core.c 257.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
T
Thomas Gleixner 已提交
49

50 51
#include "internal.h"

52 53
#include <asm/irq_regs.h>

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
69 70 71 72 73 74 75 76 77 78 79
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
100
task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 102
{
	struct remote_function_call data = {
103 104 105
		.p	= p,
		.func	= func,
		.info	= info,
106
		.ret	= -EAGAIN,
107
	};
108
	int ret;
109

110 111 112 113 114
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
115

116
	return ret;
117 118 119 120 121 122 123 124 125 126 127
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
128
static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 130
{
	struct remote_function_call data = {
131 132 133 134
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
135 136 137 138 139 140 141
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

142 143 144 145 146 147 148 149
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
150
{
151 152 153 154 155 156 157 158 159 160 161 162 163
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

164 165 166 167
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
168
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
203
	struct perf_event_context *ctx = event->ctx;
204 205
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216
		if (ctx->task != current) {
217
			ret = -ESRCH;
218 219
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
246 247
{
	struct perf_event_context *ctx = event->ctx;
248
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 250 251 252 253
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
254

P
Peter Zijlstra 已提交
255 256 257 258 259 260 261 262
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
263 264

	if (!task) {
265
		cpu_function_call(event->cpu, event_function, &efs);
266 267 268
		return;
	}

269 270 271
	if (task == TASK_TOMBSTONE)
		return;

272
again:
273
	if (!task_function_call(task, event_function, &efs))
274 275 276
		return;

	raw_spin_lock_irq(&ctx->lock);
277 278 279 280 281
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
282 283 284
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
285
	}
286 287 288 289 290
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
291 292 293
	raw_spin_unlock_irq(&ctx->lock);
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
342 343
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
344 345
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
346

347 348 349 350 351 352 353
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

354 355 356
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
357
	EVENT_TIME = 0x4,
358 359
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
360 361 362
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
363 364 365 366
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
367 368 369 370 371 372 373

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
374
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
375
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
376
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
377

378 379 380
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
381
static atomic_t nr_freq_events __read_mostly;
382
static atomic_t nr_switch_events __read_mostly;
383

P
Peter Zijlstra 已提交
384 385 386 387
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

388
/*
389
 * perf event paranoia level:
390 391
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
392
 *   1 - disallow cpu events for unpriv
393
 *   2 - disallow kernel profiling for unpriv
394
 */
395
int sysctl_perf_event_paranoid __read_mostly = 2;
396

397 398
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
399 400

/*
401
 * max perf event sample rate
402
 */
403 404 405 406 407 408 409 410 411
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
412 413
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
414

415
static void update_perf_cpu_limits(void)
416 417 418 419
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
420 421 422 423 424
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
425
}
P
Peter Zijlstra 已提交
426

427 428
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
429 430 431 432
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
433
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
434 435 436 437

	if (ret || !write)
		return ret;

438 439 440 441 442 443 444
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
445
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

463 464
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
465 466 467 468 469 470
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
471 472 473

	return 0;
}
474

475 476 477 478 479 480 481
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
482
static DEFINE_PER_CPU(u64, running_sample_length);
483

484 485 486
static u64 __report_avg;
static u64 __report_allowed;

487
static void perf_duration_warn(struct irq_work *w)
488
{
489
	printk_ratelimited(KERN_INFO
490 491 492 493
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
494 495 496 497 498 499
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
500 501 502 503
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
504

505
	if (max_len == 0)
506 507
		return;

508 509 510 511 512
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
513 514

	/*
515 516
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
517 518
	 * from having to maintain a count.
	 */
519 520
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
521 522
		return;

523 524
	__report_avg = avg_len;
	__report_allowed = max_len;
525

526 527 528 529 530 531 532 533 534
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
535

536 537 538 539 540
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
541

542
	if (!irq_work_queue(&perf_duration_work)) {
543
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
544
			     "kernel.perf_event_max_sample_rate to %d\n",
545
			     __report_avg, __report_allowed,
546 547
			     sysctl_perf_event_sample_rate);
	}
548 549
}

550
static atomic64_t perf_event_id;
551

552 553 554 555
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
556 557 558 559 560
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
561

562
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
563

564
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
565
{
566
	return "pmu";
T
Thomas Gleixner 已提交
567 568
}

569 570 571 572 573
static inline u64 perf_clock(void)
{
	return local_clock();
}

574 575 576 577 578
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
579 580 581 582 583 584 585 586
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
603 604 605 606
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
607
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
646 647
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
648
	/*
649 650
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
651
	 */
652
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
653 654
		return;

655
	cgrp = perf_cgroup_from_task(current, event->ctx);
656 657 658 659 660
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
661 662 663
}

static inline void
664 665
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
666 667 668 669
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

670 671 672 673 674 675
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
676 677
		return;

678
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
679
	info = this_cpu_ptr(cgrp->info);
680
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
681 682
}

683 684
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
685 686 687 688 689 690 691 692 693
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
694
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
695 696
{
	struct perf_cpu_context *cpuctx;
697
	struct list_head *list;
S
Stephane Eranian 已提交
698 699 700
	unsigned long flags;

	/*
701 702
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
703 704 705
	 */
	local_irq_save(flags);

706 707 708
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
709

710 711
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
712

713 714 715 716 717 718 719 720
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
721

722 723 724 725 726 727 728 729 730 731 732 733
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
734
		}
735 736
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
737 738 739 740 741
	}

	local_irq_restore(flags);
}

742 743
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
744
{
745 746 747
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

748
	rcu_read_lock();
749 750
	/*
	 * we come here when we know perf_cgroup_events > 0
751 752
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
753
	 */
754
	cgrp1 = perf_cgroup_from_task(task, NULL);
755
	cgrp2 = perf_cgroup_from_task(next, NULL);
756 757 758 759 760 761 762 763

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
764 765

	rcu_read_unlock();
S
Stephane Eranian 已提交
766 767
}

768 769
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
770
{
771 772 773
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

774
	rcu_read_lock();
775 776
	/*
	 * we come here when we know perf_cgroup_events > 0
777 778
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
779
	 */
780 781
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
782 783 784 785 786 787 788 789

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
790 791

	rcu_read_unlock();
S
Stephane Eranian 已提交
792 793 794 795 796 797 798 799
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
800 801
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
802

803
	if (!f.file)
S
Stephane Eranian 已提交
804 805
		return -EBADF;

A
Al Viro 已提交
806
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
807
					 &perf_event_cgrp_subsys);
808 809 810 811
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
825
out:
826
	fdput(f);
S
Stephane Eranian 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
871 872 873 874 875 876 877 878 879 880

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
881
	struct list_head *cpuctx_entry;
882 883 884 885 886 887 888 889 890 891 892 893 894

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
895 896 897 898 899 900 901 902
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
			cpuctx->cgrp = event->cgrp;
	} else {
		list_del(cpuctx_entry);
903
		cpuctx->cgrp = NULL;
904
	}
905 906
}

S
Stephane Eranian 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

936 937
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
938 939 940
{
}

941 942
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
943 944 945 946 947 948 949 950 951 952 953
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
954 955
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
984 985 986 987 988 989 990

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
991 992
#endif

993 994 995 996 997 998 999 1000
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
1001
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1002 1003 1004 1005 1006 1007 1008 1009 1010
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1011 1012
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1013
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1014 1015 1016
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1017

P
Peter Zijlstra 已提交
1018
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1019 1020
}

1021
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1022
{
1023
	struct hrtimer *timer = &cpuctx->hrtimer;
1024
	struct pmu *pmu = cpuctx->ctx.pmu;
1025
	u64 interval;
1026 1027 1028 1029 1030

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1031 1032 1033 1034
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1035 1036 1037
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1038

1039
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1040

P
Peter Zijlstra 已提交
1041 1042
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1043
	timer->function = perf_mux_hrtimer_handler;
1044 1045
}

1046
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1047
{
1048
	struct hrtimer *timer = &cpuctx->hrtimer;
1049
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1050
	unsigned long flags;
1051 1052 1053

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1054
		return 0;
1055

P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061 1062
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1063

1064
	return 0;
1065 1066
}

P
Peter Zijlstra 已提交
1067
void perf_pmu_disable(struct pmu *pmu)
1068
{
P
Peter Zijlstra 已提交
1069 1070 1071
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1072 1073
}

P
Peter Zijlstra 已提交
1074
void perf_pmu_enable(struct pmu *pmu)
1075
{
P
Peter Zijlstra 已提交
1076 1077 1078
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1079 1080
}

1081
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1082 1083

/*
1084 1085 1086 1087
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1088
 */
1089
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1090
{
1091
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1092

1093
	WARN_ON(!irqs_disabled());
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1107 1108
}

1109
static void get_ctx(struct perf_event_context *ctx)
1110
{
1111
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1123
static void put_ctx(struct perf_event_context *ctx)
1124
{
1125 1126 1127
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1128
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1129
			put_task_struct(ctx->task);
1130
		call_rcu(&ctx->rcu_head, free_ctx);
1131
	}
1132 1133
}

P
Peter Zijlstra 已提交
1134 1135 1136 1137 1138 1139 1140
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1141 1142 1143 1144
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1145 1146
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1187
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1188 1189 1190
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1191
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1192 1193 1194
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1195 1196
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1209
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1219 1220 1221 1222 1223 1224
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1225 1226 1227 1228 1229 1230 1231
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1232 1233 1234 1235 1236 1237 1238
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1239
{
1240 1241 1242 1243 1244
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1245
		ctx->parent_ctx = NULL;
1246
	ctx->generation++;
1247 1248

	return parent_ctx;
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1273
/*
1274
 * If we inherit events we want to return the parent event id
1275 1276
 * to userspace.
 */
1277
static u64 primary_event_id(struct perf_event *event)
1278
{
1279
	u64 id = event->id;
1280

1281 1282
	if (event->parent)
		id = event->parent->id;
1283 1284 1285 1286

	return id;
}

1287
/*
1288
 * Get the perf_event_context for a task and lock it.
1289
 *
1290 1291 1292
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1293
static struct perf_event_context *
P
Peter Zijlstra 已提交
1294
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1295
{
1296
	struct perf_event_context *ctx;
1297

P
Peter Zijlstra 已提交
1298
retry:
1299 1300 1301
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1302
	 * part of the read side critical section was irqs-enabled -- see
1303 1304 1305
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1306
	 * side critical section has interrupts disabled.
1307
	 */
1308
	local_irq_save(*flags);
1309
	rcu_read_lock();
P
Peter Zijlstra 已提交
1310
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1311 1312 1313 1314
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1315
		 * perf_event_task_sched_out, though the
1316 1317 1318 1319 1320 1321
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1322
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1323
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1324
			raw_spin_unlock(&ctx->lock);
1325
			rcu_read_unlock();
1326
			local_irq_restore(*flags);
1327 1328
			goto retry;
		}
1329

1330 1331
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1332
			raw_spin_unlock(&ctx->lock);
1333
			ctx = NULL;
P
Peter Zijlstra 已提交
1334 1335
		} else {
			WARN_ON_ONCE(ctx->task != task);
1336
		}
1337 1338
	}
	rcu_read_unlock();
1339 1340
	if (!ctx)
		local_irq_restore(*flags);
1341 1342 1343 1344 1345 1346 1347 1348
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1349 1350
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1351
{
1352
	struct perf_event_context *ctx;
1353 1354
	unsigned long flags;

P
Peter Zijlstra 已提交
1355
	ctx = perf_lock_task_context(task, ctxn, &flags);
1356 1357
	if (ctx) {
		++ctx->pin_count;
1358
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1359 1360 1361 1362
	}
	return ctx;
}

1363
static void perf_unpin_context(struct perf_event_context *ctx)
1364 1365 1366
{
	unsigned long flags;

1367
	raw_spin_lock_irqsave(&ctx->lock, flags);
1368
	--ctx->pin_count;
1369
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1370 1371
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1383 1384 1385
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1386 1387 1388 1389

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1390 1391 1392
	return ctx ? ctx->time : 0;
}

1393 1394 1395 1396 1397 1398 1399 1400
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1401 1402
	lockdep_assert_held(&ctx->lock);

1403 1404 1405
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1406

S
Stephane Eranian 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1418
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1419 1420
	else if (ctx->is_active)
		run_end = ctx->time;
1421 1422 1423 1424
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1425 1426 1427 1428

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1429
		run_end = perf_event_time(event);
1430 1431

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1432

1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1461 1462 1463 1464 1465 1466 1467 1468 1469
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1470
/*
1471
 * Add a event from the lists for its context.
1472 1473
 * Must be called with ctx->mutex and ctx->lock held.
 */
1474
static void
1475
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1476
{
P
Peter Zijlstra 已提交
1477 1478
	lockdep_assert_held(&ctx->lock);

1479 1480
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1481 1482

	/*
1483 1484 1485
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1486
	 */
1487
	if (event->group_leader == event) {
1488 1489
		struct list_head *list;

1490
		event->group_caps = event->event_caps;
1491

1492 1493
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1494
	}
P
Peter Zijlstra 已提交
1495

1496
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1497

1498 1499 1500
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1501
		ctx->nr_stat++;
1502 1503

	ctx->generation++;
1504 1505
}

J
Jiri Olsa 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1515
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1531
		nr += nr_siblings;
1532 1533 1534 1535 1536 1537 1538
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1539
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 1541 1542 1543 1544 1545 1546
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1547 1548 1549 1550 1551 1552
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1553 1554 1555
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1556 1557 1558
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1559 1560 1561
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1562 1563 1564
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1565 1566 1567
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1579 1580 1581 1582 1583 1584
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1585 1586 1587 1588 1589 1590
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1591 1592 1593
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1603
	event->id_header_size = size;
1604 1605
}

P
Peter Zijlstra 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1627 1628
static void perf_group_attach(struct perf_event *event)
{
1629
	struct perf_event *group_leader = event->group_leader, *pos;
1630

1631 1632
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1633 1634 1635 1636 1637 1638
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1639 1640 1641 1642 1643
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1644 1645
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1646
	group_leader->group_caps &= event->event_caps;
1647 1648 1649

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1650 1651 1652 1653 1654

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1655 1656
}

1657
/*
1658
 * Remove a event from the lists for its context.
1659
 * Must be called with ctx->mutex and ctx->lock held.
1660
 */
1661
static void
1662
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1663
{
P
Peter Zijlstra 已提交
1664 1665 1666
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1667 1668 1669 1670
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1671
		return;
1672 1673 1674

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1675
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1676

1677 1678
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1679
		ctx->nr_stat--;
1680

1681
	list_del_rcu(&event->event_entry);
1682

1683 1684
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1685

1686
	update_group_times(event);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1697 1698

	ctx->generation++;
1699 1700
}

1701
static void perf_group_detach(struct perf_event *event)
1702 1703
{
	struct perf_event *sibling, *tmp;
1704 1705
	struct list_head *list = NULL;

1706 1707
	lockdep_assert_held(&event->ctx->lock);

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1722
		goto out;
1723 1724 1725 1726
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1727

1728
	/*
1729 1730
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1731
	 * to whatever list we are on.
1732
	 */
1733
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1734 1735
		if (list)
			list_move_tail(&sibling->group_entry, list);
1736
		sibling->group_leader = sibling;
1737 1738

		/* Inherit group flags from the previous leader */
1739
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1740 1741

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1742
	}
1743 1744 1745 1746 1747 1748

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1749 1750
}

1751 1752
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1753
	return event->state == PERF_EVENT_STATE_DEAD;
1754 1755
}

1756
static inline int __pmu_filter_match(struct perf_event *event)
1757 1758 1759 1760 1761
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1783 1784 1785
static inline int
event_filter_match(struct perf_event *event)
{
1786 1787
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1788 1789
}

1790 1791
static void
event_sched_out(struct perf_event *event,
1792
		  struct perf_cpu_context *cpuctx,
1793
		  struct perf_event_context *ctx)
1794
{
1795
	u64 tstamp = perf_event_time(event);
1796
	u64 delta;
P
Peter Zijlstra 已提交
1797 1798 1799 1800

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1801 1802 1803 1804 1805 1806
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1807 1808
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1809
		delta = tstamp - event->tstamp_stopped;
1810
		event->tstamp_running += delta;
1811
		event->tstamp_stopped = tstamp;
1812 1813
	}

1814
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1815
		return;
1816

1817 1818
	perf_pmu_disable(event->pmu);

1819 1820 1821
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1822 1823 1824 1825
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1826
	}
1827

