core.c 200.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
406
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
445 446
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
447
	/*
448 449
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
450
	 */
451
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
452 453
		return;

454 455 456 457 458 459
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
460 461 462
}

static inline void
463 464
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
465 466 467 468
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

469 470 471 472 473 474
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
475 476 477 478
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
479
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 513
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
514 515 516 517 518 519 520 521 522

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
523 524
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532 533 534 535

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
536
				WARN_ON_ONCE(cpuctx->cgrp);
537 538 539 540
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
541 542 543 544
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
545 546
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
547 548 549 550 551 552 553 554
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

555 556
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
580 581
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
603 604 605 606 607 608 609 610
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
611 612
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
613

614
	if (!f.file)
S
Stephane Eranian 已提交
615 616
		return -EBADF;

A
Al Viro 已提交
617
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618
					 &perf_event_cgrp_subsys);
619 620 621 622
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
636
out:
637
	fdput(f);
S
Stephane Eranian 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

711 712
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
713 714 715
{
}

716 717
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
729 730
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
824
	int timer;
825 826 827 828 829

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

830 831 832 833 834 835 836 837 838
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
861
void perf_pmu_disable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
866 867
}

P
Peter Zijlstra 已提交
868
void perf_pmu_enable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
873 874
}

875
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
876 877

/*
878 879 880 881
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
882
 */
883
static void perf_event_ctx_activate(struct perf_event_context *ctx)
884
{
885
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
886

887
	WARN_ON(!irqs_disabled());
888

889 890 891 892 893 894 895 896 897 898 899 900
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
901 902
}

903
static void get_ctx(struct perf_event_context *ctx)
904
{
905
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
906 907
}

908
static void put_ctx(struct perf_event_context *ctx)
909
{
910 911 912
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
913 914
		if (ctx->task)
			put_task_struct(ctx->task);
915
		kfree_rcu(ctx, rcu_head);
916
	}
917 918
}

P
Peter Zijlstra 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
960 961
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970 971 972 973
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
974
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
975 976 977 978 979 980 981 982 983
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
984 985 986 987 988 989
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
990 991 992 993 994 995 996
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

997 998 999 1000 1001 1002 1003
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1004
{
1005 1006 1007 1008 1009
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1010
		ctx->parent_ctx = NULL;
1011
	ctx->generation++;
1012 1013

	return parent_ctx;
1014 1015
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1038
/*
1039
 * If we inherit events we want to return the parent event id
1040 1041
 * to userspace.
 */
1042
static u64 primary_event_id(struct perf_event *event)
1043
{
1044
	u64 id = event->id;
1045

1046 1047
	if (event->parent)
		id = event->parent->id;
1048 1049 1050 1051

	return id;
}

1052
/*
1053
 * Get the perf_event_context for a task and lock it.
1054 1055 1056
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1057
static struct perf_event_context *
P
Peter Zijlstra 已提交
1058
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1059
{
1060
	struct perf_event_context *ctx;
1061

P
Peter Zijlstra 已提交
1062
retry:
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1074
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1075 1076 1077 1078
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1079
		 * perf_event_task_sched_out, though the
1080 1081 1082 1083 1084 1085
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1086
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1087
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1088
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1089 1090
			rcu_read_unlock();
			preempt_enable();
1091 1092
			goto retry;
		}
1093 1094

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1095
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1096 1097
			ctx = NULL;
		}
1098 1099
	}
	rcu_read_unlock();
1100
	preempt_enable();
1101 1102 1103 1104 1105 1106 1107 1108
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1109 1110
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1111
{
1112
	struct perf_event_context *ctx;
1113 1114
	unsigned long flags;

P
Peter Zijlstra 已提交
1115
	ctx = perf_lock_task_context(task, ctxn, &flags);
1116 1117
	if (ctx) {
		++ctx->pin_count;
1118
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1119 1120 1121 1122
	}
	return ctx;
}

1123
static void perf_unpin_context(struct perf_event_context *ctx)
1124 1125 1126
{
	unsigned long flags;

1127
	raw_spin_lock_irqsave(&ctx->lock, flags);
1128
	--ctx->pin_count;
1129
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1130 1131
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1143 1144 1145
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1146 1147 1148 1149

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1150 1151 1152
	return ctx ? ctx->time : 0;
}

1153 1154
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1155
 * The caller of this function needs to hold the ctx->lock.
1156 1157 1158 1159 1160 1161 1162 1163 1164
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1176
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1177 1178
	else if (ctx->is_active)
		run_end = ctx->time;
1179 1180 1181 1182
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1183 1184 1185 1186

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1187
		run_end = perf_event_time(event);
1188 1189

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1190

1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1205 1206 1207 1208 1209 1210 1211 1212 1213
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1214
/*
1215
 * Add a event from the lists for its context.
1216 1217
 * Must be called with ctx->mutex and ctx->lock held.
 */
1218
static void
1219
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1220
{
1221 1222
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1223 1224

	/*
1225 1226 1227
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1228
	 */
1229
	if (event->group_leader == event) {
1230 1231
		struct list_head *list;

1232 1233 1234
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1235 1236
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1237
	}
P
Peter Zijlstra 已提交
1238

1239
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1240 1241
		ctx->nr_cgroups++;

1242 1243 1244
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1245 1246 1247
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1248
		ctx->nr_stat++;
1249 1250

	ctx->generation++;
1251 1252
}

J
Jiri Olsa 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1301 1302 1303 1304 1305 1306
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1307 1308 1309
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1310 1311 1312
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1313 1314 1315
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1316 1317 1318
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1319 1320 1321 1322 1323 1324 1325 1326 1327
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1328 1329 1330 1331 1332 1333
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1334 1335 1336
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1337 1338 1339 1340 1341 1342 1343 1344 1345
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1346
	event->id_header_size = size;
1347 1348
}

1349 1350
static void perf_group_attach(struct perf_event *event)
{
1351
	struct perf_event *group_leader = event->group_leader, *pos;
1352

P
Peter Zijlstra 已提交
1353 1354 1355 1356 1357 1358
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1359 1360 1361 1362 1363
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1364 1365
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1366 1367 1368 1369 1370 1371
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1372 1373 1374 1375 1376

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1377 1378
}

1379
/*
1380
 * Remove a event from the lists for its context.
1381
 * Must be called with ctx->mutex and ctx->lock held.
1382
 */
1383
static void
1384
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1385
{
1386
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1387 1388 1389 1390

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1391 1392 1393 1394
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1395
		return;
1396 1397 1398

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1399
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1400
		ctx->nr_cgroups--;
1401 1402 1403 1404 1405 1406 1407 1408 1409
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1410

1411 1412 1413
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1414 1415
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1416
		ctx->nr_stat--;
1417

1418
	list_del_rcu(&event->event_entry);
1419

1420 1421
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1422

1423
	update_group_times(event);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1434 1435

	ctx->generation++;
1436 1437
}

1438
static void perf_group_detach(struct perf_event *event)
1439 1440
{
	struct perf_event *sibling, *tmp;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1457
		goto out;
1458 1459 1460 1461
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1462

1463
	/*
1464 1465
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1466
	 * to whatever list we are on.
1467
	 */
1468
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1469 1470
		if (list)
			list_move_tail(&sibling->group_entry, list);
1471
		sibling->group_leader = sibling;
1472 1473 1474

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1475 1476

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1477
	}
1478 1479 1480 1481 1482 1483

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1525 1526 1527
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1528 1529
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1530 1531
}

1532 1533
static void
event_sched_out(struct perf_event *event,
1534
		  struct perf_cpu_context *cpuctx,
1535
		  struct perf_event_context *ctx)
1536
{
1537
	u64 tstamp = perf_event_time(event);
1538
	u64 delta;
P
Peter Zijlstra 已提交
1539 1540 1541 1542

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1543 1544 1545 1546 1547 1548 1549 1550
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1551
		delta = tstamp - event->tstamp_stopped;
1552
		event->tstamp_running += delta;
1553
		event->tstamp_stopped = tstamp;
1554 1555
	}

1556
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1557
		return;
1558

1559 1560
	perf_pmu_disable(event->pmu);

1561 1562 1563 1564
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1565
	}
1566
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1567
	event->pmu->del(event, 0);
1568
	event->oncpu = -1;
1569

1570
	if (!is_software_event(event))
1571
		cpuctx->active_oncpu--;
1572 1573
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1574 1575
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1576
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1577
		cpuctx->exclusive = 0;
1578

1579 1580 1581
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1582
	perf_pmu_enable(event->pmu);
1583 1584
}

1585
static void
1586
group_sched_out(struct perf_event *group_event,
1587
		struct perf_cpu_context *cpuctx,
1588
		struct perf_event_context *ctx)
1589
{
1590
	struct perf_event *event;
1591
	int state = group_event->state;
1592

1593
	event_sched_out(group_event, cpuctx, ctx);
1594 1595 1596 1597

	/*
	 * Schedule out siblings (if any):
	 */
1598 1599
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1600

1601
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1602 1603 1604
		cpuctx->exclusive = 0;
}

1605 1606 1607 1608 1609
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1610
/*
1611
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1612
 *
1613
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1614 1615
 * remove it from the context list.
 */
1616
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1617
{
1618 1619
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1620
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1621
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1622

1623
	raw_spin_lock(&ctx->lock);
1624
	event_sched_out(event, cpuctx, ctx);
1625 1626
	if (re->detach_group)
		perf_group_detach(event);
1627
	list_del_event(event, ctx);
1628 1629 1630 1631
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1632
	raw_spin_unlock(&ctx->lock);
1633 1634

	return 0;
T
Thomas Gleixner 已提交
1635 1636 1637 1638
}


/*
1639
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1640
 *
1641
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1642
 * call when the task is on a CPU.
1643
 *
1644 1645
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1646 1647
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1648
 * When called from perf_event_exit_task, it's OK because the
1649
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1650
 */
1651
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1652
{
1653
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1654
	struct task_struct *task = ctx->task;
1655 1656 1657 1658
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1659

1660 1661
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1662 1663
	if (!task) {
		/*
1664 1665 1666 1667
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1668
		 */
1669
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1670 1671 1672 1673
		return;
	}

retry:
1674
	if (!task_function_call(task, __perf_remove_from_context, &re))
1675
		return;
T
Thomas Gleixner 已提交
1676

1677
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1678
	/*
1679 1680
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1681
	 */
1682
	if (ctx->is_active) {
1683
		raw_spin_unlock_irq(&ctx->lock);
1684 1685 1686 1687 1688
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1689 1690 1691 1692
		goto retry;
	}

	/*
1693 1694
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1695
	 */
1696 1697
	if (detach_group)
		perf_group_detach(event);
1698
	list_del_event(event, ctx);
1699
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1700 1701
}

1702
/*
1703
 * Cross CPU call to disable a performance event
1704
 */
1705
int __perf_event_disable(void *info)
1706
{
1707 1708
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1709
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1710 1711

	/*
1712 1713
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1714 1715 1716
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1717
	 */
1718
	if (ctx->task && cpuctx->task_ctx != ctx)
1719
		return -EINVAL;
1720

1721
	raw_spin_lock(&ctx->lock);
1722 1723

	/*
1724
	 * If the event is on, turn it off.
1725 1726
	 * If it is in error state, leave it in error state.
	 */
1727
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1728
		update_context_time(ctx);
S
Stephane Eranian 已提交
1729
		update_cgrp_time_from_event(event);
1730 1731 1732
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1733
		else
1734 1735
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1736 1737
	}

1738
	raw_spin_unlock(&ctx->lock);
1739 1740

	return 0;
1741 1742 1743
}

/*
1744
 * Disable a event.
1745
 *
1746 1747
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1748
 * remains valid.  This condition is satisifed when called through
1749 1750 1751 1752
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1753
 * is the current context on this CPU and preemption is disabled,
1754
 * hence we can't get into perf_event_task_sched_out for this context.
1755
 */
P
Peter Zijlstra 已提交
1756
static void _perf_event_disable(struct perf_event *event)
1757
{
1758
	struct perf_event_context *ctx = event->ctx;
1759 1760 1761 1762
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1763
		 * Disable the event on the cpu that it's on
1764
		 */
1765
		cpu_function_call(event->cpu, __perf_event_disable, event);
1766 1767 1768
		return;
	}

P
Peter Zijlstra 已提交
1769
retry:
1770 1771
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1772

1773
	raw_spin_lock_irq(&ctx->lock);
1774
	/*
1775
	 * If the event is still active, we need to retry the cross-call.
1776
	 */
1777
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1778
		raw_spin_unlock_irq(&ctx->lock);
1779 1780 1781 1782 1783
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1784 1785 1786 1787 1788 1789 1790
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1791 1792 1793
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1794
	}
1795
	raw_spin_unlock_irq(&ctx->lock);
1796
}
P
Peter Zijlstra 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1810
EXPORT_SYMBOL_GPL(perf_event_disable);
1811

S
Stephane Eranian 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1847 1848 1849 1850
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1851
static int
1852
event_sched_in(struct perf_event *event,
1853
		 struct perf_cpu_context *cpuctx,
1854
		 struct perf_event_context *ctx)
1855
{
1856
	u64 tstamp = perf_event_time(event);
1857
	int ret = 0;
1858

1859 1860
	lockdep_assert_held(&ctx->lock);

1861
	if (event->state <= PERF_EVENT_STATE_OFF)
1862 1863
		return 0;

1864
	event->state = PERF_EVENT_STATE_ACTIVE;
1865
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1877 1878 1879 1880 1881
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1882 1883
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1884
	if (event->pmu->add(event, PERF_EF_START)) {
1885 1886
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1887 1888
		ret = -EAGAIN;
		goto out;
1889 1890
	}

1891
	event->tstamp_running += tstamp - event->tstamp_stopped;
1892

S
Stephane Eranian 已提交
1893
	perf_set_shadow_time(event, ctx, tstamp);
1894

1895
	if (!is_software_event(event))
1896
		cpuctx->active_oncpu++;
1897 1898
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1899 1900
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1901

1902
	if (event->attr.exclusive)
1903 1904
		cpuctx->exclusive = 1;

