core.c 183.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148
static atomic_t nr_freq_events __read_mostly;
149

P
Peter Zijlstra 已提交
150 151 152 153
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

154
/*
155
 * perf event paranoia level:
156 157
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
158
 *   1 - disallow cpu events for unpriv
159
 *   2 - disallow kernel profiling for unpriv
160
 */
161
int sysctl_perf_event_paranoid __read_mostly = 1;
162

163 164
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 166

/*
167
 * max perf event sample rate
168
 */
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

static atomic_t perf_sample_allowed_ns __read_mostly =
	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
186
	do_div(tmp, 100);
187 188
	atomic_set(&perf_sample_allowed_ns, tmp);
}
P
Peter Zijlstra 已提交
189

190 191
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
192 193 194 195 196 197 198 199 200 201
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
220 221 222

	return 0;
}
223

224 225 226 227 228 229 230 231 232 233 234 235
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
DEFINE_PER_CPU(u64, running_sample_length);

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
236
	u64 local_samples_len;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	if (atomic_read(&perf_sample_allowed_ns) == 0)
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
			"perf samples too long (%lld > %d), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
			avg_local_sample_len,
			atomic_read(&perf_sample_allowed_ns),
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

274
static atomic64_t perf_event_id;
275

276 277 278 279
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
280 281 282 283 284
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
285

286
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
287

288
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
289
{
290
	return "pmu";
T
Thomas Gleixner 已提交
291 292
}

293 294 295 296 297
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
298 299 300 301 302 303
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
320 321
#ifdef CONFIG_CGROUP_PERF

322 323 324 325 326 327 328 329 330 331 332
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
333
	struct perf_cgroup_info	__percpu *info;
334 335
};

336 337 338 339 340
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
370 371
}

372
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
373
{
374
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
423 424
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
425
	/*
426 427
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
428
	 */
429
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
430 431
		return;

432 433 434 435 436 437
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
438 439 440
}

static inline void
441 442
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
443 444 445 446
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

447 448 449 450 451 452
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
453 454 455 456
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
457
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 491
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
492 493 494 495 496 497 498 499 500

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
501 502
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
503 504 505 506 507 508 509 510 511 512 513

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
514
				WARN_ON_ONCE(cpuctx->cgrp);
515 516 517 518
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
519 520 521 522
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
523 524
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

533 534
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
535
{
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
558 559
}

560 561
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
562
{
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
581 582 583 584 585 586 587 588
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
589 590
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
591

592
	if (!f.file)
S
Stephane Eranian 已提交
593 594
		return -EBADF;

595
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
596 597 598 599
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
600 601 602 603

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

604
	/* must be done before we fput() the file */
605 606 607 608 609
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
610

S
Stephane Eranian 已提交
611 612 613 614 615 616 617 618 619
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
808
	int timer;
809 810 811 812 813

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

814 815 816 817 818 819 820 821 822
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
845
void perf_pmu_disable(struct pmu *pmu)
846
{
P
Peter Zijlstra 已提交
847 848 849
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
850 851
}

P
Peter Zijlstra 已提交
852
void perf_pmu_enable(struct pmu *pmu)
853
{
P
Peter Zijlstra 已提交
854 855 856
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
857 858
}

859 860 861 862 863 864 865
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
866
static void perf_pmu_rotate_start(struct pmu *pmu)
867
{
P
Peter Zijlstra 已提交
868
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
869
	struct list_head *head = &__get_cpu_var(rotation_list);
870

871
	WARN_ON(!irqs_disabled());
872

873
	if (list_empty(&cpuctx->rotation_list))
874
		list_add(&cpuctx->rotation_list, head);
875 876
}

877
static void get_ctx(struct perf_event_context *ctx)
878
{
879
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
880 881
}

882
static void put_ctx(struct perf_event_context *ctx)
883
{
884 885 886
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
887 888
		if (ctx->task)
			put_task_struct(ctx->task);
889
		kfree_rcu(ctx, rcu_head);
890
	}
891 892
}

893
static void unclone_ctx(struct perf_event_context *ctx)
894 895 896 897 898 899 900
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

923
/*
924
 * If we inherit events we want to return the parent event id
925 926
 * to userspace.
 */
927
static u64 primary_event_id(struct perf_event *event)
928
{
929
	u64 id = event->id;
930

931 932
	if (event->parent)
		id = event->parent->id;
933 934 935 936

	return id;
}

937
/*
938
 * Get the perf_event_context for a task and lock it.
939 940 941
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
942
static struct perf_event_context *
P
Peter Zijlstra 已提交
943
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
944
{
945
	struct perf_event_context *ctx;
946

P
Peter Zijlstra 已提交
947
retry:
948 949 950 951 952 953 954 955 956 957 958
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
959
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
960 961 962 963
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
964
		 * perf_event_task_sched_out, though the
965 966 967 968 969 970
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
971
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
972
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
973
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
974 975
			rcu_read_unlock();
			preempt_enable();
976 977
			goto retry;
		}
978 979

		if (!atomic_inc_not_zero(&ctx->refcount)) {
980
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
981 982
			ctx = NULL;
		}
983 984
	}
	rcu_read_unlock();
985
	preempt_enable();
986 987 988 989 990 991 992 993
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
994 995
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
996
{
997
	struct perf_event_context *ctx;
998 999
	unsigned long flags;