1828
	if (!is_software_event(event))
1829
		cpuctx->active_oncpu--;
1830 1831
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1832 1833
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1834
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1835
		cpuctx->exclusive = 0;
1836 1837

	perf_pmu_enable(event->pmu);
1838 1839
}

1840
static void
1841
group_sched_out(struct perf_event *group_event,
1842
		struct perf_cpu_context *cpuctx,
1843
		struct perf_event_context *ctx)
1844
{
1845
	struct perf_event *event;
1846
	int state = group_event->state;
1847

1848 1849
	perf_pmu_disable(ctx->pmu);

1850
	event_sched_out(group_event, cpuctx, ctx);
1851 1852 1853 1854

	/*
	 * Schedule out siblings (if any):
	 */
1855 1856
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1857

1858 1859
	perf_pmu_enable(ctx->pmu);

1860
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1861 1862 1863
		cpuctx->exclusive = 0;
}

1864
#define DETACH_GROUP	0x01UL
1865

T
Thomas Gleixner 已提交
1866
/*
1867
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1868
 *
1869
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1870 1871
 * remove it from the context list.
 */
1872 1873 1874 1875 1876
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1877
{
1878
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1879

1880
	event_sched_out(event, cpuctx, ctx);
1881
	if (flags & DETACH_GROUP)
1882
		perf_group_detach(event);
1883
	list_del_event(event, ctx);
1884 1885

	if (!ctx->nr_events && ctx->is_active) {
1886
		ctx->is_active = 0;
1887 1888 1889 1890
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1891
	}
T
Thomas Gleixner 已提交
1892 1893 1894
}

/*
1895
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1896
 *
1897 1898
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1899 1900
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1901
 * When called from perf_event_exit_task, it's OK because the
1902
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1903
 */
1904
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1905
{
1906 1907 1908
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1909

1910
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1929 1930
}

1931
/*
1932
 * Cross CPU call to disable a performance event
1933
 */
1934 1935 1936 1937
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1938
{
1939 1940
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1941

1942 1943 1944 1945 1946 1947 1948 1949
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1950 1951
}

1952
/*
1953
 * Disable a event.
1954
 *
1955 1956
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1957
 * remains valid.  This condition is satisifed when called through
1958 1959
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1960 1961
 * goes to exit will block in perf_event_exit_event().
 *
1962
 * When called from perf_pending_event it's OK because event->ctx
1963
 * is the current context on this CPU and preemption is disabled,
1964
 * hence we can't get into perf_event_task_sched_out for this context.
1965
 */
P
Peter Zijlstra 已提交
1966
static void _perf_event_disable(struct perf_event *event)
1967
{
1968
	struct perf_event_context *ctx = event->ctx;
1969

1970
	raw_spin_lock_irq(&ctx->lock);
1971
	if (event->state <= PERF_EVENT_STATE_OFF) {
1972
		raw_spin_unlock_irq(&ctx->lock);
1973
		return;
1974
	}
1975
	raw_spin_unlock_irq(&ctx->lock);
1976

1977 1978 1979 1980 1981 1982
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1983
}
P
Peter Zijlstra 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1997
EXPORT_SYMBOL_GPL(perf_event_disable);
1998

1999 2000 2001 2002 2003 2004
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2040 2041 2042
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2043
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2044

2045
static int
2046
event_sched_in(struct perf_event *event,
2047
		 struct perf_cpu_context *cpuctx,
2048
		 struct perf_event_context *ctx)
2049
{
2050
	u64 tstamp = perf_event_time(event);
2051
	int ret = 0;
2052

2053 2054
	lockdep_assert_held(&ctx->lock);

2055
	if (event->state <= PERF_EVENT_STATE_OFF)
2056 2057
		return 0;

2058 2059 2060 2061 2062 2063 2064
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2076 2077 2078 2079 2080
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2081 2082
	perf_pmu_disable(event->pmu);

2083 2084
	perf_set_shadow_time(event, ctx, tstamp);

2085 2086
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2087
	if (event->pmu->add(event, PERF_EF_START)) {
2088 2089
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2090 2091
		ret = -EAGAIN;
		goto out;
2092 2093
	}

2094 2095
	event->tstamp_running += tstamp - event->tstamp_stopped;

2096
	if (!is_software_event(event))
2097
		cpuctx->active_oncpu++;
2098 2099
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2100 2101
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2102

2103
	if (event->attr.exclusive)
2104 2105
		cpuctx->exclusive = 1;

2106 2107 2108 2109
out:
	perf_pmu_enable(event->pmu);

	return ret;
2110 2111
}

2112
static int
2113
group_sched_in(struct perf_event *group_event,
2114
	       struct perf_cpu_context *cpuctx,
2115
	       struct perf_event_context *ctx)
2116
{
2117
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2118
	struct pmu *pmu = ctx->pmu;
2119 2120
	u64 now = ctx->time;
	bool simulate = false;
2121

2122
	if (group_event->state == PERF_EVENT_STATE_OFF)
2123 2124
		return 0;

2125
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2126

2127
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2128
		pmu->cancel_txn(pmu);
2129
		perf_mux_hrtimer_restart(cpuctx);
2130
		return -EAGAIN;
2131
	}
2132 2133 2134 2135

	/*
	 * Schedule in siblings as one group (if any):
	 */
2136
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137
		if (event_sched_in(event, cpuctx, ctx)) {
2138
			partial_group = event;
2139 2140 2141 2142
			goto group_error;
		}
	}

2143
	if (!pmu->commit_txn(pmu))
2144
		return 0;
2145

2146 2147 2148 2149
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2160
	 */
2161 2162
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2163 2164 2165 2166 2167 2168 2169 2170
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2171
	}
2172
	event_sched_out(group_event, cpuctx, ctx);
2173

P
Peter Zijlstra 已提交
2174
	pmu->cancel_txn(pmu);
2175

2176
	perf_mux_hrtimer_restart(cpuctx);
2177

2178 2179 2180
	return -EAGAIN;
}

2181
/*
2182
 * Work out whether we can put this event group on the CPU now.
2183
 */
2184
static int group_can_go_on(struct perf_event *event,
2185 2186 2187 2188
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2189
	 * Groups consisting entirely of software events can always go on.
2190
	 */
2191
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2192 2193 2194
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2195
	 * events can go on.
2196 2197 2198 2199 2200
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2201
	 * events on the CPU, it can't go on.
2202
	 */
2203
	if (event->attr.exclusive && cpuctx->active_oncpu)
2204 2205 2206 2207 2208 2209 2210 2211
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2212 2213
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2214
{
2215 2216
	u64 tstamp = perf_event_time(event);

2217
	list_add_event(event, ctx);
2218
	perf_group_attach(event);
2219 2220 2221
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2222 2223
}

2224 2225 2226
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2227 2228 2229 2230 2231
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2232

2233
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234 2235
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2236 2237 2238 2239 2240 2241 2242
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2243
	ctx_sched_out(ctx, cpuctx, event_type);
2244 2245
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2273
static void ctx_resched(struct perf_cpu_context *cpuctx,
2274 2275
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2276
{
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2287 2288
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2303 2304
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2305 2306
}

T
Thomas Gleixner 已提交
2307
/*
2308
 * Cross CPU call to install and enable a performance event
2309
 *
2310 2311
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2312
 */
2313
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2314
{
2315 2316
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2317
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2318
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2319
	bool reprogram = true;
2320
	int ret = 0;
T
Thomas Gleixner 已提交
2321

2322
	raw_spin_lock(&cpuctx->ctx.lock);
2323
	if (ctx->task) {
2324 2325
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2326

2327
		reprogram = (ctx->task == current);
2328

2329
		/*
2330 2331 2332 2333 2334
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2335
		 */
2336 2337 2338 2339
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2340

2341
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2342 2343
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2344
	}
2345

2346
	if (reprogram) {
2347 2348
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2349
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2350 2351 2352 2353
	} else {
		add_event_to_ctx(event, ctx);
	}

2354
unlock:
2355
	perf_ctx_unlock(cpuctx, task_ctx);
2356

2357
	return ret;
T
Thomas Gleixner 已提交
2358 2359 2360
}

/*
2361 2362 2363
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2364 2365
 */
static void
2366 2367
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2368 2369
			int cpu)
{
2370
	struct task_struct *task = READ_ONCE(ctx->task);
2371

2372 2373
	lockdep_assert_held(&ctx->mutex);

2374 2375
	if (event->cpu != -1)
		event->cpu = cpu;
2376

2377 2378 2379 2380 2381 2382
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2394 2395 2396
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2416
	 */
2417

2418
	/*
2419 2420 2421 2422
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2423
	 */
2424 2425 2426
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2427 2428 2429 2430
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2431
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2432 2433 2434 2435 2436
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2437 2438 2439
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2440
	/*
2441 2442
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2443
	 */
2444 2445 2446 2447 2448 2449
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2450 2451
}

2452
/*
2453
 * Put a event into inactive state and update time fields.
2454 2455 2456 2457 2458 2459
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2460
static void __perf_event_mark_enabled(struct perf_event *event)
2461
{
2462
	struct perf_event *sub;
2463
	u64 tstamp = perf_event_time(event);
2464

2465
	event->state = PERF_EVENT_STATE_INACTIVE;
2466
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2467
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2468 2469
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2470
	}
2471 2472
}

2473
/*
2474
 * Cross CPU call to enable a performance event
2475
 */
2476 2477 2478 2479
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2480
{
2481
	struct perf_event *leader = event->group_leader;
2482
	struct perf_event_context *task_ctx;
2483

P
Peter Zijlstra 已提交
2484 2485
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2486
		return;
2487

2488 2489 2490
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2491
	__perf_event_mark_enabled(event);
2492

2493 2494 2495
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2496
	if (!event_filter_match(event)) {
2497
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2498
			perf_cgroup_defer_enabled(event);
2499
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2500
		return;
S
Stephane Eranian 已提交
2501
	}
2502

2503
	/*
2504
	 * If the event is in a group and isn't the group leader,
2505
	 * then don't put it on unless the group is on.
2506
	 */
2507 2508
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2509
		return;
2510
	}
2511

2512 2513 2514
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2515

2516
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2517 2518
}

2519
/*
2520
 * Enable a event.
2521
 *
2522 2523
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2524
 * remains valid.  This condition is satisfied when called through
2525 2526
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2527
 */
P
Peter Zijlstra 已提交
2528
static void _perf_event_enable(struct perf_event *event)
2529
{
2530
	struct perf_event_context *ctx = event->ctx;
2531

2532
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2533 2534
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2535
		raw_spin_unlock_irq(&ctx->lock);
2536 2537 2538 2539
		return;
	}

	/*
2540
	 * If the event is in error state, clear that first.
2541 2542 2543 2544
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2545
	 */
2546 2547
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2548
	raw_spin_unlock_irq(&ctx->lock);
2549

2550
	event_function_call(event, __perf_event_enable, NULL);
2551
}
P
Peter Zijlstra 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2564
EXPORT_SYMBOL_GPL(perf_event_enable);
2565

2566 2567 2568 2569 2570
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2571 2572
static int __perf_event_stop(void *info)
{
2573 2574
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2575

2576
	/* if it's already INACTIVE, do nothing */
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2602
		event->pmu->start(event, 0);
2603

2604 2605 2606
	return 0;
}

2607
static int perf_event_stop(struct perf_event *event, int restart)
2608 2609 2610
{
	struct stop_event_data sd = {
		.event		= event,
2611
		.restart	= restart,
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2672
static int _perf_event_refresh(struct perf_event *event, int refresh)
2673
{
2674
	/*
2675
	 * not supported on inherited events
2676
	 */
2677
	if (event->attr.inherit || !is_sampling_event(event))
2678 2679
		return -EINVAL;

2680
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2681
	_perf_event_enable(event);
2682 2683

	return 0;
2684
}
P
Peter Zijlstra 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2700
EXPORT_SYMBOL_GPL(perf_event_refresh);
2701

2702 2703 2704
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2705
{
2706
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2707
	struct perf_event *event;
2708

P
Peter Zijlstra 已提交
2709
	lockdep_assert_held(&ctx->lock);
2710

2711 2712 2713 2714 2715 2716 2717
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2718
		return;
2719 2720
	}

2721
	ctx->is_active &= ~event_type;
2722 2723 2724
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2725 2726 2727 2728 2729
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2741 2742 2743 2744 2745 2746
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2747 2748
	is_active ^= ctx->is_active; /* changed bits */

2749
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2750
		return;
2751

P
Peter Zijlstra 已提交
2752
	perf_pmu_disable(ctx->pmu);
2753
	if (is_active & EVENT_PINNED) {
2754 2755
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2756
	}
2757

2758
	if (is_active & EVENT_FLEXIBLE) {
2759
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2760
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2761
	}
P
Peter Zijlstra 已提交
2762
	perf_pmu_enable(ctx->pmu);
2763 2764
}

2765
/*
2766 2767 2768 2769 2770 2771
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2772
 */
2773 2774
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2775
{
2776 2777 2778
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2801 2802
}

2803 2804
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2805 2806 2807
{
	u64 value;

2808
	if (!event->attr.inherit_stat)
2809 2810 2811
		return;

	/*
2812
	 * Update the event value, we cannot use perf_event_read()
2813 2814
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2815
	 * we know the event must be on the current CPU, therefore we
2816 2817
	 * don't need to use it.
	 */
2818 2819
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2820 2821
		event->pmu->read(event);
		/* fall-through */
2822

2823 2824
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2825 2826 2827 2828 2829 2830 2831
		break;

	default:
		break;
	}

	/*
2832
	 * In order to keep per-task stats reliable we need to flip the event
2833 2834
	 * values when we flip the contexts.
	 */
2835 2836 2837
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2838

2839 2840
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2841

2842
	/*
2843
	 * Since we swizzled the values, update the user visible data too.
2844
	 */
2845 2846
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2847 2848
}

2849 2850
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2851
{
2852
	struct perf_event *event, *next_event;
2853 2854 2855 2856

	if (!ctx->nr_stat)
		return;

2857 2858
	update_context_time(ctx);

2859 2860
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2861

2862 2863
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2864

2865 2866
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2867

2868
		__perf_event_sync_stat(event, next_event);
2869

2870 2871
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2872 2873 2874
	}
}

2875 2876
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2877
{
P
Peter Zijlstra 已提交
2878
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2879
	struct perf_event_context *next_ctx;
2880
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2881
	struct perf_cpu_context *cpuctx;
2882
	int do_switch = 1;
T
Thomas Gleixner 已提交
2883

P
Peter Zijlstra 已提交
2884 2885
	if (likely(!ctx))
		return;
2886

P
Peter Zijlstra 已提交
2887 2888
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2889 2890
		return;

2891
	rcu_read_lock();
P
Peter Zijlstra 已提交
2892
	next_ctx = next->perf_event_ctxp[ctxn];
2893 2894 2895 2896 2897 2898 2899
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2900
	if (!parent && !next_parent)
2901 2902 2903
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2904 2905 2906 2907 2908 2909 2910 2911 2912
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2913 2914
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2915
		if (context_equiv(ctx, next_ctx)) {
2916 2917
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2918 2919 2920

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2931
			do_switch = 0;
2932

2933
			perf_event_sync_stat(ctx, next_ctx);
2934
		}
2935 2936
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2937
	}
2938
unlock:
2939
	rcu_read_unlock();
2940

2941
	if (do_switch) {
2942
		raw_spin_lock(&ctx->lock);
2943
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2944
		raw_spin_unlock(&ctx->lock);
2945
	}
T
Thomas Gleixner 已提交
2946 2947
}

2948 2949
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2950 2951
void perf_sched_cb_dec(struct pmu *pmu)
{
2952 2953
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2954
	this_cpu_dec(perf_sched_cb_usages);
2955 2956 2957

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2958 2959
}

2960

2961 2962
void perf_sched_cb_inc(struct pmu *pmu)
{
2963 2964 2965 2966 2967
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2968 2969 2970 2971 2972 2973
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2974 2975 2976 2977
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2989
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2990
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2991

2992 2993
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
2994

2995 2996
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
2997

2998
		pmu->sched_task(cpuctx->task_ctx, sched_in);
2999

3000 3001
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3002 3003 3004
	}
}

3005 3006 3007
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3022 3023
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3024 3025 3026
{
	int ctxn;

3027 3028 3029
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3030 3031 3032
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3033 3034
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3035 3036 3037 3038 3039 3040

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3041
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3042
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3043 3044
}

