core.c 199.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
406
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
445 446
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
447
	/*
448 449
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
450
	 */
451
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
452 453
		return;

454 455 456 457 458 459
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
460 461 462
}

static inline void
463 464
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
465 466 467 468
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

469 470 471 472 473 474
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
475 476 477 478
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
479
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 513
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
514 515 516 517 518 519 520 521 522

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
523 524
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532 533 534 535

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
536
				WARN_ON_ONCE(cpuctx->cgrp);
537 538 539 540
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
541 542 543 544
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
545 546
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
547 548 549 550 551 552 553 554
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

555 556
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
580 581
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
603 604 605 606 607 608 609 610
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
611 612
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
613

614
	if (!f.file)
S
Stephane Eranian 已提交
615 616
		return -EBADF;

A
Al Viro 已提交
617
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618
					 &perf_event_cgrp_subsys);
619 620 621 622
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
636
out:
637
	fdput(f);
S
Stephane Eranian 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

711 712
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
713 714 715
{
}

716 717
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
729 730
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
824
	int timer;
825 826 827 828 829

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

830 831 832 833 834 835 836 837 838
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
861
void perf_pmu_disable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
866 867
}

P
Peter Zijlstra 已提交
868
void perf_pmu_enable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
873 874
}

875
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
876 877

/*
878 879 880 881
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
882
 */
883
static void perf_event_ctx_activate(struct perf_event_context *ctx)
884
{
885
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
886

887
	WARN_ON(!irqs_disabled());
888

889 890 891 892 893 894 895 896 897 898 899 900
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
901 902
}

903
static void get_ctx(struct perf_event_context *ctx)
904
{
905
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
906 907
}

908 909 910 911 912 913 914 915 916
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

917
static void put_ctx(struct perf_event_context *ctx)
918
{
919 920 921
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
922 923
		if (ctx->task)
			put_task_struct(ctx->task);
924
		call_rcu(&ctx->rcu_head, free_ctx);
925
	}
926 927
}

P
Peter Zijlstra 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
969 970
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
971 972 973 974 975 976 977 978 979 980 981 982
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
983
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
984 985 986 987 988 989 990 991 992
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
993 994 995 996 997 998
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1006 1007 1008 1009 1010 1011 1012
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1013
{
1014 1015 1016 1017 1018
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1019
		ctx->parent_ctx = NULL;
1020
	ctx->generation++;
1021 1022

	return parent_ctx;
1023 1024
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1047
/*
1048
 * If we inherit events we want to return the parent event id
1049 1050
 * to userspace.
 */
1051
static u64 primary_event_id(struct perf_event *event)
1052
{
1053
	u64 id = event->id;
1054

1055 1056
	if (event->parent)
		id = event->parent->id;
1057 1058 1059 1060

	return id;
}

1061
/*
1062
 * Get the perf_event_context for a task and lock it.
1063 1064 1065
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1066
static struct perf_event_context *
P
Peter Zijlstra 已提交
1067
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1068
{
1069
	struct perf_event_context *ctx;
1070

P
Peter Zijlstra 已提交
1071
retry:
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1083
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1084 1085 1086 1087
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1088
		 * perf_event_task_sched_out, though the
1089 1090 1091 1092 1093 1094
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1095
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1096
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1097
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1098 1099
			rcu_read_unlock();
			preempt_enable();
1100 1101
			goto retry;
		}
1102 1103

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1104
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1105 1106
			ctx = NULL;
		}
1107 1108
	}
	rcu_read_unlock();
1109
	preempt_enable();
1110 1111 1112 1113 1114 1115 1116 1117
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1118 1119
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1120
{
1121
	struct perf_event_context *ctx;
1122 1123
	unsigned long flags;

P
Peter Zijlstra 已提交
1124
	ctx = perf_lock_task_context(task, ctxn, &flags);
1125 1126
	if (ctx) {
		++ctx->pin_count;
1127
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1128 1129 1130 1131
	}
	return ctx;
}

1132
static void perf_unpin_context(struct perf_event_context *ctx)
1133 1134 1135
{
	unsigned long flags;

1136
	raw_spin_lock_irqsave(&ctx->lock, flags);
1137
	--ctx->pin_count;
1138
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1139 1140
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1152 1153 1154
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1155 1156 1157 1158

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1159 1160 1161
	return ctx ? ctx->time : 0;
}

1162 1163
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1164
 * The caller of this function needs to hold the ctx->lock.
1165 1166 1167 1168 1169 1170 1171 1172 1173
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1185
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1186 1187
	else if (ctx->is_active)
		run_end = ctx->time;
1188 1189 1190 1191
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1192 1193 1194 1195

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1196
		run_end = perf_event_time(event);
1197 1198

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1199

1200 1201
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1214 1215 1216 1217 1218 1219 1220 1221 1222
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1223
/*
1224
 * Add a event from the lists for its context.
1225 1226
 * Must be called with ctx->mutex and ctx->lock held.
 */
1227
static void
1228
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1229
{
1230 1231
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1232 1233

	/*
1234 1235 1236
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1237
	 */
1238
	if (event->group_leader == event) {
1239 1240
		struct list_head *list;

1241 1242 1243
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1244 1245
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1246
	}
P
Peter Zijlstra 已提交
1247

1248
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1249 1250
		ctx->nr_cgroups++;

1251 1252 1253
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1254
		ctx->nr_stat++;
1255 1256

	ctx->generation++;
1257 1258
}

J
Jiri Olsa 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1307 1308 1309 1310 1311 1312
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1313 1314 1315
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1316 1317 1318
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1319 1320 1321
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1322 1323 1324
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1325 1326 1327 1328 1329 1330 1331 1332 1333
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1334 1335 1336 1337 1338 1339
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1340 1341 1342
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1343 1344 1345 1346 1347 1348 1349 1350 1351
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1352
	event->id_header_size = size;
1353 1354
}

1355 1356
static void perf_group_attach(struct perf_event *event)
{
1357
	struct perf_event *group_leader = event->group_leader, *pos;
1358

P
Peter Zijlstra 已提交
1359 1360 1361 1362 1363 1364
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1365 1366 1367 1368 1369
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1370 1371
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1372 1373 1374 1375 1376 1377
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1378 1379 1380 1381 1382

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1383 1384
}

1385
/*
1386
 * Remove a event from the lists for its context.
1387
 * Must be called with ctx->mutex and ctx->lock held.
1388
 */
1389
static void
1390
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1391
{
1392
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1393 1394 1395 1396

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1397 1398 1399 1400
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1401
		return;
1402 1403 1404

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1405
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1406
		ctx->nr_cgroups--;
1407 1408 1409 1410 1411 1412 1413 1414 1415
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1416

1417 1418
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1419
		ctx->nr_stat--;
1420

1421
	list_del_rcu(&event->event_entry);
1422

1423 1424
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1425

1426
	update_group_times(event);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1437 1438

	ctx->generation++;
1439 1440
}

1441
static void perf_group_detach(struct perf_event *event)
1442 1443
{
	struct perf_event *sibling, *tmp;
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1460
		goto out;
1461 1462 1463 1464
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1465

1466
	/*
1467 1468
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1469
	 * to whatever list we are on.
1470
	 */
1471
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1472 1473
		if (list)
			list_move_tail(&sibling->group_entry, list);
1474
		sibling->group_leader = sibling;
1475 1476 1477

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1478 1479

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1480
	}
1481 1482 1483 1484 1485 1486

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1487 1488
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1528 1529 1530
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1531 1532
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1533 1534
}

1535 1536
static void
event_sched_out(struct perf_event *event,
1537
		  struct perf_cpu_context *cpuctx,
1538
		  struct perf_event_context *ctx)
1539
{
1540
	u64 tstamp = perf_event_time(event);
1541
	u64 delta;
P
Peter Zijlstra 已提交
1542 1543 1544 1545

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1546 1547 1548 1549 1550 1551 1552 1553
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1554
		delta = tstamp - event->tstamp_stopped;
1555
		event->tstamp_running += delta;
1556
		event->tstamp_stopped = tstamp;
1557 1558
	}

1559
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1560
		return;
1561

1562 1563
	perf_pmu_disable(event->pmu);

1564 1565 1566 1567
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1568
	}
1569
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1570
	event->pmu->del(event, 0);
1571
	event->oncpu = -1;
1572

1573
	if (!is_software_event(event))
1574
		cpuctx->active_oncpu--;
1575 1576
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1577 1578
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1579
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1580
		cpuctx->exclusive = 0;
1581

1582 1583 1584
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1585
	perf_pmu_enable(event->pmu);
1586 1587
}

1588
static void
1589
group_sched_out(struct perf_event *group_event,
1590
		struct perf_cpu_context *cpuctx,
1591
		struct perf_event_context *ctx)
1592
{
1593
	struct perf_event *event;
1594
	int state = group_event->state;
1595

1596
	event_sched_out(group_event, cpuctx, ctx);
1597 1598 1599 1600

	/*
	 * Schedule out siblings (if any):
	 */
1601 1602
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1603

1604
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1605 1606 1607
		cpuctx->exclusive = 0;
}

1608 1609 1610 1611 1612
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1613
/*
1614
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1615
 *
1616
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1617 1618
 * remove it from the context list.
 */
1619
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1620
{
1621 1622
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1623
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1624
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1625

1626
	raw_spin_lock(&ctx->lock);
1627
	event_sched_out(event, cpuctx, ctx);
1628 1629
	if (re->detach_group)
		perf_group_detach(event);
1630
	list_del_event(event, ctx);
1631 1632 1633 1634
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1635
	raw_spin_unlock(&ctx->lock);
1636 1637

	return 0;
T
Thomas Gleixner 已提交
1638 1639 1640 1641
}


/*
1642
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1643
 *
1644
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1645
 * call when the task is on a CPU.
1646
 *
1647 1648
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1649 1650
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1651
 * When called from perf_event_exit_task, it's OK because the
1652
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1653
 */
1654
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1655
{
1656
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1657
	struct task_struct *task = ctx->task;
1658 1659 1660 1661
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1662

1663 1664
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1665 1666
	if (!task) {
		/*
1667 1668 1669 1670
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1671
		 */
1672
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1673 1674 1675 1676
		return;
	}

retry:
1677
	if (!task_function_call(task, __perf_remove_from_context, &re))
1678
		return;
T
Thomas Gleixner 已提交
1679

1680
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1681
	/*
1682 1683
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1684
	 */
1685
	if (ctx->is_active) {
1686
		raw_spin_unlock_irq(&ctx->lock);
1687 1688 1689 1690 1691
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1692 1693 1694 1695
		goto retry;
	}

	/*
1696 1697
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1698
	 */
1699 1700
	if (detach_group)
		perf_group_detach(event);
1701
	list_del_event(event, ctx);
1702
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1703 1704
}

1705
/*
1706
 * Cross CPU call to disable a performance event
1707
 */
1708
int __perf_event_disable(void *info)
1709
{
1710 1711
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1712
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1713 1714

	/*
1715 1716
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1717 1718 1719
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1720
	 */
1721
	if (ctx->task && cpuctx->task_ctx != ctx)
1722
		return -EINVAL;
1723

1724
	raw_spin_lock(&ctx->lock);
1725 1726

	/*
1727
	 * If the event is on, turn it off.
1728 1729
	 * If it is in error state, leave it in error state.
	 */
1730
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1731
		update_context_time(ctx);
S
Stephane Eranian 已提交
1732
		update_cgrp_time_from_event(event);
1733 1734 1735
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1736
		else
1737 1738
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1739 1740
	}

1741
	raw_spin_unlock(&ctx->lock);
1742 1743

	return 0;
1744 1745 1746
}

/*
1747
 * Disable a event.
1748
 *
1749 1750
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1751
 * remains valid.  This condition is satisifed when called through
1752 1753 1754 1755
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1756
 * is the current context on this CPU and preemption is disabled,
1757
 * hence we can't get into perf_event_task_sched_out for this context.
1758
 */
P
Peter Zijlstra 已提交
1759
static void _perf_event_disable(struct perf_event *event)
1760
{
1761
	struct perf_event_context *ctx = event->ctx;
1762 1763 1764 1765
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1766
		 * Disable the event on the cpu that it's on
1767
		 */
1768
		cpu_function_call(event->cpu, __perf_event_disable, event);
1769 1770 1771
		return;
	}

P
Peter Zijlstra 已提交
1772
retry:
1773 1774
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1775

1776
	raw_spin_lock_irq(&ctx->lock);
1777
	/*
1778
	 * If the event is still active, we need to retry the cross-call.
1779
	 */
1780
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1781
		raw_spin_unlock_irq(&ctx->lock);
1782 1783 1784 1785 1786
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1787 1788 1789 1790 1791 1792 1793
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1794 1795 1796
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1797
	}
1798
	raw_spin_unlock_irq(&ctx->lock);
1799
}
P
Peter Zijlstra 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1813
EXPORT_SYMBOL_GPL(perf_event_disable);
1814

S
Stephane Eranian 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1850 1851 1852 1853
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1854
static int
1855
event_sched_in(struct perf_event *event,
1856
		 struct perf_cpu_context *cpuctx,
1857
		 struct perf_event_context *ctx)
1858
{
1859
	u64 tstamp = perf_event_time(event);
1860
	int ret = 0;
1861

1862 1863
	lockdep_assert_held(&ctx->lock);

1864
	if (event->state <= PERF_EVENT_STATE_OFF)
1865 1866
		return 0;

1867
	event->state = PERF_EVENT_STATE_ACTIVE;
1868
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1880 1881 1882 1883 1884
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1885 1886
	perf_pmu_disable(event->pmu);

1887 1888 1889 1890
	event->tstamp_running += tstamp - event->tstamp_stopped;

	perf_set_shadow_time(event, ctx, tstamp);

P
Peter Zijlstra 已提交
1891
	if (event->pmu->add(event, PERF_EF_START)) {
1892 1893
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1894 1895
		ret = -EAGAIN;
		goto out;
1896 1897
	}

1898
	if (!is_software_event(event))
1899
		cpuctx->active_oncpu++;
1900 1901
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1902 1903
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1904

1905
	if (event->attr.exclusive)
1906 1907
		cpuctx->exclusive = 1;

