
1737 1738
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1739
 * remains valid.  This condition is satisifed when called through
1740 1741 1742 1743
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1744
 * is the current context on this CPU and preemption is disabled,
1745
 * hence we can't get into perf_event_task_sched_out for this context.
1746
 */
P
Peter Zijlstra 已提交
1747
static void _perf_event_disable(struct perf_event *event)
1748
{
1749
	struct perf_event_context *ctx = event->ctx;
1750 1751 1752 1753
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1754
		 * Disable the event on the cpu that it's on
1755
		 */
1756
		cpu_function_call(event->cpu, __perf_event_disable, event);
1757 1758 1759
		return;
	}

P
Peter Zijlstra 已提交
1760
retry:
1761 1762
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1763

1764
	raw_spin_lock_irq(&ctx->lock);
1765
	/*
1766
	 * If the event is still active, we need to retry the cross-call.
1767
	 */
1768
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1769
		raw_spin_unlock_irq(&ctx->lock);
1770 1771 1772 1773 1774
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1775 1776 1777 1778 1779 1780 1781
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1782 1783 1784
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1785
	}
1786
	raw_spin_unlock_irq(&ctx->lock);
1787
}
P
Peter Zijlstra 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1801
EXPORT_SYMBOL_GPL(perf_event_disable);
1802

S
Stephane Eranian 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1838 1839 1840 1841
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1842
static int
1843
event_sched_in(struct perf_event *event,
1844
		 struct perf_cpu_context *cpuctx,
1845
		 struct perf_event_context *ctx)
1846
{
1847
	u64 tstamp = perf_event_time(event);
1848
	int ret = 0;
1849

1850 1851
	lockdep_assert_held(&ctx->lock);

1852
	if (event->state <= PERF_EVENT_STATE_OFF)
1853 1854
		return 0;

1855
	event->state = PERF_EVENT_STATE_ACTIVE;
1856
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1868 1869 1870 1871 1872
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1873 1874
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1875
	if (event->pmu->add(event, PERF_EF_START)) {
1876 1877
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1878 1879
		ret = -EAGAIN;
		goto out;
1880 1881
	}

1882
	event->tstamp_running += tstamp - event->tstamp_stopped;
1883

S
Stephane Eranian 已提交
1884
	perf_set_shadow_time(event, ctx, tstamp);
1885

1886
	if (!is_software_event(event))
1887
		cpuctx->active_oncpu++;
1888
	ctx->nr_active++;
1889 1890
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1891

1892
	if (event->attr.exclusive)
1893 1894
		cpuctx->exclusive = 1;

1895 1896 1897
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1898 1899 1900 1901
out:
	perf_pmu_enable(event->pmu);

	return ret;
1902 1903
}

1904
static int
1905
group_sched_in(struct perf_event *group_event,
1906
	       struct perf_cpu_context *cpuctx,
1907
	       struct perf_event_context *ctx)
1908
{
1909
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1910
	struct pmu *pmu = ctx->pmu;
1911 1912
	u64 now = ctx->time;
	bool simulate = false;
1913

1914
	if (group_event->state == PERF_EVENT_STATE_OFF)
1915 1916
		return 0;

P
Peter Zijlstra 已提交
1917
	pmu->start_txn(pmu);
1918

1919
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1920
		pmu->cancel_txn(pmu);
1921
		perf_cpu_hrtimer_restart(cpuctx);
1922
		return -EAGAIN;
1923
	}
1924 1925 1926 1927

	/*
	 * Schedule in siblings as one group (if any):
	 */
1928
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929
		if (event_sched_in(event, cpuctx, ctx)) {
1930
			partial_group = event;
1931 1932 1933 1934
			goto group_error;
		}
	}

1935
	if (!pmu->commit_txn(pmu))
1936
		return 0;
1937

1938 1939 1940 1941
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1952
	 */
1953 1954
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1955 1956 1957 1958 1959 1960 1961 1962
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1963
	}
1964
	event_sched_out(group_event, cpuctx, ctx);
1965

P
Peter Zijlstra 已提交
1966
	pmu->cancel_txn(pmu);
1967

1968 1969
	perf_cpu_hrtimer_restart(cpuctx);

1970 1971 1972
	return -EAGAIN;
}

1973
/*
1974
 * Work out whether we can put this event group on the CPU now.
1975
 */
1976
static int group_can_go_on(struct perf_event *event,
1977 1978 1979 1980
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1981
	 * Groups consisting entirely of software events can always go on.
1982
	 */
1983
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 1985 1986
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1987
	 * events can go on.
1988 1989 1990 1991 1992
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1993
	 * events on the CPU, it can't go on.
1994
	 */
1995
	if (event->attr.exclusive && cpuctx->active_oncpu)
1996 1997 1998 1999 2000 2001 2002 2003
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2004 2005
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2006
{
2007 2008
	u64 tstamp = perf_event_time(event);

2009
	list_add_event(event, ctx);
2010
	perf_group_attach(event);
2011 2012 2013
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2014 2015
}

2016 2017 2018 2019 2020 2021
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2035
/*
2036
 * Cross CPU call to install and enable a performance event
2037 2038
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2039
 */
2040
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2041
{
2042 2043
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2044
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 2046 2047
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2048
	perf_ctx_lock(cpuctx, task_ctx);
2049
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2050 2051

	/*
2052
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2053
	 */
2054
	if (task_ctx)
2055
		task_ctx_sched_out(task_ctx);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2070 2071
		task = task_ctx->task;
	}
2072

2073
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2074

2075
	update_context_time(ctx);
S
Stephane Eranian 已提交
2076 2077 2078 2079 2080 2081
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2082

2083
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2084

2085
	/*
2086
	 * Schedule everything back in
2087
	 */
2088
	perf_event_sched_in(cpuctx, task_ctx, task);
2089 2090 2091

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2092 2093

	return 0;
T
Thomas Gleixner 已提交
2094 2095 2096
}

/*
2097
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2098
 *
2099 2100
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2101
 *
2102
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2103 2104 2105 2106
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2107 2108
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2109 2110 2111 2112
			int cpu)
{
	struct task_struct *task = ctx->task;

2113 2114
	lockdep_assert_held(&ctx->mutex);

2115
	event->ctx = ctx;
2116 2117
	if (event->cpu != -1)
		event->cpu = cpu;
2118

T
Thomas Gleixner 已提交
2119 2120
	if (!task) {
		/*
2121
		 * Per cpu events are installed via an smp call and
2122
		 * the install is always successful.
T
Thomas Gleixner 已提交
2123
		 */
2124
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2125 2126 2127 2128
		return;
	}

retry:
2129 2130
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2131

2132
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2133
	/*
2134 2135
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2136
	 */
2137
	if (ctx->is_active) {
2138
		raw_spin_unlock_irq(&ctx->lock);
2139 2140 2141 2142 2143
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2144 2145 2146 2147
		goto retry;
	}

	/*
2148 2149
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2150
	 */
2151
	add_event_to_ctx(event, ctx);
2152
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2153 2154
}

2155
/*
2156
 * Put a event into inactive state and update time fields.
2157 2158 2159 2160 2161 2162
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2163
static void __perf_event_mark_enabled(struct perf_event *event)
2164
{
2165
	struct perf_event *sub;
2166
	u64 tstamp = perf_event_time(event);
2167

2168
	event->state = PERF_EVENT_STATE_INACTIVE;
2169
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2170
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 2172
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2173
	}
2174 2175
}

2176
/*
2177
 * Cross CPU call to enable a performance event
2178
 */
2179
static int __perf_event_enable(void *info)
2180
{
2181 2182 2183
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2184
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185
	int err;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2197
		return -EINVAL;
2198

2199
	raw_spin_lock(&ctx->lock);
2200
	update_context_time(ctx);
2201

2202
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203
		goto unlock;
S
Stephane Eranian 已提交
2204 2205 2206 2207

	/*
	 * set current task's cgroup time reference point
	 */
2208
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2209

2210
	__perf_event_mark_enabled(event);
2211

S
Stephane Eranian 已提交
2212 2213 2214
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2215
		goto unlock;
S
Stephane Eranian 已提交
2216
	}
2217

2218
	/*
2219
	 * If the event is in a group and isn't the group leader,
2220
	 * then don't put it on unless the group is on.
2221
	 */
2222
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223
		goto unlock;
2224

2225
	if (!group_can_go_on(event, cpuctx, 1)) {
2226
		err = -EEXIST;
2227
	} else {
2228
		if (event == leader)
2229
			err = group_sched_in(event, cpuctx, ctx);
2230
		else
2231
			err = event_sched_in(event, cpuctx, ctx);
2232
	}
2233 2234 2235

	if (err) {
		/*
2236
		 * If this event can't go on and it's part of a
2237 2238
		 * group, then the whole group has to come off.
		 */
2239
		if (leader != event) {
2240
			group_sched_out(leader, cpuctx, ctx);
2241 2242
			perf_cpu_hrtimer_restart(cpuctx);
		}
2243
		if (leader->attr.pinned) {
2244
			update_group_times(leader);
2245
			leader->state = PERF_EVENT_STATE_ERROR;
2246
		}
2247 2248
	}

P
Peter Zijlstra 已提交
2249
unlock:
2250
	raw_spin_unlock(&ctx->lock);
2251 2252

	return 0;
2253 2254 2255
}

/*
2256
 * Enable a event.
2257
 *
2258 2259
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2260
 * remains valid.  This condition is satisfied when called through
2261 2262
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2263
 */
P
Peter Zijlstra 已提交
2264
static void _perf_event_enable(struct perf_event *event)
2265
{
2266
	struct perf_event_context *ctx = event->ctx;
2267 2268 2269 2270
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2271
		 * Enable the event on the cpu that it's on
2272
		 */
2273
		cpu_function_call(event->cpu, __perf_event_enable, event);
2274 2275 2276
		return;
	}

2277
	raw_spin_lock_irq(&ctx->lock);
2278
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 2280 2281
		goto out;

	/*
2282 2283
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2284 2285 2286 2287
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2288 2289
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2290

P
Peter Zijlstra 已提交
2291
retry:
2292
	if (!ctx->is_active) {
2293
		__perf_event_mark_enabled(event);
2294 2295 2296
		goto out;
	}

2297
	raw_spin_unlock_irq(&ctx->lock);
2298 2299 2300

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2301

2302
	raw_spin_lock_irq(&ctx->lock);
2303 2304

	/*
2305
	 * If the context is active and the event is still off,
2306 2307
	 * we need to retry the cross-call.
	 */
2308 2309 2310 2311 2312 2313
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2314
		goto retry;
2315
	}
2316

P
Peter Zijlstra 已提交
2317
out:
2318
	raw_spin_unlock_irq(&ctx->lock);
2319
}
P
Peter Zijlstra 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2332
EXPORT_SYMBOL_GPL(perf_event_enable);
2333

P
Peter Zijlstra 已提交
2334
static int _perf_event_refresh(struct perf_event *event, int refresh)
2335
{
2336
	/*
2337
	 * not supported on inherited events
2338
	 */
2339
	if (event->attr.inherit || !is_sampling_event(event))
2340 2341
		return -EINVAL;

2342
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2343
	_perf_event_enable(event);
2344 2345

	return 0;
2346
}
P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2362
EXPORT_SYMBOL_GPL(perf_event_refresh);
2363

2364 2365 2366
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2367
{
2368
	struct perf_event *event;
2369
	int is_active = ctx->is_active;
2370

2371
	ctx->is_active &= ~event_type;
2372
	if (likely(!ctx->nr_events))
2373 2374
		return;

2375
	update_context_time(ctx);
S
Stephane Eranian 已提交
2376
	update_cgrp_time_from_cpuctx(cpuctx);
2377
	if (!ctx->nr_active)
2378
		return;
2379

P
Peter Zijlstra 已提交
2380
	perf_pmu_disable(ctx->pmu);
2381
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 2383
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2384
	}
2385

2386
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2389
	}
P
Peter Zijlstra 已提交
2390
	perf_pmu_enable(ctx->pmu);
2391 2392
}

2393
/*
2394 2395 2396 2397 2398 2399
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2400
 */
2401 2402
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2403
{
2404 2405 2406
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2429 2430
}

2431 2432
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2433 2434 2435
{
	u64 value;

2436
	if (!event->attr.inherit_stat)
2437 2438 2439
		return;

	/*
2440
	 * Update the event value, we cannot use perf_event_read()
2441 2442
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2443
	 * we know the event must be on the current CPU, therefore we
2444 2445
	 * don't need to use it.
	 */
2446 2447
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2448 2449
		event->pmu->read(event);
		/* fall-through */
2450

2451 2452
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2453 2454 2455 2456 2457 2458 2459
		break;

	default:
		break;
	}

	/*
2460
	 * In order to keep per-task stats reliable we need to flip the event
2461 2462
	 * values when we flip the contexts.
	 */
2463 2464 2465
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2466