3045 3046 3047 3048 3049 3050 3051
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3052 3053
}

3054
static void
3055
ctx_pinned_sched_in(struct perf_event_context *ctx,
3056
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
3057
{
3058
	struct perf_event *event;
T
Thomas Gleixner 已提交
3059

3060 3061
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3062
			continue;
3063
		if (!event_filter_match(event))
3064 3065
			continue;

S
Stephane Eranian 已提交
3066 3067 3068 3069
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

3070
		if (group_can_go_on(event, cpuctx, 1))
3071
			group_sched_in(event, cpuctx, ctx);
3072 3073 3074 3075 3076

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3077 3078 3079
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
3080
		}
3081
	}
3082 3083 3084 3085
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3086
		      struct perf_cpu_context *cpuctx)
3087 3088 3089
{
	struct perf_event *event;
	int can_add_hw = 1;
3090

3091 3092 3093
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3094
			continue;
3095 3096
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3097
		 * of events:
3098
		 */
3099
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3100 3101
			continue;

S
Stephane Eranian 已提交
3102 3103 3104 3105
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3106
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3107
			if (group_sched_in(event, cpuctx, ctx))
3108
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3109
		}
T
Thomas Gleixner 已提交
3110
	}
3111 3112 3113 3114 3115
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3116 3117
	     enum event_type_t event_type,
	     struct task_struct *task)
3118
{
3119
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3120 3121 3122
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3123

3124
	if (likely(!ctx->nr_events))
3125
		return;
3126

3127
	ctx->is_active |= (event_type | EVENT_TIME);
3128 3129 3130 3131 3132 3133 3134
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3135 3136 3137 3138 3139 3140 3141 3142 3143
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3144 3145 3146 3147
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3148
	if (is_active & EVENT_PINNED)
3149
		ctx_pinned_sched_in(ctx, cpuctx);
3150 3151

	/* Then walk through the lower prio flexible groups */
3152
	if (is_active & EVENT_FLEXIBLE)
3153
		ctx_flexible_sched_in(ctx, cpuctx);
3154 3155
}

3156
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3157 3158
			     enum event_type_t event_type,
			     struct task_struct *task)
3159 3160 3161
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3162
	ctx_sched_in(ctx, cpuctx, event_type, task);
3163 3164
}

S
Stephane Eranian 已提交
3165 3166
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3167
{
P
Peter Zijlstra 已提交
3168
	struct perf_cpu_context *cpuctx;
3169

P
Peter Zijlstra 已提交
3170
	cpuctx = __get_cpu_context(ctx);
3171 3172 3173
	if (cpuctx->task_ctx == ctx)
		return;

3174
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3175
	perf_pmu_disable(ctx->pmu);
3176 3177 3178 3179
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3180 3181 3182
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3183
	 */
3184 3185
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3186
	perf_event_sched_in(cpuctx, ctx, task);
3187 3188
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3189 3190
}

P
Peter Zijlstra 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3202 3203
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3204 3205 3206 3207
{
	struct perf_event_context *ctx;
	int ctxn;

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3218 3219 3220 3221 3222
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3223
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3224
	}
3225

3226 3227 3228
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3229 3230
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3231 3232
}

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3260
#define REDUCE_FLS(a, b)		\
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3300 3301 3302
	if (!divisor)
		return dividend;

3303 3304 3305
	return div64_u64(dividend, divisor);
}

3306 3307 3308
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3309
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3310
{
3311
	struct hw_perf_event *hwc = &event->hw;
3312
	s64 period, sample_period;
3313 3314
	s64 delta;

3315
	period = perf_calculate_period(event, nsec, count);
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3326

3327
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3328 3329 3330
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3331
		local64_set(&hwc->period_left, 0);
3332 3333 3334

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3335
	}
3336 3337
}

3338 3339 3340 3341 3342 3343 3344
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3345
{
3346 3347
	struct perf_event *event;
	struct hw_perf_event *hwc;
3348
	u64 now, period = TICK_NSEC;
3349
	s64 delta;
3350

3351 3352 3353 3354 3355 3356
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3357 3358
		return;

3359
	raw_spin_lock(&ctx->lock);
3360
	perf_pmu_disable(ctx->pmu);
3361

3362
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3363
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3364 3365
			continue;

3366
		if (!event_filter_match(event))
3367 3368
			continue;

3369 3370
		perf_pmu_disable(event->pmu);

3371
		hwc = &event->hw;
3372

3373
		if (hwc->interrupts == MAX_INTERRUPTS) {
3374
			hwc->interrupts = 0;
3375
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3376
			event->pmu->start(event, 0);
3377 3378
		}

3379
		if (!event->attr.freq || !event->attr.sample_freq)
3380
			goto next;
3381

3382 3383 3384 3385 3386
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3387
		now = local64_read(&event->count);
3388 3389
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3390

3391 3392 3393
		/*
		 * restart the event
		 * reload only if value has changed
3394 3395 3396
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3397
		 */
3398
		if (delta > 0)
3399
			perf_adjust_period(event, period, delta, false);
3400 3401

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3402 3403
	next:
		perf_pmu_enable(event->pmu);
3404
	}
3405

3406
	perf_pmu_enable(ctx->pmu);
3407
	raw_spin_unlock(&ctx->lock);
3408 3409
}

3410
/*
3411
 * Round-robin a context's events:
3412
 */
3413
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3414
{
3415 3416 3417 3418 3419 3420
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3421 3422
}

3423
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3424
{
P
Peter Zijlstra 已提交
3425
	struct perf_event_context *ctx = NULL;
3426
	int rotate = 0;
3427

3428 3429 3430 3431
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3432

P
Peter Zijlstra 已提交
3433
	ctx = cpuctx->task_ctx;
3434 3435 3436 3437
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3438

3439
	if (!rotate)
3440 3441
		goto done;

3442
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3443
	perf_pmu_disable(cpuctx->ctx.pmu);
3444

3445 3446 3447
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3448

3449 3450 3451
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3452

3453
	perf_event_sched_in(cpuctx, ctx, current);
3454

3455 3456
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457
done:
3458 3459

	return rotate;
3460 3461 3462 3463
}

void perf_event_task_tick(void)
{
3464 3465
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3466
	int throttled;
3467

3468 3469
	WARN_ON(!irqs_disabled());

3470 3471
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3472
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3473

3474
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3475
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3476 3477
}

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3488
	__perf_event_mark_enabled(event);
3489 3490 3491 3492

	return 1;
}

3493
/*
3494
 * Enable all of a task's events that have been marked enable-on-exec.
3495 3496
 * This expects task == current.
 */
3497
static void perf_event_enable_on_exec(int ctxn)
3498
{
3499
	struct perf_event_context *ctx, *clone_ctx = NULL;
3500
	enum event_type_t event_type = 0;
3501
	struct perf_cpu_context *cpuctx;
3502
	struct perf_event *event;
3503 3504 3505 3506
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3507
	ctx = current->perf_event_ctxp[ctxn];
3508
	if (!ctx || !ctx->nr_events)
3509 3510
		goto out;

3511 3512
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3513
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3514
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3515
		enabled |= event_enable_on_exec(event, ctx);
3516 3517
		event_type |= get_event_type(event);
	}
3518 3519

	/*
3520
	 * Unclone and reschedule this context if we enabled any event.
3521
	 */
3522
	if (enabled) {
3523
		clone_ctx = unclone_ctx(ctx);
3524
		ctx_resched(cpuctx, ctx, event_type);
3525 3526
	}
	perf_ctx_unlock(cpuctx, ctx);
3527

P
Peter Zijlstra 已提交
3528
out:
3529
	local_irq_restore(flags);
3530 3531 3532

	if (clone_ctx)
		put_ctx(clone_ctx);
3533 3534
}

3535 3536 3537
struct perf_read_data {
	struct perf_event *event;
	bool group;
3538
	int ret;
3539 3540
};

3541
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3542 3543 3544 3545
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3546 3547 3548 3549
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3550 3551 3552 3553 3554 3555 3556 3557

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3558
/*
3559
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3560
 */
3561
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3562
{
3563 3564
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3565
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3566
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3567
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3568

3569 3570 3571 3572
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3573 3574
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3575 3576 3577 3578
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3579
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3580
	if (ctx->is_active) {
3581
		update_context_time(ctx);
S
Stephane Eranian 已提交
3582 3583
		update_cgrp_time_from_event(event);
	}
3584

3585
	update_event_times(event);
3586 3587
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3588

3589 3590 3591
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3592
		goto unlock;
3593 3594 3595 3596 3597
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3598 3599 3600

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3601 3602 3603 3604 3605
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3606
			sub->pmu->read(sub);
3607
		}
3608
	}
3609 3610

	data->ret = pmu->commit_txn(pmu);
3611 3612

unlock:
3613
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3614 3615
}

P
Peter Zijlstra 已提交
3616 3617
static inline u64 perf_event_count(struct perf_event *event)
{
3618 3619 3620 3621
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3622 3623
}

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3677
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3678
{
3679
	int event_cpu, ret = 0;
3680

T
Thomas Gleixner 已提交
3681
	/*
3682 3683
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3684
	 */
3685
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3686 3687 3688
		struct perf_read_data data = {
			.event = event,
			.group = group,
3689
			.ret = 0,
3690
		};
3691

3692 3693 3694 3695 3696 3697
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
3698

3699 3700 3701 3702
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
3703
		 * If event_cpu isn't a valid CPU it means the event got
3704 3705 3706 3707 3708
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3709 3710
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
3711
		ret = data.ret;
3712
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3713 3714 3715
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3716
		raw_spin_lock_irqsave(&ctx->lock, flags);
3717 3718 3719 3720 3721
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3722
		if (ctx->is_active) {
3723
			update_context_time(ctx);
S
Stephane Eranian 已提交
3724 3725
			update_cgrp_time_from_event(event);
		}
3726 3727 3728 3729
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3730
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3731
	}
3732 3733

	return ret;
T
Thomas Gleixner 已提交
3734 3735
}

3736
/*
3737
 * Initialize the perf_event context in a task_struct:
3738
 */
3739
static void __perf_event_init_context(struct perf_event_context *ctx)
3740
{
3741
	raw_spin_lock_init(&ctx->lock);
3742
	mutex_init(&ctx->mutex);
3743
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3744 3745
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3746 3747
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3763
	}
3764 3765 3766
	ctx->pmu = pmu;

	return ctx;
3767 3768
}

3769 3770 3771 3772
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3773 3774

	rcu_read_lock();
3775
	if (!vpid)
T
Thomas Gleixner 已提交
3776 3777
		task = current;
	else
3778
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3779 3780 3781 3782 3783 3784 3785
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3786 3787 3788
	return task;
}

3789 3790 3791
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3792
static struct perf_event_context *
3793 3794
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3795
{
3796
	struct perf_event_context *ctx, *clone_ctx = NULL;
3797
	struct perf_cpu_context *cpuctx;
3798
	void *task_ctx_data = NULL;
3799
	unsigned long flags;
P
Peter Zijlstra 已提交
3800
	int ctxn, err;
3801
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3802

3803
	if (!task) {
3804
		/* Must be root to operate on a CPU event: */
3805
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3806 3807 3808
			return ERR_PTR(-EACCES);

		/*
3809
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3810 3811 3812
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3813
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3814 3815
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3816
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3817
		ctx = &cpuctx->ctx;
3818
		get_ctx(ctx);
3819
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3820 3821 3822 3823

		return ctx;
	}

P
Peter Zijlstra 已提交
3824 3825 3826 3827 3828
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3829 3830 3831 3832 3833 3834 3835 3836
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3837
retry:
P
Peter Zijlstra 已提交
3838
	ctx = perf_lock_task_context(task, ctxn, &flags);
3839
	if (ctx) {
3840
		clone_ctx = unclone_ctx(ctx);
3841
		++ctx->pin_count;
3842 3843 3844 3845 3846

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3847
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3848 3849 3850

		if (clone_ctx)
			put_ctx(clone_ctx);
3851
	} else {
3852
		ctx = alloc_perf_context(pmu, task);
3853 3854 3855
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3856

3857 3858 3859 3860 3861
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3872
		else {
3873
			get_ctx(ctx);
3874
			++ctx->pin_count;
3875
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3876
		}
3877 3878 3879
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3880
			put_ctx(ctx);
3881 3882 3883 3884

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3885 3886 3887
		}
	}

3888
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3889
	return ctx;
3890

P
Peter Zijlstra 已提交
3891
errout:
3892
	kfree(task_ctx_data);
3893
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3894 3895
}

L
Li Zefan 已提交
3896
static void perf_event_free_filter(struct perf_event *event);
3897
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3898

3899
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3900
{
3901
	struct perf_event *event;
P
Peter Zijlstra 已提交
3902

3903 3904 3905
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3906
	perf_event_free_filter(event);
3907
	kfree(event);
P
Peter Zijlstra 已提交
3908 3909
}

3910 3911
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3912

3913 3914 3915 3916 3917 3918 3919 3920 3921
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3922
static bool is_sb_event(struct perf_event *event)
3923
{
3924 3925
	struct perf_event_attr *attr = &event->attr;

3926
	if (event->parent)
3927
		return false;
3928 3929

	if (event->attach_state & PERF_ATTACH_TASK)
3930
		return false;
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3944 3945
}

3946
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3947
{
3948 3949 3950 3951 3952 3953
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3954

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3977 3978
static void unaccount_event(struct perf_event *event)
{
3979 3980
	bool dec = false;

3981 3982 3983 3984
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3985
		dec = true;
3986 3987 3988 3989 3990 3991
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3992
	if (event->attr.freq)
3993
		unaccount_freq_event();
3994
	if (event->attr.context_switch) {
3995
		dec = true;
3996 3997
		atomic_dec(&nr_switch_events);
	}
3998
	if (is_cgroup_event(event))
3999
		dec = true;
4000
	if (has_branch_stack(event))
4001 4002
		dec = true;

4003 4004 4005 4006
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4007 4008

	unaccount_event_cpu(event, event->cpu);
4009 4010

	unaccount_pmu_sb_event(event);
4011
}
4012

4013 4014 4015 4016 4017 4018 4019 4020
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4031
 * _free_event()), the latter -- before the first perf_install_in_context().
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4080
	if ((e1->pmu == e2->pmu) &&
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4106 4107 4108
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4109
static void _free_event(struct perf_event *event)
4110
{
4111
	irq_work_sync(&event->pending);
4112

4113
	unaccount_event(event);
4114

4115
	if (event->rb) {
4116 4117 4118 4119 4120 4121 4122
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4123
		ring_buffer_attach(event, NULL);
4124
		mutex_unlock(&event->mmap_mutex);
4125 4126
	}

S
Stephane Eranian 已提交
4127 4128 4129
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4130 4131 4132 4133 4134 4135
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4136 4137
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4138 4139 4140 4141 4142 4143 4144

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4145 4146
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4147 4148

	call_rcu(&event->rcu_head, free_event_rcu);
4149 4150
}

P
Peter Zijlstra 已提交
4151 4152 4153 4154 4155
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4156
{
P
Peter Zijlstra 已提交
4157 4158 4159 4160 4161 4162
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4163

P
Peter Zijlstra 已提交
4164
	_free_event(event);
T
Thomas Gleixner 已提交
4165 4166
}

4167
/*
4168
 * Remove user event from the owner task.
4169
 */
4170
static void perf_remove_from_owner(struct perf_event *event)
4171
{
P
Peter Zijlstra 已提交
4172
	struct task_struct *owner;
4173

P
Peter Zijlstra 已提交
4174 4175
	rcu_read_lock();
	/*
4176 4177 4178
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4179 4180
	 * owner->perf_event_mutex.
	 */
4181
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4203 4204 4205 4206 4207 4208
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4209
		if (event->owner) {
P
Peter Zijlstra 已提交
4210
			list_del_init(&event->owner_entry);
4211 4212
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4213 4214 4215
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4216 4217 4218 4219 4220 4221 4222
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4233
	struct perf_event_context *ctx = event->ctx;
4234 4235
	struct perf_event *child, *tmp;

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4246 4247
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4248

4249
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4250
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4251
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4252

P
Peter Zijlstra 已提交
4253
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4254
	/*
P
Peter Zijlstra 已提交
4255 4256
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
4257
	 *
P
Peter Zijlstra 已提交
4258 4259 4260
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4261
	 *
4262 4263
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4264
	 */
P
Peter Zijlstra 已提交
4265 4266 4267 4268
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4269