1905 1906 1907
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1908 1909 1910 1911
out:
	perf_pmu_enable(event->pmu);

	return ret;
1912 1913
}

1914
static int
1915
group_sched_in(struct perf_event *group_event,
1916
	       struct perf_cpu_context *cpuctx,
1917
	       struct perf_event_context *ctx)
1918
{
1919
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1920
	struct pmu *pmu = ctx->pmu;
1921 1922
	u64 now = ctx->time;
	bool simulate = false;
1923

1924
	if (group_event->state == PERF_EVENT_STATE_OFF)
1925 1926
		return 0;

P
Peter Zijlstra 已提交
1927
	pmu->start_txn(pmu);
1928

1929
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1930
		pmu->cancel_txn(pmu);
1931
		perf_cpu_hrtimer_restart(cpuctx);
1932
		return -EAGAIN;
1933
	}
1934 1935 1936 1937

	/*
	 * Schedule in siblings as one group (if any):
	 */
1938
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1939
		if (event_sched_in(event, cpuctx, ctx)) {
1940
			partial_group = event;
1941 1942 1943 1944
			goto group_error;
		}
	}

1945
	if (!pmu->commit_txn(pmu))
1946
		return 0;
1947

1948 1949 1950 1951
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1962
	 */
1963 1964
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1965 1966 1967 1968 1969 1970 1971 1972
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1973
	}
1974
	event_sched_out(group_event, cpuctx, ctx);
1975

P
Peter Zijlstra 已提交
1976
	pmu->cancel_txn(pmu);
1977

1978 1979
	perf_cpu_hrtimer_restart(cpuctx);

1980 1981 1982
	return -EAGAIN;
}

1983
/*
1984
 * Work out whether we can put this event group on the CPU now.
1985
 */
1986
static int group_can_go_on(struct perf_event *event,
1987 1988 1989 1990
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1991
	 * Groups consisting entirely of software events can always go on.
1992
	 */
1993
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1994 1995 1996
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1997
	 * events can go on.
1998 1999 2000 2001 2002
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2003
	 * events on the CPU, it can't go on.
2004
	 */
2005
	if (event->attr.exclusive && cpuctx->active_oncpu)
2006 2007 2008 2009 2010 2011 2012 2013
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2014 2015
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2016
{
2017 2018
	u64 tstamp = perf_event_time(event);

2019
	list_add_event(event, ctx);
2020
	perf_group_attach(event);
2021 2022 2023
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2024 2025
}

2026 2027 2028 2029 2030 2031
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2045
/*
2046
 * Cross CPU call to install and enable a performance event
2047 2048
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2049
 */
2050
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2051
{
2052 2053
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2054
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2055 2056 2057
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2058
	perf_ctx_lock(cpuctx, task_ctx);
2059
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2060 2061

	/*
2062
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2063
	 */
2064
	if (task_ctx)
2065
		task_ctx_sched_out(task_ctx);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2080 2081
		task = task_ctx->task;
	}
2082

2083
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2084

2085
	update_context_time(ctx);
S
Stephane Eranian 已提交
2086 2087 2088 2089 2090 2091
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2092

2093
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2094

2095
	/*
2096
	 * Schedule everything back in
2097
	 */
2098
	perf_event_sched_in(cpuctx, task_ctx, task);
2099 2100 2101

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2102 2103

	return 0;
T
Thomas Gleixner 已提交
2104 2105 2106
}

/*
2107
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2108
 *
2109 2110
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2111
 *
2112
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2113 2114 2115 2116
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2117 2118
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2119 2120 2121 2122
			int cpu)
{
	struct task_struct *task = ctx->task;

2123 2124
	lockdep_assert_held(&ctx->mutex);

2125
	event->ctx = ctx;
2126 2127
	if (event->cpu != -1)
		event->cpu = cpu;
2128

T
Thomas Gleixner 已提交
2129 2130
	if (!task) {
		/*
2131
		 * Per cpu events are installed via an smp call and
2132
		 * the install is always successful.
T
Thomas Gleixner 已提交
2133
		 */
2134
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2135 2136 2137 2138
		return;
	}

retry:
2139 2140
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2141

2142
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2143
	/*
2144 2145
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2146
	 */
2147
	if (ctx->is_active) {
2148
		raw_spin_unlock_irq(&ctx->lock);
2149 2150 2151 2152 2153
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2154 2155 2156 2157
		goto retry;
	}

	/*
2158 2159
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2160
	 */
2161
	add_event_to_ctx(event, ctx);
2162
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2163 2164
}

2165
/*
2166
 * Put a event into inactive state and update time fields.
2167 2168 2169 2170 2171 2172
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2173
static void __perf_event_mark_enabled(struct perf_event *event)
2174
{
2175
	struct perf_event *sub;
2176
	u64 tstamp = perf_event_time(event);
2177

2178
	event->state = PERF_EVENT_STATE_INACTIVE;
2179
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2180
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2181 2182
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2183
	}
2184 2185
}

2186
/*
2187
 * Cross CPU call to enable a performance event
2188
 */
2189
static int __perf_event_enable(void *info)
2190
{
2191 2192 2193
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2194
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2195
	int err;
2196

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2207
		return -EINVAL;
2208

2209
	raw_spin_lock(&ctx->lock);
2210
	update_context_time(ctx);
2211

2212
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2213
		goto unlock;
S
Stephane Eranian 已提交
2214 2215 2216 2217

	/*
	 * set current task's cgroup time reference point
	 */
2218
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2219

2220
	__perf_event_mark_enabled(event);
2221

S
Stephane Eranian 已提交
2222 2223 2224
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2225
		goto unlock;
S
Stephane Eranian 已提交
2226
	}
2227

2228
	/*
2229
	 * If the event is in a group and isn't the group leader,
2230
	 * then don't put it on unless the group is on.
2231
	 */
2232
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2233
		goto unlock;
2234

2235
	if (!group_can_go_on(event, cpuctx, 1)) {
2236
		err = -EEXIST;
2237
	} else {
2238
		if (event == leader)
2239
			err = group_sched_in(event, cpuctx, ctx);
2240
		else
2241
			err = event_sched_in(event, cpuctx, ctx);
2242
	}
2243 2244 2245

	if (err) {
		/*
2246
		 * If this event can't go on and it's part of a
2247 2248
		 * group, then the whole group has to come off.
		 */
2249
		if (leader != event) {
2250
			group_sched_out(leader, cpuctx, ctx);
2251 2252
			perf_cpu_hrtimer_restart(cpuctx);
		}
2253
		if (leader->attr.pinned) {
2254
			update_group_times(leader);
2255
			leader->state = PERF_EVENT_STATE_ERROR;
2256
		}
2257 2258
	}

P
Peter Zijlstra 已提交
2259
unlock:
2260
	raw_spin_unlock(&ctx->lock);
2261 2262

	return 0;
2263 2264 2265
}

/*
2266
 * Enable a event.
2267
 *
2268 2269
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2270
 * remains valid.  This condition is satisfied when called through
2271 2272
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2273
 */
P
Peter Zijlstra 已提交
2274
static void _perf_event_enable(struct perf_event *event)
2275
{
2276
	struct perf_event_context *ctx = event->ctx;
2277 2278 2279 2280
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2281
		 * Enable the event on the cpu that it's on
2282
		 */
2283
		cpu_function_call(event->cpu, __perf_event_enable, event);
2284 2285 2286
		return;
	}

2287
	raw_spin_lock_irq(&ctx->lock);
2288
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2289 2290 2291
		goto out;

	/*
2292 2293
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2294 2295 2296 2297
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2298 2299
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2300

P
Peter Zijlstra 已提交
2301
retry:
2302
	if (!ctx->is_active) {
2303
		__perf_event_mark_enabled(event);
2304 2305 2306
		goto out;
	}

2307
	raw_spin_unlock_irq(&ctx->lock);
2308 2309 2310

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2311

2312
	raw_spin_lock_irq(&ctx->lock);
2313 2314

	/*
2315
	 * If the context is active and the event is still off,
2316 2317
	 * we need to retry the cross-call.
	 */
2318 2319 2320 2321 2322 2323
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2324
		goto retry;
2325
	}
2326

P
Peter Zijlstra 已提交
2327
out:
2328
	raw_spin_unlock_irq(&ctx->lock);
2329
}
P
Peter Zijlstra 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2342
EXPORT_SYMBOL_GPL(perf_event_enable);
2343

P
Peter Zijlstra 已提交
2344
static int _perf_event_refresh(struct perf_event *event, int refresh)
2345
{
2346
	/*
2347
	 * not supported on inherited events
2348
	 */
2349
	if (event->attr.inherit || !is_sampling_event(event))
2350 2351
		return -EINVAL;

2352
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2353
	_perf_event_enable(event);
2354 2355

	return 0;
2356
}
P
Peter Zijlstra 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2372
EXPORT_SYMBOL_GPL(perf_event_refresh);
2373

2374 2375 2376
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2377
{
2378
	struct perf_event *event;
2379
	int is_active = ctx->is_active;
2380

2381
	ctx->is_active &= ~event_type;
2382
	if (likely(!ctx->nr_events))
2383 2384
		return;

2385
	update_context_time(ctx);
S
Stephane Eranian 已提交
2386
	update_cgrp_time_from_cpuctx(cpuctx);
2387
	if (!ctx->nr_active)
2388
		return;
2389

P
Peter Zijlstra 已提交
2390
	perf_pmu_disable(ctx->pmu);
2391
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2392 2393
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2394
	}
2395

2396
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2397
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2398
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2399
	}
P
Peter Zijlstra 已提交
2400
	perf_pmu_enable(ctx->pmu);
2401 2402
}

2403
/*
2404 2405 2406 2407 2408 2409
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2410
 */
2411 2412
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2413
{
2414 2415 2416
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2439 2440
}

2441 2442
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2443 2444 2445
{
	u64 value;

2446
	if (!event->attr.inherit_stat)
2447 2448 2449
		return;

	/*
2450
	 * Update the event value, we cannot use perf_event_read()
2451 2452
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2453
	 * we know the event must be on the current CPU, therefore we
2454 2455
	 * don't need to use it.
	 */
2456 2457
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2458 2459
		event->pmu->read(event);
		/* fall-through */
2460

2461 2462
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2463 2464 2465 2466 2467 2468 2469
		break;

	default:
		break;
	}

	/*
2470
	 * In order to keep per-task stats reliable we need to flip the event
2471 2472
	 * values when we flip the contexts.
	 */
2473 2474 2475
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2476

2477 2478
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2479

2480
	/*
2481
	 * Since we swizzled the values, update the user visible data too.
2482
	 */
2483 2484
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2485 2486
}

2487 2488
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2489
{
2490
	struct perf_event *event, *next_event;
2491 2492 2493 2494

	if (!ctx->nr_stat)
		return;

2495 2496
	update_context_time(ctx);

2497 2498
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2499

2500 2501
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2502

2503 2504
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2505

2506
		__perf_event_sync_stat(event, next_event);
2507

2508 2509
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2510 2511 2512
	}
}

2513 2514
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2515
{
P
Peter Zijlstra 已提交
2516
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2517
	struct perf_event_context *next_ctx;
2518
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2519
	struct perf_cpu_context *cpuctx;
2520
	int do_switch = 1;
T
Thomas Gleixner 已提交
2521

P
Peter Zijlstra 已提交
2522 2523
	if (likely(!ctx))
		return;
2524

P
Peter Zijlstra 已提交
2525 2526
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2527 2528
		return;

2529
	rcu_read_lock();
P
Peter Zijlstra 已提交
2530
	next_ctx = next->perf_event_ctxp[ctxn];
2531 2532 2533 2534 2535 2536 2537
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2538
	if (!parent && !next_parent)
2539 2540 2541
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2542 2543 2544 2545 2546 2547 2548 2549 2550
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2551 2552
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2553
		if (context_equiv(ctx, next_ctx)) {
2554 2555
			/*
			 * XXX do we need a memory barrier of sorts
2556
			 * wrt to rcu_dereference() of perf_event_ctxp
2557
			 */
P
Peter Zijlstra 已提交
2558 2559
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2560 2561 2562
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2563

2564
			perf_event_sync_stat(ctx, next_ctx);
2565
		}
2566 2567
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2568
	}
2569
unlock:
2570
	rcu_read_unlock();
2571

2572
	if (do_switch) {
2573
		raw_spin_lock(&ctx->lock);
2574
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2575
		cpuctx->task_ctx = NULL;
2576
		raw_spin_unlock(&ctx->lock);
2577
	}
T
Thomas Gleixner 已提交
2578 2579
}

P
Peter Zijlstra 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2594 2595
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2596 2597 2598 2599 2600
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2601 2602 2603 2604 2605 2606

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2607
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2608
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2609 2610
}

2611
static void task_ctx_sched_out(struct perf_event_context *ctx)
2612
{
P
Peter Zijlstra 已提交
2613
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2614

2615 2616
	if (!cpuctx->task_ctx)
		return;
2617 2618 2619 2620

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2621
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2622 2623 2624
	cpuctx->task_ctx = NULL;
}

2625 2626 2627 2628 2629 2630 2631
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2632 2633
}

2634
static void
2635
ctx_pinned_sched_in(struct perf_event_context *ctx,
2636
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2637
{
2638
	struct perf_event *event;
T
Thomas Gleixner 已提交
2639

2640 2641
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2642
			continue;
2643
		if (!event_filter_match(event))
2644 2645
			continue;

S
Stephane Eranian 已提交
2646 2647 2648 2649
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2650
		if (group_can_go_on(event, cpuctx, 1))
2651
			group_sched_in(event, cpuctx, ctx);
2652 2653 2654 2655 2656

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2657 2658 2659
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2660
		}
2661
	}
2662 2663 2664 2665
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2666
		      struct perf_cpu_context *cpuctx)
2667 2668 2669
{
	struct perf_event *event;
	int can_add_hw = 1;
2670

2671 2672 2673
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2674
			continue;
2675 2676
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2677
		 * of events:
2678
		 */
2679
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2680 2681
			continue;