2467 2468
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2469

2470
	/*
2471
	 * Since we swizzled the values, update the user visible data too.
2472
	 */
2473 2474
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2475 2476
}

2477 2478
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2479
{
2480
	struct perf_event *event, *next_event;
2481 2482 2483 2484

	if (!ctx->nr_stat)
		return;

2485 2486
	update_context_time(ctx);

2487 2488
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2489

2490 2491
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2492

2493 2494
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2495

2496
		__perf_event_sync_stat(event, next_event);
2497

2498 2499
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2500 2501 2502
	}
}

2503 2504
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2505
{
P
Peter Zijlstra 已提交
2506
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507
	struct perf_event_context *next_ctx;
2508
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2509
	struct perf_cpu_context *cpuctx;
2510
	int do_switch = 1;
T
Thomas Gleixner 已提交
2511

P
Peter Zijlstra 已提交
2512 2513
	if (likely(!ctx))
		return;
2514

P
Peter Zijlstra 已提交
2515 2516
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2517 2518
		return;

2519
	rcu_read_lock();
P
Peter Zijlstra 已提交
2520
	next_ctx = next->perf_event_ctxp[ctxn];
2521 2522 2523 2524 2525 2526 2527
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2528
	if (!parent && !next_parent)
2529 2530 2531
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 2533 2534 2535 2536 2537 2538 2539 2540
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2541 2542
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543
		if (context_equiv(ctx, next_ctx)) {
2544 2545
			/*
			 * XXX do we need a memory barrier of sorts
2546
			 * wrt to rcu_dereference() of perf_event_ctxp
2547
			 */
P
Peter Zijlstra 已提交
2548 2549
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2550 2551 2552
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2553

2554
			perf_event_sync_stat(ctx, next_ctx);
2555
		}
2556 2557
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2558
	}
2559
unlock:
2560
	rcu_read_unlock();
2561

2562
	if (do_switch) {
2563
		raw_spin_lock(&ctx->lock);
2564
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2565
		cpuctx->task_ctx = NULL;
2566
		raw_spin_unlock(&ctx->lock);
2567
	}
T
Thomas Gleixner 已提交
2568 2569
}

P
Peter Zijlstra 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2584 2585
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2586 2587 2588 2589 2590
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2591 2592 2593 2594 2595 2596

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2597
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2598
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2599 2600
}

2601
static void task_ctx_sched_out(struct perf_event_context *ctx)
2602
{
P
Peter Zijlstra 已提交
2603
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2604

2605 2606
	if (!cpuctx->task_ctx)
		return;
2607 2608 2609 2610

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2611
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2612 2613 2614
	cpuctx->task_ctx = NULL;
}

2615 2616 2617 2618 2619 2620 2621
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2622 2623
}

2624
static void
2625
ctx_pinned_sched_in(struct perf_event_context *ctx,
2626
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2627
{
2628
	struct perf_event *event;
T
Thomas Gleixner 已提交
2629

2630 2631
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2632
			continue;
2633
		if (!event_filter_match(event))
2634 2635
			continue;

S
Stephane Eranian 已提交
2636 2637 2638 2639
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2640
		if (group_can_go_on(event, cpuctx, 1))
2641
			group_sched_in(event, cpuctx, ctx);
2642 2643 2644 2645 2646

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2647 2648 2649
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2650
		}
2651
	}
2652 2653 2654 2655
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2656
		      struct perf_cpu_context *cpuctx)
2657 2658 2659
{
	struct perf_event *event;
	int can_add_hw = 1;
2660

2661 2662 2663
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2664
			continue;
2665 2666
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2667
		 * of events:
2668
		 */
2669
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2670 2671
			continue;

S
Stephane Eranian 已提交
2672 2673 2674 2675
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2676
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2677
			if (group_sched_in(event, cpuctx, ctx))
2678
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2679
		}
T
Thomas Gleixner 已提交
2680
	}
2681 2682 2683 2684 2685
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2686 2687
	     enum event_type_t event_type,
	     struct task_struct *task)
2688
{
S
Stephane Eranian 已提交
2689
	u64 now;
2690
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2691

2692
	ctx->is_active |= event_type;
2693
	if (likely(!ctx->nr_events))
2694
		return;
2695

S
Stephane Eranian 已提交
2696 2697
	now = perf_clock();
	ctx->timestamp = now;
2698
	perf_cgroup_set_timestamp(task, ctx);
2699 2700 2701 2702
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2703
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2704
		ctx_pinned_sched_in(ctx, cpuctx);
2705 2706

	/* Then walk through the lower prio flexible groups */
2707
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2708
		ctx_flexible_sched_in(ctx, cpuctx);
2709 2710
}

2711
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2712 2713
			     enum event_type_t event_type,
			     struct task_struct *task)
2714 2715 2716
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2717
	ctx_sched_in(ctx, cpuctx, event_type, task);
2718 2719
}

S
Stephane Eranian 已提交
2720 2721
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2722
{
P
Peter Zijlstra 已提交
2723
	struct perf_cpu_context *cpuctx;
2724

P
Peter Zijlstra 已提交
2725
	cpuctx = __get_cpu_context(ctx);
2726 2727 2728
	if (cpuctx->task_ctx == ctx)
		return;

2729
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2730
	perf_pmu_disable(ctx->pmu);
2731 2732 2733 2734 2735 2736 2737
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2738 2739
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2740

2741 2742
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2743 2744 2745
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2746 2747 2748 2749
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2750
	perf_pmu_rotate_start(ctx->pmu);
2751 2752
}

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2822 2823
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2833
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2834
	}
S
Stephane Eranian 已提交
2835 2836 2837 2838 2839
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2840
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2841
		perf_cgroup_sched_in(prev, task);
2842 2843

	/* check for system-wide branch_stack events */
2844
	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2845
		perf_branch_stack_sched_in(prev, task);
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2875
#define REDUCE_FLS(a, b)		\
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2915 2916 2917
	if (!divisor)
		return dividend;

2918 2919 2920
	return div64_u64(dividend, divisor);
}

2921 2922 2923
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2924
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925
{
2926
	struct hw_perf_event *hwc = &event->hw;
2927
	s64 period, sample_period;
2928 2929
	s64 delta;

2930
	period = perf_calculate_period(event, nsec, count);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2941

2942
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 2944 2945
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2946
		local64_set(&hwc->period_left, 0);
2947 2948 2949

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2950
	}
2951 2952
}

2953 2954 2955 2956 2957 2958 2959
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2960
{
2961 2962
	struct perf_event *event;
	struct hw_perf_event *hwc;
2963
	u64 now, period = TICK_NSEC;
2964
	s64 delta;
2965

2966 2967 2968 2969 2970 2971
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2972 2973
		return;

2974
	raw_spin_lock(&ctx->lock);
2975
	perf_pmu_disable(ctx->pmu);
2976

2977
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 2980
			continue;

2981
		if (!event_filter_match(event))
2982 2983
			continue;

2984 2985
		perf_pmu_disable(event->pmu);

2986
		hwc = &event->hw;
2987

2988
		if (hwc->interrupts == MAX_INTERRUPTS) {
2989
			hwc->interrupts = 0;
2990
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2991
			event->pmu->start(event, 0);
2992 2993
		}

2994
		if (!event->attr.freq || !event->attr.sample_freq)
2995
			goto next;
2996

2997 2998 2999 3000 3001
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3002
		now = local64_read(&event->count);
3003 3004
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3005

3006 3007 3008
		/*
		 * restart the event
		 * reload only if value has changed
3009 3010 3011
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3012
		 */
3013
		if (delta > 0)
3014
			perf_adjust_period(event, period, delta, false);
3015 3016

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 3018
	next:
		perf_pmu_enable(event->pmu);
3019
	}
3020

3021
	perf_pmu_enable(ctx->pmu);
3022
	raw_spin_unlock(&ctx->lock);
3023 3024
}

3025
/*
3026
 * Round-robin a context's events:
3027
 */
3028
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3029
{
3030 3031 3032 3033 3034 3035
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3036 3037
}

3038
/*
3039 3040 3041
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
3042
 */
3043
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3044
{
P
Peter Zijlstra 已提交
3045
	struct perf_event_context *ctx = NULL;
3046
	int rotate = 0, remove = 1;
3047

3048
	if (cpuctx->ctx.nr_events) {
3049
		remove = 0;
3050 3051 3052
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3053

P
Peter Zijlstra 已提交
3054
	ctx = cpuctx->task_ctx;
3055
	if (ctx && ctx->nr_events) {
3056
		remove = 0;
3057 3058 3059
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3060

3061
	if (!rotate)
3062 3063
		goto done;

3064
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3065
	perf_pmu_disable(cpuctx->ctx.pmu);
3066

3067 3068 3069
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3070

3071 3072 3073
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3074

3075
	perf_event_sched_in(cpuctx, ctx, current);
3076

3077 3078
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3079
done:
3080 3081
	if (remove)
		list_del_init(&cpuctx->rotation_list);
3082 3083

	return rotate;
3084 3085
}

3086 3087 3088
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3089
	if (atomic_read(&nr_freq_events) ||
3090
	    __this_cpu_read(perf_throttled_count))
3091
		return false;
3092 3093
	else
		return true;
3094 3095 3096
}
#endif

3097 3098
void perf_event_task_tick(void)
{
3099
	struct list_head *head = this_cpu_ptr(&rotation_list);
3100
	struct perf_cpu_context *cpuctx, *tmp;
3101 3102
	struct perf_event_context *ctx;
	int throttled;
3103

3104 3105
	WARN_ON(!irqs_disabled());

3106 3107 3108
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3109
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
3110 3111 3112 3113 3114 3115
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
3116
	}
T
Thomas Gleixner 已提交
3117 3118
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3129
	__perf_event_mark_enabled(event);
3130 3131 3132 3133

	return 1;
}

3134
/*
3135
 * Enable all of a task's events that have been marked enable-on-exec.
3136 3137
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3138
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3139
{
3140
	struct perf_event_context *clone_ctx = NULL;
3141
	struct perf_event *event;
3142 3143
	unsigned long flags;
	int enabled = 0;
3144
	int ret;
3145 3146

	local_irq_save(flags);
3147
	if (!ctx || !ctx->nr_events)
3148 3149
		goto out;

3150 3151 3152 3153 3154 3155 3156
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3157
	perf_cgroup_sched_out(current, NULL);
3158

3159
	raw_spin_lock(&ctx->lock);
3160
	task_ctx_sched_out(ctx);
3161

3162
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3163 3164 3165
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3166 3167 3168
	}

	/*
3169
	 * Unclone this context if we enabled any event.
3170
	 */
3171
	if (enabled)
3172
		clone_ctx = unclone_ctx(ctx);
3173

3174
	raw_spin_unlock(&ctx->lock);
3175

3176 3177 3178
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3179
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3180
out:
3181
	local_irq_restore(flags);
3182 3183 3184

	if (clone_ctx)
		put_ctx(clone_ctx);
3185 3186
}

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3203
/*
3204
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3205
 */
3206
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3207
{
3208 3209
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3210
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3211

3212 3213 3214 3215
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3216 3217
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3218 3219 3220 3221
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3222
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3223
	if (ctx->is_active) {
3224
		update_context_time(ctx);
S
Stephane Eranian 已提交
3225 3226
		update_cgrp_time_from_event(event);
	}
3227
	update_event_times(event);
3228 3229
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3230
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3231 3232
}

P
Peter Zijlstra 已提交
3233 3234
static inline u64 perf_event_count(struct perf_event *event)
{
3235
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3236 3237
}

3238
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3239 3240
{
	/*
3241 3242
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3243
	 */
3244 3245 3246 3247
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3248 3249 3250
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3251
		raw_spin_lock_irqsave(&ctx->lock, flags);
3252 3253 3254 3255 3256
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3257
		if (ctx->is_active) {
3258
			update_context_time(ctx);
S
Stephane Eranian 已提交
3259 3260
			update_cgrp_time_from_event(event);
		}
3261
		update_event_times(event);
3262
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3263 3264
	}

P
Peter Zijlstra 已提交
3265
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3266 3267
}

3268
/*
3269
 * Initialize the perf_event context in a task_struct:
3270
 */
3271
static void __perf_event_init_context(struct perf_event_context *ctx)
3272
{
3273
	raw_spin_lock_init(&ctx->lock);
3274
	mutex_init(&ctx->mutex);
3275 3276
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3277 3278
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3279
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3295
	}
3296 3297 3298
	ctx->pmu = pmu;

	return ctx;
3299 3300
}

3301 3302 3303 3304 3305
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3306 3307

	rcu_read_lock();
3308
	if (!vpid)
T
Thomas Gleixner 已提交
3309 3310
		task = current;
	else
3311
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3312 3313 3314 3315 3316 3317 3318 3319
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3320 3321 3322 3323
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3324 3325 3326 3327 3328 3329 3330
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3331 3332 3333
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3334
static struct perf_event_context *
M
Matt Helsley 已提交
3335
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3336
{
3337
	struct perf_event_context *ctx, *clone_ctx = NULL;
3338
	struct perf_cpu_context *cpuctx;
3339
	unsigned long flags;
P
Peter Zijlstra 已提交
3340
	int ctxn, err;
T
Thomas Gleixner 已提交
3341