4270 4271 4272
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4323 4324
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4325 4326 4327 4328
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4329 4330 4331
/*
 * Called when the last reference to the file is gone.
 */
4332 4333
static int perf_release(struct inode *inode, struct file *file)
{
4334
	perf_event_release_kernel(file->private_data);
4335
	return 0;
4336 4337
}

4338
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4339
{
4340
	struct perf_event *child;
4341 4342
	u64 total = 0;

4343 4344 4345
	*enabled = 0;
	*running = 0;

4346
	mutex_lock(&event->child_mutex);
4347

4348
	(void)perf_event_read(event, false);
4349 4350
	total += perf_event_count(event);

4351 4352 4353 4354 4355 4356
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4357
		(void)perf_event_read(child, false);
4358
		total += perf_event_count(child);
4359 4360 4361
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4362
	mutex_unlock(&event->child_mutex);
4363 4364 4365

	return total;
}
4366
EXPORT_SYMBOL_GPL(perf_event_read_value);
4367

4368
static int __perf_read_group_add(struct perf_event *leader,
4369
					u64 read_format, u64 *values)
4370
{
4371 4372
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4373
	int ret;
P
Peter Zijlstra 已提交
4374

4375 4376 4377
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4378

4379 4380 4381 4382 4383 4384 4385 4386 4387
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4388

4389 4390 4391 4392 4393 4394 4395 4396 4397
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4398 4399
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4400

4401 4402 4403 4404 4405
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4406 4407

	return 0;
4408
}
4409

4410 4411 4412 4413 4414
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4415
	int ret;
4416
	u64 *values;
4417

4418
	lockdep_assert_held(&ctx->mutex);
4419

4420 4421 4422
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4423

4424 4425 4426 4427 4428 4429 4430
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4431

4432 4433 4434 4435 4436 4437 4438 4439 4440
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4441

4442
	mutex_unlock(&leader->child_mutex);
4443

4444
	ret = event->read_size;
4445 4446
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4447
	goto out;
4448

4449 4450 4451
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4452
	kfree(values);
4453
	return ret;
4454 4455
}

4456
static int perf_read_one(struct perf_event *event,
4457 4458
				 u64 read_format, char __user *buf)
{
4459
	u64 enabled, running;
4460 4461 4462
	u64 values[4];
	int n = 0;

4463 4464 4465 4466 4467
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4468
	if (read_format & PERF_FORMAT_ID)
4469
		values[n++] = primary_event_id(event);
4470 4471 4472 4473 4474 4475 4476

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4477 4478 4479 4480
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4481
	if (event->state > PERF_EVENT_STATE_EXIT)
4482 4483 4484 4485 4486 4487 4488 4489
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4490
/*
4491
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4492 4493
 */
static ssize_t
4494
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4495
{
4496
	u64 read_format = event->attr.read_format;
4497
	int ret;
T
Thomas Gleixner 已提交
4498

4499
	/*
4500
	 * Return end-of-file for a read on a event that is in
4501 4502 4503
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4504
	if (event->state == PERF_EVENT_STATE_ERROR)
4505 4506
		return 0;

4507
	if (count < event->read_size)
4508 4509
		return -ENOSPC;

4510
	WARN_ON_ONCE(event->ctx->parent_ctx);
4511
	if (read_format & PERF_FORMAT_GROUP)
4512
		ret = perf_read_group(event, read_format, buf);
4513
	else
4514
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4515

4516
	return ret;
T
Thomas Gleixner 已提交
4517 4518 4519 4520 4521
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4522
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4523 4524
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4525

P
Peter Zijlstra 已提交
4526
	ctx = perf_event_ctx_lock(event);
4527
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4528 4529 4530
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4531 4532 4533 4534
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4535
	struct perf_event *event = file->private_data;
4536
	struct ring_buffer *rb;
4537
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4538

4539
	poll_wait(file, &event->waitq, wait);
4540

4541
	if (is_event_hup(event))
4542
		return events;
P
Peter Zijlstra 已提交
4543

4544
	/*
4545 4546
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4547 4548
	 */
	mutex_lock(&event->mmap_mutex);
4549 4550
	rb = event->rb;
	if (rb)
4551
		events = atomic_xchg(&rb->poll, 0);
4552
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4553 4554 4555
	return events;
}

P
Peter Zijlstra 已提交
4556
static void _perf_event_reset(struct perf_event *event)
4557
{
4558
	(void)perf_event_read(event, false);
4559
	local64_set(&event->count, 0);
4560
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4561 4562
}

4563
/*
4564 4565
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4566
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4567
 * task existence requirements of perf_event_enable/disable.
4568
 */
4569 4570
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4571
{
4572
	struct perf_event *child;
P
Peter Zijlstra 已提交
4573

4574
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4575

4576 4577 4578
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4579
		func(child);
4580
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4581 4582
}

4583 4584
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4585
{
4586 4587
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4588

P
Peter Zijlstra 已提交
4589 4590
	lockdep_assert_held(&ctx->mutex);

4591
	event = event->group_leader;
4592

4593 4594
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4595
		perf_event_for_each_child(sibling, func);
4596 4597
}

4598 4599 4600 4601
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4602
{
4603
	u64 value = *((u64 *)info);
4604
	bool active;
4605

4606 4607
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4608
	} else {
4609 4610
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4611
	}
4612 4613 4614 4615

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4616 4617 4618 4619 4620 4621 4622 4623
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4624 4625 4626 4627 4628 4629 4630 4631 4632
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4651
	event_function_call(event, __perf_event_period, &value);
4652

4653
	return 0;
4654 4655
}

4656 4657
static const struct file_operations perf_fops;

4658
static inline int perf_fget_light(int fd, struct fd *p)
4659
{
4660 4661 4662
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4663

4664 4665 4666
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4667
	}
4668 4669
	*p = f;
	return 0;
4670 4671 4672 4673
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4674
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4675
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4676

P
Peter Zijlstra 已提交
4677
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4678
{
4679
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4680
	u32 flags = arg;
4681 4682

	switch (cmd) {
4683
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4684
		func = _perf_event_enable;
4685
		break;
4686
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4687
		func = _perf_event_disable;
4688
		break;
4689
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4690
		func = _perf_event_reset;
4691
		break;
P
Peter Zijlstra 已提交
4692

4693
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4694
		return _perf_event_refresh(event, arg);
4695

4696 4697
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4698

4699 4700 4701 4702 4703 4704 4705 4706 4707
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4708
	case PERF_EVENT_IOC_SET_OUTPUT:
4709 4710 4711
	{
		int ret;
		if (arg != -1) {
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4722 4723 4724
		}
		return ret;
	}
4725

L
Li Zefan 已提交
4726 4727 4728
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4729 4730 4731
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4745
	default:
P
Peter Zijlstra 已提交
4746
		return -ENOTTY;
4747
	}
P
Peter Zijlstra 已提交
4748 4749

	if (flags & PERF_IOC_FLAG_GROUP)
4750
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4751
	else
4752
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4753 4754

	return 0;
4755 4756
}

P
Peter Zijlstra 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4790
int perf_event_task_enable(void)
4791
{
P
Peter Zijlstra 已提交
4792
	struct perf_event_context *ctx;
4793
	struct perf_event *event;
4794

4795
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4796 4797 4798 4799 4800
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4801
	mutex_unlock(&current->perf_event_mutex);
4802 4803 4804 4805

	return 0;
}

4806
int perf_event_task_disable(void)
4807
{
P
Peter Zijlstra 已提交
4808
	struct perf_event_context *ctx;
4809
	struct perf_event *event;
4810

4811
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4812 4813 4814 4815 4816
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4817
	mutex_unlock(&current->perf_event_mutex);
4818 4819 4820 4821

	return 0;
}

4822
static int perf_event_index(struct perf_event *event)
4823
{
P
Peter Zijlstra 已提交
4824 4825 4826
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4827
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4828 4829
		return 0;

4830
	return event->pmu->event_idx(event);
4831 4832
}

4833
static void calc_timer_values(struct perf_event *event,
4834
				u64 *now,
4835 4836
				u64 *enabled,
				u64 *running)
4837
{
4838
	u64 ctx_time;
4839

4840 4841
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4842 4843 4844 4845
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4861 4862
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4863 4864 4865 4866 4867

unlock:
	rcu_read_unlock();
}

4868 4869
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4870 4871 4872
{
}

4873 4874 4875 4876 4877
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4878
void perf_event_update_userpage(struct perf_event *event)
4879
{
4880
	struct perf_event_mmap_page *userpg;
4881
	struct ring_buffer *rb;
4882
	u64 enabled, running, now;
4883 4884

	rcu_read_lock();
4885 4886 4887 4888
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4889 4890 4891 4892 4893 4894 4895 4896 4897
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4898
	calc_timer_values(event, &now, &enabled, &running);
4899

4900
	userpg = rb->user_page;
4901 4902 4903 4904 4905
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4906
	++userpg->lock;
4907
	barrier();
4908
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4909
	userpg->offset = perf_event_count(event);
4910
	if (userpg->index)
4911
		userpg->offset -= local64_read(&event->hw.prev_count);
4912

4913
	userpg->time_enabled = enabled +
4914
			atomic64_read(&event->child_total_time_enabled);
4915

4916
	userpg->time_running = running +
4917
			atomic64_read(&event->child_total_time_running);
4918

4919
	arch_perf_update_userpage(event, userpg, now);
4920

4921
	barrier();
4922
	++userpg->lock;
4923
	preempt_enable();
4924
unlock:
4925
	rcu_read_unlock();
4926 4927
}

4928 4929 4930
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4931
	struct ring_buffer *rb;
4932 4933 4934 4935 4936 4937 4938 4939 4940
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4941 4942
	rb = rcu_dereference(event->rb);
	if (!rb)
4943 4944 4945 4946 4947
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4948
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4963 4964 4965
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4966
	struct ring_buffer *old_rb = NULL;
4967 4968
	unsigned long flags;

4969 4970 4971 4972 4973 4974
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4975

4976 4977 4978 4979
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4980

4981 4982
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4983
	}
4984

4985
	if (rb) {
4986 4987 4988 4989 4990
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4991 4992 4993 4994 4995
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5020 5021 5022 5023 5024 5025 5026 5027
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5028 5029 5030 5031
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5032 5033 5034
	rcu_read_unlock();
}

5035
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5036
{
5037
	struct ring_buffer *rb;
5038

5039
	rcu_read_lock();
5040 5041 5042 5043
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5044 5045 5046
	}
	rcu_read_unlock();

5047
	return rb;
5048 5049
}

5050
void ring_buffer_put(struct ring_buffer *rb)
5051
{
5052
	if (!atomic_dec_and_test(&rb->refcount))
5053
		return;
5054

5055
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5056

5057
	call_rcu(&rb->rcu_head, rb_free_rcu);
5058 5059 5060 5061
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5062
	struct perf_event *event = vma->vm_file->private_data;
5063

5064
	atomic_inc(&event->mmap_count);
5065
	atomic_inc(&event->rb->mmap_count);
5066

5067 5068 5069
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5070 5071
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
5072 5073
}

5074 5075
static void perf_pmu_output_stop(struct perf_event *event);

5076 5077 5078 5079 5080 5081 5082 5083
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5084 5085
static void perf_mmap_close(struct vm_area_struct *vma)
{
5086
	struct perf_event *event = vma->vm_file->private_data;
5087

5088
	struct ring_buffer *rb = ring_buffer_get(event);
5089 5090 5091
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5092

5093 5094 5095
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

5096 5097 5098 5099 5100 5101 5102
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5103 5104 5105 5106 5107 5108 5109 5110 5111
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5112 5113 5114
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5115
		/* this has to be the last one */
5116
		rb_free_aux(rb);
5117 5118
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5119 5120 5121
		mutex_unlock(&event->mmap_mutex);
	}

5122 5123 5124
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5125
		goto out_put;
5126

5127
	ring_buffer_attach(event, NULL);
5128 5129 5130
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5131 5132
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5133

5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5150

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5162 5163 5164
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5165
		mutex_unlock(&event->mmap_mutex);
5166
		put_event(event);
5167

5168 5169 5170 5171 5172
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5173
	}
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5189
out_put:
5190
	ring_buffer_put(rb); /* could be last */
5191 5192
}

5193
static const struct vm_operations_struct perf_mmap_vmops = {
5194
	.open		= perf_mmap_open,
5195
	.close		= perf_mmap_close, /* non mergable */
5196 5197
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5198 5199 5200 5201
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5202
	struct perf_event *event = file->private_data;
5203
	unsigned long user_locked, user_lock_limit;
5204
	struct user_struct *user = current_user();
5205
	unsigned long locked, lock_limit;
5206
	struct ring_buffer *rb = NULL;
5207 5208
	unsigned long vma_size;
	unsigned long nr_pages;
5209
	long user_extra = 0, extra = 0;
5210
	int ret = 0, flags = 0;
5211

5212 5213 5214
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5215
	 * same rb.
5216 5217 5218 5219
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5220
	if (!(vma->vm_flags & VM_SHARED))
5221
		return -EINVAL;
5222 5223

	vma_size = vma->vm_end - vma->vm_start;
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5284

5285
	/*
5286
	 * If we have rb pages ensure they're a power-of-two number, so we
5287 5288
	 * can do bitmasks instead of modulo.
	 */
5289
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5290 5291
		return -EINVAL;

5292
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5293 5294
		return -EINVAL;

5295
	WARN_ON_ONCE(event->ctx->parent_ctx);
5296
again:
5297
	mutex_lock(&event->mmap_mutex);
5298
	if (event->rb) {
5299
		if (event->rb->nr_pages != nr_pages) {
5300
			ret = -EINVAL;
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5314 5315 5316
		goto unlock;
	}

5317
	user_extra = nr_pages + 1;
5318 5319

accounting:
5320
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5321 5322 5323 5324 5325 5326

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5327
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5328

5329 5330
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5331

5332
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5333
	lock_limit >>= PAGE_SHIFT;
5334
	locked = vma->vm_mm->pinned_vm + extra;
5335

5336 5337
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5338 5339 5340
		ret = -EPERM;
		goto unlock;
	}
5341

5342
	WARN_ON(!rb && event->rb);
5343

5344
	if (vma->vm_flags & VM_WRITE)
5345
		flags |= RING_BUFFER_WRITABLE;
5346

5347
	if (!rb) {
5348 5349 5350
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5351

5352 5353 5354 5355
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5356

5357 5358 5359
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5360

5361
		ring_buffer_attach(event, rb);
5362

5363 5364 5365
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5366 5367
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5368 5369 5370
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5371

5372
unlock:
5373 5374 5375 5376
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5377
		atomic_inc(&event->mmap_count);
5378 5379 5380 5381
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5382
	mutex_unlock(&event->mmap_mutex);
5383

5384 5385 5386 5387
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5388
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5389
	vma->vm_ops = &perf_mmap_vmops;
5390

5391 5392 5393
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5394
	return ret;
5395 5396
}

P
Peter Zijlstra 已提交
5397 5398
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5399
	struct inode *inode = file_inode(filp);
5400
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5401 5402
	int retval;

A
Al Viro 已提交
5403
	inode_lock(inode);
5404
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5405
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5406 5407 5408 5409 5410 5411 5412

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5413
static const struct file_operations perf_fops = {
5414
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5415 5416 5417
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5418
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5419
	.compat_ioctl		= perf_compat_ioctl,
5420
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5421
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5422 5423
};

5424
/*
5425
 * Perf event wakeup
5426 5427 5428 5429 5430
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5431 5432 5433 5434 5435 5436 5437 5438
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5439
void perf_event_wakeup(struct perf_event *event)
5440
{
5441
	ring_buffer_wakeup(event);
5442

5443
	if (event->pending_kill) {
5444
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5445
		event->pending_kill = 0;
5446
	}
5447 5448
}

5449
static void perf_pending_event(struct irq_work *entry)
5450
{
5451 5452
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5453 5454 5455 5456 5457 5458 5459
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5460

5461 5462
	if (event->pending_disable) {
		event->pending_disable = 0;
5463
		perf_event_disable_local(event);
5464 5465
	}

5466 5467 5468
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5469
	}
5470 5471 5472

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5473 5474
}

5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5496 5497 5498 5499 5500
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5501
	DECLARE_BITMAP(_mask, 64);
5502

5503 5504
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5505 5506 5507 5508 5509 5510 5511
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5512
static void perf_sample_regs_user(struct perf_regs *regs_user,
5513 5514
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5515
{
5516 5517
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5518
		regs_user->regs = regs;
5519 5520
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5521 5522 5523
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5524 5525 5526
	}
}