P
Peter Zijlstra 已提交
1000
	ctx = perf_lock_task_context(task, ctxn, &flags);
1001 1002
	if (ctx) {
		++ctx->pin_count;
1003
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1004 1005 1006 1007
	}
	return ctx;
}

1008
static void perf_unpin_context(struct perf_event_context *ctx)
1009 1010 1011
{
	unsigned long flags;

1012
	raw_spin_lock_irqsave(&ctx->lock, flags);
1013
	--ctx->pin_count;
1014
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1028 1029 1030
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1031 1032 1033 1034

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1035 1036 1037
	return ctx ? ctx->time : 0;
}

1038 1039
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1040
 * The caller of this function needs to hold the ctx->lock.
1041 1042 1043 1044 1045 1046 1047 1048 1049
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1061
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1062 1063
	else if (ctx->is_active)
		run_end = ctx->time;
1064 1065 1066 1067
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1068 1069 1070 1071

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1072
		run_end = perf_event_time(event);
1073 1074

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1075

1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1099
/*
1100
 * Add a event from the lists for its context.
1101 1102
 * Must be called with ctx->mutex and ctx->lock held.
 */
1103
static void
1104
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1105
{
1106 1107
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1108 1109

	/*
1110 1111 1112
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1113
	 */
1114
	if (event->group_leader == event) {
1115 1116
		struct list_head *list;

1117 1118 1119
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1120 1121
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1122
	}
P
Peter Zijlstra 已提交
1123

1124
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1125 1126
		ctx->nr_cgroups++;

1127 1128 1129
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1130
	list_add_rcu(&event->event_entry, &ctx->event_list);
1131
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1132
		perf_pmu_rotate_start(ctx->pmu);
1133 1134
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1135
		ctx->nr_stat++;
1136 1137
}

J
Jiri Olsa 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1186 1187 1188 1189 1190 1191
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1192 1193 1194
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1195 1196 1197
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1198 1199 1200
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1201 1202 1203 1204 1205 1206 1207 1208 1209
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1210 1211 1212 1213 1214 1215
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1216 1217 1218
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1219 1220 1221 1222 1223 1224 1225 1226 1227
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1228
	event->id_header_size = size;
1229 1230
}

1231 1232
static void perf_group_attach(struct perf_event *event)
{
1233
	struct perf_event *group_leader = event->group_leader, *pos;
1234

P
Peter Zijlstra 已提交
1235 1236 1237 1238 1239 1240
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1252 1253 1254 1255 1256

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1257 1258
}

1259
/*
1260
 * Remove a event from the lists for its context.
1261
 * Must be called with ctx->mutex and ctx->lock held.
1262
 */
1263
static void
1264
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1265
{
1266
	struct perf_cpu_context *cpuctx;
1267 1268 1269 1270
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1271
		return;
1272 1273 1274

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1275
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1276
		ctx->nr_cgroups--;
1277 1278 1279 1280 1281 1282 1283 1284 1285
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1286

1287 1288 1289
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1290 1291
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1292
		ctx->nr_stat--;
1293

1294
	list_del_rcu(&event->event_entry);
1295

1296 1297
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1298

1299
	update_group_times(event);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1310 1311
}

1312
static void perf_group_detach(struct perf_event *event)
1313 1314
{
	struct perf_event *sibling, *tmp;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1331
		goto out;
1332 1333 1334 1335
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1336

1337
	/*
1338 1339
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1340
	 * to whatever list we are on.
1341
	 */
1342
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1343 1344
		if (list)
			list_move_tail(&sibling->group_entry, list);
1345
		sibling->group_leader = sibling;
1346 1347 1348

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1349
	}
1350 1351 1352 1353 1354 1355

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1356 1357
}

1358 1359 1360
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1361 1362
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1363 1364
}

1365 1366
static void
event_sched_out(struct perf_event *event,
1367
		  struct perf_cpu_context *cpuctx,
1368
		  struct perf_event_context *ctx)
1369
{
1370
	u64 tstamp = perf_event_time(event);
1371 1372 1373 1374 1375 1376 1377 1378 1379
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1380
		delta = tstamp - event->tstamp_stopped;
1381
		event->tstamp_running += delta;
1382
		event->tstamp_stopped = tstamp;
1383 1384
	}

1385
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1386
		return;
1387

1388 1389 1390 1391
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1392
	}
1393
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1394
	event->pmu->del(event, 0);
1395
	event->oncpu = -1;
1396

1397
	if (!is_software_event(event))
1398 1399
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1400 1401
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1402
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1403 1404 1405
		cpuctx->exclusive = 0;
}

1406
static void
1407
group_sched_out(struct perf_event *group_event,
1408
		struct perf_cpu_context *cpuctx,
1409
		struct perf_event_context *ctx)
1410
{
1411
	struct perf_event *event;
1412
	int state = group_event->state;
1413

1414
	event_sched_out(group_event, cpuctx, ctx);
1415 1416 1417 1418

	/*
	 * Schedule out siblings (if any):
	 */
1419 1420
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1421

1422
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1423 1424 1425
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1426
/*
1427
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1428
 *
1429
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1430 1431
 * remove it from the context list.
 */
1432
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1433
{
1434 1435
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1436
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1437

1438
	raw_spin_lock(&ctx->lock);
1439 1440
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1441 1442 1443 1444
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1445
	raw_spin_unlock(&ctx->lock);
1446 1447

	return 0;
T
Thomas Gleixner 已提交
1448 1449 1450 1451
}


/*
1452
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1453
 *
1454
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1455
 * call when the task is on a CPU.
1456
 *
1457 1458
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1459 1460
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1461
 * When called from perf_event_exit_task, it's OK because the
1462
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1463
 */
1464
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1465
{
1466
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1467 1468
	struct task_struct *task = ctx->task;