3342
	if (!task) {
3343
		/* Must be root to operate on a CPU event: */
3344
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3345 3346 3347
			return ERR_PTR(-EACCES);

		/*
3348
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3349 3350 3351
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3352
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3353 3354
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3355
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3356
		ctx = &cpuctx->ctx;
3357
		get_ctx(ctx);
3358
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3359 3360 3361 3362

		return ctx;
	}

P
Peter Zijlstra 已提交
3363 3364 3365 3366 3367
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3368
retry:
P
Peter Zijlstra 已提交
3369
	ctx = perf_lock_task_context(task, ctxn, &flags);
3370
	if (ctx) {
3371
		clone_ctx = unclone_ctx(ctx);
3372
		++ctx->pin_count;
3373
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3374 3375 3376

		if (clone_ctx)
			put_ctx(clone_ctx);
3377
	} else {
3378
		ctx = alloc_perf_context(pmu, task);
3379 3380 3381
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3393
		else {
3394
			get_ctx(ctx);
3395
			++ctx->pin_count;
3396
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3397
		}
3398 3399 3400
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3401
			put_ctx(ctx);
3402 3403 3404 3405

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3406 3407 3408
		}
	}

T
Thomas Gleixner 已提交
3409
	return ctx;
3410

P
Peter Zijlstra 已提交
3411
errout:
3412
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3413 3414
}

L
Li Zefan 已提交
3415 3416
static void perf_event_free_filter(struct perf_event *event);

3417
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3418
{
3419
	struct perf_event *event;
P
Peter Zijlstra 已提交
3420

3421 3422 3423
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3424
	perf_event_free_filter(event);
3425
	kfree(event);
P
Peter Zijlstra 已提交
3426 3427
}

3428
static void ring_buffer_put(struct ring_buffer *rb);
3429 3430
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3431

3432
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3433
{
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3458 3459
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3460 3461 3462 3463 3464 3465 3466
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3467

3468 3469
static void __free_event(struct perf_event *event)
{
3470
	if (!event->parent) {
3471 3472
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3473
	}
3474

3475 3476 3477 3478 3479 3480
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3481 3482 3483
	if (event->pmu)
		module_put(event->pmu->module);

3484 3485
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3486 3487

static void _free_event(struct perf_event *event)
3488
{
3489
	irq_work_sync(&event->pending);
3490

3491
	unaccount_event(event);
3492

3493
	if (event->rb) {
3494 3495 3496 3497 3498 3499 3500
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3501
		ring_buffer_attach(event, NULL);
3502
		mutex_unlock(&event->mmap_mutex);
3503 3504
	}

S
Stephane Eranian 已提交
3505 3506 3507
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3508
	__free_event(event);
3509 3510
}

P
Peter Zijlstra 已提交
3511 3512 3513 3514 3515
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3516
{
P
Peter Zijlstra 已提交
3517 3518 3519 3520 3521 3522
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3523

P
Peter Zijlstra 已提交
3524
	_free_event(event);
T
Thomas Gleixner 已提交
3525 3526
}

3527
/*
3528
 * Remove user event from the owner task.
3529
 */
3530
static void perf_remove_from_owner(struct perf_event *event)
3531
{
P
Peter Zijlstra 已提交
3532
	struct task_struct *owner;
3533

P
Peter Zijlstra 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3575 3576 3577 3578 3579 3580 3581
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3582
	struct perf_event_context *ctx;
3583 3584 3585 3586 3587 3588

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3589

P
Peter Zijlstra 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3602 3603
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3604 3605 3606 3607
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3608 3609
}

P
Peter Zijlstra 已提交
3610 3611 3612 3613 3614 3615 3616
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3617 3618 3619 3620
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3621 3622
}

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3659
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3660
{
3661
	struct perf_event *child;
3662 3663
	u64 total = 0;

3664 3665 3666
	*enabled = 0;
	*running = 0;

3667
	mutex_lock(&event->child_mutex);
3668
	total += perf_event_read(event);
3669 3670 3671 3672 3673 3674
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3675
		total += perf_event_read(child);
3676 3677 3678
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3679
	mutex_unlock(&event->child_mutex);
3680 3681 3682

	return total;
}
3683
EXPORT_SYMBOL_GPL(perf_event_read_value);
3684

3685
static int perf_event_read_group(struct perf_event *event,
3686 3687
				   u64 read_format, char __user *buf)
{
3688
	struct perf_event *leader = event->group_leader, *sub;
3689
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3690
	int n = 0, size = 0, ret;
3691
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3692 3693 3694
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3695

3696
	count = perf_event_read_value(leader, &enabled, &running);
3697 3698

	values[n++] = 1 + leader->nr_siblings;
3699 3700 3701 3702
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3703 3704 3705
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3706 3707 3708 3709

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3710
		return -EFAULT;
3711

3712
	ret = size;
3713

3714
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3715
		n = 0;
3716

3717
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3718 3719 3720 3721 3722
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3723
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3724
			return -EFAULT;
3725
		}
3726 3727

		ret += size;
3728 3729
	}

3730
	return ret;
3731 3732
}

3733
static int perf_event_read_one(struct perf_event *event,
3734 3735
				 u64 read_format, char __user *buf)
{
3736
	u64 enabled, running;
3737 3738 3739
	u64 values[4];
	int n = 0;

3740 3741 3742 3743 3744
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3745
	if (read_format & PERF_FORMAT_ID)
3746
		values[n++] = primary_event_id(event);
3747 3748 3749 3750 3751 3752 3753

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3767
/*
3768
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3769 3770
 */
static ssize_t
3771
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3772
{
3773
	u64 read_format = event->attr.read_format;
3774
	int ret;
T
Thomas Gleixner 已提交
3775

3776
	/*
3777
	 * Return end-of-file for a read on a event that is in
3778 3779 3780
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3781
	if (event->state == PERF_EVENT_STATE_ERROR)
3782 3783
		return 0;

3784
	if (count < event->read_size)
3785 3786
		return -ENOSPC;

3787
	WARN_ON_ONCE(event->ctx->parent_ctx);
3788
	if (read_format & PERF_FORMAT_GROUP)
3789
		ret = perf_event_read_group(event, read_format, buf);
3790
	else
3791
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3792

3793
	return ret;
T
Thomas Gleixner 已提交
3794 3795 3796 3797 3798
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3799
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3800 3801
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3802

P
Peter Zijlstra 已提交
3803 3804 3805 3806 3807
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3808 3809 3810 3811
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3812
	struct perf_event *event = file->private_data;
3813
	struct ring_buffer *rb;
3814
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3815

3816
	poll_wait(file, &event->waitq, wait);
3817

3818
	if (is_event_hup(event))
3819
		return events;
P
Peter Zijlstra 已提交
3820

3821
	/*
3822 3823
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3824 3825
	 */
	mutex_lock(&event->mmap_mutex);
3826 3827
	rb = event->rb;
	if (rb)
3828
		events = atomic_xchg(&rb->poll, 0);
3829
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3830 3831 3832
	return events;
}

P
Peter Zijlstra 已提交
3833
static void _perf_event_reset(struct perf_event *event)
3834
{
3835
	(void)perf_event_read(event);
3836
	local64_set(&event->count, 0);
3837
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3838 3839
}

3840
/*
3841 3842 3843 3844
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3845
 */
3846 3847
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3848
{
3849
	struct perf_event *child;
P
Peter Zijlstra 已提交
3850

3851
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3852

3853 3854 3855
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3856
		func(child);
3857
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3858 3859
}

3860 3861
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3862
{
3863 3864
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3865

P
Peter Zijlstra 已提交
3866 3867
	lockdep_assert_held(&ctx->mutex);

3868
	event = event->group_leader;
3869

3870 3871
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3872
		perf_event_for_each_child(sibling, func);
3873 3874
}

3875
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3876
{
3877
	struct perf_event_context *ctx = event->ctx;
3878
	int ret = 0, active;
3879 3880
	u64 value;

3881
	if (!is_sampling_event(event))
3882 3883
		return -EINVAL;

3884
	if (copy_from_user(&value, arg, sizeof(value)))
3885 3886 3887 3888 3889
		return -EFAULT;

	if (!value)
		return -EINVAL;

3890
	raw_spin_lock_irq(&ctx->lock);
3891 3892
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3893 3894 3895 3896
			ret = -EINVAL;
			goto unlock;
		}

3897
		event->attr.sample_freq = value;
3898
	} else {
3899 3900
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3901
	}
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3916
unlock:
3917
	raw_spin_unlock_irq(&ctx->lock);
3918 3919 3920 3921

	return ret;
}

3922 3923
static const struct file_operations perf_fops;

3924
static inline int perf_fget_light(int fd, struct fd *p)
3925
{
3926 3927 3928
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3929

3930 3931 3932
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3933
	}
3934 3935
	*p = f;
	return 0;
3936 3937 3938 3939
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3940
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3941

P
Peter Zijlstra 已提交
3942
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3943
{
3944
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3945
	u32 flags = arg;
3946 3947

	switch (cmd) {
3948
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
3949
		func = _perf_event_enable;
3950
		break;
3951
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
3952
		func = _perf_event_disable;
3953
		break;
3954
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
3955
		func = _perf_event_reset;
3956
		break;
P
Peter Zijlstra 已提交
3957

3958
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
3959
		return _perf_event_refresh(event, arg);
3960

3961 3962
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3963

3964 3965 3966 3967 3968 3969 3970 3971 3972
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3973
	case PERF_EVENT_IOC_SET_OUTPUT:
3974 3975 3976
	{
		int ret;
		if (arg != -1) {
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3987 3988 3989
		}
		return ret;
	}
3990

L
Li Zefan 已提交
3991 3992 3993
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3994
	default:
P
Peter Zijlstra 已提交
3995
		return -ENOTTY;
3996
	}
P
Peter Zijlstra 已提交
3997 3998

	if (flags & PERF_IOC_FLAG_GROUP)
3999
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4000
	else
4001
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4002 4003

	return 0;
4004 4005
}

P
Peter Zijlstra 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4039
int perf_event_task_enable(void)
4040
{
P
Peter Zijlstra 已提交
4041
	struct perf_event_context *ctx;
4042
	struct perf_event *event;
4043

4044
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4045 4046 4047 4048 4049
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4050
	mutex_unlock(&current->perf_event_mutex);
4051 4052 4053 4054

	return 0;
}

4055
int perf_event_task_disable(void)
4056
{
P
Peter Zijlstra 已提交
4057
	struct perf_event_context *ctx;
4058
	struct perf_event *event;
4059

4060
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4061 4062 4063 4064 4065
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4066
	mutex_unlock(&current->perf_event_mutex);
4067 4068 4069 4070

	return 0;
}

4071
static int perf_event_index(struct perf_event *event)
4072
{
P
Peter Zijlstra 已提交
4073 4074 4075
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4076
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4077 4078
		return 0;

4079
	return event->pmu->event_idx(event);
4080 4081
}

4082
static void calc_timer_values(struct perf_event *event,
4083
				u64 *now,
4084 4085
				u64 *enabled,
				u64 *running)
4086
{
4087
	u64 ctx_time;
4088

4089 4090
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4091 4092 4093 4094
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

4115
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
4116 4117 4118
{
}

4119 4120 4121 4122 4123
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4124
void perf_event_update_userpage(struct perf_event *event)
4125
{
4126
	struct perf_event_mmap_page *userpg;
4127
	struct ring_buffer *rb;
4128
	u64 enabled, running, now;
4129 4130

	rcu_read_lock();
4131 4132 4133 4134
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4135 4136 4137 4138 4139 4140 4141 4142 4143
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4144
	calc_timer_values(event, &now, &enabled, &running);
4145

4146
	userpg = rb->user_page;
4147 4148 4149 4150 4151
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4152
	++userpg->lock;
4153
	barrier();
4154
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4155
	userpg->offset = perf_event_count(event);
4156
	if (userpg->index)
4157
		userpg->offset -= local64_read(&event->hw.prev_count);
4158

4159
	userpg->time_enabled = enabled +
4160
			atomic64_read(&event->child_total_time_enabled);
4161

4162
	userpg->time_running = running +
4163
			atomic64_read(&event->child_total_time_running);
4164