1908 1909 1910
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1911 1912 1913 1914
out:
	perf_pmu_enable(event->pmu);

	return ret;
1915 1916
}

1917
static int
1918
group_sched_in(struct perf_event *group_event,
1919
	       struct perf_cpu_context *cpuctx,
1920
	       struct perf_event_context *ctx)
1921
{
1922
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1923
	struct pmu *pmu = ctx->pmu;
1924 1925
	u64 now = ctx->time;
	bool simulate = false;
1926

1927
	if (group_event->state == PERF_EVENT_STATE_OFF)
1928 1929
		return 0;

P
Peter Zijlstra 已提交
1930
	pmu->start_txn(pmu);
1931

1932
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1933
		pmu->cancel_txn(pmu);
1934
		perf_cpu_hrtimer_restart(cpuctx);
1935
		return -EAGAIN;
1936
	}
1937 1938 1939 1940

	/*
	 * Schedule in siblings as one group (if any):
	 */
1941
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1942
		if (event_sched_in(event, cpuctx, ctx)) {
1943
			partial_group = event;
1944 1945 1946 1947
			goto group_error;
		}
	}

1948
	if (!pmu->commit_txn(pmu))
1949
		return 0;
1950

1951 1952 1953 1954
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1965
	 */
1966 1967
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1968 1969 1970 1971 1972 1973 1974 1975
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1976
	}
1977
	event_sched_out(group_event, cpuctx, ctx);
1978

P
Peter Zijlstra 已提交
1979
	pmu->cancel_txn(pmu);
1980

1981 1982
	perf_cpu_hrtimer_restart(cpuctx);

1983 1984 1985
	return -EAGAIN;
}

1986
/*
1987
 * Work out whether we can put this event group on the CPU now.
1988
 */
1989
static int group_can_go_on(struct perf_event *event,
1990 1991 1992 1993
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1994
	 * Groups consisting entirely of software events can always go on.
1995
	 */
1996
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1997 1998 1999
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2000
	 * events can go on.
2001 2002 2003 2004 2005
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2006
	 * events on the CPU, it can't go on.
2007
	 */
2008
	if (event->attr.exclusive && cpuctx->active_oncpu)
2009 2010 2011 2012 2013 2014 2015 2016
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2017 2018
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2019
{
2020 2021
	u64 tstamp = perf_event_time(event);

2022
	list_add_event(event, ctx);
2023
	perf_group_attach(event);
2024 2025 2026
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2027 2028
}

2029 2030 2031 2032 2033 2034
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2048
/*
2049
 * Cross CPU call to install and enable a performance event
2050 2051
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2052
 */
2053
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2054
{
2055 2056
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2057
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2058 2059 2060
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2061
	perf_ctx_lock(cpuctx, task_ctx);
2062
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2063 2064

	/*
2065
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2066
	 */
2067
	if (task_ctx)
2068
		task_ctx_sched_out(task_ctx);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2083 2084
		task = task_ctx->task;
	}
2085

2086
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2087

2088
	update_context_time(ctx);
S
Stephane Eranian 已提交
2089 2090 2091 2092 2093 2094
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2095

2096
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2097

2098
	/*
2099
	 * Schedule everything back in
2100
	 */
2101
	perf_event_sched_in(cpuctx, task_ctx, task);
2102 2103 2104

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2105 2106

	return 0;
T
Thomas Gleixner 已提交
2107 2108 2109
}

/*
2110
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2111
 *
2112 2113
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2114
 *
2115
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2116 2117 2118 2119
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2120 2121
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2122 2123 2124 2125
			int cpu)
{
	struct task_struct *task = ctx->task;

2126 2127
	lockdep_assert_held(&ctx->mutex);

2128
	event->ctx = ctx;
2129 2130
	if (event->cpu != -1)
		event->cpu = cpu;
2131

T
Thomas Gleixner 已提交
2132 2133
	if (!task) {
		/*
2134
		 * Per cpu events are installed via an smp call and
2135
		 * the install is always successful.
T
Thomas Gleixner 已提交
2136
		 */
2137
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2138 2139 2140 2141
		return;
	}

retry:
2142 2143
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2144

2145
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2146
	/*
2147 2148
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2149
	 */
2150
	if (ctx->is_active) {
2151
		raw_spin_unlock_irq(&ctx->lock);
2152 2153 2154 2155 2156
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2157 2158 2159 2160
		goto retry;
	}

	/*
2161 2162
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2163
	 */
2164
	add_event_to_ctx(event, ctx);
2165
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2166 2167
}

2168
/*
2169
 * Put a event into inactive state and update time fields.
2170 2171 2172 2173 2174 2175
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2176
static void __perf_event_mark_enabled(struct perf_event *event)
2177
{
2178
	struct perf_event *sub;
2179
	u64 tstamp = perf_event_time(event);
2180

2181
	event->state = PERF_EVENT_STATE_INACTIVE;
2182
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2183
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2184 2185
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2186
	}
2187 2188
}

2189
/*
2190
 * Cross CPU call to enable a performance event
2191
 */
2192
static int __perf_event_enable(void *info)
2193
{
2194 2195 2196
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2197
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2198
	int err;
2199

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2210
		return -EINVAL;
2211

2212
	raw_spin_lock(&ctx->lock);
2213
	update_context_time(ctx);
2214

2215
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2216
		goto unlock;
S
Stephane Eranian 已提交
2217 2218 2219 2220

	/*
	 * set current task's cgroup time reference point
	 */
2221
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2222

2223
	__perf_event_mark_enabled(event);
2224

S
Stephane Eranian 已提交
2225 2226 2227
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2228
		goto unlock;
S
Stephane Eranian 已提交
2229
	}
2230

2231
	/*
2232
	 * If the event is in a group and isn't the group leader,
2233
	 * then don't put it on unless the group is on.
2234
	 */
2235
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2236
		goto unlock;
2237

2238
	if (!group_can_go_on(event, cpuctx, 1)) {
2239
		err = -EEXIST;
2240
	} else {
2241
		if (event == leader)
2242
			err = group_sched_in(event, cpuctx, ctx);
2243
		else
2244
			err = event_sched_in(event, cpuctx, ctx);
2245
	}
2246 2247 2248

	if (err) {
		/*
2249
		 * If this event can't go on and it's part of a
2250 2251
		 * group, then the whole group has to come off.
		 */
2252
		if (leader != event) {
2253
			group_sched_out(leader, cpuctx, ctx);
2254 2255
			perf_cpu_hrtimer_restart(cpuctx);
		}
2256
		if (leader->attr.pinned) {
2257
			update_group_times(leader);
2258
			leader->state = PERF_EVENT_STATE_ERROR;
2259
		}
2260 2261
	}

P
Peter Zijlstra 已提交
2262
unlock:
2263
	raw_spin_unlock(&ctx->lock);
2264 2265

	return 0;
2266 2267 2268
}

/*
2269
 * Enable a event.
2270
 *
2271 2272
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2273
 * remains valid.  This condition is satisfied when called through
2274 2275
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2276
 */
P
Peter Zijlstra 已提交
2277
static void _perf_event_enable(struct perf_event *event)
2278
{
2279
	struct perf_event_context *ctx = event->ctx;
2280 2281 2282 2283
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2284
		 * Enable the event on the cpu that it's on
2285
		 */
2286
		cpu_function_call(event->cpu, __perf_event_enable, event);
2287 2288 2289
		return;
	}

2290
	raw_spin_lock_irq(&ctx->lock);
2291
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2292 2293 2294
		goto out;

	/*
2295 2296
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2297 2298 2299 2300
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2301 2302
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2303

P
Peter Zijlstra 已提交
2304
retry:
2305
	if (!ctx->is_active) {
2306
		__perf_event_mark_enabled(event);
2307 2308 2309
		goto out;
	}

2310
	raw_spin_unlock_irq(&ctx->lock);
2311 2312 2313

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2314

2315
	raw_spin_lock_irq(&ctx->lock);
2316 2317

	/*
2318
	 * If the context is active and the event is still off,
2319 2320
	 * we need to retry the cross-call.
	 */
2321 2322 2323 2324 2325 2326
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2327
		goto retry;
2328
	}
2329

P
Peter Zijlstra 已提交
2330
out:
2331
	raw_spin_unlock_irq(&ctx->lock);
2332
}
P
Peter Zijlstra 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2345
EXPORT_SYMBOL_GPL(perf_event_enable);
2346

P
Peter Zijlstra 已提交
2347
static int _perf_event_refresh(struct perf_event *event, int refresh)
2348
{
2349
	/*
2350
	 * not supported on inherited events
2351
	 */
2352
	if (event->attr.inherit || !is_sampling_event(event))
2353 2354
		return -EINVAL;

2355
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2356
	_perf_event_enable(event);
2357 2358

	return 0;
2359
}
P
Peter Zijlstra 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2375
EXPORT_SYMBOL_GPL(perf_event_refresh);
2376

2377 2378 2379
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2380
{
2381
	struct perf_event *event;
2382
	int is_active = ctx->is_active;
2383

2384
	ctx->is_active &= ~event_type;
2385
	if (likely(!ctx->nr_events))
2386 2387
		return;

2388
	update_context_time(ctx);
S
Stephane Eranian 已提交
2389
	update_cgrp_time_from_cpuctx(cpuctx);
2390
	if (!ctx->nr_active)
2391
		return;
2392

P
Peter Zijlstra 已提交
2393
	perf_pmu_disable(ctx->pmu);
2394
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2395 2396
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2397
	}
2398

2399
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2400
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2401
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2402
	}
P
Peter Zijlstra 已提交
2403
	perf_pmu_enable(ctx->pmu);
2404 2405
}

2406
/*
2407 2408 2409 2410 2411 2412
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2413
 */
2414 2415
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2416
{
2417 2418 2419
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2442 2443
}

2444 2445
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2446 2447 2448
{
	u64 value;

2449
	if (!event->attr.inherit_stat)
2450 2451 2452
		return;

	/*
2453
	 * Update the event value, we cannot use perf_event_read()
2454 2455
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2456
	 * we know the event must be on the current CPU, therefore we
2457 2458
	 * don't need to use it.
	 */
2459 2460
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2461 2462
		event->pmu->read(event);
		/* fall-through */
2463

2464 2465
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2466 2467 2468 2469 2470 2471 2472
		break;

	default:
		break;
	}

	/*
2473
	 * In order to keep per-task stats reliable we need to flip the event
2474 2475
	 * values when we flip the contexts.
	 */
2476 2477 2478
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2479

2480 2481
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2482

2483
	/*
2484
	 * Since we swizzled the values, update the user visible data too.
2485
	 */
2486 2487
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2488 2489
}

2490 2491
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2492
{
2493
	struct perf_event *event, *next_event;
2494 2495 2496 2497

	if (!ctx->nr_stat)
		return;

2498 2499
	update_context_time(ctx);

2500 2501
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2502

2503 2504
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2505

2506 2507
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2508

2509
		__perf_event_sync_stat(event, next_event);
2510

2511 2512
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2513 2514 2515
	}
}

2516 2517
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2518
{
P
Peter Zijlstra 已提交
2519
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2520
	struct perf_event_context *next_ctx;
2521
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2522
	struct perf_cpu_context *cpuctx;
2523
	int do_switch = 1;
T
Thomas Gleixner 已提交
2524

P
Peter Zijlstra 已提交
2525 2526
	if (likely(!ctx))
		return;
2527

P
Peter Zijlstra 已提交
2528 2529
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2530 2531
		return;

2532
	rcu_read_lock();
P
Peter Zijlstra 已提交
2533
	next_ctx = next->perf_event_ctxp[ctxn];
2534 2535 2536 2537 2538 2539 2540
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2541
	if (!parent && !next_parent)
2542 2543 2544
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2545 2546 2547 2548 2549 2550 2551 2552 2553
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2554 2555
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2556
		if (context_equiv(ctx, next_ctx)) {
2557 2558
			/*
			 * XXX do we need a memory barrier of sorts
2559
			 * wrt to rcu_dereference() of perf_event_ctxp
2560
			 */
P
Peter Zijlstra 已提交
2561 2562
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2563 2564 2565
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2566

2567
			perf_event_sync_stat(ctx, next_ctx);
2568
		}
2569 2570
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2571
	}
2572
unlock:
2573
	rcu_read_unlock();
2574

2575
	if (do_switch) {
2576
		raw_spin_lock(&ctx->lock);
2577
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2578
		cpuctx->task_ctx = NULL;
2579
		raw_spin_unlock(&ctx->lock);
2580
	}
T
Thomas Gleixner 已提交
2581 2582
}

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2647 2648
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2649 2650 2651
{
	int ctxn;

2652 2653 2654
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

P
Peter Zijlstra 已提交
2655 2656
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2657 2658 2659 2660 2661 2662

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2663
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2664
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2665 2666
}

2667
static void task_ctx_sched_out(struct perf_event_context *ctx)
2668
{
P
Peter Zijlstra 已提交
2669
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2670

2671 2672
	if (!cpuctx->task_ctx)
		return;
2673 2674 2675 2676

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2677
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2678 2679 2680
	cpuctx->task_ctx = NULL;
}

2681 2682 2683 2684 2685 2686 2687
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2688 2689
}

2690
static void
2691
ctx_pinned_sched_in(struct perf_event_context *ctx,
2692
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2693
{
2694
	struct perf_event *event;
T
Thomas Gleixner 已提交
2695

2696 2697
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2698
			continue;
2699
		if (!event_filter_match(event))
2700 2701
			continue;

S
Stephane Eranian 已提交
2702 2703 2704 2705
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2706
		if (group_can_go_on(event, cpuctx, 1))
2707
			group_sched_in(event, cpuctx, ctx);
2708 2709 2710 2711 2712

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2713 2714 2715
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2716
		}
2717
	}
2718 2719 2720 2721
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2722
		      struct perf_cpu_context *cpuctx)
2723 2724 2725
{
	struct perf_event *event;
	int can_add_hw = 1;
2726

2727 2728 2729
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2730
			continue;
2731 2732
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2733
		 * of events:
2734
		 */
2735
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2736 2737
			continue;