1469 1470
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1471 1472
	if (!task) {
		/*
1473
		 * Per cpu events are removed via an smp call and
1474
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1475
		 */
1476
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1477 1478 1479 1480
		return;
	}

retry:
1481 1482
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1483

1484
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1485
	/*
1486 1487
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1488
	 */
1489
	if (ctx->is_active) {
1490
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1491 1492 1493 1494
		goto retry;
	}

	/*
1495 1496
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1497
	 */
1498
	list_del_event(event, ctx);
1499
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1500 1501
}

1502
/*
1503
 * Cross CPU call to disable a performance event
1504
 */
1505
int __perf_event_disable(void *info)
1506
{
1507 1508
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1509
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1510 1511

	/*
1512 1513
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1514 1515 1516
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1517
	 */
1518
	if (ctx->task && cpuctx->task_ctx != ctx)
1519
		return -EINVAL;
1520

1521
	raw_spin_lock(&ctx->lock);
1522 1523

	/*
1524
	 * If the event is on, turn it off.
1525 1526
	 * If it is in error state, leave it in error state.
	 */
1527
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1528
		update_context_time(ctx);
S
Stephane Eranian 已提交
1529
		update_cgrp_time_from_event(event);
1530 1531 1532
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1533
		else
1534 1535
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1536 1537
	}

1538
	raw_spin_unlock(&ctx->lock);
1539 1540

	return 0;
1541 1542 1543
}

/*
1544
 * Disable a event.
1545
 *
1546 1547
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1548
 * remains valid.  This condition is satisifed when called through
1549 1550 1551 1552
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1553
 * is the current context on this CPU and preemption is disabled,
1554
 * hence we can't get into perf_event_task_sched_out for this context.
1555
 */
1556
void perf_event_disable(struct perf_event *event)
1557
{
1558
	struct perf_event_context *ctx = event->ctx;
1559 1560 1561 1562
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1563
		 * Disable the event on the cpu that it's on
1564
		 */
1565
		cpu_function_call(event->cpu, __perf_event_disable, event);
1566 1567 1568
		return;
	}

P
Peter Zijlstra 已提交
1569
retry:
1570 1571
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1572

1573
	raw_spin_lock_irq(&ctx->lock);
1574
	/*
1575
	 * If the event is still active, we need to retry the cross-call.
1576
	 */
1577
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1578
		raw_spin_unlock_irq(&ctx->lock);
1579 1580 1581 1582 1583
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1584 1585 1586 1587 1588 1589 1590
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1591 1592 1593
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1594
	}
1595
	raw_spin_unlock_irq(&ctx->lock);
1596
}
1597
EXPORT_SYMBOL_GPL(perf_event_disable);
1598

S
Stephane Eranian 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1634 1635 1636 1637
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1638
static int
1639
event_sched_in(struct perf_event *event,
1640
		 struct perf_cpu_context *cpuctx,
1641
		 struct perf_event_context *ctx)
1642
{
1643 1644
	u64 tstamp = perf_event_time(event);

1645
	if (event->state <= PERF_EVENT_STATE_OFF)
1646 1647
		return 0;

1648
	event->state = PERF_EVENT_STATE_ACTIVE;
1649
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1661 1662 1663 1664 1665
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1666
	if (event->pmu->add(event, PERF_EF_START)) {
1667 1668
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1669 1670 1671
		return -EAGAIN;
	}

1672
	event->tstamp_running += tstamp - event->tstamp_stopped;
1673

S
Stephane Eranian 已提交
1674
	perf_set_shadow_time(event, ctx, tstamp);
1675

1676
	if (!is_software_event(event))
1677
		cpuctx->active_oncpu++;
1678
	ctx->nr_active++;
1679 1680
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1681

1682
	if (event->attr.exclusive)
1683 1684
		cpuctx->exclusive = 1;

1685 1686 1687
	return 0;
}

1688
static int
1689
group_sched_in(struct perf_event *group_event,
1690
	       struct perf_cpu_context *cpuctx,
1691
	       struct perf_event_context *ctx)
1692
{
1693
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1694
	struct pmu *pmu = group_event->pmu;
1695 1696
	u64 now = ctx->time;
	bool simulate = false;
1697

1698
	if (group_event->state == PERF_EVENT_STATE_OFF)
1699 1700
		return 0;

P
Peter Zijlstra 已提交
1701
	pmu->start_txn(pmu);
1702

1703
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1704
		pmu->cancel_txn(pmu);
1705
		perf_cpu_hrtimer_restart(cpuctx);
1706
		return -EAGAIN;
1707
	}
1708 1709 1710 1711

	/*
	 * Schedule in siblings as one group (if any):
	 */
1712
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1713
		if (event_sched_in(event, cpuctx, ctx)) {
1714
			partial_group = event;
1715 1716 1717 1718
			goto group_error;
		}
	}

1719
	if (!pmu->commit_txn(pmu))
1720
		return 0;
1721

1722 1723 1724 1725
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1736
	 */
1737 1738
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1739 1740 1741 1742 1743 1744 1745 1746
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1747
	}
1748
	event_sched_out(group_event, cpuctx, ctx);
1749

P
Peter Zijlstra 已提交
1750
	pmu->cancel_txn(pmu);
1751

1752 1753
	perf_cpu_hrtimer_restart(cpuctx);