S
Stephane Eranian 已提交
2682 2683 2684 2685
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2686
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2687
			if (group_sched_in(event, cpuctx, ctx))
2688
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2689
		}
T
Thomas Gleixner 已提交
2690
	}
2691 2692 2693 2694 2695
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2696 2697
	     enum event_type_t event_type,
	     struct task_struct *task)
2698
{
S
Stephane Eranian 已提交
2699
	u64 now;
2700
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2701

2702
	ctx->is_active |= event_type;
2703
	if (likely(!ctx->nr_events))
2704
		return;
2705

S
Stephane Eranian 已提交
2706 2707
	now = perf_clock();
	ctx->timestamp = now;
2708
	perf_cgroup_set_timestamp(task, ctx);
2709 2710 2711 2712
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2713
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2714
		ctx_pinned_sched_in(ctx, cpuctx);
2715 2716

	/* Then walk through the lower prio flexible groups */
2717
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2718
		ctx_flexible_sched_in(ctx, cpuctx);
2719 2720
}

2721
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2722 2723
			     enum event_type_t event_type,
			     struct task_struct *task)
2724 2725 2726
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2727
	ctx_sched_in(ctx, cpuctx, event_type, task);
2728 2729
}

S
Stephane Eranian 已提交
2730 2731
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2732
{
P
Peter Zijlstra 已提交
2733
	struct perf_cpu_context *cpuctx;
2734

P
Peter Zijlstra 已提交
2735
	cpuctx = __get_cpu_context(ctx);
2736 2737 2738
	if (cpuctx->task_ctx == ctx)
		return;

2739
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2740
	perf_pmu_disable(ctx->pmu);
2741 2742 2743 2744 2745 2746 2747
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2748 2749
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2750

2751 2752
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2753 2754
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2755 2756
}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2826 2827
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2837
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2838
	}
S
Stephane Eranian 已提交
2839 2840 2841 2842 2843
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2844
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2845
		perf_cgroup_sched_in(prev, task);
2846 2847

	/* check for system-wide branch_stack events */
2848
	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2849
		perf_branch_stack_sched_in(prev, task);
2850 2851
}

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2879
#define REDUCE_FLS(a, b)		\
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2919 2920 2921
	if (!divisor)
		return dividend;

2922 2923 2924
	return div64_u64(dividend, divisor);
}

2925 2926 2927
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2928
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2929
{
2930
	struct hw_perf_event *hwc = &event->hw;
2931
	s64 period, sample_period;
2932 2933
	s64 delta;

2934
	period = perf_calculate_period(event, nsec, count);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2945

2946
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2947 2948 2949
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2950
		local64_set(&hwc->period_left, 0);
2951 2952 2953

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2954
	}
2955 2956
}

2957 2958 2959 2960 2961 2962 2963
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2964
{
2965 2966
	struct perf_event *event;
	struct hw_perf_event *hwc;
2967
	u64 now, period = TICK_NSEC;
2968
	s64 delta;
2969

2970 2971 2972 2973 2974 2975
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2976 2977
		return;

2978
	raw_spin_lock(&ctx->lock);
2979
	perf_pmu_disable(ctx->pmu);
2980

2981
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2982
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2983 2984
			continue;

2985
		if (!event_filter_match(event))
2986 2987
			continue;

2988 2989
		perf_pmu_disable(event->pmu);

2990
		hwc = &event->hw;
2991

2992
		if (hwc->interrupts == MAX_INTERRUPTS) {
2993
			hwc->interrupts = 0;
2994
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2995
			event->pmu->start(event, 0);
2996 2997
		}

2998
		if (!event->attr.freq || !event->attr.sample_freq)
2999
			goto next;
3000

3001 3002 3003 3004 3005
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3006
		now = local64_read(&event->count);
3007 3008
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3009

3010 3011 3012
		/*
		 * restart the event
		 * reload only if value has changed
3013 3014 3015
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3016
		 */
3017
		if (delta > 0)
3018
			perf_adjust_period(event, period, delta, false);
3019 3020

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3021 3022
	next:
		perf_pmu_enable(event->pmu);
3023
	}
3024

3025
	perf_pmu_enable(ctx->pmu);
3026
	raw_spin_unlock(&ctx->lock);
3027 3028
}

3029
/*
3030
 * Round-robin a context's events:
3031
 */
3032
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3033
{
3034 3035 3036 3037 3038 3039
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3040 3041
}

3042
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3043
{
P
Peter Zijlstra 已提交
3044
	struct perf_event_context *ctx = NULL;
3045
	int rotate = 0;
3046

3047 3048 3049 3050
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3051

P
Peter Zijlstra 已提交
3052
	ctx = cpuctx->task_ctx;
3053 3054 3055 3056
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3057

3058
	if (!rotate)
3059 3060
		goto done;

3061
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3062
	perf_pmu_disable(cpuctx->ctx.pmu);
3063

3064 3065 3066
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3067

3068 3069 3070
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3071

3072
	perf_event_sched_in(cpuctx, ctx, current);
3073

3074 3075
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3076
done:
3077 3078

	return rotate;
3079 3080
}

3081 3082 3083
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3084
	if (atomic_read(&nr_freq_events) ||
3085
	    __this_cpu_read(perf_throttled_count))
3086
		return false;
3087 3088
	else
		return true;
3089 3090 3091
}
#endif

3092 3093
void perf_event_task_tick(void)
{
3094 3095
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3096
	int throttled;
3097

3098 3099
	WARN_ON(!irqs_disabled());

3100 3101 3102
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3103
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3104
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3105 3106
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3117
	__perf_event_mark_enabled(event);
3118 3119 3120 3121

	return 1;
}

3122
/*
3123
 * Enable all of a task's events that have been marked enable-on-exec.
3124 3125
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3126
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3127
{
3128
	struct perf_event_context *clone_ctx = NULL;
3129
	struct perf_event *event;
3130 3131
	unsigned long flags;
	int enabled = 0;
3132
	int ret;
3133 3134

	local_irq_save(flags);
3135
	if (!ctx || !ctx->nr_events)
3136 3137
		goto out;

3138 3139 3140 3141 3142 3143 3144
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3145
	perf_cgroup_sched_out(current, NULL);
3146

3147
	raw_spin_lock(&ctx->lock);
3148
	task_ctx_sched_out(ctx);
3149

3150
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3151 3152 3153
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3154 3155 3156
	}

	/*
3157
	 * Unclone this context if we enabled any event.
3158
	 */
3159
	if (enabled)
3160
		clone_ctx = unclone_ctx(ctx);
3161

3162
	raw_spin_unlock(&ctx->lock);
3163

3164 3165 3166
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3167
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3168
out:
3169
	local_irq_restore(flags);
3170 3171 3172

	if (clone_ctx)
		put_ctx(clone_ctx);
3173 3174
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3191
/*
3192
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3193
 */
3194
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3195
{
3196 3197
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3198
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3199

3200 3201 3202 3203
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3204 3205
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3206 3207 3208 3209
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3210
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3211
	if (ctx->is_active) {
3212
		update_context_time(ctx);
S
Stephane Eranian 已提交
3213 3214
		update_cgrp_time_from_event(event);
	}
3215
	update_event_times(event);
3216 3217
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3218
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3219 3220
}

P
Peter Zijlstra 已提交
3221 3222
static inline u64 perf_event_count(struct perf_event *event)
{
3223
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3224 3225
}

3226
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3227 3228
{
	/*
3229 3230
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3231
	 */
3232 3233 3234 3235
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3236 3237 3238
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3239
		raw_spin_lock_irqsave(&ctx->lock, flags);
3240 3241 3242 3243 3244
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3245
		if (ctx->is_active) {
3246
			update_context_time(ctx);
S
Stephane Eranian 已提交
3247 3248
			update_cgrp_time_from_event(event);
		}
3249
		update_event_times(event);
3250
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3251 3252
	}

P
Peter Zijlstra 已提交
3253
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3254 3255
}

3256
/*
3257
 * Initialize the perf_event context in a task_struct:
3258
 */
3259
static void __perf_event_init_context(struct perf_event_context *ctx)
3260
{
3261
	raw_spin_lock_init(&ctx->lock);
3262
	mutex_init(&ctx->mutex);
3263
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3264 3265
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3266 3267
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3268
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3284
	}
3285 3286 3287
	ctx->pmu = pmu;

	return ctx;
3288 3289
}

3290 3291 3292 3293 3294
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3295 3296

	rcu_read_lock();
3297
	if (!vpid)
T
Thomas Gleixner 已提交
3298 3299
		task = current;
	else
3300
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3301 3302 3303 3304 3305 3306 3307 3308
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3309 3310 3311 3312
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3313 3314 3315 3316 3317 3318 3319
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3320 3321 3322
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3323
static struct perf_event_context *
M
Matt Helsley 已提交
3324
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3325
{
3326
	struct perf_event_context *ctx, *clone_ctx = NULL;
3327
	struct perf_cpu_context *cpuctx;
3328
	unsigned long flags;
P
Peter Zijlstra 已提交
3329
	int ctxn, err;
T
Thomas Gleixner 已提交
3330

3331
	if (!task) {
3332
		/* Must be root to operate on a CPU event: */
3333
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3334 3335 3336
			return ERR_PTR(-EACCES);

		/*
3337
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3338 3339 3340
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3341
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3342 3343
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3344
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3345
		ctx = &cpuctx->ctx;
3346
		get_ctx(ctx);
3347
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3348 3349 3350 3351

		return ctx;
	}

P
Peter Zijlstra 已提交
3352 3353 3354 3355 3356
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3357
retry:
P
Peter Zijlstra 已提交
3358
	ctx = perf_lock_task_context(task, ctxn, &flags);
3359
	if (ctx) {
3360
		clone_ctx = unclone_ctx(ctx);
3361
		++ctx->pin_count;
3362
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3363 3364 3365

		if (clone_ctx)
			put_ctx(clone_ctx);
3366
	} else {
3367
		ctx = alloc_perf_context(pmu, task);
3368 3369 3370
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3371

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3382
		else {
3383
			get_ctx(ctx);
3384
			++ctx->pin_count;
3385
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3386
		}
3387 3388 3389
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3390
			put_ctx(ctx);
3391 3392 3393 3394

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3395 3396 3397
		}
	}

T
Thomas Gleixner 已提交
3398
	return ctx;
3399

P
Peter Zijlstra 已提交
3400
errout:
3401
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3402 3403
}

L
Li Zefan 已提交
3404 3405
static void perf_event_free_filter(struct perf_event *event);

3406
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3407
{
3408
	struct perf_event *event;
P
Peter Zijlstra 已提交
3409

3410 3411 3412
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3413
	perf_event_free_filter(event);
3414
	kfree(event);
P
Peter Zijlstra 已提交
3415 3416
}

3417
static void ring_buffer_put(struct ring_buffer *rb);
3418 3419
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3420

3421
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3422
{
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3433

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3447 3448
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3449 3450 3451 3452 3453 3454 3455
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3456

3457 3458
static void __free_event(struct perf_event *event)
{
3459
	if (!event->parent) {
3460 3461
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3462
	}
3463

3464 3465 3466 3467 3468 3469
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3470 3471 3472
	if (event->pmu)
		module_put(event->pmu->module);

3473 3474
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3475 3476

static void _free_event(struct perf_event *event)
3477
{
3478
	irq_work_sync(&event->pending);
3479

3480
	unaccount_event(event);
3481

3482
	if (event->rb) {
3483 3484 3485 3486 3487 3488 3489
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3490
		ring_buffer_attach(event, NULL);
3491
		mutex_unlock(&event->mmap_mutex);
3492 3493
	}

S
Stephane Eranian 已提交
3494 3495 3496
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3497
	__free_event(event);
3498 3499
}

P
Peter Zijlstra 已提交
3500 3501 3502 3503 3504
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3505
{
P
Peter Zijlstra 已提交
3506 3507 3508 3509 3510 3511
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3512

P
Peter Zijlstra 已提交
3513
	_free_event(event);
T
Thomas Gleixner 已提交
3514 3515
}

3516
/*
3517
 * Remove user event from the owner task.
3518
 */
3519
static void perf_remove_from_owner(struct perf_event *event)
3520
{
P
Peter Zijlstra 已提交
3521
	struct task_struct *owner;
3522

P
Peter Zijlstra 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3564 3565 3566 3567 3568 3569 3570
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3571
	struct perf_event_context *ctx;
3572 3573 3574 3575 3576 3577

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3578

P
Peter Zijlstra 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3591 3592
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3593 3594 3595 3596
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3597 3598
}

P
Peter Zijlstra 已提交
3599 3600 3601 3602 3603 3604 3605
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3606 3607 3608 3609
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3610 3611
}

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3648
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3649
{
3650
	struct perf_event *child;
3651 3652
	u64 total = 0;

3653 3654 3655
	*enabled = 0;
	*running = 0;

3656
	mutex_lock(&event->child_mutex);
3657
	total += perf_event_read(event);
3658 3659 3660 3661 3662 3663
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3664
		total += perf_event_read(child);
3665 3666 3667
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3668
	mutex_unlock(&event->child_mutex);
3669 3670 3671

	return total;
}
3672
EXPORT_SYMBOL_GPL(perf_event_read_value);
3673

3674
static int perf_event_read_group(struct perf_event *event,
3675 3676
				   u64 read_format, char __user *buf)
{
3677
	struct perf_event *leader = event->group_leader, *sub;
3678
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3679
	int n = 0, size = 0, ret;
3680
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3681 3682 3683
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3684

3685
	count = perf_event_read_value(leader, &enabled, &running);
3686 3687

	values[n++] = 1 + leader->nr_siblings;
3688 3689 3690 3691
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3692 3693 3694
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3695 3696 3697 3698

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3699
		return -EFAULT;
3700

3701
	ret = size;
3702

3703
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3704
		n = 0;
3705

3706
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3707 3708 3709 3710 3711
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3712
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3713
			return -EFAULT;
3714
		}
3715 3716

		ret += size;
3717 3718
	}

3719
	return ret;
3720 3721
}

3722
static int perf_event_read_one(struct perf_event *event,
3723 3724
				 u64 read_format, char __user *buf)
{
3725
	u64 enabled, running;
3726 3727 3728
	u64 values[4];
	int n = 0;