S
Stephane Eranian 已提交
2738 2739 2740 2741
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2742
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2743
			if (group_sched_in(event, cpuctx, ctx))
2744
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2745
		}
T
Thomas Gleixner 已提交
2746
	}
2747 2748 2749 2750 2751
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2752 2753
	     enum event_type_t event_type,
	     struct task_struct *task)
2754
{
S
Stephane Eranian 已提交
2755
	u64 now;
2756
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2757

2758
	ctx->is_active |= event_type;
2759
	if (likely(!ctx->nr_events))
2760
		return;
2761

S
Stephane Eranian 已提交
2762 2763
	now = perf_clock();
	ctx->timestamp = now;
2764
	perf_cgroup_set_timestamp(task, ctx);
2765 2766 2767 2768
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2769
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2770
		ctx_pinned_sched_in(ctx, cpuctx);
2771 2772

	/* Then walk through the lower prio flexible groups */
2773
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2774
		ctx_flexible_sched_in(ctx, cpuctx);
2775 2776
}

2777
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2778 2779
			     enum event_type_t event_type,
			     struct task_struct *task)
2780 2781 2782
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2783
	ctx_sched_in(ctx, cpuctx, event_type, task);
2784 2785
}

S
Stephane Eranian 已提交
2786 2787
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2788
{
P
Peter Zijlstra 已提交
2789
	struct perf_cpu_context *cpuctx;
2790

P
Peter Zijlstra 已提交
2791
	cpuctx = __get_cpu_context(ctx);
2792 2793 2794
	if (cpuctx->task_ctx == ctx)
		return;

2795
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2796
	perf_pmu_disable(ctx->pmu);
2797 2798 2799 2800 2801 2802 2803
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2804 2805
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2806

2807 2808
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2809 2810
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2811 2812
}

P
Peter Zijlstra 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2824 2825
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2835
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2836
	}
S
Stephane Eranian 已提交
2837 2838 2839 2840 2841
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2842
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2843
		perf_cgroup_sched_in(prev, task);
2844

2845 2846
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2847 2848
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2876
#define REDUCE_FLS(a, b)		\
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2916 2917 2918
	if (!divisor)
		return dividend;

2919 2920 2921
	return div64_u64(dividend, divisor);
}

2922 2923 2924
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2925
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2926
{
2927
	struct hw_perf_event *hwc = &event->hw;
2928
	s64 period, sample_period;
2929 2930
	s64 delta;

2931
	period = perf_calculate_period(event, nsec, count);
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2942

2943
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2944 2945 2946
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2947
		local64_set(&hwc->period_left, 0);
2948 2949 2950

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2951
	}
2952 2953
}

2954 2955 2956 2957 2958 2959 2960
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2961
{
2962 2963
	struct perf_event *event;
	struct hw_perf_event *hwc;
2964
	u64 now, period = TICK_NSEC;
2965
	s64 delta;
2966

2967 2968 2969 2970 2971 2972
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2973 2974
		return;

2975
	raw_spin_lock(&ctx->lock);
2976
	perf_pmu_disable(ctx->pmu);
2977

2978
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2979
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2980 2981
			continue;

2982
		if (!event_filter_match(event))
2983 2984
			continue;

2985 2986
		perf_pmu_disable(event->pmu);

2987
		hwc = &event->hw;
2988

2989
		if (hwc->interrupts == MAX_INTERRUPTS) {
2990
			hwc->interrupts = 0;
2991
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2992
			event->pmu->start(event, 0);
2993 2994
		}

2995
		if (!event->attr.freq || !event->attr.sample_freq)
2996
			goto next;
2997

2998 2999 3000 3001 3002
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3003
		now = local64_read(&event->count);
3004 3005
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3006

3007 3008 3009
		/*
		 * restart the event
		 * reload only if value has changed
3010 3011 3012
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3013
		 */
3014
		if (delta > 0)
3015
			perf_adjust_period(event, period, delta, false);
3016 3017

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3018 3019
	next:
		perf_pmu_enable(event->pmu);
3020
	}
3021

3022
	perf_pmu_enable(ctx->pmu);
3023
	raw_spin_unlock(&ctx->lock);
3024 3025
}

3026
/*
3027
 * Round-robin a context's events:
3028
 */
3029
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3030
{
3031 3032 3033 3034 3035 3036
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3037 3038
}

3039
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3040
{
P
Peter Zijlstra 已提交
3041
	struct perf_event_context *ctx = NULL;
3042
	int rotate = 0;
3043

3044 3045 3046 3047
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3048

P
Peter Zijlstra 已提交
3049
	ctx = cpuctx->task_ctx;
3050 3051 3052 3053
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3054

3055
	if (!rotate)
3056 3057
		goto done;

3058
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3059
	perf_pmu_disable(cpuctx->ctx.pmu);
3060

3061 3062 3063
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3064

3065 3066 3067
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3068

3069
	perf_event_sched_in(cpuctx, ctx, current);
3070

3071 3072
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3073
done:
3074 3075

	return rotate;
3076 3077
}

3078 3079 3080
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3081
	if (atomic_read(&nr_freq_events) ||
3082
	    __this_cpu_read(perf_throttled_count))
3083
		return false;
3084 3085
	else
		return true;
3086 3087 3088
}
#endif

3089 3090
void perf_event_task_tick(void)
{
3091 3092
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3093
	int throttled;
3094

3095 3096
	WARN_ON(!irqs_disabled());

3097 3098 3099
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3100
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3101
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3102 3103
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3114
	__perf_event_mark_enabled(event);
3115 3116 3117 3118

	return 1;
}

3119
/*
3120
 * Enable all of a task's events that have been marked enable-on-exec.
3121 3122
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3123
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3124
{
3125
	struct perf_event_context *clone_ctx = NULL;
3126
	struct perf_event *event;
3127 3128
	unsigned long flags;
	int enabled = 0;
3129
	int ret;
3130 3131

	local_irq_save(flags);
3132
	if (!ctx || !ctx->nr_events)
3133 3134
		goto out;

3135 3136 3137 3138 3139 3140 3141
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3142
	perf_cgroup_sched_out(current, NULL);
3143

3144
	raw_spin_lock(&ctx->lock);
3145
	task_ctx_sched_out(ctx);
3146

3147
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3148 3149 3150
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3151 3152 3153
	}

	/*
3154
	 * Unclone this context if we enabled any event.
3155
	 */
3156
	if (enabled)
3157
		clone_ctx = unclone_ctx(ctx);
3158

3159
	raw_spin_unlock(&ctx->lock);
3160

3161 3162 3163
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3164
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3165
out:
3166
	local_irq_restore(flags);
3167 3168 3169

	if (clone_ctx)
		put_ctx(clone_ctx);
3170 3171
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3188
/*
3189
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3190
 */
3191
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3192
{
3193 3194
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3195
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3196

3197 3198 3199 3200
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3201 3202
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3203 3204 3205 3206
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3207
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3208
	if (ctx->is_active) {
3209
		update_context_time(ctx);
S
Stephane Eranian 已提交
3210 3211
		update_cgrp_time_from_event(event);
	}
3212
	update_event_times(event);
3213 3214
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3215
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3216 3217
}

P
Peter Zijlstra 已提交
3218 3219
static inline u64 perf_event_count(struct perf_event *event)
{
3220
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3221 3222
}

3223
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3224 3225
{
	/*
3226 3227
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3228
	 */
3229 3230 3231 3232
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3233 3234 3235
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3236
		raw_spin_lock_irqsave(&ctx->lock, flags);
3237 3238 3239 3240 3241
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3242
		if (ctx->is_active) {
3243
			update_context_time(ctx);
S
Stephane Eranian 已提交
3244 3245
			update_cgrp_time_from_event(event);
		}
3246
		update_event_times(event);
3247
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3248 3249
	}

P
Peter Zijlstra 已提交
3250
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3251 3252
}

3253
/*
3254
 * Initialize the perf_event context in a task_struct:
3255
 */
3256
static void __perf_event_init_context(struct perf_event_context *ctx)
3257
{
3258
	raw_spin_lock_init(&ctx->lock);
3259
	mutex_init(&ctx->mutex);
3260
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3261 3262
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3263 3264
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3265
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3281
	}
3282 3283 3284
	ctx->pmu = pmu;

	return ctx;
3285 3286
}

3287 3288 3289 3290 3291
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3292 3293

	rcu_read_lock();
3294
	if (!vpid)
T
Thomas Gleixner 已提交
3295 3296
		task = current;
	else
3297
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3298 3299 3300 3301 3302 3303 3304 3305
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3306 3307 3308 3309
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3310 3311 3312 3313 3314 3315 3316
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3317 3318 3319
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3320
static struct perf_event_context *
3321 3322
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3323
{
3324
	struct perf_event_context *ctx, *clone_ctx = NULL;
3325
	struct perf_cpu_context *cpuctx;
3326
	void *task_ctx_data = NULL;
3327
	unsigned long flags;
P
Peter Zijlstra 已提交
3328
	int ctxn, err;
3329
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3330

3331
	if (!task) {
3332
		/* Must be root to operate on a CPU event: */
3333
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3334 3335 3336
			return ERR_PTR(-EACCES);

		/*
3337
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3338 3339 3340
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3341
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3342 3343
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3344
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3345
		ctx = &cpuctx->ctx;
3346
		get_ctx(ctx);
3347
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3348 3349 3350 3351

		return ctx;
	}

P
Peter Zijlstra 已提交
3352 3353 3354 3355 3356
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3357 3358 3359 3360 3361 3362 3363 3364
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3365
retry:
P
Peter Zijlstra 已提交
3366
	ctx = perf_lock_task_context(task, ctxn, &flags);
3367
	if (ctx) {
3368
		clone_ctx = unclone_ctx(ctx);
3369
		++ctx->pin_count;
3370 3371 3372 3373 3374

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3375
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3376 3377 3378

		if (clone_ctx)
			put_ctx(clone_ctx);
3379
	} else {
3380
		ctx = alloc_perf_context(pmu, task);
3381 3382 3383
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3384

3385 3386 3387 3388 3389
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3400
		else {
3401
			get_ctx(ctx);
3402
			++ctx->pin_count;
3403
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3404
		}
3405 3406 3407
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3408
			put_ctx(ctx);
3409 3410 3411 3412

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3413 3414 3415
		}
	}

3416
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3417
	return ctx;
3418

P
Peter Zijlstra 已提交
3419
errout:
3420
	kfree(task_ctx_data);
3421
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3422 3423
}

L
Li Zefan 已提交
3424 3425
static void perf_event_free_filter(struct perf_event *event);

3426
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3427
{
3428
	struct perf_event *event;
P
Peter Zijlstra 已提交
3429

3430 3431 3432
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3433
	perf_event_free_filter(event);
3434
	kfree(event);
P
Peter Zijlstra 已提交
3435 3436
}

3437
static void ring_buffer_put(struct ring_buffer *rb);
3438 3439
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3440

3441
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3442
{
3443 3444 3445 3446 3447 3448
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3449

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3463 3464
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3465 3466 3467 3468 3469 3470 3471
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3472

3473 3474
static void __free_event(struct perf_event *event)
{
3475
	if (!event->parent) {
3476 3477
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3478
	}
3479

3480 3481 3482 3483 3484 3485
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3486 3487 3488
	if (event->pmu)
		module_put(event->pmu->module);

3489 3490
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3491 3492

static void _free_event(struct perf_event *event)
3493
{
3494
	irq_work_sync(&event->pending);
3495

3496
	unaccount_event(event);
3497

3498
	if (event->rb) {
3499 3500 3501 3502 3503 3504 3505
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3506
		ring_buffer_attach(event, NULL);
3507
		mutex_unlock(&event->mmap_mutex);
3508 3509
	}

S
Stephane Eranian 已提交
3510 3511 3512
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3513
	__free_event(event);
3514 3515
}

P
Peter Zijlstra 已提交
3516 3517 3518 3519 3520
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3521
{
P
Peter Zijlstra 已提交
3522 3523 3524 3525 3526 3527
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3528

P
Peter Zijlstra 已提交
3529
	_free_event(event);
T
Thomas Gleixner 已提交
3530 3531
}

3532
/*
3533
 * Remove user event from the owner task.
3534
 */
3535
static void perf_remove_from_owner(struct perf_event *event)
3536
{
P
Peter Zijlstra 已提交
3537
	struct task_struct *owner;
3538

P
Peter Zijlstra 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3580 3581 3582 3583 3584 3585 3586
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3587
	struct perf_event_context *ctx;
3588 3589 3590 3591 3592 3593

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3594

P
Peter Zijlstra 已提交
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3607 3608
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3609 3610 3611 3612
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3613 3614
}

P
Peter Zijlstra 已提交
3615 3616 3617 3618 3619 3620 3621
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3622 3623 3624 3625
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3626 3627
}

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3664
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3665
{
3666
	struct perf_event *child;
3667 3668
	u64 total = 0;

3669 3670 3671
	*enabled = 0;
	*running = 0;

3672
	mutex_lock(&event->child_mutex);
3673
	total += perf_event_read(event);
3674 3675 3676 3677 3678 3679
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3680
		total += perf_event_read(child);
3681 3682 3683
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3684
	mutex_unlock(&event->child_mutex);
3685 3686 3687

	return total;
}
3688
EXPORT_SYMBOL_GPL(perf_event_read_value);
3689

3690
static int perf_event_read_group(struct perf_event *event,
3691 3692
				   u64 read_format, char __user *buf)
{
3693
	struct perf_event *leader = event->group_leader, *sub;
3694
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3695
	int n = 0, size = 0, ret;
3696
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3697 3698 3699
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3700

3701
	count = perf_event_read_value(leader, &enabled, &running);
3702 3703

	values[n++] = 1 + leader->nr_siblings;
3704 3705 3706 3707
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3708 3709 3710
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3711 3712 3713 3714

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3715
		return -EFAULT;
3716

3717
	ret = size;
3718

3719
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3720
		n = 0;
3721

3722
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3723 3724 3725 3726 3727
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3728
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3729
			return -EFAULT;
3730
		}
3731 3732

		ret += size;
3733 3734
	}

3735
	return ret;
3736 3737
}

3738
static int perf_event_read_one(struct perf_event *event,
3739 3740
				 u64 read_format, char __user *buf)
{
3741
	u64 enabled, running;
3742 3743 3744
	u64 values[4];
	int n = 0;