1754 1755 1756
	return -EAGAIN;
}

1757
/*
1758
 * Work out whether we can put this event group on the CPU now.
1759
 */
1760
static int group_can_go_on(struct perf_event *event,
1761 1762 1763 1764
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1765
	 * Groups consisting entirely of software events can always go on.
1766
	 */
1767
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1768 1769 1770
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1771
	 * events can go on.
1772 1773 1774 1775 1776
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1777
	 * events on the CPU, it can't go on.
1778
	 */
1779
	if (event->attr.exclusive && cpuctx->active_oncpu)
1780 1781 1782 1783 1784 1785 1786 1787
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1788 1789
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1790
{
1791 1792
	u64 tstamp = perf_event_time(event);

1793
	list_add_event(event, ctx);
1794
	perf_group_attach(event);
1795 1796 1797
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1798 1799
}

1800 1801 1802 1803 1804 1805
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1819
/*
1820
 * Cross CPU call to install and enable a performance event
1821 1822
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1823
 */
1824
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1825
{
1826 1827
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1828
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1829 1830 1831
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1832
	perf_ctx_lock(cpuctx, task_ctx);
1833
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1834 1835

	/*
1836
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1837
	 */
1838
	if (task_ctx)
1839
		task_ctx_sched_out(task_ctx);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1854 1855
		task = task_ctx->task;
	}
1856

1857
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1858

1859
	update_context_time(ctx);
S
Stephane Eranian 已提交
1860 1861 1862 1863 1864 1865
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1866

1867
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1868

1869
	/*
1870
	 * Schedule everything back in
1871
	 */
1872
	perf_event_sched_in(cpuctx, task_ctx, task);
1873 1874 1875

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1876 1877

	return 0;
T
Thomas Gleixner 已提交
1878 1879 1880
}

/*
1881
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1882
 *
1883 1884
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1885
 *
1886
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1887 1888 1889 1890
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1891 1892
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1893 1894 1895 1896
			int cpu)
{
	struct task_struct *task = ctx->task;

1897 1898
	lockdep_assert_held(&ctx->mutex);

1899
	event->ctx = ctx;
1900 1901
	if (event->cpu != -1)
		event->cpu = cpu;
1902

T
Thomas Gleixner 已提交
1903 1904
	if (!task) {
		/*
1905
		 * Per cpu events are installed via an smp call and
1906
		 * the install is always successful.
T
Thomas Gleixner 已提交
1907
		 */
1908
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1909 1910 1911 1912
		return;
	}

retry:
1913 1914
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1915

1916
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1917
	/*
1918 1919
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1920
	 */
1921
	if (ctx->is_active) {
1922
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1923 1924 1925 1926
		goto retry;
	}

	/*
1927 1928
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1929
	 */
1930
	add_event_to_ctx(event, ctx);
1931
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1932 1933
}

1934
/*
1935
 * Put a event into inactive state and update time fields.
1936 1937 1938 1939 1940 1941
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1942
static void __perf_event_mark_enabled(struct perf_event *event)
1943
{
1944
	struct perf_event *sub;
1945
	u64 tstamp = perf_event_time(event);
1946

1947
	event->state = PERF_EVENT_STATE_INACTIVE;
1948
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1949
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950 1951
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1952
	}
1953 1954
}

1955
/*
1956
 * Cross CPU call to enable a performance event
1957
 */
1958
static int __perf_event_enable(void *info)
1959
{
1960 1961 1962
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1963
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1964
	int err;
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1976
		return -EINVAL;
1977

1978
	raw_spin_lock(&ctx->lock);
1979
	update_context_time(ctx);
1980

1981
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1982
		goto unlock;
S
Stephane Eranian 已提交
1983 1984 1985 1986

	/*
	 * set current task's cgroup time reference point
	 */
1987
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1988

1989
	__perf_event_mark_enabled(event);
1990

S
Stephane Eranian 已提交
1991 1992 1993
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1994
		goto unlock;
S
Stephane Eranian 已提交
1995
	}
1996

1997
	/*
1998
	 * If the event is in a group and isn't the group leader,
1999
	 * then don't put it on unless the group is on.
2000
	 */
2001
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2002
		goto unlock;
2003

2004
	if (!group_can_go_on(event, cpuctx, 1)) {
2005
		err = -EEXIST;
2006
	} else {
2007
		if (event == leader)
2008
			err = group_sched_in(event, cpuctx, ctx);
2009
		else
2010
			err = event_sched_in(event, cpuctx, ctx);
2011
	}
2012 2013 2014

	if (err) {
		/*
2015
		 * If this event can't go on and it's part of a
2016 2017
		 * group, then the whole group has to come off.
		 */
2018
		if (leader != event) {
2019
			group_sched_out(leader, cpuctx, ctx);
2020 2021
			perf_cpu_hrtimer_restart(cpuctx);
		}
2022
		if (leader->attr.pinned) {
2023
			update_group_times(leader);
2024
			leader->state = PERF_EVENT_STATE_ERROR;
2025
		}
2026 2027
	}

P
Peter Zijlstra 已提交
2028
unlock:
2029
	raw_spin_unlock(&ctx->lock);
2030 2031

	return 0;
2032 2033 2034
}

/*
2035
 * Enable a event.
2036
 *
2037 2038
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2039
 * remains valid.  This condition is satisfied when called through
2040 2041
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2042
 */
2043
void perf_event_enable(struct perf_event *event)
2044
{
2045
	struct perf_event_context *ctx = event->ctx;
2046 2047 2048 2049
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2050
		 * Enable the event on the cpu that it's on
2051
		 */
2052
		cpu_function_call(event->cpu, __perf_event_enable, event);
2053 2054 2055
		return;
	}