3729 3730 3731 3732 3733
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3734
	if (read_format & PERF_FORMAT_ID)
3735
		values[n++] = primary_event_id(event);
3736 3737 3738 3739 3740 3741 3742

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3756
/*
3757
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3758 3759
 */
static ssize_t
3760
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3761
{
3762
	u64 read_format = event->attr.read_format;
3763
	int ret;
T
Thomas Gleixner 已提交
3764

3765
	/*
3766
	 * Return end-of-file for a read on a event that is in
3767 3768 3769
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3770
	if (event->state == PERF_EVENT_STATE_ERROR)
3771 3772
		return 0;

3773
	if (count < event->read_size)
3774 3775
		return -ENOSPC;

3776
	WARN_ON_ONCE(event->ctx->parent_ctx);
3777
	if (read_format & PERF_FORMAT_GROUP)
3778
		ret = perf_event_read_group(event, read_format, buf);
3779
	else
3780
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3781

3782
	return ret;
T
Thomas Gleixner 已提交
3783 3784 3785 3786 3787
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3788
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3789 3790
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3791

P
Peter Zijlstra 已提交
3792 3793 3794 3795 3796
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3797 3798 3799 3800
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3801
	struct perf_event *event = file->private_data;
3802
	struct ring_buffer *rb;
3803
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3804

3805
	poll_wait(file, &event->waitq, wait);
3806

3807
	if (is_event_hup(event))
3808
		return events;
P
Peter Zijlstra 已提交
3809

3810
	/*
3811 3812
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3813 3814
	 */
	mutex_lock(&event->mmap_mutex);
3815 3816
	rb = event->rb;
	if (rb)
3817
		events = atomic_xchg(&rb->poll, 0);
3818
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3819 3820 3821
	return events;
}

P
Peter Zijlstra 已提交
3822
static void _perf_event_reset(struct perf_event *event)
3823
{
3824
	(void)perf_event_read(event);
3825
	local64_set(&event->count, 0);
3826
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3827 3828
}

3829
/*
3830 3831 3832 3833
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3834
 */
3835 3836
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3837
{
3838
	struct perf_event *child;
P
Peter Zijlstra 已提交
3839

3840
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3841

3842 3843 3844
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3845
		func(child);
3846
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3847 3848
}

3849 3850
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3851
{
3852 3853
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3854

P
Peter Zijlstra 已提交
3855 3856
	lockdep_assert_held(&ctx->mutex);

3857
	event = event->group_leader;
3858

3859 3860
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3861
		perf_event_for_each_child(sibling, func);
3862 3863
}

3864
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3865
{
3866
	struct perf_event_context *ctx = event->ctx;
3867
	int ret = 0, active;
3868 3869
	u64 value;

3870
	if (!is_sampling_event(event))
3871 3872
		return -EINVAL;

3873
	if (copy_from_user(&value, arg, sizeof(value)))
3874 3875 3876 3877 3878
		return -EFAULT;

	if (!value)
		return -EINVAL;

3879
	raw_spin_lock_irq(&ctx->lock);
3880 3881
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3882 3883 3884 3885
			ret = -EINVAL;
			goto unlock;
		}

3886
		event->attr.sample_freq = value;
3887
	} else {
3888 3889
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3890
	}
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3905
unlock:
3906
	raw_spin_unlock_irq(&ctx->lock);
3907 3908 3909 3910

	return ret;
}

3911 3912
static const struct file_operations perf_fops;

3913
static inline int perf_fget_light(int fd, struct fd *p)
3914
{
3915 3916 3917
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3918

3919 3920 3921
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3922
	}
3923 3924
	*p = f;
	return 0;
3925 3926 3927 3928
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3929
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3930

P
Peter Zijlstra 已提交
3931
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3932
{
3933
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3934
	u32 flags = arg;
3935 3936

	switch (cmd) {
3937
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
3938
		func = _perf_event_enable;
3939
		break;
3940
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
3941
		func = _perf_event_disable;
3942
		break;
3943
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
3944
		func = _perf_event_reset;
3945
		break;
P
Peter Zijlstra 已提交
3946

3947
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
3948
		return _perf_event_refresh(event, arg);
3949

3950 3951
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3962
	case PERF_EVENT_IOC_SET_OUTPUT:
3963 3964 3965
	{
		int ret;
		if (arg != -1) {
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3976 3977 3978
		}
		return ret;
	}
3979

L
Li Zefan 已提交
3980 3981 3982
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3983
	default:
P
Peter Zijlstra 已提交
3984
		return -ENOTTY;
3985
	}
P
Peter Zijlstra 已提交
3986 3987

	if (flags & PERF_IOC_FLAG_GROUP)
3988
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3989
	else
3990
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3991 3992

	return 0;
3993 3994
}

P
Peter Zijlstra 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4028
int perf_event_task_enable(void)
4029
{
P
Peter Zijlstra 已提交
4030
	struct perf_event_context *ctx;
4031
	struct perf_event *event;
4032

4033
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4034 4035 4036 4037 4038
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4039
	mutex_unlock(&current->perf_event_mutex);
4040 4041 4042 4043

	return 0;
}

4044
int perf_event_task_disable(void)
4045
{
P
Peter Zijlstra 已提交
4046
	struct perf_event_context *ctx;
4047
	struct perf_event *event;
4048

4049
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4050 4051 4052 4053 4054
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4055
	mutex_unlock(&current->perf_event_mutex);
4056 4057 4058 4059

	return 0;
}

4060
static int perf_event_index(struct perf_event *event)
4061
{
P
Peter Zijlstra 已提交
4062 4063 4064
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4065
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4066 4067
		return 0;

4068
	return event->pmu->event_idx(event);
4069 4070
}

4071
static void calc_timer_values(struct perf_event *event,
4072
				u64 *now,
4073 4074
				u64 *enabled,
				u64 *running)
4075
{
4076
	u64 ctx_time;
4077

4078 4079
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4080 4081 4082 4083
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

4104 4105
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4106 4107 4108
{
}

4109 4110 4111 4112 4113
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4114
void perf_event_update_userpage(struct perf_event *event)
4115
{
4116
	struct perf_event_mmap_page *userpg;
4117
	struct ring_buffer *rb;
4118
	u64 enabled, running, now;
4119 4120

	rcu_read_lock();
4121 4122 4123 4124
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4125 4126 4127 4128 4129 4130 4131 4132 4133
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4134
	calc_timer_values(event, &now, &enabled, &running);
4135

4136
	userpg = rb->user_page;
4137 4138 4139 4140 4141
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4142
	++userpg->lock;
4143
	barrier();
4144
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4145
	userpg->offset = perf_event_count(event);
4146
	if (userpg->index)
4147
		userpg->offset -= local64_read(&event->hw.prev_count);
4148

4149
	userpg->time_enabled = enabled +
4150
			atomic64_read(&event->child_total_time_enabled);
4151

4152
	userpg->time_running = running +
4153
			atomic64_read(&event->child_total_time_running);
4154

4155
	arch_perf_update_userpage(event, userpg, now);
4156

4157
	barrier();
4158
	++userpg->lock;
4159
	preempt_enable();
4160
unlock:
4161
	rcu_read_unlock();
4162 4163
}

4164 4165 4166
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4167
	struct ring_buffer *rb;
4168 4169 4170 4171 4172 4173 4174 4175 4176
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4177 4178
	rb = rcu_dereference(event->rb);
	if (!rb)
4179 4180 4181 4182 4183
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4184
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4199 4200 4201
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4202
	struct ring_buffer *old_rb = NULL;
4203 4204
	unsigned long flags;

4205 4206 4207 4208 4209 4210
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4211

4212 4213 4214
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4215

4216 4217 4218 4219
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4220

4221 4222 4223 4224
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4225

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4243 4244 4245 4246 4247 4248 4249 4250
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4251 4252 4253 4254
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4255 4256 4257
	rcu_read_unlock();
}

4258
static void rb_free_rcu(struct rcu_head *rcu_head)
4259
{
4260
	struct ring_buffer *rb;
4261

4262 4263
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4264 4265
}

4266
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4267
{
4268
	struct ring_buffer *rb;
4269

4270
	rcu_read_lock();
4271 4272 4273 4274
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4275 4276 4277
	}
	rcu_read_unlock();

4278
	return rb;
4279 4280
}

4281
static void ring_buffer_put(struct ring_buffer *rb)
4282
{
4283
	if (!atomic_dec_and_test(&rb->refcount))
4284
		return;
4285

4286
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4287

4288
	call_rcu(&rb->rcu_head, rb_free_rcu);
4289 4290 4291 4292
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4293
	struct perf_event *event = vma->vm_file->private_data;
4294

4295
	atomic_inc(&event->mmap_count);
4296
	atomic_inc(&event->rb->mmap_count);
4297 4298 4299

	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4300 4301
}

4302 4303 4304 4305 4306 4307 4308 4309
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4310 4311
static void perf_mmap_close(struct vm_area_struct *vma)
{
4312
	struct perf_event *event = vma->vm_file->private_data;
4313

4314
	struct ring_buffer *rb = ring_buffer_get(event);
4315 4316 4317
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4318

4319 4320 4321
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4322 4323 4324
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4325
		goto out_put;
4326

4327
	ring_buffer_attach(event, NULL);
4328 4329 4330
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4331 4332
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4333

4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4350

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4362 4363 4364
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4365
		mutex_unlock(&event->mmap_mutex);
4366
		put_event(event);
4367

4368 4369 4370 4371 4372
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4373
	}
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4389
out_put:
4390
	ring_buffer_put(rb); /* could be last */
4391 4392
}

4393
static const struct vm_operations_struct perf_mmap_vmops = {
4394 4395 4396 4397
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4398 4399 4400 4401
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4402
	struct perf_event *event = file->private_data;
4403
	unsigned long user_locked, user_lock_limit;
4404
	struct user_struct *user = current_user();
4405
	unsigned long locked, lock_limit;
4406
	struct ring_buffer *rb;
4407 4408
	unsigned long vma_size;
	unsigned long nr_pages;
4409
	long user_extra, extra;
4410
	int ret = 0, flags = 0;
4411

4412 4413 4414
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4415
	 * same rb.
4416 4417 4418 4419
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4420
	if (!(vma->vm_flags & VM_SHARED))
4421
		return -EINVAL;
4422 4423 4424 4425

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4426
	/*
4427
	 * If we have rb pages ensure they're a power-of-two number, so we
4428 4429 4430
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4431 4432
		return -EINVAL;

4433
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4434 4435
		return -EINVAL;

4436 4437
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4438

4439
	WARN_ON_ONCE(event->ctx->parent_ctx);
4440
again:
4441
	mutex_lock(&event->mmap_mutex);
4442
	if (event->rb) {
4443
		if (event->rb->nr_pages != nr_pages) {
4444
			ret = -EINVAL;
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4458 4459 4460
		goto unlock;
	}

4461
	user_extra = nr_pages + 1;
4462
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4463 4464 4465 4466 4467 4468

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4469
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4470

4471 4472 4473
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4474

4475
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4476
	lock_limit >>= PAGE_SHIFT;
4477
	locked = vma->vm_mm->pinned_vm + extra;
4478

4479 4480
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4481 4482 4483
		ret = -EPERM;
		goto unlock;
	}
4484

4485
	WARN_ON(event->rb);
4486

4487
	if (vma->vm_flags & VM_WRITE)
4488
		flags |= RING_BUFFER_WRITABLE;
4489

4490 4491 4492 4493
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4494
	if (!rb) {
4495
		ret = -ENOMEM;
4496
		goto unlock;
4497
	}
P
Peter Zijlstra 已提交
4498

4499
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4500 4501
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4502

4503
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4504 4505
	vma->vm_mm->pinned_vm += extra;

4506
	ring_buffer_attach(event, rb);
4507

4508
	perf_event_init_userpage(event);
4509 4510
	perf_event_update_userpage(event);

4511
unlock:
4512 4513
	if (!ret)
		atomic_inc(&event->mmap_count);
4514
	mutex_unlock(&event->mmap_mutex);
4515

4516 4517 4518 4519
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4520
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4521
	vma->vm_ops = &perf_mmap_vmops;
4522

4523 4524 4525
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4526
	return ret;
4527 4528
}

P
Peter Zijlstra 已提交
4529 4530
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4531
	struct inode *inode = file_inode(filp);
4532
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4533 4534 4535
	int retval;

	mutex_lock(&inode->i_mutex);
4536
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4537 4538 4539 4540 4541 4542 4543 4544
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4545
static const struct file_operations perf_fops = {
4546
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4547 4548 4549
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4550
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4551
	.compat_ioctl		= perf_compat_ioctl,
4552
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4553
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4554 4555
};

4556
/*
4557
 * Perf event wakeup
4558 4559 4560 4561 4562
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4563
void perf_event_wakeup(struct perf_event *event)
4564
{
4565
	ring_buffer_wakeup(event);
4566

4567 4568 4569
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4570
	}
4571 4572
}

4573
static void perf_pending_event(struct irq_work *entry)
4574
{
4575 4576
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4577

4578 4579 4580
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4581 4582
	}

4583 4584 4585
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4586 4587 4588
	}
}

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4625
static void perf_sample_regs_user(struct perf_regs *regs_user,
4626 4627
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4628
{
4629 4630
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4631
		regs_user->regs = regs;
4632 4633
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4634 4635 4636
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4637 4638 4639
	}
}

4640 4641 4642 4643 4644 4645 4646 4647
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4743 4744 4745
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4761
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4773 4774 4775
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4800 4801 4802

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4803 4804
}

4805 4806 4807
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4808 4809 4810 4811 4812
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4813
static void perf_output_read_one(struct perf_output_handle *handle,
4814 4815
				 struct perf_event *event,
				 u64 enabled, u64 running)
4816
{
4817
	u64 read_format = event->attr.read_format;
4818 4819 4820
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4821
	values[n++] = perf_event_count(event);
4822
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4823
		values[n++] = enabled +
4824
			atomic64_read(&event->child_total_time_enabled);
4825 4826
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4827
		values[n++] = running +
4828
			atomic64_read(&event->child_total_time_running);
4829 4830
	}
	if (read_format & PERF_FORMAT_ID)
4831
		values[n++] = primary_event_id(event);
4832