3745 3746 3747 3748 3749
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3750
	if (read_format & PERF_FORMAT_ID)
3751
		values[n++] = primary_event_id(event);
3752 3753 3754 3755 3756 3757 3758

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3772
/*
3773
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3774 3775
 */
static ssize_t
3776
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3777
{
3778
	u64 read_format = event->attr.read_format;
3779
	int ret;
T
Thomas Gleixner 已提交
3780

3781
	/*
3782
	 * Return end-of-file for a read on a event that is in
3783 3784 3785
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3786
	if (event->state == PERF_EVENT_STATE_ERROR)
3787 3788
		return 0;

3789
	if (count < event->read_size)
3790 3791
		return -ENOSPC;

3792
	WARN_ON_ONCE(event->ctx->parent_ctx);
3793
	if (read_format & PERF_FORMAT_GROUP)
3794
		ret = perf_event_read_group(event, read_format, buf);
3795
	else
3796
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3797

3798
	return ret;
T
Thomas Gleixner 已提交
3799 3800 3801 3802 3803
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3804
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3805 3806
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3807

P
Peter Zijlstra 已提交
3808 3809 3810 3811 3812
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3813 3814 3815 3816
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3817
	struct perf_event *event = file->private_data;
3818
	struct ring_buffer *rb;
3819
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3820

3821
	poll_wait(file, &event->waitq, wait);
3822

3823
	if (is_event_hup(event))
3824
		return events;
P
Peter Zijlstra 已提交
3825

3826
	/*
3827 3828
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3829 3830
	 */
	mutex_lock(&event->mmap_mutex);
3831 3832
	rb = event->rb;
	if (rb)
3833
		events = atomic_xchg(&rb->poll, 0);
3834
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3835 3836 3837
	return events;
}

P
Peter Zijlstra 已提交
3838
static void _perf_event_reset(struct perf_event *event)
3839
{
3840
	(void)perf_event_read(event);
3841
	local64_set(&event->count, 0);
3842
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3843 3844
}

3845
/*
3846 3847 3848 3849
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3850
 */
3851 3852
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3853
{
3854
	struct perf_event *child;
P
Peter Zijlstra 已提交
3855

3856
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3857

3858 3859 3860
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3861
		func(child);
3862
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3863 3864
}

3865 3866
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3867
{
3868 3869
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3870

P
Peter Zijlstra 已提交
3871 3872
	lockdep_assert_held(&ctx->mutex);

3873
	event = event->group_leader;
3874

3875 3876
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3877
		perf_event_for_each_child(sibling, func);
3878 3879
}

3880
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3881
{
3882
	struct perf_event_context *ctx = event->ctx;
3883
	int ret = 0, active;
3884 3885
	u64 value;

3886
	if (!is_sampling_event(event))
3887 3888
		return -EINVAL;

3889
	if (copy_from_user(&value, arg, sizeof(value)))
3890 3891 3892 3893 3894
		return -EFAULT;

	if (!value)
		return -EINVAL;

3895
	raw_spin_lock_irq(&ctx->lock);
3896 3897
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3898 3899 3900 3901
			ret = -EINVAL;
			goto unlock;
		}

3902
		event->attr.sample_freq = value;
3903
	} else {
3904 3905
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3906
	}
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3921
unlock:
3922
	raw_spin_unlock_irq(&ctx->lock);
3923 3924 3925 3926

	return ret;
}

3927 3928
static const struct file_operations perf_fops;

3929
static inline int perf_fget_light(int fd, struct fd *p)
3930
{
3931 3932 3933
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3934

3935 3936 3937
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3938
	}
3939 3940
	*p = f;
	return 0;
3941 3942 3943 3944
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3945
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3946

P
Peter Zijlstra 已提交
3947
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3948
{
3949
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3950
	u32 flags = arg;
3951 3952

	switch (cmd) {
3953
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
3954
		func = _perf_event_enable;
3955
		break;
3956
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
3957
		func = _perf_event_disable;
3958
		break;
3959
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
3960
		func = _perf_event_reset;
3961
		break;
P
Peter Zijlstra 已提交
3962

3963
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
3964
		return _perf_event_refresh(event, arg);
3965

3966 3967
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3968

3969 3970 3971 3972 3973 3974 3975 3976 3977
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3978
	case PERF_EVENT_IOC_SET_OUTPUT:
3979 3980 3981
	{
		int ret;
		if (arg != -1) {
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3992 3993 3994
		}
		return ret;
	}
3995

L
Li Zefan 已提交
3996 3997 3998
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3999
	default:
P
Peter Zijlstra 已提交
4000
		return -ENOTTY;
4001
	}
P
Peter Zijlstra 已提交
4002 4003

	if (flags & PERF_IOC_FLAG_GROUP)
4004
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4005
	else
4006
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4007 4008

	return 0;
4009 4010
}

P
Peter Zijlstra 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4044
int perf_event_task_enable(void)
4045
{
P
Peter Zijlstra 已提交
4046
	struct perf_event_context *ctx;
4047
	struct perf_event *event;
4048

4049
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4050 4051 4052 4053 4054
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4055
	mutex_unlock(&current->perf_event_mutex);
4056 4057 4058 4059

	return 0;
}

4060
int perf_event_task_disable(void)
4061
{
P
Peter Zijlstra 已提交
4062
	struct perf_event_context *ctx;
4063
	struct perf_event *event;
4064

4065
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4066 4067 4068 4069 4070
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4071
	mutex_unlock(&current->perf_event_mutex);
4072 4073 4074 4075

	return 0;
}

4076
static int perf_event_index(struct perf_event *event)
4077
{
P
Peter Zijlstra 已提交
4078 4079 4080
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4081
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4082 4083
		return 0;

4084
	return event->pmu->event_idx(event);
4085 4086
}

4087
static void calc_timer_values(struct perf_event *event,
4088
				u64 *now,
4089 4090
				u64 *enabled,
				u64 *running)
4091
{
4092
	u64 ctx_time;
4093

4094 4095
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4096 4097 4098 4099
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

4120 4121
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4122 4123 4124
{
}

4125 4126 4127 4128 4129
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4130
void perf_event_update_userpage(struct perf_event *event)
4131
{
4132
	struct perf_event_mmap_page *userpg;
4133
	struct ring_buffer *rb;
4134
	u64 enabled, running, now;
4135 4136

	rcu_read_lock();
4137 4138 4139 4140
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4141 4142 4143 4144 4145 4146 4147 4148 4149
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4150
	calc_timer_values(event, &now, &enabled, &running);
4151

4152
	userpg = rb->user_page;
4153 4154 4155 4156 4157
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4158
	++userpg->lock;
4159
	barrier();
4160
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4161
	userpg->offset = perf_event_count(event);
4162
	if (userpg->index)
4163
		userpg->offset -= local64_read(&event->hw.prev_count);
4164

4165
	userpg->time_enabled = enabled +
4166
			atomic64_read(&event->child_total_time_enabled);
4167

4168
	userpg->time_running = running +
4169
			atomic64_read(&event->child_total_time_running);
4170

4171
	arch_perf_update_userpage(event, userpg, now);
4172

4173
	barrier();
4174
	++userpg->lock;
4175
	preempt_enable();
4176
unlock:
4177
	rcu_read_unlock();
4178 4179
}

4180 4181 4182
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4183
	struct ring_buffer *rb;
4184 4185 4186 4187 4188 4189 4190 4191 4192
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4193 4194
	rb = rcu_dereference(event->rb);
	if (!rb)
4195 4196 4197 4198 4199
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4200
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4215 4216 4217
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4218
	struct ring_buffer *old_rb = NULL;
4219 4220
	unsigned long flags;

4221 4222 4223 4224 4225 4226
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4227

4228 4229 4230
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4231

4232 4233 4234 4235
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4236

4237 4238 4239 4240
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4241

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4259 4260 4261 4262 4263 4264 4265 4266
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4267 4268 4269 4270
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4271 4272 4273
	rcu_read_unlock();
}

4274
static void rb_free_rcu(struct rcu_head *rcu_head)
4275
{
4276
	struct ring_buffer *rb;
4277

4278 4279
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4280 4281
}

4282
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4283
{
4284
	struct ring_buffer *rb;
4285

4286
	rcu_read_lock();
4287 4288 4289 4290
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4291 4292 4293
	}
	rcu_read_unlock();

4294
	return rb;
4295 4296
}

4297
static void ring_buffer_put(struct ring_buffer *rb)
4298
{
4299
	if (!atomic_dec_and_test(&rb->refcount))
4300
		return;
4301

4302
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4303

4304
	call_rcu(&rb->rcu_head, rb_free_rcu);
4305 4306 4307 4308
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4309
	struct perf_event *event = vma->vm_file->private_data;
4310

4311
	atomic_inc(&event->mmap_count);
4312
	atomic_inc(&event->rb->mmap_count);
4313 4314 4315

	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4316 4317
}

4318 4319 4320 4321 4322 4323 4324 4325
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4326 4327
static void perf_mmap_close(struct vm_area_struct *vma)
{
4328
	struct perf_event *event = vma->vm_file->private_data;
4329

4330
	struct ring_buffer *rb = ring_buffer_get(event);
4331 4332 4333
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4334

4335 4336 4337
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4338 4339 4340
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4341
		goto out_put;
4342

4343
	ring_buffer_attach(event, NULL);
4344 4345 4346
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4347 4348
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4366

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4378 4379 4380
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4381
		mutex_unlock(&event->mmap_mutex);
4382
		put_event(event);
4383

4384 4385 4386 4387 4388
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4389
	}
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4405
out_put:
4406
	ring_buffer_put(rb); /* could be last */
4407 4408
}

4409
static const struct vm_operations_struct perf_mmap_vmops = {
4410 4411 4412 4413
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4414 4415 4416 4417
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4418
	struct perf_event *event = file->private_data;
4419
	unsigned long user_locked, user_lock_limit;
4420
	struct user_struct *user = current_user();
4421
	unsigned long locked, lock_limit;
4422
	struct ring_buffer *rb;
4423 4424
	unsigned long vma_size;
	unsigned long nr_pages;
4425
	long user_extra, extra;
4426
	int ret = 0, flags = 0;
4427

4428 4429 4430
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4431
	 * same rb.
4432 4433 4434 4435
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4436
	if (!(vma->vm_flags & VM_SHARED))
4437
		return -EINVAL;
4438 4439 4440 4441

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4442
	/*
4443
	 * If we have rb pages ensure they're a power-of-two number, so we
4444 4445 4446
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4447 4448
		return -EINVAL;

4449
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4450 4451
		return -EINVAL;

4452 4453
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4454

4455
	WARN_ON_ONCE(event->ctx->parent_ctx);
4456
again:
4457
	mutex_lock(&event->mmap_mutex);
4458
	if (event->rb) {
4459
		if (event->rb->nr_pages != nr_pages) {
4460
			ret = -EINVAL;
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4474 4475 4476
		goto unlock;
	}

4477
	user_extra = nr_pages + 1;
4478
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4479 4480 4481 4482 4483 4484

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4485
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4486

4487 4488 4489
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4490

4491
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4492
	lock_limit >>= PAGE_SHIFT;
4493
	locked = vma->vm_mm->pinned_vm + extra;
4494

4495 4496
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4497 4498 4499
		ret = -EPERM;
		goto unlock;
	}
4500

4501
	WARN_ON(event->rb);
4502

4503
	if (vma->vm_flags & VM_WRITE)
4504
		flags |= RING_BUFFER_WRITABLE;
4505

4506 4507 4508 4509
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4510
	if (!rb) {
4511
		ret = -ENOMEM;
4512
		goto unlock;
4513
	}
P
Peter Zijlstra 已提交
4514

4515
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4516 4517
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4518

4519
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4520 4521
	vma->vm_mm->pinned_vm += extra;

4522
	ring_buffer_attach(event, rb);
4523

4524
	perf_event_init_userpage(event);
4525 4526
	perf_event_update_userpage(event);

4527
unlock:
4528 4529
	if (!ret)
		atomic_inc(&event->mmap_count);
4530
	mutex_unlock(&event->mmap_mutex);
4531

4532 4533 4534 4535
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4536
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4537
	vma->vm_ops = &perf_mmap_vmops;
4538

4539 4540 4541
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4542
	return ret;
4543 4544
}

P
Peter Zijlstra 已提交
4545 4546
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4547
	struct inode *inode = file_inode(filp);
4548
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4549 4550 4551
	int retval;

	mutex_lock(&inode->i_mutex);
4552
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4553 4554 4555 4556 4557 4558 4559 4560
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4561
static const struct file_operations perf_fops = {
4562
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4563 4564 4565
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4566
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4567
	.compat_ioctl		= perf_compat_ioctl,
4568
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4569
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4570 4571
};

4572
/*
4573
 * Perf event wakeup
4574 4575 4576 4577 4578
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4579
void perf_event_wakeup(struct perf_event *event)
4580
{
4581
	ring_buffer_wakeup(event);
4582

4583 4584 4585
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4586
	}
4587 4588
}

4589
static void perf_pending_event(struct irq_work *entry)
4590
{
4591 4592
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4593

4594 4595 4596
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4597 4598
	}

4599 4600 4601
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4602 4603 4604
	}
}

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4641
static void perf_sample_regs_user(struct perf_regs *regs_user,
4642 4643
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4644
{
4645 4646
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4647
		regs_user->regs = regs;
4648 4649
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4650 4651 4652
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4653 4654 4655
	}
}

4656 4657 4658 4659 4660 4661 4662 4663
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4759 4760 4761
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4777
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4789 4790 4791
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4816 4817 4818

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4819 4820
}

4821 4822 4823
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4824 4825 4826 4827 4828
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4829
static void perf_output_read_one(struct perf_output_handle *handle,
4830 4831
				 struct perf_event *event,
				 u64 enabled, u64 running)
4832
{
4833
	u64 read_format = event->attr.read_format;
4834 4835 4836
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4837
	values[n++] = perf_event_count(event);
4838
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4839
		values[n++] = enabled +
4840
			atomic64_read(&event->child_total_time_enabled);
4841 4842
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4843
		values[n++] = running +
4844
			atomic64_read(&event->child_total_time_running);
4845 4846
	}
	if (read_format & PERF_FORMAT_ID)
4847
		values[n++] = primary_event_id(event);
4848