5527 5528 5529 5530 5531 5532 5533 5534
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5630 5631 5632
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5646
		data->time = perf_event_clock(event);
5647

5648
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5660 5661 5662
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5687 5688 5689

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5690 5691
}

5692 5693 5694
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5695 5696 5697 5698 5699
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5700
static void perf_output_read_one(struct perf_output_handle *handle,
5701 5702
				 struct perf_event *event,
				 u64 enabled, u64 running)
5703
{
5704
	u64 read_format = event->attr.read_format;
5705 5706 5707
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5708
	values[n++] = perf_event_count(event);
5709
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5710
		values[n++] = enabled +
5711
			atomic64_read(&event->child_total_time_enabled);
5712 5713
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5714
		values[n++] = running +
5715
			atomic64_read(&event->child_total_time_running);
5716 5717
	}
	if (read_format & PERF_FORMAT_ID)
5718
		values[n++] = primary_event_id(event);
5719

5720
	__output_copy(handle, values, n * sizeof(u64));
5721 5722 5723
}

/*
5724
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5725 5726
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5727 5728
			    struct perf_event *event,
			    u64 enabled, u64 running)
5729
{
5730 5731
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5732 5733 5734 5735 5736 5737
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5738
		values[n++] = enabled;
5739 5740

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5741
		values[n++] = running;
5742

5743
	if (leader != event)
5744 5745
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5746
	values[n++] = perf_event_count(leader);
5747
	if (read_format & PERF_FORMAT_ID)
5748
		values[n++] = primary_event_id(leader);
5749

5750
	__output_copy(handle, values, n * sizeof(u64));
5751

5752
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5753 5754
		n = 0;

5755 5756
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5757 5758
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5759
		values[n++] = perf_event_count(sub);
5760
		if (read_format & PERF_FORMAT_ID)
5761
			values[n++] = primary_event_id(sub);
5762

5763
		__output_copy(handle, values, n * sizeof(u64));
5764 5765 5766
	}
}

5767 5768 5769
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5770
static void perf_output_read(struct perf_output_handle *handle,
5771
			     struct perf_event *event)
5772
{
5773
	u64 enabled = 0, running = 0, now;
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5785
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5786
		calc_timer_values(event, &now, &enabled, &running);
5787

5788
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5789
		perf_output_read_group(handle, event, enabled, running);
5790
	else
5791
		perf_output_read_one(handle, event, enabled, running);
5792 5793
}

5794 5795 5796
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5797
			struct perf_event *event)
5798 5799 5800 5801 5802
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5803 5804 5805
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5831
		perf_output_read(handle, event);
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5842
			__output_copy(handle, data->callchain, size);
5843 5844 5845 5846 5847 5848 5849
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5881

5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5916

5917
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5918 5919 5920
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5921
	}
A
Andi Kleen 已提交
5922 5923 5924

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5925 5926 5927

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5928

A
Andi Kleen 已提交
5929 5930 5931
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5962 5963 5964 5965
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5966
			 struct perf_event *event,
5967
			 struct pt_regs *regs)
5968
{
5969
	u64 sample_type = event->attr.sample_type;
5970

5971
	header->type = PERF_RECORD_SAMPLE;
5972
	header->size = sizeof(*header) + event->header_size;
5973 5974 5975

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5976

5977
	__perf_event_header__init_id(header, data, event);
5978

5979
	if (sample_type & PERF_SAMPLE_IP)
5980 5981
		data->ip = perf_instruction_pointer(regs);

5982
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5983
		int size = 1;
5984

5985
		data->callchain = perf_callchain(event, regs);
5986 5987 5988 5989 5990

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5991 5992
	}

5993
	if (sample_type & PERF_SAMPLE_RAW) {
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6014

6015
		header->size += size;
6016
	}
6017 6018 6019 6020 6021 6022 6023 6024 6025

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6026

6027
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6028 6029
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6030

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6054
						     data->regs_user.regs);
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6082
}
6083

6084 6085 6086 6087 6088 6089 6090
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6091 6092 6093
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6094

6095 6096 6097
	/* protect the callchain buffers */
	rcu_read_lock();

6098
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6099

6100
	if (output_begin(&handle, event, header.size))
6101
		goto exit;
6102

6103
	perf_output_sample(&handle, &header, data, event);
6104

6105
	perf_output_end(&handle);
6106 6107 6108

exit:
	rcu_read_unlock();
6109 6110
}

6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6135
/*
6136
 * read event_id
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6147
perf_event_read_event(struct perf_event *event,
6148 6149 6150
			struct task_struct *task)
{
	struct perf_output_handle handle;
6151
	struct perf_sample_data sample;
6152
	struct perf_read_event read_event = {
6153
		.header = {
6154
			.type = PERF_RECORD_READ,
6155
			.misc = 0,
6156
			.size = sizeof(read_event) + event->read_size,
6157
		},
6158 6159
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6160
	};
6161
	int ret;
6162

6163
	perf_event_header__init_id(&read_event.header, &sample, event);
6164
	ret = perf_output_begin(&handle, event, read_event.header.size);
6165 6166 6167
	if (ret)
		return;

6168
	perf_output_put(&handle, read_event);
6169
	perf_output_read(&handle, event);
6170
	perf_event__output_id_sample(event, &handle, &sample);
6171

6172 6173 6174
	perf_output_end(&handle);
}

6175
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6176 6177

static void
6178 6179
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6180
		   void *data, bool all)
6181 6182 6183 6184
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6185 6186 6187 6188 6189 6190 6191
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6192
		output(event, data);
6193 6194 6195
	}
}

6196
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6197 6198 6199 6200 6201
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6202 6203 6204 6205 6206 6207 6208 6209
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6210 6211 6212 6213 6214 6215 6216 6217
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6218 6219 6220 6221 6222 6223
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6224
static void
6225
perf_iterate_sb(perf_iterate_f output, void *data,
6226 6227 6228 6229 6230
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6231 6232 6233
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6234
	/*
6235 6236
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6237 6238 6239
	 * context.
	 */
	if (task_ctx) {
6240 6241
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6242 6243
	}

6244
	perf_iterate_sb_cpu(output, data);
6245 6246

	for_each_task_context_nr(ctxn) {
6247 6248
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6249
			perf_iterate_ctx(ctx, output, data, false);
6250
	}
6251
done:
6252
	preempt_enable();
6253
	rcu_read_unlock();
6254 6255
}

6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6285
		perf_event_stop(event, 1);
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6301
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6302 6303 6304 6305 6306
				   true);
	}
	rcu_read_unlock();
}

6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6317 6318 6319
	struct stop_event_data sd = {
		.event	= event,
	};
6320 6321 6322 6323 6324 6325 6326 6327 6328

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6329 6330 6331 6332 6333 6334 6335
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6336 6337
	 */
	if (rcu_dereference(parent->rb) == rb)
6338
		ro->err = __perf_event_stop(&sd);
6339 6340 6341 6342 6343 6344
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6345
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6346 6347 6348 6349 6350
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6351
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6352
	if (cpuctx->task_ctx)
6353
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6354
				   &ro, false);
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6388 6389
}

P
Peter Zijlstra 已提交
6390
/*
P
Peter Zijlstra 已提交
6391 6392
 * task tracking -- fork/exit
 *
6393
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6394 6395
 */

P
Peter Zijlstra 已提交
6396
struct perf_task_event {
6397
	struct task_struct		*task;
6398
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6399 6400 6401 6402 6403 6404

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6405 6406
		u32				tid;
		u32				ptid;
6407
		u64				time;
6408
	} event_id;
P
Peter Zijlstra 已提交
6409 6410
};

6411 6412
static int perf_event_task_match(struct perf_event *event)
{
6413 6414 6415
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6416 6417
}

6418
static void perf_event_task_output(struct perf_event *event,
6419
				   void *data)
P
Peter Zijlstra 已提交
6420
{
6421
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6422
	struct perf_output_handle handle;
6423
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6424
	struct task_struct *task = task_event->task;
6425
	int ret, size = task_event->event_id.header.size;
6426

6427 6428 6429
	if (!perf_event_task_match(event))
		return;

6430
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6431

6432
	ret = perf_output_begin(&handle, event,
6433
				task_event->event_id.header.size);
6434
	if (ret)
6435
		goto out;
P
Peter Zijlstra 已提交
6436

6437 6438
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6439

6440 6441
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6442

6443 6444
	task_event->event_id.time = perf_event_clock(event);

6445
	perf_output_put(&handle, task_event->event_id);
6446

6447 6448
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6449
	perf_output_end(&handle);
6450 6451
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6452 6453
}

6454 6455
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6456
			      int new)
P
Peter Zijlstra 已提交
6457
{
P
Peter Zijlstra 已提交
6458
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6459

6460 6461 6462
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6463 6464
		return;

P
Peter Zijlstra 已提交
6465
	task_event = (struct perf_task_event){
6466 6467
		.task	  = task,
		.task_ctx = task_ctx,
6468
		.event_id    = {
P
Peter Zijlstra 已提交
6469
			.header = {
6470
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6471
				.misc = 0,
6472
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6473
			},
6474 6475
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6476 6477
			/* .tid  */
			/* .ptid */
6478
			/* .time */
P
Peter Zijlstra 已提交
6479 6480 6481
		},
	};

6482
	perf_iterate_sb(perf_event_task_output,
6483 6484
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6485 6486
}

6487
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6488
{
6489
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
6490 6491
}

6492 6493 6494 6495 6496
/*
 * comm tracking
 */

struct perf_comm_event {
6497 6498
	struct task_struct	*task;
	char			*comm;
6499 6500 6501 6502 6503 6504 6505
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6506
	} event_id;
6507 6508
};

6509 6510 6511 6512 6513
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6514
static void perf_event_comm_output(struct perf_event *event,
6515
				   void *data)
6516
{
6517
	struct perf_comm_event *comm_event = data;
6518
	struct perf_output_handle handle;
6519
	struct perf_sample_data sample;
6520
	int size = comm_event->event_id.header.size;
6521 6522
	int ret;

6523 6524 6525
	if (!perf_event_comm_match(event))
		return;

6526 6527
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6528
				comm_event->event_id.header.size);
6529 6530

	if (ret)
6531
		goto out;
6532

6533 6534
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6535

6536
	perf_output_put(&handle, comm_event->event_id);
6537
	__output_copy(&handle, comm_event->comm,
6538
				   comm_event->comm_size);
6539 6540 6541

	perf_event__output_id_sample(event, &handle, &sample);

6542
	perf_output_end(&handle);
6543 6544
out:
	comm_event->event_id.header.size = size;
6545 6546
}

6547
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6548
{
6549
	char comm[TASK_COMM_LEN];
6550 6551
	unsigned int size;

6552
	memset(comm, 0, sizeof(comm));
6553
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6554
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6555 6556 6557 6558

	comm_event->comm = comm;
	comm_event->comm_size = size;

6559
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6560

6561
	perf_iterate_sb(perf_event_comm_output,
6562 6563
		       comm_event,
		       NULL);
6564 6565
}

6566
void perf_event_comm(struct task_struct *task, bool exec)
6567
{
6568 6569
	struct perf_comm_event comm_event;

6570
	if (!atomic_read(&nr_comm_events))
6571
		return;
6572

6573
	comm_event = (struct perf_comm_event){
6574
		.task	= task,
6575 6576
		/* .comm      */
		/* .comm_size */
6577
		.event_id  = {
6578
			.header = {
6579
				.type = PERF_RECORD_COMM,
6580
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6581 6582 6583 6584
				/* .size */
			},
			/* .pid */
			/* .tid */
6585 6586 6587
		},
	};

6588
	perf_event_comm_event(&comm_event);
6589 6590
}

6591 6592 6593 6594 6595
/*
 * mmap tracking
 */

struct perf_mmap_event {
6596 6597 6598 6599
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6600 6601 6602
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6603
	u32			prot, flags;
6604 6605 6606 6607 6608 6609 6610 6611 6612

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6613
	} event_id;
6614 6615
};

6616 6617 6618 6619 6620 6621 6622 6623
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6624
	       (executable && (event->attr.mmap || event->attr.mmap2));
6625 6626
}

6627
static void perf_event_mmap_output(struct perf_event *event,
6628
				   void *data)
6629
{
6630
	struct perf_mmap_event *mmap_event = data;
6631
	struct perf_output_handle handle;
6632
	struct perf_sample_data sample;
6633
	int size = mmap_event->event_id.header.size;
6634
	int ret;
6635

6636 6637 6638
	if (!perf_event_mmap_match(event, data))
		return;

6639 6640 6641 6642 6643
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6644
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6645 6646
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6647 6648
	}

6649 6650
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6651
				mmap_event->event_id.header.size);
6652
	if (ret)
6653
		goto out;
6654

6655 6656
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6657

6658
	perf_output_put(&handle, mmap_event->event_id);
6659 6660 6661 6662 6663 6664

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6665 6666
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6667 6668
	}

6669
	__output_copy(&handle, mmap_event->file_name,
6670
				   mmap_event->file_size);
6671 6672 6673

	perf_event__output_id_sample(event, &handle, &sample);

6674
	perf_output_end(&handle);
6675 6676
out:
	mmap_event->event_id.header.size = size;
6677 6678
}

6679
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6680
{
6681 6682
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6683 6684
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6685
	u32 prot = 0, flags = 0;
6686 6687 6688
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6689
	char *name;
6690

6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6712
	if (file) {
6713 6714
		struct inode *inode;
		dev_t dev;
6715

6716
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6717
		if (!buf) {
6718 6719
			name = "//enomem";
			goto cpy_name;
6720
		}
6721
		/*
6722
		 * d_path() works from the end of the rb backwards, so we
6723 6724 6725
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6726
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6727
		if (IS_ERR(name)) {
6728 6729
			name = "//toolong";
			goto cpy_name;
6730
		}
6731 6732 6733 6734 6735 6736
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6737

6738
		goto got_name;
6739
	} else {
6740 6741 6742 6743 6744 6745
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6746
		name = (char *)arch_vma_name(vma);
6747 6748
		if (name)
			goto cpy_name;
6749

6750
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6751
				vma->vm_end >= vma->vm_mm->brk) {
6752 6753
			name = "[heap]";
			goto cpy_name;
6754 6755
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6756
				vma->vm_end >= vma->vm_mm->start_stack) {
6757 6758
			name = "[stack]";
			goto cpy_name;
6759 6760
		}

6761 6762
		name = "//anon";
		goto cpy_name;
6763 6764
	}

6765 6766 6767
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6768
got_name:
6769 6770 6771 6772 6773 6774 6775 6776
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6777 6778 6779

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6780 6781 6782 6783
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6784 6785
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6786

6787 6788 6789
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6790
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6791

6792
	perf_iterate_sb(perf_event_mmap_output,
6793 6794
		       mmap_event,
		       NULL);
6795

6796 6797 6798
	kfree(buf);
}

6799 6800 6801 6802 6803 6804 6805
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
6806
	if (filter->inode != file_inode(file))
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6849
		perf_event_stop(event, 1);
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

6860 6861 6862 6863 6864 6865 6866
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

6867 6868 6869 6870 6871 6872
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

6873
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6874 6875 6876 6877
	}
	rcu_read_unlock();
}

6878
void perf_event_mmap(struct vm_area_struct *vma)
6879
{
6880 6881
	struct perf_mmap_event mmap_event;

6882
	if (!atomic_read(&nr_mmap_events))
6883 6884 6885
		return;

	mmap_event = (struct perf_mmap_event){
6886
		.vma	= vma,
6887 6888
		/* .file_name */
		/* .file_size */
6889
		.event_id  = {
6890
			.header = {
6891
				.type = PERF_RECORD_MMAP,
6892
				.misc = PERF_RECORD_MISC_USER,
6893 6894 6895 6896
				/* .size */
			},
			/* .pid */
			/* .tid */
6897 6898
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6899
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6900
		},
6901 6902 6903 6904
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6905 6906
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6907 6908
	};

6909
	perf_addr_filters_adjust(vma);
6910
	perf_event_mmap_event(&mmap_event);
6911 6912
}

A
Alexander Shishkin 已提交
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7060
	perf_iterate_sb(perf_event_switch_output,
7061 7062 7063 7064
		       &switch_event,
		       NULL);
}