4833
	__output_copy(handle, values, n * sizeof(u64));
4834 4835 4836
}

/*
4837
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4838 4839
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4840 4841
			    struct perf_event *event,
			    u64 enabled, u64 running)
4842
{
4843 4844
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4845 4846 4847 4848 4849 4850
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4851
		values[n++] = enabled;
4852 4853

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4854
		values[n++] = running;
4855

4856
	if (leader != event)
4857 4858
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4859
	values[n++] = perf_event_count(leader);
4860
	if (read_format & PERF_FORMAT_ID)
4861
		values[n++] = primary_event_id(leader);
4862

4863
	__output_copy(handle, values, n * sizeof(u64));
4864

4865
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4866 4867
		n = 0;

4868 4869
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4870 4871
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4872
		values[n++] = perf_event_count(sub);
4873
		if (read_format & PERF_FORMAT_ID)
4874
			values[n++] = primary_event_id(sub);
4875

4876
		__output_copy(handle, values, n * sizeof(u64));
4877 4878 4879
	}
}

4880 4881 4882
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4883
static void perf_output_read(struct perf_output_handle *handle,
4884
			     struct perf_event *event)
4885
{
4886
	u64 enabled = 0, running = 0, now;
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4898
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4899
		calc_timer_values(event, &now, &enabled, &running);
4900

4901
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4902
		perf_output_read_group(handle, event, enabled, running);
4903
	else
4904
		perf_output_read_one(handle, event, enabled, running);
4905 4906
}

4907 4908 4909
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4910
			struct perf_event *event)
4911 4912 4913 4914 4915
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4916 4917 4918
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4944
		perf_output_read(handle, event);
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4955
			__output_copy(handle, data->callchain, size);
4956 4957 4958 4959 4960 4961 4962 4963 4964
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4965 4966
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4978

4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5013

5014
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5015 5016 5017
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5018
	}
A
Andi Kleen 已提交
5019 5020 5021

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5022 5023 5024

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5025

A
Andi Kleen 已提交
5026 5027 5028
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5059 5060 5061 5062
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5063
			 struct perf_event *event,
5064
			 struct pt_regs *regs)
5065
{
5066
	u64 sample_type = event->attr.sample_type;
5067

5068
	header->type = PERF_RECORD_SAMPLE;
5069
	header->size = sizeof(*header) + event->header_size;
5070 5071 5072

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5073

5074
	__perf_event_header__init_id(header, data, event);
5075

5076
	if (sample_type & PERF_SAMPLE_IP)
5077 5078
		data->ip = perf_instruction_pointer(regs);

5079
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5080
		int size = 1;
5081

5082
		data->callchain = perf_callchain(event, regs);
5083 5084 5085 5086 5087

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5088 5089
	}

5090
	if (sample_type & PERF_SAMPLE_RAW) {
5091 5092 5093 5094 5095 5096 5097 5098
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5099
		header->size += size;
5100
	}
5101 5102 5103 5104 5105 5106 5107 5108 5109

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5110

5111
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5112 5113
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5114

5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5138
						     data->regs_user.regs);
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5166
}
5167

5168
static void perf_event_output(struct perf_event *event,
5169 5170 5171 5172 5173
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5174

5175 5176 5177
	/* protect the callchain buffers */
	rcu_read_lock();

5178
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5179

5180
	if (perf_output_begin(&handle, event, header.size))
5181
		goto exit;
5182

5183
	perf_output_sample(&handle, &header, data, event);
5184

5185
	perf_output_end(&handle);
5186 5187 5188

exit:
	rcu_read_unlock();
5189 5190
}

5191
/*
5192
 * read event_id
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5203
perf_event_read_event(struct perf_event *event,
5204 5205 5206
			struct task_struct *task)
{
	struct perf_output_handle handle;
5207
	struct perf_sample_data sample;
5208
	struct perf_read_event read_event = {
5209
		.header = {
5210
			.type = PERF_RECORD_READ,
5211
			.misc = 0,
5212
			.size = sizeof(read_event) + event->read_size,
5213
		},
5214 5215
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5216
	};
5217
	int ret;
5218

5219
	perf_event_header__init_id(&read_event.header, &sample, event);
5220
	ret = perf_output_begin(&handle, event, read_event.header.size);
5221 5222 5223
	if (ret)
		return;

5224
	perf_output_put(&handle, read_event);
5225
	perf_output_read(&handle, event);
5226
	perf_event__output_id_sample(event, &handle, &sample);
5227

5228 5229 5230
	perf_output_end(&handle);
}

5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5245
		output(event, data);
5246 5247 5248 5249
	}
}

static void
5250
perf_event_aux(perf_event_aux_output_cb output, void *data,
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5263
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5264 5265 5266 5267 5268 5269 5270
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5271
			perf_event_aux_ctx(ctx, output, data);
5272 5273 5274 5275 5276 5277
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5278
		perf_event_aux_ctx(task_ctx, output, data);
5279 5280 5281 5282 5283
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5284
/*
P
Peter Zijlstra 已提交
5285 5286
 * task tracking -- fork/exit
 *
5287
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5288 5289
 */

P
Peter Zijlstra 已提交
5290
struct perf_task_event {
5291
	struct task_struct		*task;
5292
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5293 5294 5295 5296 5297 5298

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5299 5300
		u32				tid;
		u32				ptid;
5301
		u64				time;
5302
	} event_id;
P
Peter Zijlstra 已提交
5303 5304
};

5305 5306
static int perf_event_task_match(struct perf_event *event)
{
5307 5308 5309
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5310 5311
}

5312
static void perf_event_task_output(struct perf_event *event,
5313
				   void *data)
P
Peter Zijlstra 已提交
5314
{
5315
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5316
	struct perf_output_handle handle;
5317
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5318
	struct task_struct *task = task_event->task;
5319
	int ret, size = task_event->event_id.header.size;
5320

5321 5322 5323
	if (!perf_event_task_match(event))
		return;

5324
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5325

5326
	ret = perf_output_begin(&handle, event,
5327
				task_event->event_id.header.size);
5328
	if (ret)
5329
		goto out;
P
Peter Zijlstra 已提交
5330

5331 5332
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5333

5334 5335
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5336

5337
	perf_output_put(&handle, task_event->event_id);
5338

5339 5340
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5341
	perf_output_end(&handle);
5342 5343
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5344 5345
}

5346 5347
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5348
			      int new)
P
Peter Zijlstra 已提交
5349
{
P
Peter Zijlstra 已提交
5350
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5351

5352 5353 5354
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5355 5356
		return;

P
Peter Zijlstra 已提交
5357
	task_event = (struct perf_task_event){
5358 5359
		.task	  = task,
		.task_ctx = task_ctx,
5360
		.event_id    = {
P
Peter Zijlstra 已提交
5361
			.header = {
5362
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5363
				.misc = 0,
5364
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5365
			},
5366 5367
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5368 5369
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5370
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5371 5372 5373
		},
	};

5374
	perf_event_aux(perf_event_task_output,
5375 5376
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5377 5378
}

5379
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5380
{
5381
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5382 5383
}

5384 5385 5386 5387 5388
/*
 * comm tracking
 */

struct perf_comm_event {
5389 5390
	struct task_struct	*task;
	char			*comm;
5391 5392 5393 5394 5395 5396 5397
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5398
	} event_id;
5399 5400
};

5401 5402 5403 5404 5405
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5406
static void perf_event_comm_output(struct perf_event *event,
5407
				   void *data)
5408
{
5409
	struct perf_comm_event *comm_event = data;
5410
	struct perf_output_handle handle;
5411
	struct perf_sample_data sample;
5412
	int size = comm_event->event_id.header.size;
5413 5414
	int ret;

5415 5416 5417
	if (!perf_event_comm_match(event))
		return;

5418 5419
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5420
				comm_event->event_id.header.size);
5421 5422

	if (ret)
5423
		goto out;
5424

5425 5426
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5427

5428
	perf_output_put(&handle, comm_event->event_id);
5429
	__output_copy(&handle, comm_event->comm,
5430
				   comm_event->comm_size);
5431 5432 5433

	perf_event__output_id_sample(event, &handle, &sample);

5434
	perf_output_end(&handle);
5435 5436
out:
	comm_event->event_id.header.size = size;
5437 5438
}

5439
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5440
{
5441
	char comm[TASK_COMM_LEN];
5442 5443
	unsigned int size;

5444
	memset(comm, 0, sizeof(comm));
5445
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5446
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5447 5448 5449 5450

	comm_event->comm = comm;
	comm_event->comm_size = size;

5451
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5452

5453
	perf_event_aux(perf_event_comm_output,
5454 5455
		       comm_event,
		       NULL);
5456 5457
}

5458
void perf_event_comm(struct task_struct *task, bool exec)
5459
{
5460 5461
	struct perf_comm_event comm_event;

5462
	if (!atomic_read(&nr_comm_events))
5463
		return;
5464

5465
	comm_event = (struct perf_comm_event){
5466
		.task	= task,
5467 5468
		/* .comm      */
		/* .comm_size */
5469
		.event_id  = {
5470
			.header = {
5471
				.type = PERF_RECORD_COMM,
5472
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5473 5474 5475 5476
				/* .size */
			},
			/* .pid */
			/* .tid */
5477 5478 5479
		},
	};

5480
	perf_event_comm_event(&comm_event);
5481 5482
}

5483 5484 5485 5486 5487
/*
 * mmap tracking
 */

struct perf_mmap_event {
5488 5489 5490 5491
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5492 5493 5494
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5495
	u32			prot, flags;
5496 5497 5498 5499 5500 5501 5502 5503 5504

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5505
	} event_id;
5506 5507
};

5508 5509 5510 5511 5512 5513 5514 5515
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5516
	       (executable && (event->attr.mmap || event->attr.mmap2));
5517 5518
}

5519
static void perf_event_mmap_output(struct perf_event *event,
5520
				   void *data)
5521
{
5522
	struct perf_mmap_event *mmap_event = data;
5523
	struct perf_output_handle handle;
5524
	struct perf_sample_data sample;
5525
	int size = mmap_event->event_id.header.size;
5526
	int ret;
5527

5528 5529 5530
	if (!perf_event_mmap_match(event, data))
		return;

5531 5532 5533 5534 5535
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5536
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5537 5538
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5539 5540
	}

5541 5542
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5543
				mmap_event->event_id.header.size);
5544
	if (ret)
5545
		goto out;
5546

5547 5548
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5549

5550
	perf_output_put(&handle, mmap_event->event_id);
5551 5552 5553 5554 5555 5556

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5557 5558
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5559 5560
	}

5561
	__output_copy(&handle, mmap_event->file_name,
5562
				   mmap_event->file_size);
5563 5564 5565

	perf_event__output_id_sample(event, &handle, &sample);

5566
	perf_output_end(&handle);
5567 5568
out:
	mmap_event->event_id.header.size = size;
5569 5570
}

5571
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5572
{
5573 5574
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5575 5576
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5577
	u32 prot = 0, flags = 0;
5578 5579 5580
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5581
	char *name;
5582

5583
	if (file) {
5584 5585
		struct inode *inode;
		dev_t dev;
5586

5587
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5588
		if (!buf) {
5589 5590
			name = "//enomem";
			goto cpy_name;
5591
		}
5592
		/*
5593
		 * d_path() works from the end of the rb backwards, so we
5594 5595 5596
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5597
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5598
		if (IS_ERR(name)) {
5599 5600
			name = "//toolong";
			goto cpy_name;
5601
		}
5602 5603 5604 5605 5606 5607
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5630
		goto got_name;
5631
	} else {
5632 5633 5634 5635 5636 5637
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5638
		name = (char *)arch_vma_name(vma);
5639 5640
		if (name)
			goto cpy_name;
5641

5642
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5643
				vma->vm_end >= vma->vm_mm->brk) {
5644 5645
			name = "[heap]";
			goto cpy_name;
5646 5647
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5648
				vma->vm_end >= vma->vm_mm->start_stack) {
5649 5650
			name = "[stack]";
			goto cpy_name;
5651 5652
		}

5653 5654
		name = "//anon";
		goto cpy_name;
5655 5656
	}

5657 5658 5659
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5660
got_name:
5661 5662 5663 5664 5665 5666 5667 5668
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5669 5670 5671

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5672 5673 5674 5675
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5676 5677
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5678

5679 5680 5681
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5682
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5683

5684
	perf_event_aux(perf_event_mmap_output,
5685 5686
		       mmap_event,
		       NULL);
5687

5688 5689 5690
	kfree(buf);
}

5691
void perf_event_mmap(struct vm_area_struct *vma)
5692
{
5693 5694
	struct perf_mmap_event mmap_event;

5695
	if (!atomic_read(&nr_mmap_events))
5696 5697 5698
		return;

	mmap_event = (struct perf_mmap_event){
5699
		.vma	= vma,
5700 5701
		/* .file_name */
		/* .file_size */
5702
		.event_id  = {
5703
			.header = {
5704
				.type = PERF_RECORD_MMAP,
5705
				.misc = PERF_RECORD_MISC_USER,
5706 5707 5708 5709
				/* .size */
			},
			/* .pid */
			/* .tid */
5710 5711
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5712
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5713
		},
5714 5715 5716 5717
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5718 5719
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5720 5721
	};

5722
	perf_event_mmap_event(&mmap_event);
5723 5724
}

5725 5726 5727 5728
/*
 * IRQ throttle logging
 */

5729
static void perf_log_throttle(struct perf_event *event, int enable)
5730 5731
{
	struct perf_output_handle handle;
5732
	struct perf_sample_data sample;
5733 5734 5735 5736 5737
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5738
		u64				id;
5739
		u64				stream_id;
5740 5741
	} throttle_event = {
		.header = {
5742
			.type = PERF_RECORD_THROTTLE,
5743 5744 5745
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5746
		.time		= perf_clock(),
5747 5748
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5749 5750
	};

5751
	if (enable)
5752
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5753

5754 5755 5756
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5757
				throttle_event.header.size);
5758 5759 5760 5761
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5762
	perf_event__output_id_sample(event, &handle, &sample);
5763 5764 5765
	perf_output_end(&handle);
}