4165
	arch_perf_update_userpage(userpg, now);
4166

4167
	barrier();
4168
	++userpg->lock;
4169
	preempt_enable();
4170
unlock:
4171
	rcu_read_unlock();
4172 4173
}

4174 4175 4176
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4177
	struct ring_buffer *rb;
4178 4179 4180 4181 4182 4183 4184 4185 4186
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4187 4188
	rb = rcu_dereference(event->rb);
	if (!rb)
4189 4190 4191 4192 4193
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4194
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4209 4210 4211
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4212
	struct ring_buffer *old_rb = NULL;
4213 4214
	unsigned long flags;

4215 4216 4217 4218 4219 4220
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4221

4222 4223 4224
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4225

4226 4227 4228 4229
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4230

4231 4232 4233 4234
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4235

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4253 4254 4255 4256 4257 4258 4259 4260
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4261 4262 4263 4264
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4265 4266 4267
	rcu_read_unlock();
}

4268
static void rb_free_rcu(struct rcu_head *rcu_head)
4269
{
4270
	struct ring_buffer *rb;
4271

4272 4273
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4274 4275
}

4276
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4277
{
4278
	struct ring_buffer *rb;
4279

4280
	rcu_read_lock();
4281 4282 4283 4284
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4285 4286 4287
	}
	rcu_read_unlock();

4288
	return rb;
4289 4290
}

4291
static void ring_buffer_put(struct ring_buffer *rb)
4292
{
4293
	if (!atomic_dec_and_test(&rb->refcount))
4294
		return;
4295

4296
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4297

4298
	call_rcu(&rb->rcu_head, rb_free_rcu);
4299 4300 4301 4302
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4303
	struct perf_event *event = vma->vm_file->private_data;
4304

4305
	atomic_inc(&event->mmap_count);
4306
	atomic_inc(&event->rb->mmap_count);
4307 4308
}

4309 4310 4311 4312 4313 4314 4315 4316
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4317 4318
static void perf_mmap_close(struct vm_area_struct *vma)
{
4319
	struct perf_event *event = vma->vm_file->private_data;
4320

4321
	struct ring_buffer *rb = ring_buffer_get(event);
4322 4323 4324
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4325

4326 4327 4328
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4329
		goto out_put;
4330

4331
	ring_buffer_attach(event, NULL);
4332 4333 4334
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4335 4336
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4337

4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4354

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4366 4367 4368
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4369
		mutex_unlock(&event->mmap_mutex);
4370
		put_event(event);
4371

4372 4373 4374 4375 4376
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4377
	}
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4393
out_put:
4394
	ring_buffer_put(rb); /* could be last */
4395 4396
}

4397
static const struct vm_operations_struct perf_mmap_vmops = {
4398 4399 4400 4401
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4402 4403 4404 4405
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4406
	struct perf_event *event = file->private_data;
4407
	unsigned long user_locked, user_lock_limit;
4408
	struct user_struct *user = current_user();
4409
	unsigned long locked, lock_limit;
4410
	struct ring_buffer *rb;
4411 4412
	unsigned long vma_size;
	unsigned long nr_pages;
4413
	long user_extra, extra;
4414
	int ret = 0, flags = 0;
4415

4416 4417 4418
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4419
	 * same rb.
4420 4421 4422 4423
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4424
	if (!(vma->vm_flags & VM_SHARED))
4425
		return -EINVAL;
4426 4427 4428 4429

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4430
	/*
4431
	 * If we have rb pages ensure they're a power-of-two number, so we
4432 4433 4434
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4435 4436
		return -EINVAL;

4437
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4438 4439
		return -EINVAL;

4440 4441
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4442

4443
	WARN_ON_ONCE(event->ctx->parent_ctx);
4444
again:
4445
	mutex_lock(&event->mmap_mutex);
4446
	if (event->rb) {
4447
		if (event->rb->nr_pages != nr_pages) {
4448
			ret = -EINVAL;
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4462 4463 4464
		goto unlock;
	}

4465
	user_extra = nr_pages + 1;
4466
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4467 4468 4469 4470 4471 4472

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4473
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4474

4475 4476 4477
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4478

4479
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4480
	lock_limit >>= PAGE_SHIFT;
4481
	locked = vma->vm_mm->pinned_vm + extra;
4482

4483 4484
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4485 4486 4487
		ret = -EPERM;
		goto unlock;
	}
4488

4489
	WARN_ON(event->rb);
4490

4491
	if (vma->vm_flags & VM_WRITE)
4492
		flags |= RING_BUFFER_WRITABLE;
4493

4494 4495 4496 4497
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4498
	if (!rb) {
4499
		ret = -ENOMEM;
4500
		goto unlock;
4501
	}
P
Peter Zijlstra 已提交
4502

4503
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4504 4505
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4506

4507
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4508 4509
	vma->vm_mm->pinned_vm += extra;

4510
	ring_buffer_attach(event, rb);
4511

4512
	perf_event_init_userpage(event);
4513 4514
	perf_event_update_userpage(event);

4515
unlock:
4516 4517
	if (!ret)
		atomic_inc(&event->mmap_count);
4518
	mutex_unlock(&event->mmap_mutex);
4519

4520 4521 4522 4523
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4524
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4525
	vma->vm_ops = &perf_mmap_vmops;
4526 4527

	return ret;
4528 4529
}

P
Peter Zijlstra 已提交
4530 4531
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4532
	struct inode *inode = file_inode(filp);
4533
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4534 4535 4536
	int retval;

	mutex_lock(&inode->i_mutex);
4537
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4538 4539 4540 4541 4542 4543 4544 4545
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4546
static const struct file_operations perf_fops = {
4547
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4548 4549 4550
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4551
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4552
	.compat_ioctl		= perf_compat_ioctl,
4553
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4554
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4555 4556
};

4557
/*
4558
 * Perf event wakeup
4559 4560 4561 4562 4563
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4564
void perf_event_wakeup(struct perf_event *event)
4565
{
4566
	ring_buffer_wakeup(event);
4567

4568 4569 4570
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4571
	}
4572 4573
}

4574
static void perf_pending_event(struct irq_work *entry)
4575
{
4576 4577
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4578

4579 4580 4581
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4582 4583
	}

4584 4585 4586
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4587 4588 4589
	}
}

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4626
static void perf_sample_regs_user(struct perf_regs *regs_user,
4627 4628
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4629
{
4630 4631
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4632
		regs_user->regs = regs;
4633 4634
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4635 4636 4637
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4638 4639 4640
	}
}

4641 4642 4643 4644 4645 4646 4647 4648
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4744 4745 4746
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4762
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4774 4775 4776
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4801 4802 4803

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4804 4805
}

4806 4807 4808
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4809 4810 4811 4812 4813
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4814
static void perf_output_read_one(struct perf_output_handle *handle,
4815 4816
				 struct perf_event *event,
				 u64 enabled, u64 running)
4817
{
4818
	u64 read_format = event->attr.read_format;
4819 4820 4821
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4822
	values[n++] = perf_event_count(event);
4823
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4824
		values[n++] = enabled +
4825
			atomic64_read(&event->child_total_time_enabled);
4826 4827
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4828
		values[n++] = running +
4829
			atomic64_read(&event->child_total_time_running);
4830 4831
	}
	if (read_format & PERF_FORMAT_ID)
4832
		values[n++] = primary_event_id(event);
4833

4834
	__output_copy(handle, values, n * sizeof(u64));
4835 4836 4837
}

/*
4838
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4839 4840
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4841 4842
			    struct perf_event *event,
			    u64 enabled, u64 running)
4843
{
4844 4845
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4846 4847 4848 4849 4850 4851
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4852
		values[n++] = enabled;
4853 4854

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4855
		values[n++] = running;
4856

4857
	if (leader != event)
4858 4859
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4860
	values[n++] = perf_event_count(leader);
4861
	if (read_format & PERF_FORMAT_ID)
4862
		values[n++] = primary_event_id(leader);
4863

4864
	__output_copy(handle, values, n * sizeof(u64));
4865

4866
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4867 4868
		n = 0;

4869 4870
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4871 4872
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4873
		values[n++] = perf_event_count(sub);
4874
		if (read_format & PERF_FORMAT_ID)
4875
			values[n++] = primary_event_id(sub);
4876

4877
		__output_copy(handle, values, n * sizeof(u64));
4878 4879 4880
	}
}

4881 4882 4883
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4884
static void perf_output_read(struct perf_output_handle *handle,
4885
			     struct perf_event *event)
4886
{
4887
	u64 enabled = 0, running = 0, now;
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4899
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4900
		calc_timer_values(event, &now, &enabled, &running);
4901

4902
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4903
		perf_output_read_group(handle, event, enabled, running);
4904
	else
4905
		perf_output_read_one(handle, event, enabled, running);
4906 4907
}

4908 4909 4910
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4911
			struct perf_event *event)
4912 4913 4914 4915 4916
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4917 4918 4919
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4945
		perf_output_read(handle, event);
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4956
			__output_copy(handle, data->callchain, size);
4957 4958 4959 4960 4961 4962 4963 4964 4965
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4966 4967
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4979

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5014

5015
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5016 5017 5018
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5019
	}
A
Andi Kleen 已提交
5020 5021 5022

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5023 5024 5025

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5026

A
Andi Kleen 已提交
5027 5028 5029
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5060 5061 5062 5063
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5064
			 struct perf_event *event,
5065
			 struct pt_regs *regs)
5066
{
5067
	u64 sample_type = event->attr.sample_type;
5068

5069
	header->type = PERF_RECORD_SAMPLE;
5070
	header->size = sizeof(*header) + event->header_size;
5071 5072 5073

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5074

5075
	__perf_event_header__init_id(header, data, event);
5076

5077
	if (sample_type & PERF_SAMPLE_IP)
5078 5079
		data->ip = perf_instruction_pointer(regs);

5080
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5081
		int size = 1;
5082

5083
		data->callchain = perf_callchain(event, regs);
5084 5085 5086 5087 5088

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5089 5090
	}

5091
	if (sample_type & PERF_SAMPLE_RAW) {
5092 5093 5094 5095 5096 5097 5098 5099
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5100
		header->size += size;
5101
	}
5102 5103 5104 5105 5106 5107 5108 5109 5110

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5111

5112
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5113 5114
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5115

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5139
						     data->regs_user.regs);
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5167
}
5168

5169
static void perf_event_output(struct perf_event *event,
5170 5171 5172 5173 5174
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5175

5176 5177 5178
	/* protect the callchain buffers */
	rcu_read_lock();

5179
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5180

5181
	if (perf_output_begin(&handle, event, header.size))
5182
		goto exit;
5183

5184
	perf_output_sample(&handle, &header, data, event);
5185

5186
	perf_output_end(&handle);
5187 5188 5189

exit:
	rcu_read_unlock();
5190 5191
}

5192
/*
5193
 * read event_id
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5204
perf_event_read_event(struct perf_event *event,
5205 5206 5207
			struct task_struct *task)
{
	struct perf_output_handle handle;
5208
	struct perf_sample_data sample;
5209
	struct perf_read_event read_event = {
5210
		.header = {
5211
			.type = PERF_RECORD_READ,
5212
			.misc = 0,
5213
			.size = sizeof(read_event) + event->read_size,
5214
		},
5215 5216
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5217
	};
5218
	int ret;
5219

5220
	perf_event_header__init_id(&read_event.header, &sample, event);
5221
	ret = perf_output_begin(&handle, event, read_event.header.size);
5222 5223 5224
	if (ret)
		return;

5225
	perf_output_put(&handle, read_event);
5226
	perf_output_read(&handle, event);
5227
	perf_event__output_id_sample(event, &handle, &sample);
5228

5229 5230 5231
	perf_output_end(&handle);
}

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5246
		output(event, data);
5247 5248 5249 5250
	}
}

static void
5251
perf_event_aux(perf_event_aux_output_cb output, void *data,
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5264
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5265 5266 5267 5268 5269 5270 5271
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5272
			perf_event_aux_ctx(ctx, output, data);
5273 5274 5275 5276 5277 5278
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5279
		perf_event_aux_ctx(task_ctx, output, data);
5280 5281 5282 5283 5284
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5285
/*
P
Peter Zijlstra 已提交
5286 5287
 * task tracking -- fork/exit
 *
5288
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5289 5290
 */

P
Peter Zijlstra 已提交
5291
struct perf_task_event {
5292
	struct task_struct		*task;
5293
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5294 5295 5296 5297 5298 5299

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5300 5301
		u32				tid;
		u32				ptid;
5302
		u64				time;
5303
	} event_id;
P
Peter Zijlstra 已提交
5304 5305
};

5306 5307
static int perf_event_task_match(struct perf_event *event)
{
5308 5309 5310
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5311 5312
}