2056
	raw_spin_lock_irq(&ctx->lock);
2057
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2058 2059 2060
		goto out;

	/*
2061 2062
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2063 2064 2065 2066
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2067 2068
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2069

P
Peter Zijlstra 已提交
2070
retry:
2071
	if (!ctx->is_active) {
2072
		__perf_event_mark_enabled(event);
2073 2074 2075
		goto out;
	}

2076
	raw_spin_unlock_irq(&ctx->lock);
2077 2078 2079

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2080

2081
	raw_spin_lock_irq(&ctx->lock);
2082 2083

	/*
2084
	 * If the context is active and the event is still off,
2085 2086
	 * we need to retry the cross-call.
	 */
2087 2088 2089 2090 2091 2092
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2093
		goto retry;
2094
	}
2095

P
Peter Zijlstra 已提交
2096
out:
2097
	raw_spin_unlock_irq(&ctx->lock);
2098
}
2099
EXPORT_SYMBOL_GPL(perf_event_enable);
2100

2101
int perf_event_refresh(struct perf_event *event, int refresh)
2102
{
2103
	/*
2104
	 * not supported on inherited events
2105
	 */
2106
	if (event->attr.inherit || !is_sampling_event(event))
2107 2108
		return -EINVAL;

2109 2110
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2111 2112

	return 0;
2113
}
2114
EXPORT_SYMBOL_GPL(perf_event_refresh);
2115

2116 2117 2118
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2119
{
2120
	struct perf_event *event;
2121
	int is_active = ctx->is_active;
2122

2123
	ctx->is_active &= ~event_type;
2124
	if (likely(!ctx->nr_events))
2125 2126
		return;

2127
	update_context_time(ctx);
S
Stephane Eranian 已提交
2128
	update_cgrp_time_from_cpuctx(cpuctx);
2129
	if (!ctx->nr_active)
2130
		return;
2131

P
Peter Zijlstra 已提交
2132
	perf_pmu_disable(ctx->pmu);
2133
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134 2135
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2136
	}
2137

2138
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2141
	}
P
Peter Zijlstra 已提交
2142
	perf_pmu_enable(ctx->pmu);
2143 2144
}

2145 2146 2147
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2148 2149 2150 2151
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2152
 * in them directly with an fd; we can only enable/disable all
2153
 * events via prctl, or enable/disable all events in a family
2154 2155
 * via ioctl, which will have the same effect on both contexts.
 */
2156 2157
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2158 2159
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160
		&& ctx1->parent_gen == ctx2->parent_gen
2161
		&& !ctx1->pin_count && !ctx2->pin_count;
2162 2163
}

2164 2165
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2166 2167 2168
{
	u64 value;

2169
	if (!event->attr.inherit_stat)
2170 2171 2172
		return;

	/*
2173
	 * Update the event value, we cannot use perf_event_read()
2174 2175
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2176
	 * we know the event must be on the current CPU, therefore we
2177 2178
	 * don't need to use it.
	 */
2179 2180
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2181 2182
		event->pmu->read(event);
		/* fall-through */
2183

2184 2185
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2186 2187 2188 2189 2190 2191 2192
		break;

	default:
		break;
	}

	/*
2193
	 * In order to keep per-task stats reliable we need to flip the event
2194 2195
	 * values when we flip the contexts.
	 */
2196 2197 2198
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2199

2200 2201
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2202

2203
	/*
2204
	 * Since we swizzled the values, update the user visible data too.
2205
	 */
2206 2207
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2208 2209 2210 2211 2212
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2213 2214
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2215
{
2216
	struct perf_event *event, *next_event;
2217 2218 2219 2220

	if (!ctx->nr_stat)
		return;

2221 2222
	update_context_time(ctx);

2223 2224
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2225

2226 2227
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2228

2229 2230
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2231

2232
		__perf_event_sync_stat(event, next_event);
2233

2234 2235
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2236 2237 2238
	}
}

2239 2240
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2241
{
P
Peter Zijlstra 已提交
2242
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243 2244
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2245
	struct perf_cpu_context *cpuctx;
2246
	int do_switch = 1;
T
Thomas Gleixner 已提交
2247

P
Peter Zijlstra 已提交
2248 2249
	if (likely(!ctx))
		return;
2250

P
Peter Zijlstra 已提交
2251 2252
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2253 2254
		return;

2255 2256
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2257
	next_ctx = next->perf_event_ctxp[ctxn];
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2269 2270
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271
		if (context_equiv(ctx, next_ctx)) {
2272 2273
			/*
			 * XXX do we need a memory barrier of sorts
2274
			 * wrt to rcu_dereference() of perf_event_ctxp
2275
			 */
P
Peter Zijlstra 已提交
2276 2277
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2278 2279 2280
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2281

2282
			perf_event_sync_stat(ctx, next_ctx);
2283
		}
2284 2285
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2286
	}
2287
	rcu_read_unlock();
2288

2289
	if (do_switch) {
2290
		raw_spin_lock(&ctx->lock);
2291
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292
		cpuctx->task_ctx = NULL;
2293
		raw_spin_unlock(&ctx->lock);
2294
	}
T
Thomas Gleixner 已提交
2295 2296
}