4849
	__output_copy(handle, values, n * sizeof(u64));
4850 4851 4852
}

/*
4853
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4854 4855
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4856 4857
			    struct perf_event *event,
			    u64 enabled, u64 running)
4858
{
4859 4860
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4861 4862 4863 4864 4865 4866
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4867
		values[n++] = enabled;
4868 4869

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4870
		values[n++] = running;
4871

4872
	if (leader != event)
4873 4874
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4875
	values[n++] = perf_event_count(leader);
4876
	if (read_format & PERF_FORMAT_ID)
4877
		values[n++] = primary_event_id(leader);
4878

4879
	__output_copy(handle, values, n * sizeof(u64));
4880

4881
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4882 4883
		n = 0;

4884 4885
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4886 4887
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4888
		values[n++] = perf_event_count(sub);
4889
		if (read_format & PERF_FORMAT_ID)
4890
			values[n++] = primary_event_id(sub);
4891

4892
		__output_copy(handle, values, n * sizeof(u64));
4893 4894 4895
	}
}

4896 4897 4898
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4899
static void perf_output_read(struct perf_output_handle *handle,
4900
			     struct perf_event *event)
4901
{
4902
	u64 enabled = 0, running = 0, now;
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4914
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4915
		calc_timer_values(event, &now, &enabled, &running);
4916

4917
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4918
		perf_output_read_group(handle, event, enabled, running);
4919
	else
4920
		perf_output_read_one(handle, event, enabled, running);
4921 4922
}

4923 4924 4925
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4926
			struct perf_event *event)
4927 4928 4929 4930 4931
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4932 4933 4934
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4960
		perf_output_read(handle, event);
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4971
			__output_copy(handle, data->callchain, size);
4972 4973 4974 4975 4976 4977 4978 4979 4980
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4981 4982
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4994

4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5029

5030
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5031 5032 5033
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5034
	}
A
Andi Kleen 已提交
5035 5036 5037

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5038 5039 5040

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5041

A
Andi Kleen 已提交
5042 5043 5044
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5075 5076 5077 5078
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5079
			 struct perf_event *event,
5080
			 struct pt_regs *regs)
5081
{
5082
	u64 sample_type = event->attr.sample_type;
5083

5084
	header->type = PERF_RECORD_SAMPLE;
5085
	header->size = sizeof(*header) + event->header_size;
5086 5087 5088

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5089

5090
	__perf_event_header__init_id(header, data, event);
5091

5092
	if (sample_type & PERF_SAMPLE_IP)
5093 5094
		data->ip = perf_instruction_pointer(regs);

5095
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5096
		int size = 1;
5097

5098
		data->callchain = perf_callchain(event, regs);
5099 5100 5101 5102 5103

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5104 5105
	}

5106
	if (sample_type & PERF_SAMPLE_RAW) {
5107 5108 5109 5110 5111 5112 5113 5114
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5115
		header->size += size;
5116
	}
5117 5118 5119 5120 5121 5122 5123 5124 5125

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5126

5127
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5128 5129
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5130

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5154
						     data->regs_user.regs);
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5182
}
5183

5184
static void perf_event_output(struct perf_event *event,
5185 5186 5187 5188 5189
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5190

5191 5192 5193
	/* protect the callchain buffers */
	rcu_read_lock();

5194
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5195

5196
	if (perf_output_begin(&handle, event, header.size))
5197
		goto exit;
5198

5199
	perf_output_sample(&handle, &header, data, event);
5200

5201
	perf_output_end(&handle);
5202 5203 5204

exit:
	rcu_read_unlock();
5205 5206
}

5207
/*
5208
 * read event_id
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5219
perf_event_read_event(struct perf_event *event,
5220 5221 5222
			struct task_struct *task)
{
	struct perf_output_handle handle;
5223
	struct perf_sample_data sample;
5224
	struct perf_read_event read_event = {
5225
		.header = {
5226
			.type = PERF_RECORD_READ,
5227
			.misc = 0,
5228
			.size = sizeof(read_event) + event->read_size,
5229
		},
5230 5231
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5232
	};
5233
	int ret;
5234

5235
	perf_event_header__init_id(&read_event.header, &sample, event);
5236
	ret = perf_output_begin(&handle, event, read_event.header.size);
5237 5238 5239
	if (ret)
		return;

5240
	perf_output_put(&handle, read_event);
5241
	perf_output_read(&handle, event);
5242
	perf_event__output_id_sample(event, &handle, &sample);
5243

5244 5245 5246
	perf_output_end(&handle);
}

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5261
		output(event, data);
5262 5263 5264 5265
	}
}

static void
5266
perf_event_aux(perf_event_aux_output_cb output, void *data,
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5279
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5280 5281 5282 5283 5284 5285 5286
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5287
			perf_event_aux_ctx(ctx, output, data);
5288 5289 5290 5291 5292 5293
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5294
		perf_event_aux_ctx(task_ctx, output, data);
5295 5296 5297 5298 5299
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5300
/*
P
Peter Zijlstra 已提交
5301 5302
 * task tracking -- fork/exit
 *
5303
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5304 5305
 */

P
Peter Zijlstra 已提交
5306
struct perf_task_event {
5307
	struct task_struct		*task;
5308
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5309 5310 5311 5312 5313 5314

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5315 5316
		u32				tid;
		u32				ptid;
5317
		u64				time;
5318
	} event_id;
P
Peter Zijlstra 已提交
5319 5320
};

5321 5322
static int perf_event_task_match(struct perf_event *event)
{
5323 5324 5325
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5326 5327
}

5328
static void perf_event_task_output(struct perf_event *event,
5329
				   void *data)
P
Peter Zijlstra 已提交
5330
{
5331
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5332
	struct perf_output_handle handle;
5333
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5334
	struct task_struct *task = task_event->task;
5335
	int ret, size = task_event->event_id.header.size;
5336

5337 5338 5339
	if (!perf_event_task_match(event))
		return;

5340
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5341

5342
	ret = perf_output_begin(&handle, event,
5343
				task_event->event_id.header.size);
5344
	if (ret)
5345
		goto out;
P
Peter Zijlstra 已提交
5346

5347 5348
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5349

5350 5351
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5352

5353
	perf_output_put(&handle, task_event->event_id);
5354

5355 5356
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5357
	perf_output_end(&handle);
5358 5359
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5360 5361
}

5362 5363
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5364
			      int new)
P
Peter Zijlstra 已提交
5365
{
P
Peter Zijlstra 已提交
5366
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5367

5368 5369 5370
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5371 5372
		return;

P
Peter Zijlstra 已提交
5373
	task_event = (struct perf_task_event){
5374 5375
		.task	  = task,
		.task_ctx = task_ctx,
5376
		.event_id    = {
P
Peter Zijlstra 已提交
5377
			.header = {
5378
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5379
				.misc = 0,
5380
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5381
			},
5382 5383
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5384 5385
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5386
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5387 5388 5389
		},
	};

5390
	perf_event_aux(perf_event_task_output,
5391 5392
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5393 5394
}

5395
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5396
{
5397
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5398 5399
}

5400 5401 5402 5403 5404
/*
 * comm tracking
 */

struct perf_comm_event {
5405 5406
	struct task_struct	*task;
	char			*comm;
5407 5408 5409 5410 5411 5412 5413
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5414
	} event_id;
5415 5416
};

5417 5418 5419 5420 5421
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5422
static void perf_event_comm_output(struct perf_event *event,
5423
				   void *data)
5424
{
5425
	struct perf_comm_event *comm_event = data;
5426
	struct perf_output_handle handle;
5427
	struct perf_sample_data sample;
5428
	int size = comm_event->event_id.header.size;
5429 5430
	int ret;

5431 5432 5433
	if (!perf_event_comm_match(event))
		return;

5434 5435
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5436
				comm_event->event_id.header.size);
5437 5438

	if (ret)
5439
		goto out;
5440

5441 5442
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5443

5444
	perf_output_put(&handle, comm_event->event_id);
5445
	__output_copy(&handle, comm_event->comm,
5446
				   comm_event->comm_size);
5447 5448 5449

	perf_event__output_id_sample(event, &handle, &sample);

5450
	perf_output_end(&handle);
5451 5452
out:
	comm_event->event_id.header.size = size;
5453 5454
}

5455
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5456
{
5457
	char comm[TASK_COMM_LEN];
5458 5459
	unsigned int size;

5460
	memset(comm, 0, sizeof(comm));
5461
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5462
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5463 5464 5465 5466

	comm_event->comm = comm;
	comm_event->comm_size = size;

5467
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5468

5469
	perf_event_aux(perf_event_comm_output,
5470 5471
		       comm_event,
		       NULL);
5472 5473
}

5474
void perf_event_comm(struct task_struct *task, bool exec)
5475
{
5476 5477
	struct perf_comm_event comm_event;

5478
	if (!atomic_read(&nr_comm_events))
5479
		return;
5480

5481
	comm_event = (struct perf_comm_event){
5482
		.task	= task,
5483 5484
		/* .comm      */
		/* .comm_size */
5485
		.event_id  = {
5486
			.header = {
5487
				.type = PERF_RECORD_COMM,
5488
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5489 5490 5491 5492
				/* .size */
			},
			/* .pid */
			/* .tid */
5493 5494 5495
		},
	};

5496
	perf_event_comm_event(&comm_event);
5497 5498
}

5499 5500 5501 5502 5503
/*
 * mmap tracking
 */

struct perf_mmap_event {
5504 5505 5506 5507
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5508 5509 5510
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5511
	u32			prot, flags;
5512 5513 5514 5515 5516 5517 5518 5519 5520

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5521
	} event_id;
5522 5523
};

5524 5525 5526 5527 5528 5529 5530 5531
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5532
	       (executable && (event->attr.mmap || event->attr.mmap2));
5533 5534
}

5535
static void perf_event_mmap_output(struct perf_event *event,
5536
				   void *data)
5537
{
5538
	struct perf_mmap_event *mmap_event = data;
5539
	struct perf_output_handle handle;
5540
	struct perf_sample_data sample;
5541
	int size = mmap_event->event_id.header.size;
5542
	int ret;
5543

5544 5545 5546
	if (!perf_event_mmap_match(event, data))
		return;

5547 5548 5549 5550 5551
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5552
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5553 5554
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5555 5556
	}

5557 5558
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5559
				mmap_event->event_id.header.size);
5560
	if (ret)
5561
		goto out;
5562

5563 5564
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5565

5566
	perf_output_put(&handle, mmap_event->event_id);
5567 5568 5569 5570 5571 5572

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5573 5574
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5575 5576
	}

5577
	__output_copy(&handle, mmap_event->file_name,
5578
				   mmap_event->file_size);
5579 5580 5581

	perf_event__output_id_sample(event, &handle, &sample);

5582
	perf_output_end(&handle);
5583 5584
out:
	mmap_event->event_id.header.size = size;
5585 5586
}

5587
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5588
{
5589 5590
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5591 5592
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5593
	u32 prot = 0, flags = 0;
5594 5595 5596
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5597
	char *name;
5598

5599
	if (file) {
5600 5601
		struct inode *inode;
		dev_t dev;
5602

5603
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5604
		if (!buf) {
5605 5606
			name = "//enomem";
			goto cpy_name;
5607
		}
5608
		/*
5609
		 * d_path() works from the end of the rb backwards, so we
5610 5611 5612
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5613
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5614
		if (IS_ERR(name)) {
5615 5616
			name = "//toolong";
			goto cpy_name;
5617
		}
5618 5619 5620 5621 5622 5623
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5646
		goto got_name;
5647
	} else {
5648 5649 5650 5651 5652 5653
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5654
		name = (char *)arch_vma_name(vma);
5655 5656
		if (name)
			goto cpy_name;
5657

5658
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5659
				vma->vm_end >= vma->vm_mm->brk) {
5660 5661
			name = "[heap]";
			goto cpy_name;
5662 5663
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5664
				vma->vm_end >= vma->vm_mm->start_stack) {
5665 5666
			name = "[stack]";
			goto cpy_name;
5667 5668
		}

5669 5670
		name = "//anon";
		goto cpy_name;
5671 5672
	}

5673 5674 5675
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5676
got_name:
5677 5678 5679 5680 5681 5682 5683 5684
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5685 5686 5687

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5688 5689 5690 5691
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5692 5693
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5694

5695 5696 5697
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5698
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5699

5700
	perf_event_aux(perf_event_mmap_output,
5701 5702
		       mmap_event,
		       NULL);
5703

5704 5705 5706
	kfree(buf);
}

5707
void perf_event_mmap(struct vm_area_struct *vma)
5708
{
5709 5710
	struct perf_mmap_event mmap_event;

5711
	if (!atomic_read(&nr_mmap_events))
5712 5713 5714
		return;

	mmap_event = (struct perf_mmap_event){
5715
		.vma	= vma,
5716 5717
		/* .file_name */
		/* .file_size */
5718
		.event_id  = {
5719
			.header = {
5720
				.type = PERF_RECORD_MMAP,
5721
				.misc = PERF_RECORD_MISC_USER,
5722 5723 5724 5725
				/* .size */
			},
			/* .pid */
			/* .tid */
5726 5727
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5728
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5729
		},
5730 5731 5732 5733
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5734 5735
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5736 5737
	};

5738
	perf_event_mmap_event(&mmap_event);
5739 5740
}

5741 5742 5743 5744
/*
 * IRQ throttle logging
 */

5745
static void perf_log_throttle(struct perf_event *event, int enable)
5746 5747
{
	struct perf_output_handle handle;
5748
	struct perf_sample_data sample;
5749 5750 5751 5752 5753
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5754
		u64				id;
5755
		u64				stream_id;
5756 5757
	} throttle_event = {
		.header = {
5758
			.type = PERF_RECORD_THROTTLE,
5759 5760 5761
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5762
		.time		= perf_clock(),
5763 5764
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5765 5766
	};

5767
	if (enable)
5768
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5769

5770 5771 5772
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5773
				throttle_event.header.size);
5774 5775 5776 5777
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5778
	perf_event__output_id_sample(event, &handle, &sample);
5779 5780 5781
	perf_output_end(&handle);
}