5313
static void perf_event_task_output(struct perf_event *event,
5314
				   void *data)
P
Peter Zijlstra 已提交
5315
{
5316
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5317
	struct perf_output_handle handle;
5318
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5319
	struct task_struct *task = task_event->task;
5320
	int ret, size = task_event->event_id.header.size;
5321

5322 5323 5324
	if (!perf_event_task_match(event))
		return;

5325
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5326

5327
	ret = perf_output_begin(&handle, event,
5328
				task_event->event_id.header.size);
5329
	if (ret)
5330
		goto out;
P
Peter Zijlstra 已提交
5331

5332 5333
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5334

5335 5336
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5337

5338
	perf_output_put(&handle, task_event->event_id);
5339

5340 5341
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5342
	perf_output_end(&handle);
5343 5344
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5345 5346
}

5347 5348
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5349
			      int new)
P
Peter Zijlstra 已提交
5350
{
P
Peter Zijlstra 已提交
5351
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5352

5353 5354 5355
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5356 5357
		return;

P
Peter Zijlstra 已提交
5358
	task_event = (struct perf_task_event){
5359 5360
		.task	  = task,
		.task_ctx = task_ctx,
5361
		.event_id    = {
P
Peter Zijlstra 已提交
5362
			.header = {
5363
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5364
				.misc = 0,
5365
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5366
			},
5367 5368
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5369 5370
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5371
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5372 5373 5374
		},
	};

5375
	perf_event_aux(perf_event_task_output,
5376 5377
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5378 5379
}

5380
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5381
{
5382
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5383 5384
}

5385 5386 5387 5388 5389
/*
 * comm tracking
 */

struct perf_comm_event {
5390 5391
	struct task_struct	*task;
	char			*comm;
5392 5393 5394 5395 5396 5397 5398
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5399
	} event_id;
5400 5401
};

5402 5403 5404 5405 5406
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5407
static void perf_event_comm_output(struct perf_event *event,
5408
				   void *data)
5409
{
5410
	struct perf_comm_event *comm_event = data;
5411
	struct perf_output_handle handle;
5412
	struct perf_sample_data sample;
5413
	int size = comm_event->event_id.header.size;
5414 5415
	int ret;

5416 5417 5418
	if (!perf_event_comm_match(event))
		return;

5419 5420
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5421
				comm_event->event_id.header.size);
5422 5423

	if (ret)
5424
		goto out;
5425

5426 5427
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5428

5429
	perf_output_put(&handle, comm_event->event_id);
5430
	__output_copy(&handle, comm_event->comm,
5431
				   comm_event->comm_size);
5432 5433 5434

	perf_event__output_id_sample(event, &handle, &sample);

5435
	perf_output_end(&handle);
5436 5437
out:
	comm_event->event_id.header.size = size;
5438 5439
}

5440
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5441
{
5442
	char comm[TASK_COMM_LEN];
5443 5444
	unsigned int size;

5445
	memset(comm, 0, sizeof(comm));
5446
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5447
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5448 5449 5450 5451

	comm_event->comm = comm;
	comm_event->comm_size = size;

5452
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5453

5454
	perf_event_aux(perf_event_comm_output,
5455 5456
		       comm_event,
		       NULL);
5457 5458
}

5459
void perf_event_comm(struct task_struct *task, bool exec)
5460
{
5461 5462
	struct perf_comm_event comm_event;

5463
	if (!atomic_read(&nr_comm_events))
5464
		return;
5465

5466
	comm_event = (struct perf_comm_event){
5467
		.task	= task,
5468 5469
		/* .comm      */
		/* .comm_size */
5470
		.event_id  = {
5471
			.header = {
5472
				.type = PERF_RECORD_COMM,
5473
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5474 5475 5476 5477
				/* .size */
			},
			/* .pid */
			/* .tid */
5478 5479 5480
		},
	};

5481
	perf_event_comm_event(&comm_event);
5482 5483
}

5484 5485 5486 5487 5488
/*
 * mmap tracking
 */

struct perf_mmap_event {
5489 5490 5491 5492
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5493 5494 5495
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5496
	u32			prot, flags;
5497 5498 5499 5500 5501 5502 5503 5504 5505

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5506
	} event_id;
5507 5508
};

5509 5510 5511 5512 5513 5514 5515 5516
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5517
	       (executable && (event->attr.mmap || event->attr.mmap2));
5518 5519
}

5520
static void perf_event_mmap_output(struct perf_event *event,
5521
				   void *data)
5522
{
5523
	struct perf_mmap_event *mmap_event = data;
5524
	struct perf_output_handle handle;
5525
	struct perf_sample_data sample;
5526
	int size = mmap_event->event_id.header.size;
5527
	int ret;
5528

5529 5530 5531
	if (!perf_event_mmap_match(event, data))
		return;

5532 5533 5534 5535 5536
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5537
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5538 5539
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5540 5541
	}

5542 5543
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5544
				mmap_event->event_id.header.size);
5545
	if (ret)
5546
		goto out;
5547

5548 5549
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5550

5551
	perf_output_put(&handle, mmap_event->event_id);
5552 5553 5554 5555 5556 5557

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5558 5559
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5560 5561
	}

5562
	__output_copy(&handle, mmap_event->file_name,
5563
				   mmap_event->file_size);
5564 5565 5566

	perf_event__output_id_sample(event, &handle, &sample);

5567
	perf_output_end(&handle);
5568 5569
out:
	mmap_event->event_id.header.size = size;
5570 5571
}

5572
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5573
{
5574 5575
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5576 5577
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5578
	u32 prot = 0, flags = 0;
5579 5580 5581
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5582
	char *name;
5583

5584
	if (file) {
5585 5586
		struct inode *inode;
		dev_t dev;
5587

5588
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5589
		if (!buf) {
5590 5591
			name = "//enomem";
			goto cpy_name;
5592
		}
5593
		/*
5594
		 * d_path() works from the end of the rb backwards, so we
5595 5596 5597
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5598
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5599
		if (IS_ERR(name)) {
5600 5601
			name = "//toolong";
			goto cpy_name;
5602
		}
5603 5604 5605 5606 5607 5608
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5631
		goto got_name;
5632
	} else {
5633 5634 5635 5636 5637 5638
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5639
		name = (char *)arch_vma_name(vma);
5640 5641
		if (name)
			goto cpy_name;
5642

5643
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5644
				vma->vm_end >= vma->vm_mm->brk) {
5645 5646
			name = "[heap]";
			goto cpy_name;
5647 5648
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5649
				vma->vm_end >= vma->vm_mm->start_stack) {
5650 5651
			name = "[stack]";
			goto cpy_name;
5652 5653
		}

5654 5655
		name = "//anon";
		goto cpy_name;
5656 5657
	}

5658 5659 5660
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5661
got_name:
5662 5663 5664 5665 5666 5667 5668 5669
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5670 5671 5672

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5673 5674 5675 5676
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5677 5678
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5679

5680 5681 5682
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5683
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5684

5685
	perf_event_aux(perf_event_mmap_output,
5686 5687
		       mmap_event,
		       NULL);
5688

5689 5690 5691
	kfree(buf);
}

5692
void perf_event_mmap(struct vm_area_struct *vma)
5693
{
5694 5695
	struct perf_mmap_event mmap_event;

5696
	if (!atomic_read(&nr_mmap_events))
5697 5698 5699
		return;

	mmap_event = (struct perf_mmap_event){
5700
		.vma	= vma,
5701 5702
		/* .file_name */
		/* .file_size */
5703
		.event_id  = {
5704
			.header = {
5705
				.type = PERF_RECORD_MMAP,
5706
				.misc = PERF_RECORD_MISC_USER,
5707 5708 5709 5710
				/* .size */
			},
			/* .pid */
			/* .tid */
5711 5712
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5713
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5714
		},
5715 5716 5717 5718
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5719 5720
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5721 5722
	};

5723
	perf_event_mmap_event(&mmap_event);
5724 5725
}

5726 5727 5728 5729
/*
 * IRQ throttle logging
 */

5730
static void perf_log_throttle(struct perf_event *event, int enable)
5731 5732
{
	struct perf_output_handle handle;
5733
	struct perf_sample_data sample;
5734 5735 5736 5737 5738
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5739
		u64				id;
5740
		u64				stream_id;
5741 5742
	} throttle_event = {
		.header = {
5743
			.type = PERF_RECORD_THROTTLE,
5744 5745 5746
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5747
		.time		= perf_clock(),
5748 5749
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5750 5751
	};

5752
	if (enable)
5753
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5754

5755 5756 5757
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5758
				throttle_event.header.size);
5759 5760 5761 5762
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5763
	perf_event__output_id_sample(event, &handle, &sample);
5764 5765 5766
	perf_output_end(&handle);
}

5767
/*
5768
 * Generic event overflow handling, sampling.
5769 5770
 */

5771
static int __perf_event_overflow(struct perf_event *event,
5772 5773
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5774
{
5775 5776
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5777
	u64 seq;
5778 5779
	int ret = 0;

5780 5781 5782 5783 5784 5785 5786
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5787 5788 5789 5790 5791 5792 5793 5794 5795
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5796 5797
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5798
			tick_nohz_full_kick();
5799 5800
			ret = 1;
		}
5801
	}
5802

5803
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5804
		u64 now = perf_clock();
5805
		s64 delta = now - hwc->freq_time_stamp;
5806

5807
		hwc->freq_time_stamp = now;
5808

5809
		if (delta > 0 && delta < 2*TICK_NSEC)
5810
			perf_adjust_period(event, delta, hwc->last_period, true);
5811 5812
	}

5813 5814
	/*
	 * XXX event_limit might not quite work as expected on inherited
5815
	 * events
5816 5817
	 */

5818 5819
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5820
		ret = 1;
5821
		event->pending_kill = POLL_HUP;
5822 5823
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5824 5825
	}

5826
	if (event->overflow_handler)
5827
		event->overflow_handler(event, data, regs);
5828
	else
5829
		perf_event_output(event, data, regs);
5830

P
Peter Zijlstra 已提交
5831
	if (event->fasync && event->pending_kill) {
5832 5833
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5834 5835
	}

5836
	return ret;
5837 5838
}

5839
int perf_event_overflow(struct perf_event *event,
5840 5841
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5842
{
5843
	return __perf_event_overflow(event, 1, data, regs);
5844 5845
}

5846
/*
5847
 * Generic software event infrastructure
5848 5849
 */

5850 5851 5852 5853 5854 5855 5856
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5857 5858 5859

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5860 5861 5862 5863
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5864
/*
5865 5866
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5867 5868 5869 5870
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5871
u64 perf_swevent_set_period(struct perf_event *event)
5872
{
5873
	struct hw_perf_event *hwc = &event->hw;
5874 5875 5876 5877 5878
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5879 5880

again:
5881
	old = val = local64_read(&hwc->period_left);
5882 5883
	if (val < 0)
		return 0;
5884

5885 5886 5887
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5888
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5889
		goto again;
5890

5891
	return nr;
5892 5893
}

5894
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5895
				    struct perf_sample_data *data,
5896
				    struct pt_regs *regs)
5897
{
5898
	struct hw_perf_event *hwc = &event->hw;
5899
	int throttle = 0;
5900

5901 5902
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5903

5904 5905
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5906

5907
	for (; overflow; overflow--) {
5908
		if (__perf_event_overflow(event, throttle,
5909
					    data, regs)) {
5910 5911 5912 5913 5914 5915
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5916
		throttle = 1;
5917
	}
5918 5919
}

P
Peter Zijlstra 已提交
5920
static void perf_swevent_event(struct perf_event *event, u64 nr,
5921
			       struct perf_sample_data *data,
5922
			       struct pt_regs *regs)
5923
{
5924
	struct hw_perf_event *hwc = &event->hw;
5925

5926
	local64_add(nr, &event->count);
5927

5928 5929 5930
	if (!regs)
		return;

5931
	if (!is_sampling_event(event))
5932
		return;
5933

5934 5935 5936 5937 5938 5939
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5940
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5941
		return perf_swevent_overflow(event, 1, data, regs);
5942

5943
	if (local64_add_negative(nr, &hwc->period_left))
5944
		return;
5945

5946
	perf_swevent_overflow(event, 0, data, regs);
5947 5948
}

5949 5950 5951
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5952
	if (event->hw.state & PERF_HES_STOPPED)
5953
		return 1;
P
Peter Zijlstra 已提交
5954

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5966
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5967
				enum perf_type_id type,
L
Li Zefan 已提交
5968 5969 5970
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5971
{
5972
	if (event->attr.type != type)
5973
		return 0;
5974

5975
	if (event->attr.config != event_id)
5976 5977
		return 0;

5978 5979
	if (perf_exclude_event(event, regs))
		return 0;
5980 5981 5982 5983

	return 1;
}

5984 5985 5986 5987 5988 5989 5990
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5991 5992
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5993
{
5994 5995 5996 5997
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5998