P
Peter Zijlstra 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2311 2312
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2313 2314 2315 2316 2317
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2318 2319 2320 2321 2322 2323 2324

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2326 2327
}

2328
static void task_ctx_sched_out(struct perf_event_context *ctx)
2329
{
P
Peter Zijlstra 已提交
2330
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2331

2332 2333
	if (!cpuctx->task_ctx)
		return;
2334 2335 2336 2337

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2338
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339 2340 2341
	cpuctx->task_ctx = NULL;
}

2342 2343 2344 2345 2346 2347 2348
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2349 2350
}

2351
static void
2352
ctx_pinned_sched_in(struct perf_event_context *ctx,
2353
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2354
{
2355
	struct perf_event *event;
T
Thomas Gleixner 已提交
2356

2357 2358
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2359
			continue;
2360
		if (!event_filter_match(event))
2361 2362
			continue;

S
Stephane Eranian 已提交
2363 2364 2365 2366
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2367
		if (group_can_go_on(event, cpuctx, 1))
2368
			group_sched_in(event, cpuctx, ctx);
2369 2370 2371 2372 2373

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2374 2375 2376
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2377
		}
2378
	}
2379 2380 2381 2382
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2383
		      struct perf_cpu_context *cpuctx)
2384 2385 2386
{
	struct perf_event *event;
	int can_add_hw = 1;
2387

2388 2389 2390
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2391
			continue;
2392 2393
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2394
		 * of events:
2395
		 */
2396
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2397 2398
			continue;

S
Stephane Eranian 已提交
2399 2400 2401 2402
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2403
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404
			if (group_sched_in(event, cpuctx, ctx))
2405
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2406
		}
T
Thomas Gleixner 已提交
2407
	}
2408 2409 2410 2411 2412
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2413 2414
	     enum event_type_t event_type,
	     struct task_struct *task)
2415
{
S
Stephane Eranian 已提交
2416
	u64 now;
2417
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2418

2419
	ctx->is_active |= event_type;
2420
	if (likely(!ctx->nr_events))
2421
		return;
2422

S
Stephane Eranian 已提交
2423 2424
	now = perf_clock();
	ctx->timestamp = now;
2425
	perf_cgroup_set_timestamp(task, ctx);
2426 2427 2428 2429
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2430
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431
		ctx_pinned_sched_in(ctx, cpuctx);
2432 2433

	/* Then walk through the lower prio flexible groups */
2434
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435
		ctx_flexible_sched_in(ctx, cpuctx);
2436 2437
}

2438
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2439 2440
			     enum event_type_t event_type,
			     struct task_struct *task)
2441 2442 2443
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2444
	ctx_sched_in(ctx, cpuctx, event_type, task);
2445 2446
}

S
Stephane Eranian 已提交
2447 2448
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2449
{
P
Peter Zijlstra 已提交
2450
	struct perf_cpu_context *cpuctx;
2451

P
Peter Zijlstra 已提交
2452
	cpuctx = __get_cpu_context(ctx);
2453 2454 2455
	if (cpuctx->task_ctx == ctx)
		return;

2456
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2457
	perf_pmu_disable(ctx->pmu);
2458 2459 2460 2461 2462 2463 2464
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2465 2466
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2467

2468 2469
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2470 2471 2472
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2473 2474 2475 2476
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2477
	perf_pmu_rotate_start(ctx->pmu);
2478 2479
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2551 2552
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2562
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2563
	}
S
Stephane Eranian 已提交
2564 2565 2566 2567 2568 2569
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570
		perf_cgroup_sched_in(prev, task);
2571 2572 2573 2574

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2604
#define REDUCE_FLS(a, b)		\
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2644 2645 2646
	if (!divisor)
		return dividend;

2647 2648 2649
	return div64_u64(dividend, divisor);
}

2650 2651 2652
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2653
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2654
{
2655
	struct hw_perf_event *hwc = &event->hw;
2656
	s64 period, sample_period;
2657 2658
	s64 delta;

2659
	period = perf_calculate_period(event, nsec, count);
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2670

2671
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2672 2673 2674
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2675
		local64_set(&hwc->period_left, 0);
2676 2677 2678

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2679
	}
2680 2681
}

2682 2683 2684 2685 2686 2687 2688
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2689
{
2690 2691
	struct perf_event *event;
	struct hw_perf_event *hwc;
2692
	u64 now, period = TICK_NSEC;
2693
	s64 delta;
2694

2695 2696 2697 2698 2699 2700
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2701 2702
		return;

2703
	raw_spin_lock(&ctx->lock);
2704
	perf_pmu_disable(ctx->pmu);
2705

2706
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2708 2709
			continue;

2710
		if (!event_filter_match(event))
2711 2712
			continue;

2713
		hwc = &event->hw;
2714

2715 2716
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2717
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2718
			event->pmu->start(event, 0);
2719 2720
		}

2721
		if (!event->attr.freq || !event->attr.sample_freq)
2722 2723
			continue;

2724 2725 2726 2727 2728
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2729
		now = local64_read(&event->count);
2730 2731
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2732

2733 2734 2735
		/*
		 * restart the event
		 * reload only if value has changed
2736 2737 2738
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2739
		 */
2740
		if (delta > 0)
2741
			perf_adjust_period(event, period, delta, false);
2742 2743