7065 7066 7067 7068
/*
 * IRQ throttle logging
 */

7069
static void perf_log_throttle(struct perf_event *event, int enable)
7070 7071
{
	struct perf_output_handle handle;
7072
	struct perf_sample_data sample;
7073 7074 7075 7076 7077
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7078
		u64				id;
7079
		u64				stream_id;
7080 7081
	} throttle_event = {
		.header = {
7082
			.type = PERF_RECORD_THROTTLE,
7083 7084 7085
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7086
		.time		= perf_event_clock(event),
7087 7088
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7089 7090
	};

7091
	if (enable)
7092
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7093

7094 7095 7096
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7097
				throttle_event.header.size);
7098 7099 7100 7101
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7102
	perf_event__output_id_sample(event, &handle, &sample);
7103 7104 7105
	perf_output_end(&handle);
}

7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7142 7143
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7144
{
7145
	struct hw_perf_event *hwc = &event->hw;
7146
	int ret = 0;
7147
	u64 seq;
7148

7149 7150 7151 7152 7153 7154 7155 7156 7157
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7158
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7159 7160
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7161 7162
			ret = 1;
		}
7163
	}
7164

7165
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7166
		u64 now = perf_clock();
7167
		s64 delta = now - hwc->freq_time_stamp;
7168

7169
		hwc->freq_time_stamp = now;
7170

7171
		if (delta > 0 && delta < 2*TICK_NSEC)
7172
			perf_adjust_period(event, delta, hwc->last_period, true);
7173 7174
	}

7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);

7203 7204
	/*
	 * XXX event_limit might not quite work as expected on inherited
7205
	 * events
7206 7207
	 */

7208 7209
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7210
		ret = 1;
7211
		event->pending_kill = POLL_HUP;
7212 7213

		perf_event_disable_inatomic(event);
7214 7215
	}

7216
	READ_ONCE(event->overflow_handler)(event, data, regs);
7217

7218
	if (*perf_event_fasync(event) && event->pending_kill) {
7219 7220
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7221 7222
	}

7223
	return ret;
7224 7225
}

7226
int perf_event_overflow(struct perf_event *event,
7227 7228
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7229
{
7230
	return __perf_event_overflow(event, 1, data, regs);
7231 7232
}

7233
/*
7234
 * Generic software event infrastructure
7235 7236
 */

7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7248
/*
7249 7250
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7251 7252 7253 7254
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7255
u64 perf_swevent_set_period(struct perf_event *event)
7256
{
7257
	struct hw_perf_event *hwc = &event->hw;
7258 7259 7260 7261 7262
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7263 7264

again:
7265
	old = val = local64_read(&hwc->period_left);
7266 7267
	if (val < 0)
		return 0;
7268

7269 7270 7271
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7272
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7273
		goto again;
7274

7275
	return nr;
7276 7277
}

7278
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7279
				    struct perf_sample_data *data,
7280
				    struct pt_regs *regs)
7281
{
7282
	struct hw_perf_event *hwc = &event->hw;
7283
	int throttle = 0;
7284

7285 7286
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7287

7288 7289
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7290

7291
	for (; overflow; overflow--) {
7292
		if (__perf_event_overflow(event, throttle,
7293
					    data, regs)) {
7294 7295 7296 7297 7298 7299
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7300
		throttle = 1;
7301
	}
7302 7303
}

P
Peter Zijlstra 已提交
7304
static void perf_swevent_event(struct perf_event *event, u64 nr,
7305
			       struct perf_sample_data *data,
7306
			       struct pt_regs *regs)
7307
{
7308
	struct hw_perf_event *hwc = &event->hw;
7309

7310
	local64_add(nr, &event->count);
7311

7312 7313 7314
	if (!regs)
		return;

7315
	if (!is_sampling_event(event))
7316
		return;
7317

7318 7319 7320 7321 7322 7323
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7324
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7325
		return perf_swevent_overflow(event, 1, data, regs);
7326

7327
	if (local64_add_negative(nr, &hwc->period_left))
7328
		return;
7329

7330
	perf_swevent_overflow(event, 0, data, regs);
7331 7332
}

7333 7334 7335
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7336
	if (event->hw.state & PERF_HES_STOPPED)
7337
		return 1;
P
Peter Zijlstra 已提交
7338

7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7350
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7351
				enum perf_type_id type,
L
Li Zefan 已提交
7352 7353 7354
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7355
{
7356
	if (event->attr.type != type)
7357
		return 0;
7358

7359
	if (event->attr.config != event_id)
7360 7361
		return 0;

7362 7363
	if (perf_exclude_event(event, regs))
		return 0;
7364 7365 7366 7367

	return 1;
}

7368 7369 7370 7371 7372 7373 7374
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7375 7376
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7377
{
7378 7379 7380 7381
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7382

7383 7384
/* For the read side: events when they trigger */
static inline struct hlist_head *
7385
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7386 7387
{
	struct swevent_hlist *hlist;
7388

7389
	hlist = rcu_dereference(swhash->swevent_hlist);
7390 7391 7392
	if (!hlist)
		return NULL;

7393 7394 7395 7396 7397
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7398
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7409
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7410 7411 7412 7413 7414
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7415 7416 7417
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7418
				    u64 nr,
7419 7420
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7421
{
7422
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7423
	struct perf_event *event;
7424
	struct hlist_head *head;
7425

7426
	rcu_read_lock();
7427
	head = find_swevent_head_rcu(swhash, type, event_id);
7428 7429 7430
	if (!head)
		goto end;

7431
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7432
		if (perf_swevent_match(event, type, event_id, data, regs))
7433
			perf_swevent_event(event, nr, data, regs);
7434
	}
7435 7436
end:
	rcu_read_unlock();
7437 7438
}

7439 7440
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7441
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7442
{
7443
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7444

7445
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7446
}
I
Ingo Molnar 已提交
7447
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7448

7449
void perf_swevent_put_recursion_context(int rctx)
7450
{
7451
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7452

7453
	put_recursion_context(swhash->recursion, rctx);
7454
}
7455

7456
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7457
{
7458
	struct perf_sample_data data;
7459

7460
	if (WARN_ON_ONCE(!regs))
7461
		return;
7462

7463
	perf_sample_data_init(&data, addr, 0);
7464
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7477 7478

	perf_swevent_put_recursion_context(rctx);
7479
fail:
7480
	preempt_enable_notrace();
7481 7482
}

7483
static void perf_swevent_read(struct perf_event *event)
7484 7485 7486
{
}

P
Peter Zijlstra 已提交
7487
static int perf_swevent_add(struct perf_event *event, int flags)
7488
{
7489
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7490
	struct hw_perf_event *hwc = &event->hw;
7491 7492
	struct hlist_head *head;

7493
	if (is_sampling_event(event)) {
7494
		hwc->last_period = hwc->sample_period;
7495
		perf_swevent_set_period(event);
7496
	}
7497

P
Peter Zijlstra 已提交
7498 7499
	hwc->state = !(flags & PERF_EF_START);

7500
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7501
	if (WARN_ON_ONCE(!head))
7502 7503 7504
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7505
	perf_event_update_userpage(event);
7506

7507 7508 7509
	return 0;
}

P
Peter Zijlstra 已提交
7510
static void perf_swevent_del(struct perf_event *event, int flags)
7511
{
7512
	hlist_del_rcu(&event->hlist_entry);
7513 7514
}

P
Peter Zijlstra 已提交
7515
static void perf_swevent_start(struct perf_event *event, int flags)
7516
{
P
Peter Zijlstra 已提交
7517
	event->hw.state = 0;
7518
}
I
Ingo Molnar 已提交
7519

P
Peter Zijlstra 已提交
7520
static void perf_swevent_stop(struct perf_event *event, int flags)
7521
{
P
Peter Zijlstra 已提交
7522
	event->hw.state = PERF_HES_STOPPED;
7523 7524
}

7525 7526
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7527
swevent_hlist_deref(struct swevent_htable *swhash)
7528
{
7529 7530
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7531 7532
}

7533
static void swevent_hlist_release(struct swevent_htable *swhash)
7534
{
7535
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7536

7537
	if (!hlist)
7538 7539
		return;

7540
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7541
	kfree_rcu(hlist, rcu_head);
7542 7543
}

7544
static void swevent_hlist_put_cpu(int cpu)
7545
{
7546
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7547

7548
	mutex_lock(&swhash->hlist_mutex);
7549

7550 7551
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7552

7553
	mutex_unlock(&swhash->hlist_mutex);
7554 7555
}

7556
static void swevent_hlist_put(void)
7557 7558 7559 7560
{
	int cpu;

	for_each_possible_cpu(cpu)
7561
		swevent_hlist_put_cpu(cpu);
7562 7563
}

7564
static int swevent_hlist_get_cpu(int cpu)
7565
{
7566
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7567 7568
	int err = 0;

7569 7570
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7571 7572 7573 7574 7575 7576 7577
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7578
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7579
	}
7580
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7581
exit:
7582
	mutex_unlock(&swhash->hlist_mutex);
7583 7584 7585 7586

	return err;
}

7587
static int swevent_hlist_get(void)
7588
{
7589
	int err, cpu, failed_cpu;
7590 7591 7592

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7593
		err = swevent_hlist_get_cpu(cpu);
7594 7595 7596 7597 7598 7599 7600 7601
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7602
fail:
7603 7604 7605
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7606
		swevent_hlist_put_cpu(cpu);
7607 7608 7609 7610 7611 7612
	}

	put_online_cpus();
	return err;
}

7613
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7614

7615 7616 7617
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7618

7619 7620
	WARN_ON(event->parent);

7621
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7622
	swevent_hlist_put();
7623 7624 7625 7626
}

static int perf_swevent_init(struct perf_event *event)
{
7627
	u64 event_id = event->attr.config;
7628 7629 7630 7631

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7632 7633 7634 7635 7636 7637
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7638 7639 7640 7641 7642 7643 7644 7645 7646
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7647
	if (event_id >= PERF_COUNT_SW_MAX)
7648 7649 7650 7651 7652
		return -ENOENT;

	if (!event->parent) {
		int err;

7653
		err = swevent_hlist_get();
7654 7655 7656
		if (err)
			return err;

7657
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7658 7659 7660 7661 7662 7663 7664
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7665
	.task_ctx_nr	= perf_sw_context,
7666

7667 7668
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7669
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7670 7671 7672 7673
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7674 7675 7676
	.read		= perf_swevent_read,
};

7677 7678
#ifdef CONFIG_EVENT_TRACING

7679 7680 7681
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7682
	void *record = data->raw->frag.data;
7683

7684 7685 7686 7687
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7688 7689 7690 7691 7692 7693 7694 7695 7696
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7697 7698
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7699 7700 7701 7702
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7703 7704 7705 7706 7707 7708 7709 7710
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7730
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7731 7732
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7733 7734
{
	struct perf_sample_data data;
7735 7736
	struct perf_event *event;

7737
	struct perf_raw_record raw = {
7738 7739 7740 7741
		.frag = {
			.size = entry_size,
			.data = record,
		},
7742 7743
	};

7744
	perf_sample_data_init(&data, 0, 0);
7745 7746
	data.raw = &raw;

7747 7748
	perf_trace_buf_update(record, event_type);

7749
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7750
		if (perf_tp_event_match(event, &data, regs))
7751
			perf_swevent_event(event, count, &data, regs);
7752
	}
7753

7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7779
	perf_swevent_put_recursion_context(rctx);
7780 7781 7782
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7783
static void tp_perf_event_destroy(struct perf_event *event)
7784
{
7785
	perf_trace_destroy(event);
7786 7787
}

7788
static int perf_tp_event_init(struct perf_event *event)
7789
{
7790 7791
	int err;

7792 7793 7794
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7795 7796 7797 7798 7799 7800
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7801 7802
	err = perf_trace_init(event);
	if (err)
7803
		return err;
7804

7805
	event->destroy = tp_perf_event_destroy;
7806

7807 7808 7809 7810
	return 0;
}

static struct pmu perf_tracepoint = {
7811 7812
	.task_ctx_nr	= perf_sw_context,

7813
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7814 7815 7816 7817
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7818 7819 7820 7821 7822
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7823
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7824
}
L
Li Zefan 已提交
7825 7826 7827 7828 7829 7830

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
7846
	ret = BPF_PROG_RUN(event->prog, &ctx);
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

7899 7900
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
7901
	bool is_kprobe, is_tracepoint;
7902 7903
	struct bpf_prog *prog;

7904 7905 7906 7907
	if (event->attr.type == PERF_TYPE_HARDWARE ||
	    event->attr.type == PERF_TYPE_SOFTWARE)
		return perf_event_set_bpf_handler(event, prog_fd);

7908 7909 7910 7911 7912 7913
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7914 7915 7916 7917
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
7918 7919 7920 7921 7922 7923
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7924 7925
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7926 7927 7928 7929 7930
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

7931 7932 7933 7934 7935 7936 7937 7938
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
7939 7940 7941 7942 7943 7944 7945 7946 7947
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

7948 7949
	perf_event_free_bpf_handler(event);

7950 7951 7952 7953 7954 7955
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
7956
		bpf_prog_put(prog);
7957 7958 7959
	}
}

7960
#else
L
Li Zefan 已提交
7961

7962
static inline void perf_tp_register(void)
7963 7964
{
}
L
Li Zefan 已提交
7965 7966 7967 7968 7969

static void perf_event_free_filter(struct perf_event *event)
{
}

7970 7971 7972 7973 7974 7975 7976 7977
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7978
#endif /* CONFIG_EVENT_TRACING */
7979

7980
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7981
void perf_bp_event(struct perf_event *bp, void *data)
7982
{
7983 7984 7985
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7986
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7987

P
Peter Zijlstra 已提交
7988
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7989
		perf_swevent_event(bp, 1, &sample, regs);
7990 7991 7992
}
#endif

7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8098 8099 8100
	if (!ifh->nr_file_filters)
		return;

8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8111 8112 8113 8114 8115
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8130
	perf_event_stop(event, 1);
8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8152
	IF_ACT_NONE = -1,
8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8176
	{ IF_ACT_NONE,		NULL },
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8248 8249 8250 8251
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8271
			ret = -EINVAL;
8272 8273 8274 8275 8276 8277 8278
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8306 8307

				event->addr_filters.nr_file_filters++;
8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
8349
		goto fail_clear_files;
8350 8351

	ret = event->pmu->addr_filters_validate(&filters);
8352 8353
	if (ret)
		goto fail_free_filters;
8354 8355 8356 8357 8358 8359 8360

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

8361 8362 8363 8364 8365 8366 8367 8368
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

8369 8370 8371
	return ret;
}

8372 8373 8374 8375 8376
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8377 8378 8379
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8390 8391
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8392 8393 8394 8395 8396

	kfree(filter_str);
	return ret;
}

8397 8398 8399
/*
 * hrtimer based swevent callback
 */
8400

8401
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8402
{
8403 8404 8405 8406 8407
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8408

8409
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8410 8411 8412 8413

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8414
	event->pmu->read(event);
8415

8416
	perf_sample_data_init(&data, 0, event->hw.last_period);
8417 8418 8419
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8420
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8421
			if (__perf_event_overflow(event, 1, &data, regs))
8422 8423
				ret = HRTIMER_NORESTART;
	}
8424

8425 8426
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8427

8428
	return ret;
8429 8430
}

8431
static void perf_swevent_start_hrtimer(struct perf_event *event)
8432
{
8433
	struct hw_perf_event *hwc = &event->hw;
8434 8435 8436 8437
	s64 period;

	if (!is_sampling_event(event))
		return;
8438

8439 8440 8441 8442
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8443

8444 8445 8446 8447
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8448 8449
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8450
}
8451 8452

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8453
{
8454 8455
	struct hw_perf_event *hwc = &event->hw;

8456
	if (is_sampling_event(event)) {
8457
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8458
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8459 8460 8461

		hrtimer_cancel(&hwc->hrtimer);
	}
8462 8463
}

P
Peter Zijlstra 已提交
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8484
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8485 8486 8487 8488
		event->attr.freq = 0;
	}
}

8489 8490 8491 8492 8493
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8494
{
8495 8496 8497
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8498
	now = local_clock();
8499 8500
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8501 8502
}

P
Peter Zijlstra 已提交
8503
static void cpu_clock_event_start(struct perf_event *event, int flags)
8504
{
P
Peter Zijlstra 已提交
8505
	local64_set(&event->hw.prev_count, local_clock());
8506 8507 8508
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8509
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8510
{
8511 8512 8513
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8514