5999 6000
/* For the read side: events when they trigger */
static inline struct hlist_head *
6001
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6002 6003
{
	struct swevent_hlist *hlist;
6004

6005
	hlist = rcu_dereference(swhash->swevent_hlist);
6006 6007 6008
	if (!hlist)
		return NULL;

6009 6010 6011 6012 6013
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6014
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6025
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6026 6027 6028 6029 6030
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6031 6032 6033
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6034
				    u64 nr,
6035 6036
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6037
{
6038
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6039
	struct perf_event *event;
6040
	struct hlist_head *head;
6041

6042
	rcu_read_lock();
6043
	head = find_swevent_head_rcu(swhash, type, event_id);
6044 6045 6046
	if (!head)
		goto end;

6047
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6048
		if (perf_swevent_match(event, type, event_id, data, regs))
6049
			perf_swevent_event(event, nr, data, regs);
6050
	}
6051 6052
end:
	rcu_read_unlock();
6053 6054
}

6055 6056
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6057
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6058
{
6059
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6060

6061
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6062
}
I
Ingo Molnar 已提交
6063
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6064

6065
inline void perf_swevent_put_recursion_context(int rctx)
6066
{
6067
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6068

6069
	put_recursion_context(swhash->recursion, rctx);
6070
}
6071

6072
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6073
{
6074
	struct perf_sample_data data;
6075

6076
	if (WARN_ON_ONCE(!regs))
6077
		return;
6078

6079
	perf_sample_data_init(&data, addr, 0);
6080
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6093 6094

	perf_swevent_put_recursion_context(rctx);
6095
fail:
6096
	preempt_enable_notrace();
6097 6098
}

6099
static void perf_swevent_read(struct perf_event *event)
6100 6101 6102
{
}

P
Peter Zijlstra 已提交
6103
static int perf_swevent_add(struct perf_event *event, int flags)
6104
{
6105
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6106
	struct hw_perf_event *hwc = &event->hw;
6107 6108
	struct hlist_head *head;

6109
	if (is_sampling_event(event)) {
6110
		hwc->last_period = hwc->sample_period;
6111
		perf_swevent_set_period(event);
6112
	}
6113

P
Peter Zijlstra 已提交
6114 6115
	hwc->state = !(flags & PERF_EF_START);

6116
	head = find_swevent_head(swhash, event);
6117 6118 6119 6120 6121 6122
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6123
		return -EINVAL;
6124
	}
6125 6126 6127

	hlist_add_head_rcu(&event->hlist_entry, head);

6128 6129 6130
	return 0;
}

P
Peter Zijlstra 已提交
6131
static void perf_swevent_del(struct perf_event *event, int flags)
6132
{
6133
	hlist_del_rcu(&event->hlist_entry);
6134 6135
}

P
Peter Zijlstra 已提交
6136
static void perf_swevent_start(struct perf_event *event, int flags)
6137
{
P
Peter Zijlstra 已提交
6138
	event->hw.state = 0;
6139
}
I
Ingo Molnar 已提交
6140

P
Peter Zijlstra 已提交
6141
static void perf_swevent_stop(struct perf_event *event, int flags)
6142
{
P
Peter Zijlstra 已提交
6143
	event->hw.state = PERF_HES_STOPPED;
6144 6145
}

6146 6147
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6148
swevent_hlist_deref(struct swevent_htable *swhash)
6149
{
6150 6151
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6152 6153
}

6154
static void swevent_hlist_release(struct swevent_htable *swhash)
6155
{
6156
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6157

6158
	if (!hlist)
6159 6160
		return;

6161
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6162
	kfree_rcu(hlist, rcu_head);
6163 6164 6165 6166
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6167
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6168

6169
	mutex_lock(&swhash->hlist_mutex);
6170

6171 6172
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6173

6174
	mutex_unlock(&swhash->hlist_mutex);
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6187
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6188 6189
	int err = 0;

6190
	mutex_lock(&swhash->hlist_mutex);
6191

6192
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6193 6194 6195 6196 6197 6198 6199
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6200
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6201
	}
6202
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6203
exit:
6204
	mutex_unlock(&swhash->hlist_mutex);
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6225
fail:
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6236
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6237

6238 6239 6240
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6241

6242 6243
	WARN_ON(event->parent);

6244
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6245 6246 6247 6248 6249
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6250
	u64 event_id = event->attr.config;
6251 6252 6253 6254

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6255 6256 6257 6258 6259 6260
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6261 6262 6263 6264 6265 6266 6267 6268 6269
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6270
	if (event_id >= PERF_COUNT_SW_MAX)
6271 6272 6273 6274 6275 6276 6277 6278 6279
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6280
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6281 6282 6283 6284 6285 6286 6287
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6288
	.task_ctx_nr	= perf_sw_context,
6289

6290
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6291 6292 6293 6294
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6295 6296 6297
	.read		= perf_swevent_read,
};

6298 6299
#ifdef CONFIG_EVENT_TRACING

6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6314 6315
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6316 6317 6318 6319
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6320 6321 6322 6323 6324 6325 6326 6327 6328
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6329 6330
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6331 6332
{
	struct perf_sample_data data;
6333 6334
	struct perf_event *event;

6335 6336 6337 6338 6339
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6340
	perf_sample_data_init(&data, addr, 0);
6341 6342
	data.raw = &raw;

6343
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6344
		if (perf_tp_event_match(event, &data, regs))
6345
			perf_swevent_event(event, count, &data, regs);
6346
	}
6347

6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6373
	perf_swevent_put_recursion_context(rctx);
6374 6375 6376
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6377
static void tp_perf_event_destroy(struct perf_event *event)
6378
{
6379
	perf_trace_destroy(event);
6380 6381
}

6382
static int perf_tp_event_init(struct perf_event *event)
6383
{
6384 6385
	int err;

6386 6387 6388
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6389 6390 6391 6392 6393 6394
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6395 6396
	err = perf_trace_init(event);
	if (err)
6397
		return err;
6398

6399
	event->destroy = tp_perf_event_destroy;
6400

6401 6402 6403 6404
	return 0;
}

static struct pmu perf_tracepoint = {
6405 6406
	.task_ctx_nr	= perf_sw_context,

6407
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6408 6409 6410 6411
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6412 6413 6414 6415 6416
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6417
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6418
}
L
Li Zefan 已提交
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6443
#else
L
Li Zefan 已提交
6444

6445
static inline void perf_tp_register(void)
6446 6447
{
}
L
Li Zefan 已提交
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6458
#endif /* CONFIG_EVENT_TRACING */
6459

6460
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6461
void perf_bp_event(struct perf_event *bp, void *data)
6462
{
6463 6464 6465
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6466
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6467

P
Peter Zijlstra 已提交
6468
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6469
		perf_swevent_event(bp, 1, &sample, regs);
6470 6471 6472
}
#endif

6473 6474 6475
/*
 * hrtimer based swevent callback
 */
6476

6477
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6478
{
6479 6480 6481 6482 6483
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6484

6485
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6486 6487 6488 6489

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6490
	event->pmu->read(event);
6491

6492
	perf_sample_data_init(&data, 0, event->hw.last_period);
6493 6494 6495
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6496
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6497
			if (__perf_event_overflow(event, 1, &data, regs))
6498 6499
				ret = HRTIMER_NORESTART;
	}
6500

6501 6502
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6503

6504
	return ret;
6505 6506
}

6507
static void perf_swevent_start_hrtimer(struct perf_event *event)
6508
{
6509
	struct hw_perf_event *hwc = &event->hw;
6510 6511 6512 6513
	s64 period;

	if (!is_sampling_event(event))
		return;
6514

6515 6516 6517 6518
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6519

6520 6521 6522 6523 6524
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6525
				ns_to_ktime(period), 0,
6526
				HRTIMER_MODE_REL_PINNED, 0);
6527
}
6528 6529

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6530
{
6531 6532
	struct hw_perf_event *hwc = &event->hw;

6533
	if (is_sampling_event(event)) {
6534
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6535
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6536 6537 6538

		hrtimer_cancel(&hwc->hrtimer);
	}
6539 6540
}

P
Peter Zijlstra 已提交
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6561
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6562 6563 6564 6565
		event->attr.freq = 0;
	}
}

6566 6567 6568 6569 6570
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6571
{
6572 6573 6574
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6575
	now = local_clock();
6576 6577
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6578 6579
}

P
Peter Zijlstra 已提交
6580
static void cpu_clock_event_start(struct perf_event *event, int flags)
6581
{
P
Peter Zijlstra 已提交
6582
	local64_set(&event->hw.prev_count, local_clock());
6583 6584 6585
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6586
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6587
{
6588 6589 6590
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6591

P
Peter Zijlstra 已提交
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6605 6606 6607 6608
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6609

6610 6611 6612 6613 6614 6615 6616 6617
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6618 6619 6620 6621 6622 6623
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6624 6625
	perf_swevent_init_hrtimer(event);

6626
	return 0;
6627 6628
}

6629
static struct pmu perf_cpu_clock = {
6630 6631
	.task_ctx_nr	= perf_sw_context,

6632
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6633 6634 6635 6636
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6637 6638 6639 6640 6641 6642 6643 6644
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6645
{
6646 6647
	u64 prev;
	s64 delta;
6648

6649 6650 6651 6652
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6653

P
Peter Zijlstra 已提交
6654
static void task_clock_event_start(struct perf_event *event, int flags)
6655
{
P
Peter Zijlstra 已提交
6656
	local64_set(&event->hw.prev_count, event->ctx->time);
6657 6658 6659
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6660
static void task_clock_event_stop(struct perf_event *event, int flags)
6661 6662 6663
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6664 6665 6666 6667 6668 6669
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6670

P
Peter Zijlstra 已提交
6671 6672 6673 6674 6675 6676
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6677 6678 6679 6680
}

static void task_clock_event_read(struct perf_event *event)
{
6681 6682 6683
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6684 6685 6686 6687 6688

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6689
{
6690 6691 6692 6693 6694 6695
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6696 6697 6698 6699 6700 6701
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6702 6703
	perf_swevent_init_hrtimer(event);

6704
	return 0;
L
Li Zefan 已提交
6705 6706
}

6707
static struct pmu perf_task_clock = {
6708 6709
	.task_ctx_nr	= perf_sw_context,

6710
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6711 6712 6713 6714
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6715 6716
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
6717

P
Peter Zijlstra 已提交
6718
static void perf_pmu_nop_void(struct pmu *pmu)
6719 6720
{
}
L
Li Zefan 已提交
6721

P
Peter Zijlstra 已提交
6722
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6723
{
P
Peter Zijlstra 已提交
6724
	return 0;
L
Li Zefan 已提交
6725 6726
}

P
Peter Zijlstra 已提交
6727
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6728
{
P
Peter Zijlstra 已提交
6729
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6730 6731
}

P
Peter Zijlstra 已提交
6732 6733 6734 6735 6736
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6737

P
Peter Zijlstra 已提交
6738
static void perf_pmu_cancel_txn(struct pmu *pmu)
6739
{
P
Peter Zijlstra 已提交
6740
	perf_pmu_enable(pmu);
6741 6742
}

6743 6744
static int perf_event_idx_default(struct perf_event *event)
{
6745
	return 0;
6746 6747
}

P
Peter Zijlstra 已提交
6748 6749 6750 6751
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6752
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6753
{
P
Peter Zijlstra 已提交
6754
	struct pmu *pmu;
6755

P
Peter Zijlstra 已提交
6756 6757
	if (ctxn < 0)
		return NULL;
6758

P
Peter Zijlstra 已提交
6759 6760 6761 6762
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6763

P
Peter Zijlstra 已提交
6764
	return NULL;
6765 6766
}

6767
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6768
{
6769 6770 6771 6772 6773 6774 6775
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6776 6777
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6778 6779 6780 6781 6782 6783
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6784

P
Peter Zijlstra 已提交
6785
	mutex_lock(&pmus_lock);
6786
	/*
P
Peter Zijlstra 已提交
6787
	 * Like a real lame refcount.
6788
	 */
6789 6790 6791
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6792
			goto out;
6793
		}
P
Peter Zijlstra 已提交
6794
	}
6795

6796
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6797 6798
out:
	mutex_unlock(&pmus_lock);
6799
}
P
Peter Zijlstra 已提交
6800
static struct idr pmu_idr;
6801

P
Peter Zijlstra 已提交
6802 6803 6804 6805 6806 6807 6808
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6809
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6810

6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6854
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6855

6856 6857 6858 6859
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6860
};
6861
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6862 6863 6864 6865

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6866
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6882
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6903
static struct lock_class_key cpuctx_mutex;
6904
static struct lock_class_key cpuctx_lock;
6905

6906
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6907
{
P
Peter Zijlstra 已提交
6908
	int cpu, ret;
6909

6910
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6911 6912 6913 6914
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6915