5782
/*
5783
 * Generic event overflow handling, sampling.
5784 5785
 */

5786
static int __perf_event_overflow(struct perf_event *event,
5787 5788
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5789
{
5790 5791
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5792
	u64 seq;
5793 5794
	int ret = 0;

5795 5796 5797 5798 5799 5800 5801
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5802 5803 5804 5805 5806 5807 5808 5809 5810
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5811 5812
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5813
			tick_nohz_full_kick();
5814 5815
			ret = 1;
		}
5816
	}
5817

5818
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5819
		u64 now = perf_clock();
5820
		s64 delta = now - hwc->freq_time_stamp;
5821

5822
		hwc->freq_time_stamp = now;
5823

5824
		if (delta > 0 && delta < 2*TICK_NSEC)
5825
			perf_adjust_period(event, delta, hwc->last_period, true);
5826 5827
	}

5828 5829
	/*
	 * XXX event_limit might not quite work as expected on inherited
5830
	 * events
5831 5832
	 */

5833 5834
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5835
		ret = 1;
5836
		event->pending_kill = POLL_HUP;
5837 5838
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5839 5840
	}

5841
	if (event->overflow_handler)
5842
		event->overflow_handler(event, data, regs);
5843
	else
5844
		perf_event_output(event, data, regs);
5845

P
Peter Zijlstra 已提交
5846
	if (event->fasync && event->pending_kill) {
5847 5848
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5849 5850
	}

5851
	return ret;
5852 5853
}

5854
int perf_event_overflow(struct perf_event *event,
5855 5856
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5857
{
5858
	return __perf_event_overflow(event, 1, data, regs);
5859 5860
}

5861
/*
5862
 * Generic software event infrastructure
5863 5864
 */

5865 5866 5867 5868 5869 5870 5871
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5872 5873 5874

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5875 5876 5877 5878
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5879
/*
5880 5881
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5882 5883 5884 5885
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5886
u64 perf_swevent_set_period(struct perf_event *event)
5887
{
5888
	struct hw_perf_event *hwc = &event->hw;
5889 5890 5891 5892 5893
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5894 5895

again:
5896
	old = val = local64_read(&hwc->period_left);
5897 5898
	if (val < 0)
		return 0;
5899

5900 5901 5902
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5903
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5904
		goto again;
5905

5906
	return nr;
5907 5908
}

5909
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5910
				    struct perf_sample_data *data,
5911
				    struct pt_regs *regs)
5912
{
5913
	struct hw_perf_event *hwc = &event->hw;
5914
	int throttle = 0;
5915

5916 5917
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5918

5919 5920
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5921

5922
	for (; overflow; overflow--) {
5923
		if (__perf_event_overflow(event, throttle,
5924
					    data, regs)) {
5925 5926 5927 5928 5929 5930
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5931
		throttle = 1;
5932
	}
5933 5934
}

P
Peter Zijlstra 已提交
5935
static void perf_swevent_event(struct perf_event *event, u64 nr,
5936
			       struct perf_sample_data *data,
5937
			       struct pt_regs *regs)
5938
{
5939
	struct hw_perf_event *hwc = &event->hw;
5940

5941
	local64_add(nr, &event->count);
5942

5943 5944 5945
	if (!regs)
		return;

5946
	if (!is_sampling_event(event))
5947
		return;
5948

5949 5950 5951 5952 5953 5954
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5955
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5956
		return perf_swevent_overflow(event, 1, data, regs);
5957

5958
	if (local64_add_negative(nr, &hwc->period_left))
5959
		return;
5960

5961
	perf_swevent_overflow(event, 0, data, regs);
5962 5963
}

5964 5965 5966
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5967
	if (event->hw.state & PERF_HES_STOPPED)
5968
		return 1;
P
Peter Zijlstra 已提交
5969

5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5981
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5982
				enum perf_type_id type,
L
Li Zefan 已提交
5983 5984 5985
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5986
{
5987
	if (event->attr.type != type)
5988
		return 0;
5989

5990
	if (event->attr.config != event_id)
5991 5992
		return 0;

5993 5994
	if (perf_exclude_event(event, regs))
		return 0;
5995 5996 5997 5998

	return 1;
}

5999 6000 6001 6002 6003 6004 6005
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6006 6007
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6008
{
6009 6010 6011 6012
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6013

6014 6015
/* For the read side: events when they trigger */
static inline struct hlist_head *
6016
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6017 6018
{
	struct swevent_hlist *hlist;
6019

6020
	hlist = rcu_dereference(swhash->swevent_hlist);
6021 6022 6023
	if (!hlist)
		return NULL;

6024 6025 6026 6027 6028
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6029
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6040
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6041 6042 6043 6044 6045
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6046 6047 6048
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6049
				    u64 nr,
6050 6051
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6052
{
6053
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6054
	struct perf_event *event;
6055
	struct hlist_head *head;
6056

6057
	rcu_read_lock();
6058
	head = find_swevent_head_rcu(swhash, type, event_id);
6059 6060 6061
	if (!head)
		goto end;

6062
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6063
		if (perf_swevent_match(event, type, event_id, data, regs))
6064
			perf_swevent_event(event, nr, data, regs);
6065
	}
6066 6067
end:
	rcu_read_unlock();
6068 6069
}

6070 6071
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6072
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6073
{
6074
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6075

6076
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6077
}
I
Ingo Molnar 已提交
6078
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6079

6080
inline void perf_swevent_put_recursion_context(int rctx)
6081
{
6082
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6083

6084
	put_recursion_context(swhash->recursion, rctx);
6085
}
6086

6087
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6088
{
6089
	struct perf_sample_data data;
6090

6091
	if (WARN_ON_ONCE(!regs))
6092
		return;
6093

6094
	perf_sample_data_init(&data, addr, 0);
6095
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6108 6109

	perf_swevent_put_recursion_context(rctx);
6110
fail:
6111
	preempt_enable_notrace();
6112 6113
}

6114
static void perf_swevent_read(struct perf_event *event)
6115 6116 6117
{
}

P
Peter Zijlstra 已提交
6118
static int perf_swevent_add(struct perf_event *event, int flags)
6119
{
6120
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6121
	struct hw_perf_event *hwc = &event->hw;
6122 6123
	struct hlist_head *head;

6124
	if (is_sampling_event(event)) {
6125
		hwc->last_period = hwc->sample_period;
6126
		perf_swevent_set_period(event);
6127
	}
6128

P
Peter Zijlstra 已提交
6129 6130
	hwc->state = !(flags & PERF_EF_START);

6131
	head = find_swevent_head(swhash, event);
6132 6133 6134 6135 6136 6137
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6138
		return -EINVAL;
6139
	}
6140 6141

	hlist_add_head_rcu(&event->hlist_entry, head);
6142
	perf_event_update_userpage(event);
6143

6144 6145 6146
	return 0;
}

P
Peter Zijlstra 已提交
6147
static void perf_swevent_del(struct perf_event *event, int flags)
6148
{
6149
	hlist_del_rcu(&event->hlist_entry);
6150 6151
}

P
Peter Zijlstra 已提交
6152
static void perf_swevent_start(struct perf_event *event, int flags)
6153
{
P
Peter Zijlstra 已提交
6154
	event->hw.state = 0;
6155
}
I
Ingo Molnar 已提交
6156

P
Peter Zijlstra 已提交
6157
static void perf_swevent_stop(struct perf_event *event, int flags)
6158
{
P
Peter Zijlstra 已提交
6159
	event->hw.state = PERF_HES_STOPPED;
6160 6161
}

6162 6163
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6164
swevent_hlist_deref(struct swevent_htable *swhash)
6165
{
6166 6167
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6168 6169
}

6170
static void swevent_hlist_release(struct swevent_htable *swhash)
6171
{
6172
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6173

6174
	if (!hlist)
6175 6176
		return;

6177
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6178
	kfree_rcu(hlist, rcu_head);
6179 6180 6181 6182
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6183
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6184

6185
	mutex_lock(&swhash->hlist_mutex);
6186

6187 6188
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6189

6190
	mutex_unlock(&swhash->hlist_mutex);
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6203
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6204 6205
	int err = 0;

6206
	mutex_lock(&swhash->hlist_mutex);
6207

6208
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6209 6210 6211 6212 6213 6214 6215
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6216
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6217
	}
6218
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6219
exit:
6220
	mutex_unlock(&swhash->hlist_mutex);
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6241
fail:
6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6252
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6253

6254 6255 6256
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6257

6258 6259
	WARN_ON(event->parent);

6260
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6261 6262 6263 6264 6265
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6266
	u64 event_id = event->attr.config;
6267 6268 6269 6270

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6271 6272 6273 6274 6275 6276
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6277 6278 6279 6280 6281 6282 6283 6284 6285
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6286
	if (event_id >= PERF_COUNT_SW_MAX)
6287 6288 6289 6290 6291 6292 6293 6294 6295
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6296
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6297 6298 6299 6300 6301 6302 6303
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6304
	.task_ctx_nr	= perf_sw_context,
6305

6306
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6307 6308 6309 6310
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6311 6312 6313
	.read		= perf_swevent_read,
};

6314 6315
#ifdef CONFIG_EVENT_TRACING

6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6330 6331
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6332 6333 6334 6335
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6336 6337 6338 6339 6340 6341 6342 6343 6344
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6345 6346
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6347 6348
{
	struct perf_sample_data data;
6349 6350
	struct perf_event *event;

6351 6352 6353 6354 6355
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6356
	perf_sample_data_init(&data, addr, 0);
6357 6358
	data.raw = &raw;

6359
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6360
		if (perf_tp_event_match(event, &data, regs))
6361
			perf_swevent_event(event, count, &data, regs);
6362
	}
6363

6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6389
	perf_swevent_put_recursion_context(rctx);
6390 6391 6392
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6393
static void tp_perf_event_destroy(struct perf_event *event)
6394
{
6395
	perf_trace_destroy(event);
6396 6397
}

6398
static int perf_tp_event_init(struct perf_event *event)
6399
{
6400 6401
	int err;

6402 6403 6404
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6405 6406 6407 6408 6409 6410
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6411 6412
	err = perf_trace_init(event);
	if (err)
6413
		return err;
6414

6415
	event->destroy = tp_perf_event_destroy;
6416

6417 6418 6419 6420
	return 0;
}

static struct pmu perf_tracepoint = {
6421 6422
	.task_ctx_nr	= perf_sw_context,

6423
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6424 6425 6426 6427
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6428 6429 6430 6431 6432
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6433
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6434
}
L
Li Zefan 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6459
#else
L
Li Zefan 已提交
6460

6461
static inline void perf_tp_register(void)
6462 6463
{
}
L
Li Zefan 已提交
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6474
#endif /* CONFIG_EVENT_TRACING */
6475

6476
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6477
void perf_bp_event(struct perf_event *bp, void *data)
6478
{
6479 6480 6481
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6482
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6483

P
Peter Zijlstra 已提交
6484
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6485
		perf_swevent_event(bp, 1, &sample, regs);
6486 6487 6488
}
#endif

6489 6490 6491
/*
 * hrtimer based swevent callback
 */
6492

6493
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6494
{
6495 6496 6497 6498 6499
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6500

6501
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6502 6503 6504 6505

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6506
	event->pmu->read(event);
6507

6508
	perf_sample_data_init(&data, 0, event->hw.last_period);
6509 6510 6511
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6512
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6513
			if (__perf_event_overflow(event, 1, &data, regs))
6514 6515
				ret = HRTIMER_NORESTART;
	}
6516

6517 6518
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6519

6520
	return ret;
6521 6522
}

6523
static void perf_swevent_start_hrtimer(struct perf_event *event)
6524
{
6525
	struct hw_perf_event *hwc = &event->hw;
6526 6527 6528 6529
	s64 period;

	if (!is_sampling_event(event))
		return;
6530

6531 6532 6533 6534
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6535

6536 6537 6538 6539 6540
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6541
				ns_to_ktime(period), 0,
6542
				HRTIMER_MODE_REL_PINNED, 0);
6543
}
6544 6545

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6546
{
6547 6548
	struct hw_perf_event *hwc = &event->hw;

6549
	if (is_sampling_event(event)) {
6550
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6551
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6552 6553 6554

		hrtimer_cancel(&hwc->hrtimer);
	}
6555 6556
}

P
Peter Zijlstra 已提交
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6577
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6578 6579 6580 6581
		event->attr.freq = 0;
	}
}

6582 6583 6584 6585 6586
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6587
{
6588 6589 6590
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6591
	now = local_clock();
6592 6593
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6594 6595
}

P
Peter Zijlstra 已提交
6596
static void cpu_clock_event_start(struct perf_event *event, int flags)
6597
{
P
Peter Zijlstra 已提交
6598
	local64_set(&event->hw.prev_count, local_clock());
6599 6600 6601
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6602
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6603
{
6604 6605 6606
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6607

P
Peter Zijlstra 已提交
6608 6609 6610 6611
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
6612
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
6613 6614 6615 6616 6617 6618 6619 6620 6621

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6622 6623 6624 6625
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6626

6627 6628 6629 6630 6631 6632 6633 6634
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6635 6636 6637 6638 6639 6640
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6641 6642
	perf_swevent_init_hrtimer(event);

6643
	return 0;
6644 6645
}

6646
static struct pmu perf_cpu_clock = {
6647 6648
	.task_ctx_nr	= perf_sw_context,

6649
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6650 6651 6652 6653
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6654 6655 6656 6657 6658 6659 6660 6661
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6662
{
6663 6664
	u64 prev;
	s64 delta;
6665

6666 6667 6668 6669
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6670

P
Peter Zijlstra 已提交
6671
static void task_clock_event_start(struct perf_event *event, int flags)
6672
{
P
Peter Zijlstra 已提交
6673
	local64_set(&event->hw.prev_count, event->ctx->time);
6674 6675 6676
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6677
static void task_clock_event_stop(struct perf_event *event, int flags)
6678 6679 6680
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6681 6682 6683 6684 6685 6686
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6687
	perf_event_update_userpage(event);
6688