5766
/*
5767
 * Generic event overflow handling, sampling.
5768 5769
 */

5770
static int __perf_event_overflow(struct perf_event *event,
5771 5772
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5773
{
5774 5775
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5776
	u64 seq;
5777 5778
	int ret = 0;

5779 5780 5781 5782 5783 5784 5785
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5786 5787 5788 5789 5790 5791 5792 5793 5794
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5795 5796
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5797
			tick_nohz_full_kick();
5798 5799
			ret = 1;
		}
5800
	}
5801

5802
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5803
		u64 now = perf_clock();
5804
		s64 delta = now - hwc->freq_time_stamp;
5805

5806
		hwc->freq_time_stamp = now;
5807

5808
		if (delta > 0 && delta < 2*TICK_NSEC)
5809
			perf_adjust_period(event, delta, hwc->last_period, true);
5810 5811
	}

5812 5813
	/*
	 * XXX event_limit might not quite work as expected on inherited
5814
	 * events
5815 5816
	 */

5817 5818
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5819
		ret = 1;
5820
		event->pending_kill = POLL_HUP;
5821 5822
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5823 5824
	}

5825
	if (event->overflow_handler)
5826
		event->overflow_handler(event, data, regs);
5827
	else
5828
		perf_event_output(event, data, regs);
5829

P
Peter Zijlstra 已提交
5830
	if (event->fasync && event->pending_kill) {
5831 5832
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5833 5834
	}

5835
	return ret;
5836 5837
}

5838
int perf_event_overflow(struct perf_event *event,
5839 5840
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5841
{
5842
	return __perf_event_overflow(event, 1, data, regs);
5843 5844
}

5845
/*
5846
 * Generic software event infrastructure
5847 5848
 */

5849 5850 5851 5852 5853 5854 5855
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5856 5857 5858

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5859 5860 5861 5862
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5863
/*
5864 5865
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5866 5867 5868 5869
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5870
u64 perf_swevent_set_period(struct perf_event *event)
5871
{
5872
	struct hw_perf_event *hwc = &event->hw;
5873 5874 5875 5876 5877
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5878 5879

again:
5880
	old = val = local64_read(&hwc->period_left);
5881 5882
	if (val < 0)
		return 0;
5883

5884 5885 5886
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5887
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5888
		goto again;
5889

5890
	return nr;
5891 5892
}

5893
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5894
				    struct perf_sample_data *data,
5895
				    struct pt_regs *regs)
5896
{
5897
	struct hw_perf_event *hwc = &event->hw;
5898
	int throttle = 0;
5899

5900 5901
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5902

5903 5904
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5905

5906
	for (; overflow; overflow--) {
5907
		if (__perf_event_overflow(event, throttle,
5908
					    data, regs)) {
5909 5910 5911 5912 5913 5914
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5915
		throttle = 1;
5916
	}
5917 5918
}

P
Peter Zijlstra 已提交
5919
static void perf_swevent_event(struct perf_event *event, u64 nr,
5920
			       struct perf_sample_data *data,
5921
			       struct pt_regs *regs)
5922
{
5923
	struct hw_perf_event *hwc = &event->hw;
5924

5925
	local64_add(nr, &event->count);
5926

5927 5928 5929
	if (!regs)
		return;

5930
	if (!is_sampling_event(event))
5931
		return;
5932

5933 5934 5935 5936 5937 5938
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5939
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5940
		return perf_swevent_overflow(event, 1, data, regs);
5941

5942
	if (local64_add_negative(nr, &hwc->period_left))
5943
		return;
5944

5945
	perf_swevent_overflow(event, 0, data, regs);
5946 5947
}

5948 5949 5950
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5951
	if (event->hw.state & PERF_HES_STOPPED)
5952
		return 1;
P
Peter Zijlstra 已提交
5953

5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5965
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5966
				enum perf_type_id type,
L
Li Zefan 已提交
5967 5968 5969
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5970
{
5971
	if (event->attr.type != type)
5972
		return 0;
5973

5974
	if (event->attr.config != event_id)
5975 5976
		return 0;

5977 5978
	if (perf_exclude_event(event, regs))
		return 0;
5979 5980 5981 5982

	return 1;
}

5983 5984 5985 5986 5987 5988 5989
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5990 5991
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5992
{
5993 5994 5995 5996
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5997

5998 5999
/* For the read side: events when they trigger */
static inline struct hlist_head *
6000
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6001 6002
{
	struct swevent_hlist *hlist;
6003

6004
	hlist = rcu_dereference(swhash->swevent_hlist);
6005 6006 6007
	if (!hlist)
		return NULL;

6008 6009 6010 6011 6012
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6013
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6024
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6025 6026 6027 6028 6029
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6030 6031 6032
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6033
				    u64 nr,
6034 6035
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6036
{
6037
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6038
	struct perf_event *event;
6039
	struct hlist_head *head;
6040

6041
	rcu_read_lock();
6042
	head = find_swevent_head_rcu(swhash, type, event_id);
6043 6044 6045
	if (!head)
		goto end;

6046
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6047
		if (perf_swevent_match(event, type, event_id, data, regs))
6048
			perf_swevent_event(event, nr, data, regs);
6049
	}
6050 6051
end:
	rcu_read_unlock();
6052 6053
}

6054 6055
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6056
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6057
{
6058
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6059

6060
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6061
}
I
Ingo Molnar 已提交
6062
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6063

6064
inline void perf_swevent_put_recursion_context(int rctx)
6065
{
6066
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6067

6068
	put_recursion_context(swhash->recursion, rctx);
6069
}
6070

6071
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6072
{
6073
	struct perf_sample_data data;
6074

6075
	if (WARN_ON_ONCE(!regs))
6076
		return;
6077

6078
	perf_sample_data_init(&data, addr, 0);
6079
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6092 6093

	perf_swevent_put_recursion_context(rctx);
6094
fail:
6095
	preempt_enable_notrace();
6096 6097
}

6098
static void perf_swevent_read(struct perf_event *event)
6099 6100 6101
{
}

P
Peter Zijlstra 已提交
6102
static int perf_swevent_add(struct perf_event *event, int flags)
6103
{
6104
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6105
	struct hw_perf_event *hwc = &event->hw;
6106 6107
	struct hlist_head *head;

6108
	if (is_sampling_event(event)) {
6109
		hwc->last_period = hwc->sample_period;
6110
		perf_swevent_set_period(event);
6111
	}
6112

P
Peter Zijlstra 已提交
6113 6114
	hwc->state = !(flags & PERF_EF_START);

6115
	head = find_swevent_head(swhash, event);
6116 6117 6118 6119 6120 6121
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6122
		return -EINVAL;
6123
	}
6124 6125 6126

	hlist_add_head_rcu(&event->hlist_entry, head);

6127 6128 6129
	return 0;
}

P
Peter Zijlstra 已提交
6130
static void perf_swevent_del(struct perf_event *event, int flags)
6131
{
6132
	hlist_del_rcu(&event->hlist_entry);
6133 6134
}

P
Peter Zijlstra 已提交
6135
static void perf_swevent_start(struct perf_event *event, int flags)
6136
{
P
Peter Zijlstra 已提交
6137
	event->hw.state = 0;
6138
}
I
Ingo Molnar 已提交
6139

P
Peter Zijlstra 已提交
6140
static void perf_swevent_stop(struct perf_event *event, int flags)
6141
{
P
Peter Zijlstra 已提交
6142
	event->hw.state = PERF_HES_STOPPED;
6143 6144
}

6145 6146
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6147
swevent_hlist_deref(struct swevent_htable *swhash)
6148
{
6149 6150
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6151 6152
}

6153
static void swevent_hlist_release(struct swevent_htable *swhash)
6154
{
6155
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6156

6157
	if (!hlist)
6158 6159
		return;

6160
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6161
	kfree_rcu(hlist, rcu_head);
6162 6163 6164 6165
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6166
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6167

6168
	mutex_lock(&swhash->hlist_mutex);
6169

6170 6171
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6172

6173
	mutex_unlock(&swhash->hlist_mutex);
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6186
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6187 6188
	int err = 0;

6189
	mutex_lock(&swhash->hlist_mutex);
6190

6191
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6192 6193 6194 6195 6196 6197 6198
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6199
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6200
	}
6201
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6202
exit:
6203
	mutex_unlock(&swhash->hlist_mutex);
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6224
fail:
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6235
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6236

6237 6238 6239
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6240

6241 6242
	WARN_ON(event->parent);

6243
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6244 6245 6246 6247 6248
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6249
	u64 event_id = event->attr.config;
6250 6251 6252 6253

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6254 6255 6256 6257 6258 6259
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6260 6261 6262 6263 6264 6265 6266 6267 6268
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6269
	if (event_id >= PERF_COUNT_SW_MAX)
6270 6271 6272 6273 6274 6275 6276 6277 6278
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6279
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6280 6281 6282 6283 6284 6285 6286
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6287
	.task_ctx_nr	= perf_sw_context,
6288

6289
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6290 6291 6292 6293
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6294 6295 6296
	.read		= perf_swevent_read,
};

6297 6298
#ifdef CONFIG_EVENT_TRACING

6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6313 6314
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6315 6316 6317 6318
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6319 6320 6321 6322 6323 6324 6325 6326 6327
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6328 6329
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6330 6331
{
	struct perf_sample_data data;
6332 6333
	struct perf_event *event;

6334 6335 6336 6337 6338
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6339
	perf_sample_data_init(&data, addr, 0);
6340 6341
	data.raw = &raw;

6342
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6343
		if (perf_tp_event_match(event, &data, regs))
6344
			perf_swevent_event(event, count, &data, regs);
6345
	}
6346

6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6372
	perf_swevent_put_recursion_context(rctx);
6373 6374 6375
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6376
static void tp_perf_event_destroy(struct perf_event *event)
6377
{
6378
	perf_trace_destroy(event);
6379 6380
}

6381
static int perf_tp_event_init(struct perf_event *event)
6382
{
6383 6384
	int err;

6385 6386 6387
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6388 6389 6390 6391 6392 6393
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6394 6395
	err = perf_trace_init(event);
	if (err)
6396
		return err;
6397

6398
	event->destroy = tp_perf_event_destroy;
6399

6400 6401 6402 6403
	return 0;
}

static struct pmu perf_tracepoint = {
6404 6405
	.task_ctx_nr	= perf_sw_context,

6406
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6407 6408 6409 6410
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6411 6412 6413 6414 6415
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6416
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6417
}
L
Li Zefan 已提交
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6442
#else
L
Li Zefan 已提交
6443

6444
static inline void perf_tp_register(void)
6445 6446
{
}
L
Li Zefan 已提交
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6457
#endif /* CONFIG_EVENT_TRACING */
6458

6459
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6460
void perf_bp_event(struct perf_event *bp, void *data)
6461
{
6462 6463 6464
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6465
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6466

P
Peter Zijlstra 已提交
6467
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6468
		perf_swevent_event(bp, 1, &sample, regs);
6469 6470 6471
}
#endif

6472 6473 6474
/*
 * hrtimer based swevent callback
 */
6475

6476
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6477
{
6478 6479 6480 6481 6482
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6483

6484
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6485 6486 6487 6488

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6489
	event->pmu->read(event);
6490

6491
	perf_sample_data_init(&data, 0, event->hw.last_period);
6492 6493 6494
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6495
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6496
			if (__perf_event_overflow(event, 1, &data, regs))
6497 6498
				ret = HRTIMER_NORESTART;
	}
6499

6500 6501
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6502

6503
	return ret;
6504 6505
}

6506
static void perf_swevent_start_hrtimer(struct perf_event *event)
6507
{
6508
	struct hw_perf_event *hwc = &event->hw;
6509 6510 6511 6512
	s64 period;

	if (!is_sampling_event(event))
		return;
6513

6514 6515 6516 6517
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6518

6519 6520 6521 6522 6523
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6524
				ns_to_ktime(period), 0,
6525
				HRTIMER_MODE_REL_PINNED, 0);
6526
}
6527 6528

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6529
{
6530 6531
	struct hw_perf_event *hwc = &event->hw;

6532
	if (is_sampling_event(event)) {
6533
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6534
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6535 6536 6537

		hrtimer_cancel(&hwc->hrtimer);
	}
6538 6539
}

P
Peter Zijlstra 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6560
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6561 6562 6563 6564
		event->attr.freq = 0;
	}
}

6565 6566 6567 6568 6569
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6570
{
6571 6572 6573
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6574
	now = local_clock();
6575 6576
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6577 6578
}

P
Peter Zijlstra 已提交
6579
static void cpu_clock_event_start(struct perf_event *event, int flags)
6580
{
P
Peter Zijlstra 已提交
6581
	local64_set(&event->hw.prev_count, local_clock());
6582 6583 6584
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6585
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6586
{
6587 6588 6589
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6590

P
Peter Zijlstra 已提交
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6604 6605 6606 6607
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6608

6609 6610 6611 6612 6613 6614 6615 6616
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6617 6618 6619 6620 6621 6622
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6623 6624
	perf_swevent_init_hrtimer(event);

6625
	return 0;
6626 6627
}

6628
static struct pmu perf_cpu_clock = {
6629 6630
	.task_ctx_nr	= perf_sw_context,

6631
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6632 6633 6634 6635
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6636 6637 6638 6639 6640 6641 6642 6643
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6644
{
6645 6646
	u64 prev;
	s64 delta;
6647

6648 6649 6650 6651
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6652

P
Peter Zijlstra 已提交
6653
static void task_clock_event_start(struct perf_event *event, int flags)
6654
{
P
Peter Zijlstra 已提交
6655
	local64_set(&event->hw.prev_count, event->ctx->time);
6656 6657 6658
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6659
static void task_clock_event_stop(struct perf_event *event, int flags)
6660 6661 6662
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6663 6664 6665 6666 6667 6668
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6669

P
Peter Zijlstra 已提交
6670 6671 6672 6673 6674 6675
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6676 6677 6678 6679
}

static void task_clock_event_read(struct perf_event *event)
{
6680 6681 6682
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6683 6684 6685 6686 6687

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6688
{
6689 6690 6691 6692 6693 6694
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6695 6696 6697 6698 6699 6700
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6701 6702
	perf_swevent_init_hrtimer(event);