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2744
	}
2745

2746
	perf_pmu_enable(ctx->pmu);
2747
	raw_spin_unlock(&ctx->lock);
2748 2749
}

2750
/*
2751
 * Round-robin a context's events:
2752
 */
2753
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2754
{
2755 2756 2757 2758 2759 2760
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2761 2762
}

2763
/*
2764 2765 2766
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2767
 */
2768
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2769
{
P
Peter Zijlstra 已提交
2770
	struct perf_event_context *ctx = NULL;
2771
	int rotate = 0, remove = 1;
2772

2773
	if (cpuctx->ctx.nr_events) {
2774
		remove = 0;
2775 2776 2777
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2778

P
Peter Zijlstra 已提交
2779
	ctx = cpuctx->task_ctx;
2780
	if (ctx && ctx->nr_events) {
2781
		remove = 0;
2782 2783 2784
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2785

2786
	if (!rotate)
2787 2788
		goto done;

2789
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2790
	perf_pmu_disable(cpuctx->ctx.pmu);
2791

2792 2793 2794
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2795

2796 2797 2798
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2799

2800
	perf_event_sched_in(cpuctx, ctx, current);
2801

2802 2803
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2804
done:
2805 2806
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2807 2808

	return rotate;
2809 2810
}

2811 2812 2813
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2814
	if (atomic_read(&nr_freq_events) ||
2815
	    __this_cpu_read(perf_throttled_count))
2816
		return false;
2817 2818
	else
		return true;
2819 2820 2821
}
#endif

2822 2823 2824 2825
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2826 2827
	struct perf_event_context *ctx;
	int throttled;
2828

2829 2830
	WARN_ON(!irqs_disabled());

2831 2832 2833
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2834
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2835 2836 2837 2838 2839 2840
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2841
	}
T
Thomas Gleixner 已提交
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2854
	__perf_event_mark_enabled(event);
2855 2856 2857 2858

	return 1;
}

2859
/*
2860
 * Enable all of a task's events that have been marked enable-on-exec.
2861 2862
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2863
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2864
{
2865
	struct perf_event *event;
2866 2867
	unsigned long flags;
	int enabled = 0;
2868
	int ret;
2869 2870

	local_irq_save(flags);
2871
	if (!ctx || !ctx->nr_events)
2872 2873
		goto out;

2874 2875 2876 2877 2878 2879 2880
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2881
	perf_cgroup_sched_out(current, NULL);
2882

2883
	raw_spin_lock(&ctx->lock);
2884
	task_ctx_sched_out(ctx);
2885

2886
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2887 2888 2889
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2890 2891 2892
	}

	/*
2893
	 * Unclone this context if we enabled any event.
2894
	 */
2895 2896
	if (enabled)
		unclone_ctx(ctx);
2897

2898
	raw_spin_unlock(&ctx->lock);
2899

2900 2901 2902
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2903
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2904
out:
2905 2906 2907
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2908
/*
2909
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2910
 */
2911
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2912
{
2913 2914
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2915
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2916

2917 2918 2919 2920
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2921 2922
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2923 2924 2925 2926
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2927
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2928
	if (ctx->is_active) {
2929
		update_context_time(ctx);
S
Stephane Eranian 已提交
2930 2931
		update_cgrp_time_from_event(event);
	}
2932
	update_event_times(event);
2933 2934
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2935
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2936 2937
}

P
Peter Zijlstra 已提交
2938 2939
static inline u64 perf_event_count(struct perf_event *event)
{
2940
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2941 2942
}

2943
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2944 2945
{
	/*
2946 2947
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2948
	 */
2949 2950 2951 2952
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2953 2954 2955
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2956
		raw_spin_lock_irqsave(&ctx->lock, flags);
2957 2958 2959 2960 2961
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2962
		if (ctx->is_active) {
2963
			update_context_time(ctx);
S
Stephane Eranian 已提交
2964 2965
			update_cgrp_time_from_event(event);
		}
2966
		update_event_times(event);
2967
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2968 2969
	}

P
Peter Zijlstra 已提交
2970
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2971 2972
}

2973
/*
2974
 * Initialize the perf_event context in a task_struct:
2975
 */
2976
static void __perf_event_init_context(struct perf_event_context *ctx)
2977
{
2978
	raw_spin_lock_init(&ctx->lock);
2979
	mutex_init(&ctx->mutex);
2980 2981
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2982 2983
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2999
	}
3000 3001 3002
	ctx->pmu = pmu;

	return ctx;
3003 3004
}

3005 3006 3007 3008 3009
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3010 3011

	rcu_read_lock();
3012
	if (!vpid)
T
Thomas Gleixner 已提交
3013 3014
		task = current;
	else
3015
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3016 3017 3018 3019 3020 3021 3022 3023
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3024 3025 3026 3027
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3028 3029 3030 3031 3032 3033 3034
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3035 3036 3037
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3038
static struct perf_event_context *
M
Matt Helsley 已提交
3039
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3040
{
3041
	struct perf_event_context *ctx;
3042
	struct perf_cpu_context *cpuctx;
3043
	unsigned long flags;
P
Peter Zijlstra 已提交
3044
	int ctxn, err;
T
Thomas Gleixner 已提交
3045

3046
	if (!task) {
3047
		/* Must be root to operate on a CPU event: */
3048
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3049 3050 3051
			return ERR_PTR(-EACCES);