P
Peter Zijlstra 已提交
6689 6690 6691 6692 6693 6694
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6695 6696 6697 6698
}

static void task_clock_event_read(struct perf_event *event)
{
6699 6700 6701
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6702 6703 6704 6705 6706

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6707
{
6708 6709 6710 6711 6712 6713
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6714 6715 6716 6717 6718 6719
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6720 6721
	perf_swevent_init_hrtimer(event);

6722
	return 0;
L
Li Zefan 已提交
6723 6724
}

6725
static struct pmu perf_task_clock = {
6726 6727
	.task_ctx_nr	= perf_sw_context,

6728
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6729 6730 6731 6732
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6733 6734
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
6735

P
Peter Zijlstra 已提交
6736
static void perf_pmu_nop_void(struct pmu *pmu)
6737 6738
{
}
L
Li Zefan 已提交
6739

P
Peter Zijlstra 已提交
6740
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6741
{
P
Peter Zijlstra 已提交
6742
	return 0;
L
Li Zefan 已提交
6743 6744
}

P
Peter Zijlstra 已提交
6745
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6746
{
P
Peter Zijlstra 已提交
6747
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6748 6749
}

P
Peter Zijlstra 已提交
6750 6751 6752 6753 6754
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6755

P
Peter Zijlstra 已提交
6756
static void perf_pmu_cancel_txn(struct pmu *pmu)
6757
{
P
Peter Zijlstra 已提交
6758
	perf_pmu_enable(pmu);
6759 6760
}

6761 6762
static int perf_event_idx_default(struct perf_event *event)
{
6763
	return 0;
6764 6765
}

P
Peter Zijlstra 已提交
6766 6767 6768 6769
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6770
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6771
{
P
Peter Zijlstra 已提交
6772
	struct pmu *pmu;
6773

P
Peter Zijlstra 已提交
6774 6775
	if (ctxn < 0)
		return NULL;
6776

P
Peter Zijlstra 已提交
6777 6778 6779 6780
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6781

P
Peter Zijlstra 已提交
6782
	return NULL;
6783 6784
}

6785
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6786
{
6787 6788 6789 6790 6791 6792 6793
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6794 6795
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6796 6797 6798 6799 6800 6801
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6802

P
Peter Zijlstra 已提交
6803
	mutex_lock(&pmus_lock);
6804
	/*
P
Peter Zijlstra 已提交
6805
	 * Like a real lame refcount.
6806
	 */
6807 6808 6809
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6810
			goto out;
6811
		}
P
Peter Zijlstra 已提交
6812
	}
6813

6814
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6815 6816
out:
	mutex_unlock(&pmus_lock);
6817
}
P
Peter Zijlstra 已提交
6818
static struct idr pmu_idr;
6819

P
Peter Zijlstra 已提交
6820 6821 6822 6823 6824 6825 6826
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6827
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6828

6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6872
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6873

6874 6875 6876 6877
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6878
};
6879
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6880 6881 6882 6883

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6884
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6900
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6921
static struct lock_class_key cpuctx_mutex;
6922
static struct lock_class_key cpuctx_lock;
6923

6924
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6925
{
P
Peter Zijlstra 已提交
6926
	int cpu, ret;
6927

6928
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6929 6930 6931 6932
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6933

P
Peter Zijlstra 已提交
6934 6935 6936 6937 6938 6939
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6940 6941 6942
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6943 6944 6945 6946 6947
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6948 6949 6950 6951 6952 6953
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6954
skip_type:
P
Peter Zijlstra 已提交
6955 6956 6957
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6958

W
Wei Yongjun 已提交
6959
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6960 6961
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6962
		goto free_dev;
6963

P
Peter Zijlstra 已提交
6964 6965 6966 6967
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6968
		__perf_event_init_context(&cpuctx->ctx);
6969
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6970
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
6971
		cpuctx->ctx.pmu = pmu;
6972 6973 6974

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6975
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6976
	}
6977

P
Peter Zijlstra 已提交
6978
got_cpu_context:
P
Peter Zijlstra 已提交
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6993
		}
6994
	}
6995

P
Peter Zijlstra 已提交
6996 6997 6998 6999 7000
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7001 7002 7003
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7004
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
7005 7006
	ret = 0;
unlock:
7007 7008
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7009
	return ret;
P
Peter Zijlstra 已提交
7010

P
Peter Zijlstra 已提交
7011 7012 7013 7014
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7015 7016 7017 7018
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7019 7020 7021
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7022
}
7023
EXPORT_SYMBOL_GPL(perf_pmu_register);
7024

7025
void perf_pmu_unregister(struct pmu *pmu)
7026
{
7027 7028 7029
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7030

7031
	/*
P
Peter Zijlstra 已提交
7032 7033
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7034
	 */
7035
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7036
	synchronize_rcu();
7037

P
Peter Zijlstra 已提交
7038
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7039 7040
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7041 7042
	device_del(pmu->dev);
	put_device(pmu->dev);
7043
	free_pmu_context(pmu);
7044
}
7045
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7046

7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
	event->pmu = pmu;
	ret = pmu->event_init(event);
	if (ret)
		module_put(pmu->module);

	return ret;
}

7061 7062 7063 7064
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7065
	int ret;
7066 7067

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7068 7069 7070 7071

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7072
	if (pmu) {
7073
		ret = perf_try_init_event(pmu, event);
7074 7075
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7076
		goto unlock;
7077
	}
P
Peter Zijlstra 已提交
7078

7079
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7080
		ret = perf_try_init_event(pmu, event);
7081
		if (!ret)
P
Peter Zijlstra 已提交
7082
			goto unlock;
7083

7084 7085
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7086
			goto unlock;
7087
		}
7088
	}
P
Peter Zijlstra 已提交
7089 7090
	pmu = ERR_PTR(-ENOENT);
unlock:
7091
	srcu_read_unlock(&pmus_srcu, idx);
7092

7093
	return pmu;
7094 7095
}

7096 7097 7098 7099 7100 7101 7102 7103 7104
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7105 7106
static void account_event(struct perf_event *event)
{
7107 7108 7109
	if (event->parent)
		return;

7110 7111 7112 7113 7114 7115 7116 7117
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7118 7119 7120 7121
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7122
	if (has_branch_stack(event))
7123
		static_key_slow_inc(&perf_sched_events.key);
7124
	if (is_cgroup_event(event))
7125
		static_key_slow_inc(&perf_sched_events.key);
7126 7127

	account_event_cpu(event, event->cpu);
7128 7129
}

T
Thomas Gleixner 已提交
7130
/*
7131
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7132
 */
7133
static struct perf_event *
7134
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7135 7136 7137
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7138 7139
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
7140
{
P
Peter Zijlstra 已提交
7141
	struct pmu *pmu;
7142 7143
	struct perf_event *event;
	struct hw_perf_event *hwc;
7144
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7145

7146 7147 7148 7149 7150
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7151
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7152
	if (!event)
7153
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7154

7155
	/*
7156
	 * Single events are their own group leaders, with an
7157 7158 7159
	 * empty sibling list:
	 */
	if (!group_leader)
7160
		group_leader = event;
7161

7162 7163
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7164

7165 7166 7167
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7168
	INIT_LIST_HEAD(&event->rb_entry);
7169
	INIT_LIST_HEAD(&event->active_entry);
7170 7171
	INIT_HLIST_NODE(&event->hlist_entry);

7172

7173
	init_waitqueue_head(&event->waitq);
7174
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7175

7176
	mutex_init(&event->mmap_mutex);
7177

7178
	atomic_long_set(&event->refcount, 1);
7179 7180 7181 7182 7183
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7184

7185
	event->parent		= parent_event;
7186

7187
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7188
	event->id		= atomic64_inc_return(&perf_event_id);
7189

7190
	event->state		= PERF_EVENT_STATE_INACTIVE;
7191

7192 7193
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
7194 7195 7196

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
7197 7198 7199 7200
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
7201
		else if (attr->type == PERF_TYPE_BREAKPOINT)
7202 7203 7204 7205
			event->hw.bp_target = task;
#endif
	}

7206
	if (!overflow_handler && parent_event) {
7207
		overflow_handler = parent_event->overflow_handler;
7208 7209
		context = parent_event->overflow_handler_context;
	}
7210

7211
	event->overflow_handler	= overflow_handler;
7212
	event->overflow_handler_context = context;
7213

J
Jiri Olsa 已提交
7214
	perf_event__state_init(event);
7215

7216
	pmu = NULL;
7217

7218
	hwc = &event->hw;
7219
	hwc->sample_period = attr->sample_period;
7220
	if (attr->freq && attr->sample_freq)
7221
		hwc->sample_period = 1;
7222
	hwc->last_period = hwc->sample_period;
7223

7224
	local64_set(&hwc->period_left, hwc->sample_period);
7225

7226
	/*
7227
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7228
	 */
7229
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7230
		goto err_ns;
7231

7232
	pmu = perf_init_event(event);
7233
	if (!pmu)
7234 7235
		goto err_ns;
	else if (IS_ERR(pmu)) {
7236
		err = PTR_ERR(pmu);
7237
		goto err_ns;
I
Ingo Molnar 已提交
7238
	}
7239

7240
	if (!event->parent) {
7241 7242
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7243 7244
			if (err)
				goto err_pmu;
7245
		}
7246
	}
7247

7248
	return event;
7249 7250 7251 7252

err_pmu:
	if (event->destroy)
		event->destroy(event);
7253
	module_put(pmu->module);
7254 7255 7256 7257 7258 7259
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7260 7261
}

7262 7263
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7264 7265
{
	u32 size;
7266
	int ret;
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7291 7292 7293
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7294 7295
	 */
	if (size > sizeof(*attr)) {
7296 7297 7298
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7299

7300 7301
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7302

7303
		for (; addr < end; addr++) {
7304 7305 7306 7307 7308 7309
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7310
		size = sizeof(*attr);
7311 7312 7313 7314 7315 7316
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7317
	if (attr->__reserved_1)
7318 7319 7320 7321 7322 7323 7324 7325
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7354 7355
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7356 7357
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7358
	}
7359

7360
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7361
		ret = perf_reg_validate(attr->sample_regs_user);
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7380

7381 7382
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7383 7384 7385 7386 7387 7388 7389 7390 7391
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7392 7393
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7394
{
7395
	struct ring_buffer *rb = NULL;
7396 7397
	int ret = -EINVAL;

7398
	if (!output_event)
7399 7400
		goto set;

7401 7402
	/* don't allow circular references */
	if (event == output_event)
7403 7404
		goto out;

7405 7406 7407 7408 7409 7410 7411
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7412
	 * If its not a per-cpu rb, it must be the same task.
7413 7414 7415 7416
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7417
set:
7418
	mutex_lock(&event->mmap_mutex);
7419 7420 7421
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7422

7423
	if (output_event) {
7424 7425 7426
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7427
			goto unlock;
7428 7429
	}

7430
	ring_buffer_attach(event, rb);
7431

7432
	ret = 0;
7433 7434 7435
unlock:
	mutex_unlock(&event->mmap_mutex);

7436 7437 7438 7439
out:
	return ret;
}

P
Peter Zijlstra 已提交
7440 7441 7442 7443 7444 7445 7446 7447 7448
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

T
Thomas Gleixner 已提交
7449
/**
7450
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7451
 *
7452
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7453
 * @pid:		target pid
I
Ingo Molnar 已提交
7454
 * @cpu:		target cpu
7455
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7456
 */
7457 7458
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7459
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7460
{
7461 7462
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7463
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7464
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7465
	struct file *event_file = NULL;
7466
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7467
	struct task_struct *task = NULL;
7468
	struct pmu *pmu;
7469
	int event_fd;
7470
	int move_group = 0;
7471
	int err;
7472
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7473

7474
	/* for future expandability... */
S
Stephane Eranian 已提交
7475
	if (flags & ~PERF_FLAG_ALL)
7476 7477
		return -EINVAL;

7478 7479 7480
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7481

7482 7483 7484 7485 7486
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7487
	if (attr.freq) {
7488
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7489
			return -EINVAL;
7490 7491 7492
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7493 7494
	}

S
Stephane Eranian 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7504 7505 7506 7507
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7508 7509 7510
	if (event_fd < 0)
		return event_fd;

7511
	if (group_fd != -1) {
7512 7513
		err = perf_fget_light(group_fd, &group);
		if (err)
7514
			goto err_fd;
7515
		group_leader = group.file->private_data;
7516 7517 7518 7519 7520 7521
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7522
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7523 7524 7525 7526 7527 7528 7529
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7530 7531 7532 7533 7534 7535
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7536 7537
	get_online_cpus();

7538 7539
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7540 7541
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7542
		goto err_cpus;
7543 7544
	}

S
Stephane Eranian 已提交
7545 7546
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7547 7548
		if (err) {
			__free_event(event);
7549
			goto err_cpus;
7550
		}
S
Stephane Eranian 已提交
7551 7552
	}

7553 7554 7555 7556 7557 7558 7559
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7560 7561
	account_event(event);

7562 7563 7564 7565 7566
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7590 7591 7592 7593

	/*
	 * Get the target context (task or percpu):
	 */
7594
	ctx = find_get_context(pmu, task, event);
7595 7596
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7597
		goto err_alloc;
7598 7599
	}

7600 7601 7602 7603 7604
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7605
	/*
7606
	 * Look up the group leader (we will attach this event to it):
7607
	 */
7608
	if (group_leader) {
7609
		err = -EINVAL;
7610 7611

		/*
I
Ingo Molnar 已提交
7612 7613 7614 7615
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7616
			goto err_context;
I
Ingo Molnar 已提交
7617 7618 7619
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7620
		 */
7621
		if (move_group) {
7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
7635 7636 7637 7638 7639 7640
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7641 7642 7643
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7644
		if (attr.exclusive || attr.pinned)
7645
			goto err_context;
7646 7647 7648 7649 7650
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7651
			goto err_context;
7652
	}
T
Thomas Gleixner 已提交
7653

7654 7655
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7656 7657
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7658
		goto err_context;
7659
	}
7660

7661
	if (move_group) {
P
Peter Zijlstra 已提交
7662 7663 7664 7665 7666 7667 7668
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7669

7670
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7671

7672 7673
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7674
			perf_remove_from_context(sibling, false);
7675 7676
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
7677 7678
	} else {
		mutex_lock(&ctx->mutex);
7679
	}
7680