6703
	return 0;
L
Li Zefan 已提交
6704 6705
}

6706
static struct pmu perf_task_clock = {
6707 6708
	.task_ctx_nr	= perf_sw_context,

6709
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6710 6711 6712 6713
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6714 6715
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
6716

P
Peter Zijlstra 已提交
6717
static void perf_pmu_nop_void(struct pmu *pmu)
6718 6719
{
}
L
Li Zefan 已提交
6720

P
Peter Zijlstra 已提交
6721
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6722
{
P
Peter Zijlstra 已提交
6723
	return 0;
L
Li Zefan 已提交
6724 6725
}

P
Peter Zijlstra 已提交
6726
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6727
{
P
Peter Zijlstra 已提交
6728
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6729 6730
}

P
Peter Zijlstra 已提交
6731 6732 6733 6734 6735
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6736

P
Peter Zijlstra 已提交
6737
static void perf_pmu_cancel_txn(struct pmu *pmu)
6738
{
P
Peter Zijlstra 已提交
6739
	perf_pmu_enable(pmu);
6740 6741
}

6742 6743
static int perf_event_idx_default(struct perf_event *event)
{
6744
	return 0;
6745 6746
}

P
Peter Zijlstra 已提交
6747 6748 6749 6750
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6751
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6752
{
P
Peter Zijlstra 已提交
6753
	struct pmu *pmu;
6754

P
Peter Zijlstra 已提交
6755 6756
	if (ctxn < 0)
		return NULL;
6757

P
Peter Zijlstra 已提交
6758 6759 6760 6761
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6762

P
Peter Zijlstra 已提交
6763
	return NULL;
6764 6765
}

6766
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6767
{
6768 6769 6770 6771 6772 6773 6774
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6775 6776
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6777 6778 6779 6780 6781 6782
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6783

P
Peter Zijlstra 已提交
6784
	mutex_lock(&pmus_lock);
6785
	/*
P
Peter Zijlstra 已提交
6786
	 * Like a real lame refcount.
6787
	 */
6788 6789 6790
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6791
			goto out;
6792
		}
P
Peter Zijlstra 已提交
6793
	}
6794

6795
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6796 6797
out:
	mutex_unlock(&pmus_lock);
6798
}
P
Peter Zijlstra 已提交
6799
static struct idr pmu_idr;
6800

P
Peter Zijlstra 已提交
6801 6802 6803 6804 6805 6806 6807
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6808
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6809

6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6853
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6854

6855 6856 6857 6858
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6859
};
6860
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6861 6862 6863 6864

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6865
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6881
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6902
static struct lock_class_key cpuctx_mutex;
6903
static struct lock_class_key cpuctx_lock;
6904

6905
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6906
{
P
Peter Zijlstra 已提交
6907
	int cpu, ret;
6908

6909
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6910 6911 6912 6913
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6914

P
Peter Zijlstra 已提交
6915 6916 6917 6918 6919 6920
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6921 6922 6923
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6924 6925 6926 6927 6928
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6929 6930 6931 6932 6933 6934
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6935
skip_type:
P
Peter Zijlstra 已提交
6936 6937 6938
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6939

W
Wei Yongjun 已提交
6940
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6941 6942
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6943
		goto free_dev;
6944

P
Peter Zijlstra 已提交
6945 6946 6947 6948
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6949
		__perf_event_init_context(&cpuctx->ctx);
6950
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6951
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
6952
		cpuctx->ctx.pmu = pmu;
6953 6954 6955

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6956
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6957
	}
6958

P
Peter Zijlstra 已提交
6959
got_cpu_context:
P
Peter Zijlstra 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6974
		}
6975
	}
6976

P
Peter Zijlstra 已提交
6977 6978 6979 6980 6981
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6982 6983 6984
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6985
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6986 6987
	ret = 0;
unlock:
6988 6989
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6990
	return ret;
P
Peter Zijlstra 已提交
6991

P
Peter Zijlstra 已提交
6992 6993 6994 6995
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6996 6997 6998 6999
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7000 7001 7002
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7003
}
7004
EXPORT_SYMBOL_GPL(perf_pmu_register);
7005

7006
void perf_pmu_unregister(struct pmu *pmu)
7007
{
7008 7009 7010
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7011

7012
	/*
P
Peter Zijlstra 已提交
7013 7014
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7015
	 */
7016
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7017
	synchronize_rcu();
7018

P
Peter Zijlstra 已提交
7019
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7020 7021
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7022 7023
	device_del(pmu->dev);
	put_device(pmu->dev);
7024
	free_pmu_context(pmu);
7025
}
7026
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7027

7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
	event->pmu = pmu;
	ret = pmu->event_init(event);
	if (ret)
		module_put(pmu->module);

	return ret;
}

7042 7043 7044 7045
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7046
	int ret;
7047 7048

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7049 7050 7051 7052

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7053
	if (pmu) {
7054
		ret = perf_try_init_event(pmu, event);
7055 7056
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7057
		goto unlock;
7058
	}
P
Peter Zijlstra 已提交
7059

7060
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7061
		ret = perf_try_init_event(pmu, event);
7062
		if (!ret)
P
Peter Zijlstra 已提交
7063
			goto unlock;
7064

7065 7066
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7067
			goto unlock;
7068
		}
7069
	}
P
Peter Zijlstra 已提交
7070 7071
	pmu = ERR_PTR(-ENOENT);
unlock:
7072
	srcu_read_unlock(&pmus_srcu, idx);
7073

7074
	return pmu;
7075 7076
}

7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7090 7091
static void account_event(struct perf_event *event)
{
7092 7093 7094
	if (event->parent)
		return;

7095 7096 7097 7098 7099 7100 7101 7102
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7103 7104 7105 7106
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7107
	if (has_branch_stack(event))
7108
		static_key_slow_inc(&perf_sched_events.key);
7109
	if (is_cgroup_event(event))
7110
		static_key_slow_inc(&perf_sched_events.key);
7111 7112

	account_event_cpu(event, event->cpu);
7113 7114
}

T
Thomas Gleixner 已提交
7115
/*
7116
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7117
 */
7118
static struct perf_event *
7119
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7120 7121 7122
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7123 7124
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
7125
{
P
Peter Zijlstra 已提交
7126
	struct pmu *pmu;
7127 7128
	struct perf_event *event;
	struct hw_perf_event *hwc;
7129
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7130

7131 7132 7133 7134 7135
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7136
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7137
	if (!event)
7138
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7139

7140
	/*
7141
	 * Single events are their own group leaders, with an
7142 7143 7144
	 * empty sibling list:
	 */
	if (!group_leader)
7145
		group_leader = event;
7146

7147 7148
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7149

7150 7151 7152
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7153
	INIT_LIST_HEAD(&event->rb_entry);
7154
	INIT_LIST_HEAD(&event->active_entry);
7155 7156
	INIT_HLIST_NODE(&event->hlist_entry);

7157

7158
	init_waitqueue_head(&event->waitq);
7159
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7160

7161
	mutex_init(&event->mmap_mutex);
7162

7163
	atomic_long_set(&event->refcount, 1);
7164 7165 7166 7167 7168
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7169

7170
	event->parent		= parent_event;
7171

7172
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7173
	event->id		= atomic64_inc_return(&perf_event_id);
7174

7175
	event->state		= PERF_EVENT_STATE_INACTIVE;
7176

7177 7178
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
7179 7180 7181

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
7182 7183 7184 7185
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
7186
		else if (attr->type == PERF_TYPE_BREAKPOINT)
7187 7188 7189 7190
			event->hw.bp_target = task;
#endif
	}

7191
	if (!overflow_handler && parent_event) {
7192
		overflow_handler = parent_event->overflow_handler;
7193 7194
		context = parent_event->overflow_handler_context;
	}
7195

7196
	event->overflow_handler	= overflow_handler;
7197
	event->overflow_handler_context = context;
7198

J
Jiri Olsa 已提交
7199
	perf_event__state_init(event);
7200

7201
	pmu = NULL;
7202

7203
	hwc = &event->hw;
7204
	hwc->sample_period = attr->sample_period;
7205
	if (attr->freq && attr->sample_freq)
7206
		hwc->sample_period = 1;
7207
	hwc->last_period = hwc->sample_period;
7208

7209
	local64_set(&hwc->period_left, hwc->sample_period);
7210

7211
	/*
7212
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7213
	 */
7214
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7215
		goto err_ns;
7216

7217
	pmu = perf_init_event(event);
7218
	if (!pmu)
7219 7220
		goto err_ns;
	else if (IS_ERR(pmu)) {
7221
		err = PTR_ERR(pmu);
7222
		goto err_ns;
I
Ingo Molnar 已提交
7223
	}
7224

7225
	if (!event->parent) {
7226 7227
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7228 7229
			if (err)
				goto err_pmu;
7230
		}
7231
	}
7232

7233
	return event;
7234 7235 7236 7237

err_pmu:
	if (event->destroy)
		event->destroy(event);
7238
	module_put(pmu->module);
7239 7240 7241 7242 7243 7244
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7245 7246
}

7247 7248
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7249 7250
{
	u32 size;
7251
	int ret;
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7276 7277 7278
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7279 7280
	 */
	if (size > sizeof(*attr)) {
7281 7282 7283
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7284

7285 7286
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7287

7288
		for (; addr < end; addr++) {
7289 7290 7291 7292 7293 7294
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7295
		size = sizeof(*attr);
7296 7297 7298 7299 7300 7301
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7302
	if (attr->__reserved_1)
7303 7304 7305 7306 7307 7308 7309 7310
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7339 7340
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7341 7342
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7343
	}
7344

7345
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7346
		ret = perf_reg_validate(attr->sample_regs_user);
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7365

7366 7367
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7368 7369 7370 7371 7372 7373 7374 7375 7376
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7377 7378
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7379
{
7380
	struct ring_buffer *rb = NULL;
7381 7382
	int ret = -EINVAL;

7383
	if (!output_event)
7384 7385
		goto set;

7386 7387
	/* don't allow circular references */
	if (event == output_event)
7388 7389
		goto out;

7390 7391 7392 7393 7394 7395 7396
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7397
	 * If its not a per-cpu rb, it must be the same task.
7398 7399 7400 7401
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7402
set:
7403
	mutex_lock(&event->mmap_mutex);
7404 7405 7406
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7407

7408
	if (output_event) {
7409 7410 7411
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7412
			goto unlock;
7413 7414
	}

7415
	ring_buffer_attach(event, rb);
7416

7417
	ret = 0;
7418 7419 7420
unlock:
	mutex_unlock(&event->mmap_mutex);

7421 7422 7423 7424
out:
	return ret;
}

P
Peter Zijlstra 已提交
7425 7426 7427 7428 7429 7430 7431 7432 7433
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

T
Thomas Gleixner 已提交
7434
/**
7435
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7436
 *
7437
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7438
 * @pid:		target pid
I
Ingo Molnar 已提交
7439
 * @cpu:		target cpu
7440
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7441
 */
7442 7443
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7444
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7445
{
7446 7447
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7448
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7449
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7450
	struct file *event_file = NULL;
7451
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7452
	struct task_struct *task = NULL;
7453
	struct pmu *pmu;
7454
	int event_fd;
7455
	int move_group = 0;
7456
	int err;
7457
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7458

7459
	/* for future expandability... */
S
Stephane Eranian 已提交
7460
	if (flags & ~PERF_FLAG_ALL)
7461 7462
		return -EINVAL;

7463 7464 7465
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7466

7467 7468 7469 7470 7471
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7472
	if (attr.freq) {
7473
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7474
			return -EINVAL;
7475 7476 7477
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7478 7479
	}

S
Stephane Eranian 已提交
7480 7481 7482 7483 7484 7485 7486 7487 7488
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7489 7490 7491 7492
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7493 7494 7495
	if (event_fd < 0)
		return event_fd;

7496
	if (group_fd != -1) {
7497 7498
		err = perf_fget_light(group_fd, &group);
		if (err)
7499
			goto err_fd;
7500
		group_leader = group.file->private_data;
7501 7502 7503 7504 7505 7506
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7507
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7508 7509 7510 7511 7512 7513 7514
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7515 7516 7517 7518 7519 7520
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7521 7522
	get_online_cpus();

7523 7524
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7525 7526
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7527
		goto err_cpus;
7528 7529
	}

S
Stephane Eranian 已提交
7530 7531
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7532 7533
		if (err) {
			__free_event(event);
7534
			goto err_cpus;
7535
		}
S
Stephane Eranian 已提交
7536 7537
	}

7538 7539 7540 7541 7542 7543 7544
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7545 7546
	account_event(event);

7547 7548 7549 7550 7551
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7575 7576 7577 7578

	/*
	 * Get the target context (task or percpu):
	 */
7579
	ctx = find_get_context(pmu, task, event->cpu);
7580 7581
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7582
		goto err_alloc;
7583 7584
	}

7585 7586 7587 7588 7589
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7590
	/*
7591
	 * Look up the group leader (we will attach this event to it):
7592
	 */
7593
	if (group_leader) {
7594
		err = -EINVAL;
7595 7596

		/*
I
Ingo Molnar 已提交
7597 7598 7599 7600
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7601
			goto err_context;
I
Ingo Molnar 已提交
7602 7603 7604
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7605
		 */
7606
		if (move_group) {
7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
7620 7621 7622 7623 7624 7625
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7626 7627 7628
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7629
		if (attr.exclusive || attr.pinned)
7630
			goto err_context;
7631 7632 7633 7634 7635
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7636
			goto err_context;
7637
	}
T
Thomas Gleixner 已提交
7638

7639 7640
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7641 7642
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7643
		goto err_context;
7644
	}
7645

7646
	if (move_group) {
P
Peter Zijlstra 已提交
7647 7648 7649 7650 7651 7652 7653
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7654

7655
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7656

7657 7658
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7659
			perf_remove_from_context(sibling, false);
7660 7661
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
7662 7663
	} else {
		mutex_lock(&ctx->mutex);
7664
	}
7665

7666
	WARN_ON_ONCE(ctx->parent_ctx);
7667 7668

	if (move_group) {
P
Peter Zijlstra 已提交
7669 7670 7671 7672
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
7673
		synchronize_rcu();
P
Peter Zijlstra 已提交
7674