P
Peter Zijlstra 已提交
6916 6917 6918 6919 6920 6921
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6922 6923 6924
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6925 6926 6927 6928 6929
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6930 6931 6932 6933 6934 6935
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6936
skip_type:
P
Peter Zijlstra 已提交
6937 6938 6939
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6940

W
Wei Yongjun 已提交
6941
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6942 6943
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6944
		goto free_dev;
6945

P
Peter Zijlstra 已提交
6946 6947 6948 6949
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6950
		__perf_event_init_context(&cpuctx->ctx);
6951
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6952
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
6953
		cpuctx->ctx.pmu = pmu;
6954 6955 6956

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6957
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6958
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6959
	}
6960

P
Peter Zijlstra 已提交
6961
got_cpu_context:
P
Peter Zijlstra 已提交
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6976
		}
6977
	}
6978

P
Peter Zijlstra 已提交
6979 6980 6981 6982 6983
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6984 6985 6986
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6987
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6988 6989
	ret = 0;
unlock:
6990 6991
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6992
	return ret;
P
Peter Zijlstra 已提交
6993

P
Peter Zijlstra 已提交
6994 6995 6996 6997
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6998 6999 7000 7001
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7002 7003 7004
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7005
}
7006
EXPORT_SYMBOL_GPL(perf_pmu_register);
7007

7008
void perf_pmu_unregister(struct pmu *pmu)
7009
{
7010 7011 7012
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7013

7014
	/*
P
Peter Zijlstra 已提交
7015 7016
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7017
	 */
7018
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7019
	synchronize_rcu();
7020

P
Peter Zijlstra 已提交
7021
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7022 7023
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7024 7025
	device_del(pmu->dev);
	put_device(pmu->dev);
7026
	free_pmu_context(pmu);
7027
}
7028
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7029

7030 7031 7032 7033
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7034
	int ret;
7035 7036

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7037 7038 7039 7040

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7041
	if (pmu) {
7042 7043 7044 7045
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
7046
		event->pmu = pmu;
7047 7048 7049
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7050
		goto unlock;
7051
	}
P
Peter Zijlstra 已提交
7052

7053
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7054 7055 7056 7057
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
7058
		event->pmu = pmu;
7059
		ret = pmu->event_init(event);
7060
		if (!ret)
P
Peter Zijlstra 已提交
7061
			goto unlock;
7062

7063 7064
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7065
			goto unlock;
7066
		}
7067
	}
P
Peter Zijlstra 已提交
7068 7069
	pmu = ERR_PTR(-ENOENT);
unlock:
7070
	srcu_read_unlock(&pmus_srcu, idx);
7071

7072
	return pmu;
7073 7074
}

7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7088 7089
static void account_event(struct perf_event *event)
{
7090 7091 7092
	if (event->parent)
		return;

7093 7094 7095 7096 7097 7098 7099 7100
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7101 7102 7103 7104
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7105
	if (has_branch_stack(event))
7106
		static_key_slow_inc(&perf_sched_events.key);
7107
	if (is_cgroup_event(event))
7108
		static_key_slow_inc(&perf_sched_events.key);
7109 7110

	account_event_cpu(event, event->cpu);
7111 7112
}

T
Thomas Gleixner 已提交
7113
/*
7114
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7115
 */
7116
static struct perf_event *
7117
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7118 7119 7120
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7121 7122
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
7123
{
P
Peter Zijlstra 已提交
7124
	struct pmu *pmu;
7125 7126
	struct perf_event *event;
	struct hw_perf_event *hwc;
7127
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7128

7129 7130 7131 7132 7133
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7134
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7135
	if (!event)
7136
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7137

7138
	/*
7139
	 * Single events are their own group leaders, with an
7140 7141 7142
	 * empty sibling list:
	 */
	if (!group_leader)
7143
		group_leader = event;
7144

7145 7146
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7147

7148 7149 7150
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7151
	INIT_LIST_HEAD(&event->rb_entry);
7152
	INIT_LIST_HEAD(&event->active_entry);
7153 7154
	INIT_HLIST_NODE(&event->hlist_entry);

7155

7156
	init_waitqueue_head(&event->waitq);
7157
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7158

7159
	mutex_init(&event->mmap_mutex);
7160

7161
	atomic_long_set(&event->refcount, 1);
7162 7163 7164 7165 7166
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7167

7168
	event->parent		= parent_event;
7169

7170
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7171
	event->id		= atomic64_inc_return(&perf_event_id);
7172

7173
	event->state		= PERF_EVENT_STATE_INACTIVE;
7174

7175 7176
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
7177 7178 7179

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
7180 7181 7182 7183
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
7184
		else if (attr->type == PERF_TYPE_BREAKPOINT)
7185 7186 7187 7188
			event->hw.bp_target = task;
#endif
	}

7189
	if (!overflow_handler && parent_event) {
7190
		overflow_handler = parent_event->overflow_handler;
7191 7192
		context = parent_event->overflow_handler_context;
	}
7193

7194
	event->overflow_handler	= overflow_handler;
7195
	event->overflow_handler_context = context;
7196

J
Jiri Olsa 已提交
7197
	perf_event__state_init(event);
7198

7199
	pmu = NULL;
7200

7201
	hwc = &event->hw;
7202
	hwc->sample_period = attr->sample_period;
7203
	if (attr->freq && attr->sample_freq)
7204
		hwc->sample_period = 1;
7205
	hwc->last_period = hwc->sample_period;
7206

7207
	local64_set(&hwc->period_left, hwc->sample_period);
7208

7209
	/*
7210
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7211
	 */
7212
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7213
		goto err_ns;
7214

7215
	pmu = perf_init_event(event);
7216
	if (!pmu)
7217 7218
		goto err_ns;
	else if (IS_ERR(pmu)) {
7219
		err = PTR_ERR(pmu);
7220
		goto err_ns;
I
Ingo Molnar 已提交
7221
	}
7222

7223
	if (!event->parent) {
7224 7225
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7226 7227
			if (err)
				goto err_pmu;
7228
		}
7229
	}
7230

7231
	return event;
7232 7233 7234 7235

err_pmu:
	if (event->destroy)
		event->destroy(event);
7236
	module_put(pmu->module);
7237 7238 7239 7240 7241 7242
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7243 7244
}

7245 7246
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7247 7248
{
	u32 size;
7249
	int ret;
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7274 7275 7276
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7277 7278
	 */
	if (size > sizeof(*attr)) {
7279 7280 7281
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7282

7283 7284
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7285

7286
		for (; addr < end; addr++) {
7287 7288 7289 7290 7291 7292
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7293
		size = sizeof(*attr);
7294 7295 7296 7297 7298 7299
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7300
	if (attr->__reserved_1)
7301 7302 7303 7304 7305 7306 7307 7308
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7337 7338
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7339 7340
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7341
	}
7342

7343
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7344
		ret = perf_reg_validate(attr->sample_regs_user);
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7363

7364 7365
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7366 7367 7368 7369 7370 7371 7372 7373 7374
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7375 7376
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7377
{
7378
	struct ring_buffer *rb = NULL;
7379 7380
	int ret = -EINVAL;

7381
	if (!output_event)
7382 7383
		goto set;

7384 7385
	/* don't allow circular references */
	if (event == output_event)
7386 7387
		goto out;

7388 7389 7390 7391 7392 7393 7394
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7395
	 * If its not a per-cpu rb, it must be the same task.
7396 7397 7398 7399
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7400
set:
7401
	mutex_lock(&event->mmap_mutex);
7402 7403 7404
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7405

7406
	if (output_event) {
7407 7408 7409
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7410
			goto unlock;
7411 7412
	}

7413
	ring_buffer_attach(event, rb);
7414

7415
	ret = 0;
7416 7417 7418
unlock:
	mutex_unlock(&event->mmap_mutex);

7419 7420 7421 7422
out:
	return ret;
}

P
Peter Zijlstra 已提交
7423 7424 7425 7426 7427 7428 7429 7430 7431
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

T
Thomas Gleixner 已提交
7432
/**
7433
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7434
 *
7435
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7436
 * @pid:		target pid
I
Ingo Molnar 已提交
7437
 * @cpu:		target cpu
7438
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7439
 */
7440 7441
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7442
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7443
{
7444 7445
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7446
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7447
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7448
	struct file *event_file = NULL;
7449
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7450
	struct task_struct *task = NULL;
7451
	struct pmu *pmu;
7452
	int event_fd;
7453
	int move_group = 0;
7454
	int err;
7455
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7456

7457
	/* for future expandability... */
S
Stephane Eranian 已提交
7458
	if (flags & ~PERF_FLAG_ALL)
7459 7460
		return -EINVAL;

7461 7462 7463
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7464

7465 7466 7467 7468 7469
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7470
	if (attr.freq) {
7471
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7472
			return -EINVAL;
7473 7474 7475
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7476 7477
	}

S
Stephane Eranian 已提交
7478 7479 7480 7481 7482 7483 7484 7485 7486
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7487 7488 7489 7490
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7491 7492 7493
	if (event_fd < 0)
		return event_fd;

7494
	if (group_fd != -1) {
7495 7496
		err = perf_fget_light(group_fd, &group);
		if (err)
7497
			goto err_fd;
7498
		group_leader = group.file->private_data;
7499 7500 7501 7502 7503 7504
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7505
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7506 7507 7508 7509 7510 7511 7512
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7513 7514 7515 7516 7517 7518
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7519 7520
	get_online_cpus();

7521 7522
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7523 7524
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7525
		goto err_cpus;
7526 7527
	}

S
Stephane Eranian 已提交
7528 7529
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7530 7531
		if (err) {
			__free_event(event);
7532
			goto err_cpus;
7533
		}
S
Stephane Eranian 已提交
7534 7535
	}

7536 7537 7538 7539 7540 7541 7542
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7543 7544
	account_event(event);

7545 7546 7547 7548 7549
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7573 7574 7575 7576

	/*
	 * Get the target context (task or percpu):
	 */
7577
	ctx = find_get_context(pmu, task, event->cpu);
7578 7579
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7580
		goto err_alloc;
7581 7582
	}

7583 7584 7585 7586 7587
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7588
	/*
7589
	 * Look up the group leader (we will attach this event to it):
7590
	 */
7591
	if (group_leader) {
7592
		err = -EINVAL;
7593 7594

		/*
I
Ingo Molnar 已提交
7595 7596 7597 7598
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7599
			goto err_context;
I
Ingo Molnar 已提交
7600 7601 7602
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7603
		 */
7604
		if (move_group) {
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
7618 7619 7620 7621 7622 7623
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7624 7625 7626
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7627
		if (attr.exclusive || attr.pinned)
7628
			goto err_context;
7629 7630 7631 7632 7633
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7634
			goto err_context;
7635
	}
T
Thomas Gleixner 已提交
7636

7637 7638
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7639 7640
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7641
		goto err_context;
7642
	}
7643

7644
	if (move_group) {
P
Peter Zijlstra 已提交
7645 7646 7647 7648 7649 7650 7651
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7652

7653
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7654

7655 7656
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7657
			perf_remove_from_context(sibling, false);
7658 7659
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
7660 7661
	} else {
		mutex_lock(&ctx->mutex);
7662
	}
7663

7664
	WARN_ON_ONCE(ctx->parent_ctx);
7665 7666

	if (move_group) {
P
Peter Zijlstra 已提交
7667 7668 7669 7670
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
7671
		synchronize_rcu();
P
Peter Zijlstra 已提交
7672

7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
7683 7684
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7685
			perf_event__state_init(sibling);
7686
			perf_install_in_context(ctx, sibling, sibling->cpu);
7687 7688
			get_ctx(ctx);
		}
7689 7690 7691 7692 7693 7694 7695 7696 7697

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
7698 7699
	}

7700
	perf_install_in_context(ctx, event, event->cpu);
7701
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
7702 7703 7704 7705 7706

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
7707
	mutex_unlock(&ctx->mutex);
7708

7709 7710
	put_online_cpus();

7711
	event->owner = current;
P
Peter Zijlstra 已提交
7712

7713 7714 7715
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7716

7717 7718 7719 7720
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7721
	perf_event__id_header_size(event);
7722

7723 7724 7725 7726 7727 7728
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7729
	fdput(group);
7730 7731
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7732

7733
err_context:
7734
	perf_unpin_context(ctx);
7735
	put_ctx(ctx);
7736
err_alloc:
7737
	free_event(event);
7738
err_cpus:
7739
	put_online_cpus();
7740
err_task:
P
Peter Zijlstra 已提交
7741 7742
	if (task)
		put_task_struct(task);
7743
err_group_fd:
7744
	fdput(group);
7745 7746
err_fd:
	put_unused_fd(event_fd);
7747
	return err;
T
Thomas Gleixner 已提交
7748 7749
}