P
Peter Zijlstra 已提交
8515 8516 8517 8518
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8519
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8520 8521 8522 8523 8524 8525 8526 8527 8528

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8529 8530 8531 8532
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8533

8534 8535 8536 8537 8538 8539 8540 8541
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8542 8543 8544 8545 8546 8547
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8548 8549
	perf_swevent_init_hrtimer(event);

8550
	return 0;
8551 8552
}

8553
static struct pmu perf_cpu_clock = {
8554 8555
	.task_ctx_nr	= perf_sw_context,

8556 8557
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8558
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8559 8560 8561 8562
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8563 8564 8565 8566 8567 8568 8569 8570
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8571
{
8572 8573
	u64 prev;
	s64 delta;
8574

8575 8576 8577 8578
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8579

P
Peter Zijlstra 已提交
8580
static void task_clock_event_start(struct perf_event *event, int flags)
8581
{
P
Peter Zijlstra 已提交
8582
	local64_set(&event->hw.prev_count, event->ctx->time);
8583 8584 8585
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8586
static void task_clock_event_stop(struct perf_event *event, int flags)
8587 8588 8589
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8590 8591 8592 8593 8594 8595
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8596
	perf_event_update_userpage(event);
8597

P
Peter Zijlstra 已提交
8598 8599 8600 8601 8602 8603
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8604 8605 8606 8607
}

static void task_clock_event_read(struct perf_event *event)
{
8608 8609 8610
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8611 8612 8613 8614 8615

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8616
{
8617 8618 8619 8620 8621 8622
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8623 8624 8625 8626 8627 8628
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8629 8630
	perf_swevent_init_hrtimer(event);

8631
	return 0;
L
Li Zefan 已提交
8632 8633
}

8634
static struct pmu perf_task_clock = {
8635 8636
	.task_ctx_nr	= perf_sw_context,

8637 8638
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8639
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8640 8641 8642 8643
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8644 8645
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8646

P
Peter Zijlstra 已提交
8647
static void perf_pmu_nop_void(struct pmu *pmu)
8648 8649
{
}
L
Li Zefan 已提交
8650

8651 8652 8653 8654
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8655
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8656
{
P
Peter Zijlstra 已提交
8657
	return 0;
L
Li Zefan 已提交
8658 8659
}

8660
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8661 8662

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8663
{
8664 8665 8666 8667 8668
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8669
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8670 8671
}

P
Peter Zijlstra 已提交
8672 8673
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8674 8675 8676 8677 8678 8679 8680
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8681 8682 8683
	perf_pmu_enable(pmu);
	return 0;
}
8684

P
Peter Zijlstra 已提交
8685
static void perf_pmu_cancel_txn(struct pmu *pmu)
8686
{
8687 8688 8689 8690 8691 8692 8693
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8694
	perf_pmu_enable(pmu);
8695 8696
}

8697 8698
static int perf_event_idx_default(struct perf_event *event)
{
8699
	return 0;
8700 8701
}

P
Peter Zijlstra 已提交
8702 8703 8704 8705
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8706
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8707
{
P
Peter Zijlstra 已提交
8708
	struct pmu *pmu;
8709

P
Peter Zijlstra 已提交
8710 8711
	if (ctxn < 0)
		return NULL;
8712

P
Peter Zijlstra 已提交
8713 8714 8715 8716
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8717

P
Peter Zijlstra 已提交
8718
	return NULL;
8719 8720
}

8721 8722
static void free_pmu_context(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
8723
	mutex_lock(&pmus_lock);
8724
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8725
	mutex_unlock(&pmus_lock);
8726
}
8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8741
static struct idr pmu_idr;
8742

P
Peter Zijlstra 已提交
8743 8744 8745 8746 8747 8748 8749
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8750
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8751

8752 8753 8754 8755 8756 8757 8758 8759 8760 8761
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8762 8763
static DEFINE_MUTEX(mux_interval_mutex);

8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8783
	mutex_lock(&mux_interval_mutex);
8784 8785 8786
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8787 8788
	get_online_cpus();
	for_each_online_cpu(cpu) {
8789 8790 8791 8792
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8793 8794
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8795
	}
8796 8797
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
8798 8799 8800

	return count;
}
8801
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8802

8803 8804 8805 8806
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8807
};
8808
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8809 8810 8811 8812

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8813
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8829
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8842 8843 8844 8845 8846 8847 8848
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8849 8850 8851
out:
	return ret;

8852 8853 8854
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8855 8856 8857 8858 8859
free_dev:
	put_device(pmu->dev);
	goto out;
}

8860
static struct lock_class_key cpuctx_mutex;
8861
static struct lock_class_key cpuctx_lock;
8862

8863
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8864
{
P
Peter Zijlstra 已提交
8865
	int cpu, ret;
8866

8867
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
8868 8869 8870 8871
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
8872

P
Peter Zijlstra 已提交
8873 8874 8875 8876 8877 8878
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
8879 8880 8881
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
8882 8883 8884 8885 8886
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
8887 8888 8889 8890 8891 8892
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
8893
skip_type:
8894 8895 8896
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

8897 8898 8899 8900 8901 8902 8903
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8904 8905 8906 8907 8908
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
8909 8910 8911
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
8912

W
Wei Yongjun 已提交
8913
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
8914 8915
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
8916
		goto free_dev;
8917

P
Peter Zijlstra 已提交
8918 8919 8920 8921
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8922
		__perf_event_init_context(&cpuctx->ctx);
8923
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8924
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
8925
		cpuctx->ctx.pmu = pmu;
8926

8927
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
8928
	}
8929

P
Peter Zijlstra 已提交
8930
got_cpu_context:
P
Peter Zijlstra 已提交
8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
8942
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
8943 8944
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
8945
		}
8946
	}
8947

P
Peter Zijlstra 已提交
8948 8949 8950 8951 8952
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

8953 8954 8955
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

8956
	list_add_rcu(&pmu->entry, &pmus);
8957
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
8958 8959
	ret = 0;
unlock:
8960 8961
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
8962
	return ret;
P
Peter Zijlstra 已提交
8963

P
Peter Zijlstra 已提交
8964 8965 8966 8967
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
8968 8969 8970 8971
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
8972 8973 8974
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
8975
}
8976
EXPORT_SYMBOL_GPL(perf_pmu_register);
8977

8978
void perf_pmu_unregister(struct pmu *pmu)
8979
{
8980 8981
	int remove_device;

8982
	mutex_lock(&pmus_lock);
8983
	remove_device = pmu_bus_running;
8984 8985
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
8986

8987
	/*
P
Peter Zijlstra 已提交
8988 8989
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
8990
	 */
8991
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
8992
	synchronize_rcu();
8993

P
Peter Zijlstra 已提交
8994
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
8995 8996
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
8997 8998 8999 9000 9001 9002
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9003
	free_pmu_context(pmu);
9004
}
9005
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9006

9007 9008
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9009
	struct perf_event_context *ctx = NULL;
9010 9011 9012 9013
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9014 9015

	if (event->group_leader != event) {
9016 9017 9018 9019 9020 9021
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9022 9023 9024
		BUG_ON(!ctx);
	}

9025 9026
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9027 9028 9029 9030

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9031 9032 9033 9034 9035 9036
	if (ret)
		module_put(pmu->module);

	return ret;
}

9037
static struct pmu *perf_init_event(struct perf_event *event)
9038 9039 9040
{
	struct pmu *pmu = NULL;
	int idx;
9041
	int ret;
9042 9043

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9044

9045 9046 9047 9048 9049 9050 9051 9052
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9053 9054 9055
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9056
	if (pmu) {
9057
		ret = perf_try_init_event(pmu, event);
9058 9059
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9060
		goto unlock;
9061
	}
P
Peter Zijlstra 已提交
9062

9063
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9064
		ret = perf_try_init_event(pmu, event);
9065
		if (!ret)
P
Peter Zijlstra 已提交
9066
			goto unlock;
9067

9068 9069
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9070
			goto unlock;
9071
		}
9072
	}
P
Peter Zijlstra 已提交
9073 9074
	pmu = ERR_PTR(-ENOENT);
unlock:
9075
	srcu_read_unlock(&pmus_srcu, idx);
9076

9077
	return pmu;
9078 9079
}

9080 9081 9082 9083 9084 9085 9086 9087 9088
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9089 9090 9091 9092 9093 9094 9095
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9096 9097
static void account_pmu_sb_event(struct perf_event *event)
{
9098
	if (is_sb_event(event))
9099 9100 9101
		attach_sb_event(event);
}

9102 9103 9104 9105 9106 9107 9108 9109 9110
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9132 9133
static void account_event(struct perf_event *event)
{
9134 9135
	bool inc = false;

9136 9137 9138
	if (event->parent)
		return;

9139
	if (event->attach_state & PERF_ATTACH_TASK)
9140
		inc = true;
9141 9142 9143 9144 9145 9146
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9147 9148
	if (event->attr.freq)
		account_freq_event();
9149 9150
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9151
		inc = true;
9152
	}
9153
	if (has_branch_stack(event))
9154
		inc = true;
9155
	if (is_cgroup_event(event))
9156 9157
		inc = true;

9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9180 9181

	account_event_cpu(event, event->cpu);
9182 9183

	account_pmu_sb_event(event);
9184 9185
}

T
Thomas Gleixner 已提交
9186
/*
9187
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9188
 */
9189
static struct perf_event *
9190
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9191 9192 9193
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9194
		 perf_overflow_handler_t overflow_handler,
9195
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9196
{
P
Peter Zijlstra 已提交
9197
	struct pmu *pmu;
9198 9199
	struct perf_event *event;
	struct hw_perf_event *hwc;
9200
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9201

9202 9203 9204 9205 9206
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9207
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9208
	if (!event)
9209
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9210

9211
	/*
9212
	 * Single events are their own group leaders, with an
9213 9214 9215
	 * empty sibling list:
	 */
	if (!group_leader)
9216
		group_leader = event;
9217

9218 9219
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9220

9221 9222 9223
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9224
	INIT_LIST_HEAD(&event->rb_entry);
9225
	INIT_LIST_HEAD(&event->active_entry);
9226
	INIT_LIST_HEAD(&event->addr_filters.list);
9227 9228
	INIT_HLIST_NODE(&event->hlist_entry);

9229

9230
	init_waitqueue_head(&event->waitq);
9231
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9232

9233
	mutex_init(&event->mmap_mutex);
9234
	raw_spin_lock_init(&event->addr_filters.lock);
9235

9236
	atomic_long_set(&event->refcount, 1);
9237 9238 9239 9240 9241
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9242

9243
	event->parent		= parent_event;
9244

9245
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9246
	event->id		= atomic64_inc_return(&perf_event_id);
9247

9248
	event->state		= PERF_EVENT_STATE_INACTIVE;
9249

9250 9251 9252
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9253 9254 9255
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9256
		 */
9257
		event->hw.target = task;
9258 9259
	}

9260 9261 9262 9263
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9264
	if (!overflow_handler && parent_event) {
9265
		overflow_handler = parent_event->overflow_handler;
9266
		context = parent_event->overflow_handler_context;
9267
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9280
	}
9281

9282 9283 9284
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9285 9286 9287
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9288
	} else {
9289
		event->overflow_handler = perf_event_output_forward;
9290 9291
		event->overflow_handler_context = NULL;
	}
9292

J
Jiri Olsa 已提交
9293
	perf_event__state_init(event);
9294

9295
	pmu = NULL;
9296

9297
	hwc = &event->hw;
9298
	hwc->sample_period = attr->sample_period;
9299
	if (attr->freq && attr->sample_freq)
9300
		hwc->sample_period = 1;
9301
	hwc->last_period = hwc->sample_period;
9302

9303
	local64_set(&hwc->period_left, hwc->sample_period);
9304

9305
	/*
9306
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9307
	 */
9308
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9309
		goto err_ns;
9310 9311 9312

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9313

9314 9315 9316 9317 9318 9319
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9320
	pmu = perf_init_event(event);
9321
	if (!pmu)
9322 9323
		goto err_ns;
	else if (IS_ERR(pmu)) {
9324
		err = PTR_ERR(pmu);
9325
		goto err_ns;
I
Ingo Molnar 已提交
9326
	}
9327

9328 9329 9330 9331
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
		if (!event->addr_filters_offs)
			goto err_per_task;

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9343
	if (!event->parent) {
9344
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9345
			err = get_callchain_buffers(attr->sample_max_stack);
9346
			if (err)
9347
				goto err_addr_filters;
9348
		}
9349
	}
9350

9351 9352 9353
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9354
	return event;
9355

9356 9357 9358
err_addr_filters:
	kfree(event->addr_filters_offs);

9359 9360 9361
err_per_task:
	exclusive_event_destroy(event);

9362 9363 9364
err_pmu:
	if (event->destroy)
		event->destroy(event);
9365
	module_put(pmu->module);
9366
err_ns:
9367 9368
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9369 9370 9371 9372 9373
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9374 9375
}

9376 9377
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9378 9379
{
	u32 size;
9380
	int ret;
9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9405 9406 9407
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9408 9409
	 */
	if (size > sizeof(*attr)) {
9410 9411 9412
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9413

9414 9415
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9416

9417
		for (; addr < end; addr++) {
9418 9419 9420 9421 9422 9423
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9424
		size = sizeof(*attr);
9425 9426 9427 9428 9429 9430
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9431
	if (attr->__reserved_1)
9432 9433 9434 9435 9436 9437 9438 9439
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9468 9469
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9470 9471
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9472
	}
9473

9474
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9475
		ret = perf_reg_validate(attr->sample_regs_user);
9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9494

9495 9496
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9497 9498 9499 9500 9501 9502 9503 9504 9505
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9506 9507
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9508
{
9509
	struct ring_buffer *rb = NULL;
9510 9511
	int ret = -EINVAL;

9512
	if (!output_event)
9513 9514
		goto set;

9515 9516
	/* don't allow circular references */
	if (event == output_event)
9517 9518
		goto out;

9519 9520 9521 9522 9523 9524 9525
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9526
	 * If its not a per-cpu rb, it must be the same task.
9527 9528 9529 9530
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9531 9532 9533 9534 9535 9536
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9537 9538 9539 9540 9541 9542 9543
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9544 9545 9546 9547 9548 9549 9550
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9551
set:
9552
	mutex_lock(&event->mmap_mutex);
9553 9554 9555
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9556

9557
	if (output_event) {
9558 9559 9560
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9561
			goto unlock;
9562 9563
	}

9564
	ring_buffer_attach(event, rb);
9565

9566
	ret = 0;
9567 9568 9569
unlock:
	mutex_unlock(&event->mmap_mutex);

9570 9571 9572 9573
out:
	return ret;
}

P
Peter Zijlstra 已提交
9574 9575 9576 9577 9578 9579 9580 9581 9582
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9651
/**
9652
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9653
 *
9654
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9655
 * @pid:		target pid
I
Ingo Molnar 已提交
9656
 * @cpu:		target cpu
9657
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9658
 */
9659 9660
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9661
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9662
{
9663 9664
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9665
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9666
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9667
	struct file *event_file = NULL;
9668
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9669
	struct task_struct *task = NULL;
9670
	struct pmu *pmu;
9671
	int event_fd;
9672
	int move_group = 0;
9673
	int err;
9674
	int f_flags = O_RDWR;
9675
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9676

9677
	/* for future expandability... */
S
Stephane Eranian 已提交
9678
	if (flags & ~PERF_FLAG_ALL)
9679 9680
		return -EINVAL;

9681 9682 9683
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9684

9685 9686 9687 9688 9689
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9690
	if (attr.freq) {
9691
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9692
			return -EINVAL;
9693 9694 9695
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9696 9697
	}

9698 9699 9700
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9701 9702 9703 9704 9705 9706 9707 9708 9709
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9710 9711 9712 9713
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9714 9715 9716
	if (event_fd < 0)
		return event_fd;

9717
	if (group_fd != -1) {
9718 9719
		err = perf_fget_light(group_fd, &group);
		if (err)
9720
			goto err_fd;
9721
		group_leader = group.file->private_data;
9722 9723 9724 9725 9726 9727
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9728
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9729 9730 9731 9732 9733 9734 9735
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9736 9737 9738 9739 9740 9741
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9742 9743
	get_online_cpus();

9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9762 9763 9764
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9765
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9766
				 NULL, NULL, cgroup_fd);
9767 9768
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9769
		goto err_cred;
9770 9771
	}

9772 9773
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9774
			err = -EOPNOTSUPP;
9775 9776 9777 9778
			goto err_alloc;
		}
	}