7675 7676 7677 7678 7679 7680 7681 7682 7683 7684
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
7685 7686
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7687
			perf_event__state_init(sibling);
7688
			perf_install_in_context(ctx, sibling, sibling->cpu);
7689 7690
			get_ctx(ctx);
		}
7691 7692 7693 7694 7695 7696 7697 7698 7699

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
7700 7701
	}

7702
	perf_install_in_context(ctx, event, event->cpu);
7703
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
7704 7705 7706 7707 7708

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
7709
	mutex_unlock(&ctx->mutex);
7710

7711 7712
	put_online_cpus();

7713
	event->owner = current;
P
Peter Zijlstra 已提交
7714

7715 7716 7717
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7718

7719 7720 7721 7722
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7723
	perf_event__id_header_size(event);
7724

7725 7726 7727 7728 7729 7730
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7731
	fdput(group);
7732 7733
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7734

7735
err_context:
7736
	perf_unpin_context(ctx);
7737
	put_ctx(ctx);
7738
err_alloc:
7739
	free_event(event);
7740
err_cpus:
7741
	put_online_cpus();
7742
err_task:
P
Peter Zijlstra 已提交
7743 7744
	if (task)
		put_task_struct(task);
7745
err_group_fd:
7746
	fdput(group);
7747 7748
err_fd:
	put_unused_fd(event_fd);
7749
	return err;
T
Thomas Gleixner 已提交
7750 7751
}

7752 7753 7754 7755 7756
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7757
 * @task: task to profile (NULL for percpu)
7758 7759 7760
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7761
				 struct task_struct *task,
7762 7763
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7764 7765
{
	struct perf_event_context *ctx;
7766
	struct perf_event *event;
7767
	int err;
7768

7769 7770 7771
	/*
	 * Get the target context (task or percpu):
	 */
7772

7773 7774
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7775 7776 7777 7778
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7779

7780 7781 7782
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7783 7784
	account_event(event);

M
Matt Helsley 已提交
7785
	ctx = find_get_context(event->pmu, task, cpu);
7786 7787
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7788
		goto err_free;
7789
	}
7790 7791 7792 7793

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7794
	perf_unpin_context(ctx);
7795 7796 7797 7798
	mutex_unlock(&ctx->mutex);

	return event;

7799 7800 7801
err_free:
	free_event(event);
err:
7802
	return ERR_PTR(err);
7803
}
7804
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7805

7806 7807 7808 7809 7810 7811 7812 7813 7814 7815
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
7816 7817 7818 7819 7820
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7821 7822
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7823
		perf_remove_from_context(event, false);
7824
		unaccount_event_cpu(event, src_cpu);
7825
		put_ctx(src_ctx);
7826
		list_add(&event->migrate_entry, &events);
7827 7828
	}

7829 7830 7831
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
7832 7833
	synchronize_rcu();

7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
7858 7859
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7860 7861
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7862
		account_event_cpu(event, dst_cpu);
7863 7864 7865 7866
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
7867
	mutex_unlock(&src_ctx->mutex);
7868 7869 7870
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7871
static void sync_child_event(struct perf_event *child_event,
7872
			       struct task_struct *child)
7873
{
7874
	struct perf_event *parent_event = child_event->parent;
7875
	u64 child_val;
7876

7877 7878
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7879

P
Peter Zijlstra 已提交
7880
	child_val = perf_event_count(child_event);
7881 7882 7883 7884

	/*
	 * Add back the child's count to the parent's count:
	 */
7885
	atomic64_add(child_val, &parent_event->child_count);
7886 7887 7888 7889
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7890 7891

	/*
7892
	 * Remove this event from the parent's list
7893
	 */
7894 7895 7896 7897
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7898

7899 7900 7901 7902 7903 7904
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7905
	/*
7906
	 * Release the parent event, if this was the last
7907 7908
	 * reference to it.
	 */
7909
	put_event(parent_event);
7910 7911
}

7912
static void
7913 7914
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7915
			 struct task_struct *child)
7916
{
7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7930

7931
	/*
7932
	 * It can happen that the parent exits first, and has events
7933
	 * that are still around due to the child reference. These
7934
	 * events need to be zapped.
7935
	 */
7936
	if (child_event->parent) {
7937 7938
		sync_child_event(child_event, child);
		free_event(child_event);
7939 7940 7941
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7942
	}
7943 7944
}

P
Peter Zijlstra 已提交
7945
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7946
{
7947
	struct perf_event *child_event, *next;
7948
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7949
	unsigned long flags;
7950

P
Peter Zijlstra 已提交
7951
	if (likely(!child->perf_event_ctxp[ctxn])) {
7952
		perf_event_task(child, NULL, 0);
7953
		return;
P
Peter Zijlstra 已提交
7954
	}
7955

7956
	local_irq_save(flags);
7957 7958 7959 7960 7961 7962
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7963
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7964 7965 7966

	/*
	 * Take the context lock here so that if find_get_context is
7967
	 * reading child->perf_event_ctxp, we wait until it has
7968 7969
	 * incremented the context's refcount before we do put_ctx below.
	 */
7970
	raw_spin_lock(&child_ctx->lock);
7971
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7972
	child->perf_event_ctxp[ctxn] = NULL;
7973

7974 7975 7976
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7977
	 * the events from it.
7978
	 */
7979
	clone_ctx = unclone_ctx(child_ctx);
7980
	update_context_time(child_ctx);
7981
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7982

7983 7984
	if (clone_ctx)
		put_ctx(clone_ctx);
7985

P
Peter Zijlstra 已提交
7986
	/*
7987 7988 7989
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7990
	 */
7991
	perf_event_task(child, child_ctx, 0);
7992

7993 7994 7995
	/*
	 * We can recurse on the same lock type through:
	 *
7996 7997
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7998 7999
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8000 8001 8002
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8003
	mutex_lock(&child_ctx->mutex);
8004

8005
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8006
		__perf_event_exit_task(child_event, child_ctx, child);
8007

8008 8009 8010
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8011 8012
}

P
Peter Zijlstra 已提交
8013 8014 8015 8016 8017
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8018
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8019 8020
	int ctxn;

P
Peter Zijlstra 已提交
8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8036 8037 8038 8039
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8052
	put_event(parent);
8053

P
Peter Zijlstra 已提交
8054
	raw_spin_lock_irq(&ctx->lock);
8055
	perf_group_detach(event);
8056
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8057
	raw_spin_unlock_irq(&ctx->lock);
8058 8059 8060
	free_event(event);
}

8061
/*
P
Peter Zijlstra 已提交
8062
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8063
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8064 8065 8066
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8067
 */
8068
void perf_event_free_task(struct task_struct *task)
8069
{
P
Peter Zijlstra 已提交
8070
	struct perf_event_context *ctx;
8071
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8072
	int ctxn;
8073

P
Peter Zijlstra 已提交
8074 8075 8076 8077
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8078

P
Peter Zijlstra 已提交
8079
		mutex_lock(&ctx->mutex);
8080
again:
P
Peter Zijlstra 已提交
8081 8082 8083
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8084

P
Peter Zijlstra 已提交
8085 8086 8087
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8088

P
Peter Zijlstra 已提交
8089 8090 8091
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8092

P
Peter Zijlstra 已提交
8093
		mutex_unlock(&ctx->mutex);
8094

P
Peter Zijlstra 已提交
8095 8096
		put_ctx(ctx);
	}
8097 8098
}

8099 8100 8101 8102 8103 8104 8105 8106
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8118
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8119
	struct perf_event *child_event;
8120
	unsigned long flags;
P
Peter Zijlstra 已提交
8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8133
					   child,
P
Peter Zijlstra 已提交
8134
					   group_leader, parent_event,
8135
				           NULL, NULL);
P
Peter Zijlstra 已提交
8136 8137
	if (IS_ERR(child_event))
		return child_event;
8138

8139 8140
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8141 8142 8143 8144
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8145 8146 8147 8148 8149 8150 8151
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8152
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8169 8170
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8171

8172 8173 8174 8175
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8176
	perf_event__id_header_size(child_event);
8177

P
Peter Zijlstra 已提交
8178 8179 8180
	/*
	 * Link it up in the child's context:
	 */
8181
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8182
	add_event_to_ctx(child_event, child_ctx);
8183
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8217 8218 8219 8220 8221
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8222
		   struct task_struct *child, int ctxn,
8223 8224 8225
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8226
	struct perf_event_context *child_ctx;
8227 8228 8229 8230

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8231 8232
	}

8233
	child_ctx = child->perf_event_ctxp[ctxn];
8234 8235 8236 8237 8238 8239 8240
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8241

8242
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8243 8244
		if (!child_ctx)
			return -ENOMEM;
8245

P
Peter Zijlstra 已提交
8246
		child->perf_event_ctxp[ctxn] = child_ctx;
8247 8248 8249 8250 8251 8252 8253 8254 8255
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8256 8257
}

8258
/*
8259
 * Initialize the perf_event context in task_struct
8260
 */
8261
static int perf_event_init_context(struct task_struct *child, int ctxn)
8262
{
8263
	struct perf_event_context *child_ctx, *parent_ctx;
8264 8265
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8266
	struct task_struct *parent = current;
8267
	int inherited_all = 1;
8268
	unsigned long flags;
8269
	int ret = 0;
8270

P
Peter Zijlstra 已提交
8271
	if (likely(!parent->perf_event_ctxp[ctxn]))
8272 8273
		return 0;

8274
	/*
8275 8276
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8277
	 */
P
Peter Zijlstra 已提交
8278
	parent_ctx = perf_pin_task_context(parent, ctxn);
8279 8280
	if (!parent_ctx)
		return 0;
8281

8282 8283 8284 8285 8286 8287 8288
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8289 8290 8291 8292
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8293
	mutex_lock(&parent_ctx->mutex);
8294 8295 8296 8297 8298

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8299
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8300 8301
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8302 8303 8304
		if (ret)
			break;
	}
8305

8306 8307 8308 8309 8310 8311 8312 8313 8314
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8315
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8316 8317
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8318
		if (ret)
8319
			break;
8320 8321
	}

8322 8323 8324
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8325
	child_ctx = child->perf_event_ctxp[ctxn];
8326

8327
	if (child_ctx && inherited_all) {
8328 8329 8330
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8331 8332 8333
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8334
		 */
P
Peter Zijlstra 已提交
8335
		cloned_ctx = parent_ctx->parent_ctx;
8336 8337
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8338
			child_ctx->parent_gen = parent_ctx->parent_gen;
8339 8340 8341 8342 8343
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8344 8345
	}

P
Peter Zijlstra 已提交
8346
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8347
	mutex_unlock(&parent_ctx->mutex);
8348

8349
	perf_unpin_context(parent_ctx);
8350
	put_ctx(parent_ctx);
8351

8352
	return ret;
8353 8354
}

P
Peter Zijlstra 已提交
8355 8356 8357 8358 8359 8360 8361
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8362 8363 8364 8365
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8366 8367
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8368 8369
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8370
			return ret;
P
Peter Zijlstra 已提交
8371
		}
P
Peter Zijlstra 已提交
8372 8373 8374 8375 8376
	}

	return 0;
}

8377 8378
static void __init perf_event_init_all_cpus(void)
{
8379
	struct swevent_htable *swhash;
8380 8381 8382
	int cpu;

	for_each_possible_cpu(cpu) {
8383 8384
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8385
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8386 8387 8388
	}
}

8389
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8390
{
P
Peter Zijlstra 已提交
8391
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8392

8393
	mutex_lock(&swhash->hlist_mutex);
8394
	swhash->online = true;
8395
	if (swhash->hlist_refcount > 0) {
8396 8397
		struct swevent_hlist *hlist;

8398 8399 8400
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8401
	}
8402
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8403 8404
}

P
Peter Zijlstra 已提交
8405
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8406
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8407
{
8408
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8409
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8410

P
Peter Zijlstra 已提交
8411
	rcu_read_lock();
8412 8413
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8414
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8415
}
P
Peter Zijlstra 已提交
8416 8417 8418 8419 8420 8421 8422 8423 8424

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8425
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8426 8427 8428 8429 8430 8431 8432 8433

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8434
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8435
{
8436
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8437

P
Peter Zijlstra 已提交
8438 8439
	perf_event_exit_cpu_context(cpu);

8440
	mutex_lock(&swhash->hlist_mutex);
8441
	swhash->online = false;
8442 8443
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8444 8445
}
#else
8446
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8447 8448
#endif

P
Peter Zijlstra 已提交
8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8469
static int
T
Thomas Gleixner 已提交
8470 8471 8472 8473
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8474
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8475 8476

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8477
	case CPU_DOWN_FAILED:
8478
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8479 8480
		break;

P
Peter Zijlstra 已提交
8481
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8482
	case CPU_DOWN_PREPARE:
8483
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8484 8485 8486 8487 8488 8489 8490 8491
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8492
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8493
{
8494 8495
	int ret;

P
Peter Zijlstra 已提交
8496 8497
	idr_init(&pmu_idr);

8498
	perf_event_init_all_cpus();
8499
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8500 8501 8502
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8503 8504
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8505
	register_reboot_notifier(&perf_reboot_notifier);
8506 8507 8508

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8509 8510 8511

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8512 8513 8514 8515 8516 8517 8518

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8519
}
P
Peter Zijlstra 已提交
8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8548 8549

#ifdef CONFIG_CGROUP_PERF
8550 8551
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8552 8553 8554
{
	struct perf_cgroup *jc;

8555
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8568
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8569
{
8570 8571
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8583 8584
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8585
{
8586 8587
	struct task_struct *task;

8588
	cgroup_taskset_for_each(task, tset)
8589
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8590 8591
}

8592 8593
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8594
			     struct task_struct *task)
S
Stephane Eranian 已提交
8595 8596 8597 8598 8599 8600 8601 8602 8603
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8604
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8605 8606
}

8607
struct cgroup_subsys perf_event_cgrp_subsys = {
8608 8609
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8610
	.exit		= perf_cgroup_exit,
8611
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8612 8613
};
#endif /* CONFIG_CGROUP_PERF */