7681
	WARN_ON_ONCE(ctx->parent_ctx);
7682 7683

	if (move_group) {
P
Peter Zijlstra 已提交
7684 7685 7686 7687
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
7688
		synchronize_rcu();
P
Peter Zijlstra 已提交
7689

7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
7700 7701
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7702
			perf_event__state_init(sibling);
7703
			perf_install_in_context(ctx, sibling, sibling->cpu);
7704 7705
			get_ctx(ctx);
		}
7706 7707 7708 7709 7710 7711 7712 7713 7714

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
7715 7716
	}

7717
	perf_install_in_context(ctx, event, event->cpu);
7718
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
7719 7720 7721 7722 7723

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
7724
	mutex_unlock(&ctx->mutex);
7725

7726 7727
	put_online_cpus();

7728
	event->owner = current;
P
Peter Zijlstra 已提交
7729

7730 7731 7732
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7733

7734 7735 7736 7737
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7738
	perf_event__id_header_size(event);
7739

7740 7741 7742 7743 7744 7745
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7746
	fdput(group);
7747 7748
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7749

7750
err_context:
7751
	perf_unpin_context(ctx);
7752
	put_ctx(ctx);
7753
err_alloc:
7754
	free_event(event);
7755
err_cpus:
7756
	put_online_cpus();
7757
err_task:
P
Peter Zijlstra 已提交
7758 7759
	if (task)
		put_task_struct(task);
7760
err_group_fd:
7761
	fdput(group);
7762 7763
err_fd:
	put_unused_fd(event_fd);
7764
	return err;
T
Thomas Gleixner 已提交
7765 7766
}

7767 7768 7769 7770 7771
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7772
 * @task: task to profile (NULL for percpu)
7773 7774 7775
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7776
				 struct task_struct *task,
7777 7778
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7779 7780
{
	struct perf_event_context *ctx;
7781
	struct perf_event *event;
7782
	int err;
7783

7784 7785 7786
	/*
	 * Get the target context (task or percpu):
	 */
7787

7788 7789
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7790 7791 7792 7793
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7794

7795 7796 7797
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7798 7799
	account_event(event);

7800
	ctx = find_get_context(event->pmu, task, event);
7801 7802
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7803
		goto err_free;
7804
	}
7805 7806 7807 7808

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7809
	perf_unpin_context(ctx);
7810 7811 7812 7813
	mutex_unlock(&ctx->mutex);

	return event;

7814 7815 7816
err_free:
	free_event(event);
err:
7817
	return ERR_PTR(err);
7818
}
7819
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7820

7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
7831 7832 7833 7834 7835
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7836 7837
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7838
		perf_remove_from_context(event, false);
7839
		unaccount_event_cpu(event, src_cpu);
7840
		put_ctx(src_ctx);
7841
		list_add(&event->migrate_entry, &events);
7842 7843
	}

7844 7845 7846
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
7847 7848
	synchronize_rcu();

7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
7873 7874
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7875 7876
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7877
		account_event_cpu(event, dst_cpu);
7878 7879 7880 7881
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
7882
	mutex_unlock(&src_ctx->mutex);
7883 7884 7885
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7886
static void sync_child_event(struct perf_event *child_event,
7887
			       struct task_struct *child)
7888
{
7889
	struct perf_event *parent_event = child_event->parent;
7890
	u64 child_val;
7891

7892 7893
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7894

P
Peter Zijlstra 已提交
7895
	child_val = perf_event_count(child_event);
7896 7897 7898 7899

	/*
	 * Add back the child's count to the parent's count:
	 */
7900
	atomic64_add(child_val, &parent_event->child_count);
7901 7902 7903 7904
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7905 7906

	/*
7907
	 * Remove this event from the parent's list
7908
	 */
7909 7910 7911 7912
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7913

7914 7915 7916 7917 7918 7919
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7920
	/*
7921
	 * Release the parent event, if this was the last
7922 7923
	 * reference to it.
	 */
7924
	put_event(parent_event);
7925 7926
}

7927
static void
7928 7929
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7930
			 struct task_struct *child)
7931
{
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7945

7946
	/*
7947
	 * It can happen that the parent exits first, and has events
7948
	 * that are still around due to the child reference. These
7949
	 * events need to be zapped.
7950
	 */
7951
	if (child_event->parent) {
7952 7953
		sync_child_event(child_event, child);
		free_event(child_event);
7954 7955 7956
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7957
	}
7958 7959
}

P
Peter Zijlstra 已提交
7960
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7961
{
7962
	struct perf_event *child_event, *next;
7963
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7964
	unsigned long flags;
7965

P
Peter Zijlstra 已提交
7966
	if (likely(!child->perf_event_ctxp[ctxn])) {
7967
		perf_event_task(child, NULL, 0);
7968
		return;
P
Peter Zijlstra 已提交
7969
	}
7970

7971
	local_irq_save(flags);
7972 7973 7974 7975 7976 7977
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7978
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7979 7980 7981

	/*
	 * Take the context lock here so that if find_get_context is
7982
	 * reading child->perf_event_ctxp, we wait until it has
7983 7984
	 * incremented the context's refcount before we do put_ctx below.
	 */
7985
	raw_spin_lock(&child_ctx->lock);
7986
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7987
	child->perf_event_ctxp[ctxn] = NULL;
7988

7989 7990 7991
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7992
	 * the events from it.
7993
	 */
7994
	clone_ctx = unclone_ctx(child_ctx);
7995
	update_context_time(child_ctx);
7996
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7997

7998 7999
	if (clone_ctx)
		put_ctx(clone_ctx);
8000

P
Peter Zijlstra 已提交
8001
	/*
8002 8003 8004
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8005
	 */
8006
	perf_event_task(child, child_ctx, 0);
8007

8008 8009 8010
	/*
	 * We can recurse on the same lock type through:
	 *
8011 8012
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8013 8014
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8015 8016 8017
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8018
	mutex_lock(&child_ctx->mutex);
8019

8020
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8021
		__perf_event_exit_task(child_event, child_ctx, child);
8022

8023 8024 8025
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8026 8027
}

P
Peter Zijlstra 已提交
8028 8029 8030 8031 8032
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8033
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8034 8035
	int ctxn;

P
Peter Zijlstra 已提交
8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8051 8052 8053 8054
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8067
	put_event(parent);
8068

P
Peter Zijlstra 已提交
8069
	raw_spin_lock_irq(&ctx->lock);
8070
	perf_group_detach(event);
8071
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8072
	raw_spin_unlock_irq(&ctx->lock);
8073 8074 8075
	free_event(event);
}

8076
/*
P
Peter Zijlstra 已提交
8077
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8078
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8079 8080 8081
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8082
 */
8083
void perf_event_free_task(struct task_struct *task)
8084
{
P
Peter Zijlstra 已提交
8085
	struct perf_event_context *ctx;
8086
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8087
	int ctxn;
8088

P
Peter Zijlstra 已提交
8089 8090 8091 8092
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8093

P
Peter Zijlstra 已提交
8094
		mutex_lock(&ctx->mutex);
8095
again:
P
Peter Zijlstra 已提交
8096 8097 8098
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8099

P
Peter Zijlstra 已提交
8100 8101 8102
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8103

P
Peter Zijlstra 已提交
8104 8105 8106
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8107

P
Peter Zijlstra 已提交
8108
		mutex_unlock(&ctx->mutex);
8109

P
Peter Zijlstra 已提交
8110 8111
		put_ctx(ctx);
	}
8112 8113
}

8114 8115 8116 8117 8118 8119 8120 8121
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8133
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8134
	struct perf_event *child_event;
8135
	unsigned long flags;
P
Peter Zijlstra 已提交
8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8148
					   child,
P
Peter Zijlstra 已提交
8149
					   group_leader, parent_event,
8150
				           NULL, NULL);
P
Peter Zijlstra 已提交
8151 8152
	if (IS_ERR(child_event))
		return child_event;
8153

8154 8155
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8156 8157 8158 8159
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8160 8161 8162 8163 8164 8165 8166
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8167
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8184 8185
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8186

8187 8188 8189 8190
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8191
	perf_event__id_header_size(child_event);
8192

P
Peter Zijlstra 已提交
8193 8194 8195
	/*
	 * Link it up in the child's context:
	 */
8196
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8197
	add_event_to_ctx(child_event, child_ctx);
8198
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8232 8233 8234 8235 8236
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8237
		   struct task_struct *child, int ctxn,
8238 8239 8240
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8241
	struct perf_event_context *child_ctx;
8242 8243 8244 8245

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8246 8247
	}

8248
	child_ctx = child->perf_event_ctxp[ctxn];
8249 8250 8251 8252 8253 8254 8255
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8256

8257
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8258 8259
		if (!child_ctx)
			return -ENOMEM;
8260

P
Peter Zijlstra 已提交
8261
		child->perf_event_ctxp[ctxn] = child_ctx;
8262 8263 8264 8265 8266 8267 8268 8269 8270
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8271 8272
}

8273
/*
8274
 * Initialize the perf_event context in task_struct
8275
 */
8276
static int perf_event_init_context(struct task_struct *child, int ctxn)
8277
{
8278
	struct perf_event_context *child_ctx, *parent_ctx;
8279 8280
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8281
	struct task_struct *parent = current;
8282
	int inherited_all = 1;
8283
	unsigned long flags;
8284
	int ret = 0;
8285

P
Peter Zijlstra 已提交
8286
	if (likely(!parent->perf_event_ctxp[ctxn]))
8287 8288
		return 0;

8289
	/*
8290 8291
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8292
	 */
P
Peter Zijlstra 已提交
8293
	parent_ctx = perf_pin_task_context(parent, ctxn);
8294 8295
	if (!parent_ctx)
		return 0;
8296

8297 8298 8299 8300 8301 8302 8303
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8304 8305 8306 8307
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8308
	mutex_lock(&parent_ctx->mutex);
8309 8310 8311 8312 8313

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8314
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8315 8316
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8317 8318 8319
		if (ret)
			break;
	}
8320

8321 8322 8323 8324 8325 8326 8327 8328 8329
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8330
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8331 8332
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8333
		if (ret)
8334
			break;
8335 8336
	}

8337 8338 8339
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8340
	child_ctx = child->perf_event_ctxp[ctxn];
8341

8342
	if (child_ctx && inherited_all) {
8343 8344 8345
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8346 8347 8348
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8349
		 */
P
Peter Zijlstra 已提交
8350
		cloned_ctx = parent_ctx->parent_ctx;
8351 8352
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8353
			child_ctx->parent_gen = parent_ctx->parent_gen;
8354 8355 8356 8357 8358
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8359 8360
	}

P
Peter Zijlstra 已提交
8361
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8362
	mutex_unlock(&parent_ctx->mutex);
8363

8364
	perf_unpin_context(parent_ctx);
8365
	put_ctx(parent_ctx);
8366

8367
	return ret;
8368 8369
}

P
Peter Zijlstra 已提交
8370 8371 8372 8373 8374 8375 8376
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8377 8378 8379 8380
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8381 8382
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8383 8384
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8385
			return ret;
P
Peter Zijlstra 已提交
8386
		}
P
Peter Zijlstra 已提交
8387 8388 8389 8390 8391
	}

	return 0;
}

8392 8393
static void __init perf_event_init_all_cpus(void)
{
8394
	struct swevent_htable *swhash;
8395 8396 8397
	int cpu;

	for_each_possible_cpu(cpu) {
8398 8399
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8400
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8401 8402 8403
	}
}

8404
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8405
{
P
Peter Zijlstra 已提交
8406
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8407

8408
	mutex_lock(&swhash->hlist_mutex);
8409
	swhash->online = true;
8410
	if (swhash->hlist_refcount > 0) {
8411 8412
		struct swevent_hlist *hlist;

8413 8414 8415
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8416
	}
8417
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8418 8419
}

P
Peter Zijlstra 已提交
8420
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8421
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8422
{
8423
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8424
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8425

P
Peter Zijlstra 已提交
8426
	rcu_read_lock();
8427 8428
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8429
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8430
}
P
Peter Zijlstra 已提交
8431 8432 8433 8434 8435 8436 8437 8438 8439

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8440
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8441 8442 8443 8444 8445 8446 8447 8448

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8449
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8450
{
8451
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8452

P
Peter Zijlstra 已提交
8453 8454
	perf_event_exit_cpu_context(cpu);

8455
	mutex_lock(&swhash->hlist_mutex);
8456
	swhash->online = false;
8457 8458
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8459 8460
}
#else
8461
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8462 8463
#endif

P
Peter Zijlstra 已提交
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8484
static int
T
Thomas Gleixner 已提交
8485 8486 8487 8488
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8489
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8490 8491

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8492
	case CPU_DOWN_FAILED:
8493
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8494 8495
		break;

P
Peter Zijlstra 已提交
8496
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8497
	case CPU_DOWN_PREPARE:
8498
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8499 8500 8501 8502 8503 8504 8505 8506
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8507
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8508
{
8509 8510
	int ret;

P
Peter Zijlstra 已提交
8511 8512
	idr_init(&pmu_idr);

8513
	perf_event_init_all_cpus();
8514
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8515 8516 8517
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8518 8519
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8520
	register_reboot_notifier(&perf_reboot_notifier);
8521 8522 8523

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8524 8525 8526

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8527 8528 8529 8530 8531 8532 8533

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8534
}
P
Peter Zijlstra 已提交
8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8563 8564

#ifdef CONFIG_CGROUP_PERF
8565 8566
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8567 8568 8569
{
	struct perf_cgroup *jc;

8570
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8583
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8584
{
8585 8586
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8598 8599
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8600
{
8601 8602
	struct task_struct *task;

8603
	cgroup_taskset_for_each(task, tset)
8604
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8605 8606
}

8607 8608
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8609
			     struct task_struct *task)
S
Stephane Eranian 已提交
8610 8611 8612 8613 8614 8615 8616 8617 8618
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8619
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8620 8621
}

8622
struct cgroup_subsys perf_event_cgrp_subsys = {
8623 8624
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8625
	.exit		= perf_cgroup_exit,
8626
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8627 8628
};
#endif /* CONFIG_CGROUP_PERF */