9779 9780 9781 9782 9783
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9784

9785 9786 9787 9788 9789 9790
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9791 9792 9793
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9807
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9808 9809 9810 9811 9812 9813 9814 9815
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9816 9817 9818 9819

	/*
	 * Get the target context (task or percpu):
	 */
9820
	ctx = find_get_context(pmu, task, event);
9821 9822
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9823
		goto err_alloc;
9824 9825
	}

9826 9827 9828 9829 9830
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9831
	/*
9832
	 * Look up the group leader (we will attach this event to it):
9833
	 */
9834
	if (group_leader) {
9835
		err = -EINVAL;
9836 9837

		/*
I
Ingo Molnar 已提交
9838 9839 9840 9841
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9842
			goto err_context;
9843 9844 9845 9846 9847

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9848 9849 9850
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9851
		 */
9852
		if (move_group) {
9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
9866 9867 9868 9869 9870 9871
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

9872 9873 9874
		/*
		 * Only a group leader can be exclusive or pinned
		 */
9875
		if (attr.exclusive || attr.pinned)
9876
			goto err_context;
9877 9878 9879 9880 9881
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
9882
			goto err_context;
9883
	}
T
Thomas Gleixner 已提交
9884

9885 9886
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
9887 9888
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
9889
		event_file = NULL;
9890
		goto err_context;
9891
	}
9892

9893
	if (move_group) {
9894 9895
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

9896 9897 9898 9899
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
9919 9920 9921 9922
	} else {
		mutex_lock(&ctx->mutex);
	}

9923 9924 9925 9926 9927
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
9928 9929 9930 9931 9932
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

9933 9934 9935 9936 9937 9938 9939
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
9940

9941 9942 9943
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
9944

9945 9946
	WARN_ON_ONCE(ctx->parent_ctx);

9947 9948 9949 9950 9951
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

9952
	if (move_group) {
P
Peter Zijlstra 已提交
9953 9954 9955 9956
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
9957
		perf_remove_from_context(group_leader, 0);
9958
		put_ctx(gctx);
J
Jiri Olsa 已提交
9959

9960 9961
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9962
			perf_remove_from_context(sibling, 0);
9963 9964 9965
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
9966 9967 9968 9969
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
9970
		synchronize_rcu();
P
Peter Zijlstra 已提交
9971

9972 9973 9974 9975 9976 9977 9978 9979 9980 9981
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
9982 9983
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9984
			perf_event__state_init(sibling);
9985
			perf_install_in_context(ctx, sibling, sibling->cpu);
9986 9987
			get_ctx(ctx);
		}
9988 9989 9990 9991 9992 9993 9994 9995 9996

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
9997 9998
	}

9999 10000 10001 10002 10003 10004 10005 10006 10007
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10008 10009
	event->owner = current;

10010
	perf_install_in_context(ctx, event, event->cpu);
10011
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10012

10013
	if (move_group)
10014
		perf_event_ctx_unlock(group_leader, gctx);
10015
	mutex_unlock(&ctx->mutex);
10016

10017 10018 10019 10020 10021
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10022 10023
	put_online_cpus();

10024 10025 10026
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10027

10028 10029 10030 10031 10032 10033
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10034
	fdput(group);
10035 10036
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10037

10038 10039
err_locked:
	if (move_group)
10040
		perf_event_ctx_unlock(group_leader, gctx);
10041 10042 10043
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10044
err_context:
10045
	perf_unpin_context(ctx);
10046
	put_ctx(ctx);
10047
err_alloc:
P
Peter Zijlstra 已提交
10048 10049 10050 10051 10052 10053
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10054 10055 10056
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10057
err_cpus:
10058
	put_online_cpus();
10059
err_task:
P
Peter Zijlstra 已提交
10060 10061
	if (task)
		put_task_struct(task);
10062
err_group_fd:
10063
	fdput(group);
10064 10065
err_fd:
	put_unused_fd(event_fd);
10066
	return err;
T
Thomas Gleixner 已提交
10067 10068
}

10069 10070 10071 10072 10073
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10074
 * @task: task to profile (NULL for percpu)
10075 10076 10077
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10078
				 struct task_struct *task,
10079 10080
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10081 10082
{
	struct perf_event_context *ctx;
10083
	struct perf_event *event;
10084
	int err;
10085

10086 10087 10088
	/*
	 * Get the target context (task or percpu):
	 */
10089

10090
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10091
				 overflow_handler, context, -1);
10092 10093 10094 10095
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10096

10097
	/* Mark owner so we could distinguish it from user events. */
10098
	event->owner = TASK_TOMBSTONE;
10099

10100
	ctx = find_get_context(event->pmu, task, event);
10101 10102
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10103
		goto err_free;
10104
	}
10105 10106 10107

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10108 10109 10110 10111 10112
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10113 10114
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10115
		goto err_unlock;
10116 10117
	}

10118
	perf_install_in_context(ctx, event, cpu);
10119
	perf_unpin_context(ctx);
10120 10121 10122 10123
	mutex_unlock(&ctx->mutex);

	return event;

10124 10125 10126 10127
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10128 10129 10130
err_free:
	free_event(event);
err:
10131
	return ERR_PTR(err);
10132
}
10133
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10134

10135 10136 10137 10138 10139 10140 10141 10142 10143 10144
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10145 10146 10147 10148 10149
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10150 10151
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10152
		perf_remove_from_context(event, 0);
10153
		unaccount_event_cpu(event, src_cpu);
10154
		put_ctx(src_ctx);
10155
		list_add(&event->migrate_entry, &events);
10156 10157
	}

10158 10159 10160
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10161 10162
	synchronize_rcu();

10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10187 10188
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10189 10190
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10191
		account_event_cpu(event, dst_cpu);
10192 10193 10194 10195
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10196
	mutex_unlock(&src_ctx->mutex);
10197 10198 10199
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10200
static void sync_child_event(struct perf_event *child_event,
10201
			       struct task_struct *child)
10202
{
10203
	struct perf_event *parent_event = child_event->parent;
10204
	u64 child_val;
10205

10206 10207
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10208

P
Peter Zijlstra 已提交
10209
	child_val = perf_event_count(child_event);
10210 10211 10212 10213

	/*
	 * Add back the child's count to the parent's count:
	 */
10214
	atomic64_add(child_val, &parent_event->child_count);
10215 10216 10217 10218
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10219 10220
}

10221
static void
10222 10223 10224
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10225
{
10226 10227
	struct perf_event *parent_event = child_event->parent;

10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10240 10241 10242
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10243
	if (parent_event)
10244 10245
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10246
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10247
	raw_spin_unlock_irq(&child_ctx->lock);
10248

10249
	/*
10250
	 * Parent events are governed by their filedesc, retain them.
10251
	 */
10252
	if (!parent_event) {
10253
		perf_event_wakeup(child_event);
10254
		return;
10255
	}
10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10276 10277
}

P
Peter Zijlstra 已提交
10278
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10279
{
10280
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10281 10282 10283
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10284

10285
	child_ctx = perf_pin_task_context(child, ctxn);
10286
	if (!child_ctx)
10287 10288
		return;

10289
	/*
10290 10291 10292 10293 10294 10295 10296 10297
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10298
	 */
10299
	mutex_lock(&child_ctx->mutex);
10300 10301

	/*
10302 10303 10304
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10305
	 */
10306
	raw_spin_lock_irq(&child_ctx->lock);
10307
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10308

10309
	/*
10310 10311
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10312
	 */
10313 10314 10315 10316
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10317

10318
	clone_ctx = unclone_ctx(child_ctx);
10319
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10320

10321 10322
	if (clone_ctx)
		put_ctx(clone_ctx);
10323

P
Peter Zijlstra 已提交
10324
	/*
10325 10326 10327
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10328
	 */
10329
	perf_event_task(child, child_ctx, 0);
10330

10331
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10332
		perf_event_exit_event(child_event, child_ctx, child);
10333

10334 10335 10336
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10337 10338
}

P
Peter Zijlstra 已提交
10339 10340
/*
 * When a child task exits, feed back event values to parent events.
10341 10342 10343
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10344 10345 10346
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10347
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10348 10349
	int ctxn;

P
Peter Zijlstra 已提交
10350 10351 10352 10353 10354 10355 10356 10357 10358 10359
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10360
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10361 10362 10363
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10364 10365
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10366 10367 10368 10369 10370 10371 10372 10373

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10374 10375
}

10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10388
	put_event(parent);
10389

P
Peter Zijlstra 已提交
10390
	raw_spin_lock_irq(&ctx->lock);
10391
	perf_group_detach(event);
10392
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10393
	raw_spin_unlock_irq(&ctx->lock);
10394 10395 10396
	free_event(event);
}

10397
/*
P
Peter Zijlstra 已提交
10398
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10399
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10400 10401 10402
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10403
 */
10404
void perf_event_free_task(struct task_struct *task)
10405
{
P
Peter Zijlstra 已提交
10406
	struct perf_event_context *ctx;
10407
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10408
	int ctxn;
10409

P
Peter Zijlstra 已提交
10410 10411 10412 10413
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10414

P
Peter Zijlstra 已提交
10415
		mutex_lock(&ctx->mutex);
10416
again:
P
Peter Zijlstra 已提交
10417 10418 10419
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
10420

P
Peter Zijlstra 已提交
10421 10422 10423
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
10424

P
Peter Zijlstra 已提交
10425 10426 10427
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
10428

P
Peter Zijlstra 已提交
10429
		mutex_unlock(&ctx->mutex);
10430

P
Peter Zijlstra 已提交
10431 10432
		put_ctx(ctx);
	}
10433 10434
}

10435 10436 10437 10438 10439 10440 10441 10442
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10443
struct file *perf_event_get(unsigned int fd)
10444
{
10445
	struct file *file;
10446

10447 10448 10449
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10450

10451 10452 10453 10454
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10455

10456
	return file;
10457 10458 10459 10460 10461 10462 10463 10464 10465 10466
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10478
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10479
	struct perf_event *child_event;
10480
	unsigned long flags;
P
Peter Zijlstra 已提交
10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10493
					   child,
P
Peter Zijlstra 已提交
10494
					   group_leader, parent_event,
10495
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10496 10497
	if (IS_ERR(child_event))
		return child_event;
10498

10499 10500 10501 10502 10503 10504 10505
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10506 10507
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10508
		mutex_unlock(&parent_event->child_mutex);
10509 10510 10511 10512
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10513 10514 10515 10516 10517 10518 10519
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10520
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10537 10538
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10539

10540 10541 10542 10543
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10544
	perf_event__id_header_size(child_event);
10545

P
Peter Zijlstra 已提交
10546 10547 10548
	/*
	 * Link it up in the child's context:
	 */
10549
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10550
	add_event_to_ctx(child_event, child_ctx);
10551
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10583 10584 10585 10586 10587
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10588
		   struct task_struct *child, int ctxn,
10589 10590 10591
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10592
	struct perf_event_context *child_ctx;
10593 10594 10595 10596

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10597 10598
	}

10599
	child_ctx = child->perf_event_ctxp[ctxn];
10600 10601 10602 10603 10604 10605 10606
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10607

10608
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10609 10610
		if (!child_ctx)
			return -ENOMEM;
10611

P
Peter Zijlstra 已提交
10612
		child->perf_event_ctxp[ctxn] = child_ctx;
10613 10614 10615 10616 10617 10618 10619 10620 10621
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10622 10623
}

10624
/*
10625
 * Initialize the perf_event context in task_struct
10626
 */
10627
static int perf_event_init_context(struct task_struct *child, int ctxn)
10628
{
10629
	struct perf_event_context *child_ctx, *parent_ctx;
10630 10631
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10632
	struct task_struct *parent = current;
10633
	int inherited_all = 1;
10634
	unsigned long flags;
10635
	int ret = 0;
10636

P
Peter Zijlstra 已提交
10637
	if (likely(!parent->perf_event_ctxp[ctxn]))
10638 10639
		return 0;

10640
	/*
10641 10642
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10643
	 */
P
Peter Zijlstra 已提交
10644
	parent_ctx = perf_pin_task_context(parent, ctxn);
10645 10646
	if (!parent_ctx)
		return 0;
10647

10648 10649 10650 10651 10652 10653 10654
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10655 10656 10657 10658
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10659
	mutex_lock(&parent_ctx->mutex);
10660 10661 10662 10663 10664

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10665
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10666 10667
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10668 10669 10670
		if (ret)
			break;
	}
10671

10672 10673 10674 10675 10676 10677 10678 10679 10680
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10681
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10682 10683
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10684
		if (ret)
10685
			break;
10686 10687
	}

10688 10689 10690
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10691
	child_ctx = child->perf_event_ctxp[ctxn];
10692

10693
	if (child_ctx && inherited_all) {
10694 10695 10696
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10697 10698 10699
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10700
		 */
P
Peter Zijlstra 已提交
10701
		cloned_ctx = parent_ctx->parent_ctx;
10702 10703
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10704
			child_ctx->parent_gen = parent_ctx->parent_gen;
10705 10706 10707 10708 10709
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10710 10711
	}

P
Peter Zijlstra 已提交
10712
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10713
	mutex_unlock(&parent_ctx->mutex);
10714

10715
	perf_unpin_context(parent_ctx);
10716
	put_ctx(parent_ctx);
10717

10718
	return ret;
10719 10720
}

P
Peter Zijlstra 已提交
10721 10722 10723 10724 10725 10726 10727
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10728 10729 10730 10731
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10732 10733
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10734 10735
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10736
			return ret;
P
Peter Zijlstra 已提交
10737
		}
P
Peter Zijlstra 已提交
10738 10739 10740 10741 10742
	}

	return 0;
}

10743 10744
static void __init perf_event_init_all_cpus(void)
{
10745
	struct swevent_htable *swhash;
10746 10747 10748
	int cpu;

	for_each_possible_cpu(cpu) {
10749 10750
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10751
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10752 10753 10754

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10755

10756 10757 10758
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
10759
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10760 10761 10762
	}
}

10763
int perf_event_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10764
{
P
Peter Zijlstra 已提交
10765
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10766

10767
	mutex_lock(&swhash->hlist_mutex);
10768
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10769 10770
		struct swevent_hlist *hlist;

10771 10772 10773
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10774
	}
10775
	mutex_unlock(&swhash->hlist_mutex);
10776
	return 0;
T
Thomas Gleixner 已提交
10777 10778
}

10779
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10780
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10781
{
P
Peter Zijlstra 已提交
10782
	struct perf_event_context *ctx = __info;
10783 10784
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10785

10786 10787
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10788
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10789
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10790
}
P
Peter Zijlstra 已提交
10791 10792 10793 10794 10795 10796 10797 10798 10799

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
10800
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
10801 10802 10803 10804 10805 10806 10807

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}
10808 10809 10810 10811 10812
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
10813

10814
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10815
{
P
Peter Zijlstra 已提交
10816
	perf_event_exit_cpu_context(cpu);
10817
	return 0;
T
Thomas Gleixner 已提交
10818 10819
}

P
Peter Zijlstra 已提交
10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

10840
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
10841
{
10842 10843
	int ret;

P
Peter Zijlstra 已提交
10844 10845
	idr_init(&pmu_idr);

10846
	perf_event_init_all_cpus();
10847
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
10848 10849 10850
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
10851
	perf_tp_register();
10852
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
10853
	register_reboot_notifier(&perf_reboot_notifier);
10854 10855 10856

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10857

10858 10859 10860 10861 10862 10863
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
10864
}
P
Peter Zijlstra 已提交
10865

10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
10877
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10878

P
Peter Zijlstra 已提交
10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
10906 10907

#ifdef CONFIG_CGROUP_PERF
10908 10909
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
10910 10911 10912
{
	struct perf_cgroup *jc;

10913
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

10926
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
10927
{
10928 10929
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
10930 10931 10932 10933 10934 10935 10936
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
10937
	rcu_read_lock();
S
Stephane Eranian 已提交
10938
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10939
	rcu_read_unlock();
S
Stephane Eranian 已提交
10940 10941 10942
	return 0;
}

10943
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
10944
{
10945
	struct task_struct *task;
10946
	struct cgroup_subsys_state *css;
10947

10948
	cgroup_taskset_for_each(task, css, tset)
10949
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
10950 10951
}

10952
struct cgroup_subsys perf_event_cgrp_subsys = {
10953 10954
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
10955
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
10956 10957
};
#endif /* CONFIG_CGROUP_PERF */