7750 7751 7752 7753 7754
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7755
 * @task: task to profile (NULL for percpu)
7756 7757 7758
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7759
				 struct task_struct *task,
7760 7761
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7762 7763
{
	struct perf_event_context *ctx;
7764
	struct perf_event *event;
7765
	int err;
7766

7767 7768 7769
	/*
	 * Get the target context (task or percpu):
	 */
7770

7771 7772
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7773 7774 7775 7776
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7777

7778 7779 7780
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7781 7782
	account_event(event);

M
Matt Helsley 已提交
7783
	ctx = find_get_context(event->pmu, task, cpu);
7784 7785
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7786
		goto err_free;
7787
	}
7788 7789 7790 7791

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7792
	perf_unpin_context(ctx);
7793 7794 7795 7796
	mutex_unlock(&ctx->mutex);

	return event;

7797 7798 7799
err_free:
	free_event(event);
err:
7800
	return ERR_PTR(err);
7801
}
7802
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7803

7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
7814 7815 7816 7817 7818
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7819 7820
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7821
		perf_remove_from_context(event, false);
7822
		unaccount_event_cpu(event, src_cpu);
7823
		put_ctx(src_ctx);
7824
		list_add(&event->migrate_entry, &events);
7825 7826
	}

7827 7828 7829
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
7830 7831
	synchronize_rcu();

7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
7856 7857
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7858 7859
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7860
		account_event_cpu(event, dst_cpu);
7861 7862 7863 7864
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
7865
	mutex_unlock(&src_ctx->mutex);
7866 7867 7868
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7869
static void sync_child_event(struct perf_event *child_event,
7870
			       struct task_struct *child)
7871
{
7872
	struct perf_event *parent_event = child_event->parent;
7873
	u64 child_val;
7874

7875 7876
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7877

P
Peter Zijlstra 已提交
7878
	child_val = perf_event_count(child_event);
7879 7880 7881 7882

	/*
	 * Add back the child's count to the parent's count:
	 */
7883
	atomic64_add(child_val, &parent_event->child_count);
7884 7885 7886 7887
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7888 7889

	/*
7890
	 * Remove this event from the parent's list
7891
	 */
7892 7893 7894 7895
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7896

7897 7898 7899 7900 7901 7902
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7903
	/*
7904
	 * Release the parent event, if this was the last
7905 7906
	 * reference to it.
	 */
7907
	put_event(parent_event);
7908 7909
}

7910
static void
7911 7912
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7913
			 struct task_struct *child)
7914
{
7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7928

7929
	/*
7930
	 * It can happen that the parent exits first, and has events
7931
	 * that are still around due to the child reference. These
7932
	 * events need to be zapped.
7933
	 */
7934
	if (child_event->parent) {
7935 7936
		sync_child_event(child_event, child);
		free_event(child_event);
7937 7938 7939
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7940
	}
7941 7942
}

P
Peter Zijlstra 已提交
7943
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7944
{
7945
	struct perf_event *child_event, *next;
7946
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7947
	unsigned long flags;
7948

P
Peter Zijlstra 已提交
7949
	if (likely(!child->perf_event_ctxp[ctxn])) {
7950
		perf_event_task(child, NULL, 0);
7951
		return;
P
Peter Zijlstra 已提交
7952
	}
7953

7954
	local_irq_save(flags);
7955 7956 7957 7958 7959 7960
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7961
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7962 7963 7964

	/*
	 * Take the context lock here so that if find_get_context is
7965
	 * reading child->perf_event_ctxp, we wait until it has
7966 7967
	 * incremented the context's refcount before we do put_ctx below.
	 */
7968
	raw_spin_lock(&child_ctx->lock);
7969
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7970
	child->perf_event_ctxp[ctxn] = NULL;
7971

7972 7973 7974
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7975
	 * the events from it.
7976
	 */
7977
	clone_ctx = unclone_ctx(child_ctx);
7978
	update_context_time(child_ctx);
7979
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7980

7981 7982
	if (clone_ctx)
		put_ctx(clone_ctx);
7983

P
Peter Zijlstra 已提交
7984
	/*
7985 7986 7987
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7988
	 */
7989
	perf_event_task(child, child_ctx, 0);
7990

7991 7992 7993
	/*
	 * We can recurse on the same lock type through:
	 *
7994 7995
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7996 7997
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7998 7999 8000
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8001
	mutex_lock(&child_ctx->mutex);
8002

8003
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8004
		__perf_event_exit_task(child_event, child_ctx, child);
8005

8006 8007 8008
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8009 8010
}

P
Peter Zijlstra 已提交
8011 8012 8013 8014 8015
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8016
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8017 8018
	int ctxn;

P
Peter Zijlstra 已提交
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8034 8035 8036 8037
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8050
	put_event(parent);
8051

P
Peter Zijlstra 已提交
8052
	raw_spin_lock_irq(&ctx->lock);
8053
	perf_group_detach(event);
8054
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8055
	raw_spin_unlock_irq(&ctx->lock);
8056 8057 8058
	free_event(event);
}

8059
/*
P
Peter Zijlstra 已提交
8060
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8061
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8062 8063 8064
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8065
 */
8066
void perf_event_free_task(struct task_struct *task)
8067
{
P
Peter Zijlstra 已提交
8068
	struct perf_event_context *ctx;
8069
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8070
	int ctxn;
8071

P
Peter Zijlstra 已提交
8072 8073 8074 8075
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8076

P
Peter Zijlstra 已提交
8077
		mutex_lock(&ctx->mutex);
8078
again:
P
Peter Zijlstra 已提交
8079 8080 8081
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8082

P
Peter Zijlstra 已提交
8083 8084 8085
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8086

P
Peter Zijlstra 已提交
8087 8088 8089
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8090

P
Peter Zijlstra 已提交
8091
		mutex_unlock(&ctx->mutex);
8092

P
Peter Zijlstra 已提交
8093 8094
		put_ctx(ctx);
	}
8095 8096
}

8097 8098 8099 8100 8101 8102 8103 8104
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8116
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8117
	struct perf_event *child_event;
8118
	unsigned long flags;
P
Peter Zijlstra 已提交
8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8131
					   child,
P
Peter Zijlstra 已提交
8132
					   group_leader, parent_event,
8133
				           NULL, NULL);
P
Peter Zijlstra 已提交
8134 8135
	if (IS_ERR(child_event))
		return child_event;
8136

8137 8138
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8139 8140 8141 8142
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8143 8144 8145 8146 8147 8148 8149
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8150
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8167 8168
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8169

8170 8171 8172 8173
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8174
	perf_event__id_header_size(child_event);
8175

P
Peter Zijlstra 已提交
8176 8177 8178
	/*
	 * Link it up in the child's context:
	 */
8179
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8180
	add_event_to_ctx(child_event, child_ctx);
8181
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8215 8216 8217 8218 8219
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8220
		   struct task_struct *child, int ctxn,
8221 8222 8223
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8224
	struct perf_event_context *child_ctx;
8225 8226 8227 8228

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8229 8230
	}

8231
	child_ctx = child->perf_event_ctxp[ctxn];
8232 8233 8234 8235 8236 8237 8238
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8239

8240
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8241 8242
		if (!child_ctx)
			return -ENOMEM;
8243

P
Peter Zijlstra 已提交
8244
		child->perf_event_ctxp[ctxn] = child_ctx;
8245 8246 8247 8248 8249 8250 8251 8252 8253
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8254 8255
}

8256
/*
8257
 * Initialize the perf_event context in task_struct
8258
 */
8259
static int perf_event_init_context(struct task_struct *child, int ctxn)
8260
{
8261
	struct perf_event_context *child_ctx, *parent_ctx;
8262 8263
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8264
	struct task_struct *parent = current;
8265
	int inherited_all = 1;
8266
	unsigned long flags;
8267
	int ret = 0;
8268

P
Peter Zijlstra 已提交
8269
	if (likely(!parent->perf_event_ctxp[ctxn]))
8270 8271
		return 0;

8272
	/*
8273 8274
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8275
	 */
P
Peter Zijlstra 已提交
8276
	parent_ctx = perf_pin_task_context(parent, ctxn);
8277 8278
	if (!parent_ctx)
		return 0;
8279

8280 8281 8282 8283 8284 8285 8286
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8287 8288 8289 8290
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8291
	mutex_lock(&parent_ctx->mutex);
8292 8293 8294 8295 8296

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8297
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8298 8299
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8300 8301 8302
		if (ret)
			break;
	}
8303

8304 8305 8306 8307 8308 8309 8310 8311 8312
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8313
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8314 8315
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8316
		if (ret)
8317
			break;
8318 8319
	}

8320 8321 8322
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8323
	child_ctx = child->perf_event_ctxp[ctxn];
8324

8325
	if (child_ctx && inherited_all) {
8326 8327 8328
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8329 8330 8331
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8332
		 */
P
Peter Zijlstra 已提交
8333
		cloned_ctx = parent_ctx->parent_ctx;
8334 8335
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8336
			child_ctx->parent_gen = parent_ctx->parent_gen;
8337 8338 8339 8340 8341
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8342 8343
	}

P
Peter Zijlstra 已提交
8344
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8345
	mutex_unlock(&parent_ctx->mutex);
8346

8347
	perf_unpin_context(parent_ctx);
8348
	put_ctx(parent_ctx);
8349

8350
	return ret;
8351 8352
}

P
Peter Zijlstra 已提交
8353 8354 8355 8356 8357 8358 8359
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8360 8361 8362 8363
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8364 8365
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8366 8367
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8368
			return ret;
P
Peter Zijlstra 已提交
8369
		}
P
Peter Zijlstra 已提交
8370 8371 8372 8373 8374
	}

	return 0;
}

8375 8376
static void __init perf_event_init_all_cpus(void)
{
8377
	struct swevent_htable *swhash;
8378 8379 8380
	int cpu;

	for_each_possible_cpu(cpu) {
8381 8382
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8383
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8384 8385 8386
	}
}

8387
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8388
{
P
Peter Zijlstra 已提交
8389
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8390

8391
	mutex_lock(&swhash->hlist_mutex);
8392
	swhash->online = true;
8393
	if (swhash->hlist_refcount > 0) {
8394 8395
		struct swevent_hlist *hlist;

8396 8397 8398
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8399
	}
8400
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8401 8402
}

P
Peter Zijlstra 已提交
8403
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8404
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
8405
{
8406 8407 8408 8409 8410 8411 8412
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
8413
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8414
{
8415
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8416
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8417

P
Peter Zijlstra 已提交
8418
	perf_pmu_rotate_stop(ctx->pmu);
8419

P
Peter Zijlstra 已提交
8420
	rcu_read_lock();
8421 8422
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8423
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8424
}
P
Peter Zijlstra 已提交
8425 8426 8427 8428 8429 8430 8431 8432 8433

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8434
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8435 8436 8437 8438 8439 8440 8441 8442

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8443
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8444
{
8445
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8446

P
Peter Zijlstra 已提交
8447 8448
	perf_event_exit_cpu_context(cpu);

8449
	mutex_lock(&swhash->hlist_mutex);
8450
	swhash->online = false;
8451 8452
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8453 8454
}
#else
8455
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8456 8457
#endif

P
Peter Zijlstra 已提交
8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8478
static int
T
Thomas Gleixner 已提交
8479 8480 8481 8482
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8483
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8484 8485

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8486
	case CPU_DOWN_FAILED:
8487
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8488 8489
		break;

P
Peter Zijlstra 已提交
8490
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8491
	case CPU_DOWN_PREPARE:
8492
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8493 8494 8495 8496 8497 8498 8499 8500
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8501
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8502
{
8503 8504
	int ret;

P
Peter Zijlstra 已提交
8505 8506
	idr_init(&pmu_idr);

8507
	perf_event_init_all_cpus();
8508
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8509 8510 8511
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8512 8513
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8514
	register_reboot_notifier(&perf_reboot_notifier);
8515 8516 8517

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8518 8519 8520

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8521 8522 8523 8524 8525 8526 8527

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8528
}
P
Peter Zijlstra 已提交
8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8557 8558

#ifdef CONFIG_CGROUP_PERF
8559 8560
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8561 8562 8563
{
	struct perf_cgroup *jc;

8564
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8577
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8578
{
8579 8580
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8592 8593
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8594
{
8595 8596
	struct task_struct *task;

8597
	cgroup_taskset_for_each(task, tset)
8598
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8599 8600
}

8601 8602
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8603
			     struct task_struct *task)
S
Stephane Eranian 已提交
8604 8605 8606 8607 8608 8609 8610 8611 8612
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8613
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8614 8615
}

8616
struct cgroup_subsys perf_event_cgrp_subsys = {
8617 8618
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8619
	.exit		= perf_cgroup_exit,
8620
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8621 8622
};
#endif /* CONFIG_CGROUP_PERF */