		/*
3052
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3053 3054 3055
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3056
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3057 3058
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3059
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3060
		ctx = &cpuctx->ctx;
3061
		get_ctx(ctx);
3062
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3063 3064 3065 3066

		return ctx;
	}

P
Peter Zijlstra 已提交
3067 3068 3069 3070 3071
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3072
retry:
P
Peter Zijlstra 已提交
3073
	ctx = perf_lock_task_context(task, ctxn, &flags);
3074
	if (ctx) {
3075
		unclone_ctx(ctx);
3076
		++ctx->pin_count;
3077
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3078
	} else {
3079
		ctx = alloc_perf_context(pmu, task);
3080 3081 3082
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3083

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3094
		else {
3095
			get_ctx(ctx);
3096
			++ctx->pin_count;
3097
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3098
		}
3099 3100 3101
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3102
			put_ctx(ctx);
3103 3104 3105 3106

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3107 3108 3109
		}
	}

T
Thomas Gleixner 已提交
3110
	return ctx;
3111

P
Peter Zijlstra 已提交
3112
errout:
3113
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3114 3115
}

L
Li Zefan 已提交
3116 3117
static void perf_event_free_filter(struct perf_event *event);

3118
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3119
{
3120
	struct perf_event *event;
P
Peter Zijlstra 已提交
3121

3122 3123 3124
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3125
	perf_event_free_filter(event);
3126
	kfree(event);
P
Peter Zijlstra 已提交
3127 3128
}

3129
static void ring_buffer_put(struct ring_buffer *rb);
3130
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
static void unaccount_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}

static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3158 3159
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3160 3161 3162 3163 3164 3165 3166 3167
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
static void __free_event(struct perf_event *event)
{
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3183
static void free_event(struct perf_event *event)
3184
{
3185
	irq_work_sync(&event->pending);
3186

3187
	unaccount_event(event);
3188

3189
	if (event->rb) {
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3206 3207
	}

S
Stephane Eranian 已提交
3208 3209 3210
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3211

3212
	__free_event(event);
3213 3214
}

3215
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3216
{
3217
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3218

3219
	WARN_ON_ONCE(ctx->parent_ctx);
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3233
	raw_spin_lock_irq(&ctx->lock);
3234
	perf_group_detach(event);
3235
	raw_spin_unlock_irq(&ctx->lock);
3236
	perf_remove_from_context(event);
3237
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3238

3239
	free_event(event);
T
Thomas Gleixner 已提交
3240 3241 3242

	return 0;
}
3243
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3244

3245 3246 3247
/*
 * Called when the last reference to the file is gone.
 */
3248
static void put_event(struct perf_event *event)
3249
{
P
Peter Zijlstra 已提交
3250
	struct task_struct *owner;
3251

3252 3253
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3254

P
Peter Zijlstra 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3288 3289 3290 3291 3292 3293 3294
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3295 3296
}

3297
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3298
{
3299
	struct perf_event *child;
3300 3301
	u64 total = 0;

3302 3303 3304
	*enabled = 0;
	*running = 0;

3305
	mutex_lock(&event->child_mutex);
3306
	total += perf_event_read(event);
3307 3308 3309 3310 3311 3312
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3313
		total += perf_event_read(child);
3314 3315 3316
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3317
	mutex_unlock(&event->child_mutex);
3318 3319 3320

	return total;
}
3321
EXPORT_SYMBOL_GPL(perf_event_read_value);
3322

3323
static int perf_event_read_group(struct perf_event *event,
3324 3325
				   u64 read_format, char __user *buf)
{
3326
	struct perf_event *leader = event->group_leader, *sub;
3327 3328
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3329
	u64 values[5];
3330
	u64 count, enabled, running;
3331

3332
	mutex_lock(&ctx->mutex);
3333
	count = perf_event_read_value(leader, &enabled, &running);
3334 3335

	values[n++] = 1 + leader->nr_siblings;
3336 3337 3338 3339
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3340 3341 3342
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3343 3344 3345 3346

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3347
		goto unlock;
3348

3349
	ret = size;
3350

3351
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3352
		n = 0;
3353

3354
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3355 3356 3357 3358 3359
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3360
		if (copy_to_user(buf + ret, values, size)) {
3361 3362 3363
			ret = -EFAULT;
			goto unlock;
		}
3364 3365

		ret += size;
3366
	}
3367 3368
unlock:
	mutex_unlock(&ctx->mutex);
3369

3370
	return ret;
3371 3372
}

3373
static int perf_event_read_one(struct perf_event *event,
3374 3375
				 u64 read_format, char __user *buf)
{
3376
	u64 enabled, running;
3377 3378 3379
	u64 values[4];
	int n = 0;

3380 3381 3382 3383 3384
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3385
	if (read_format & PERF_FORMAT_ID)
3386
		values[n++] = primary_event_id(event);
3387 3388 3389 3390 3391 3392 3393

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3394
/*
3395
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3396 3397
 */
static ssize_t
3398
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3399
{
3400
	u64 read_format = event->attr.read_format;
3401
	int ret;
T
Thomas Gleixner 已提交
3402

3403
	/*
3404
	 * Return end-of-file for a read on a event that is in
3405 3406 3407
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3408
	if (event->state == PERF_EVENT_STATE_ERROR)
3409 3410
		return 0;

3411
	if (count < event->read_size)
3412 3413
		return -ENOSPC;

3414
	WARN_ON_ONCE(event->ctx->parent_ctx);
3415
	if (read_format & PERF_FORMAT_GROUP)
3416
		ret = perf_event_read_group(event, read_format, buf);
3417
	else
3418
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3419

3420
	return ret;
T
Thomas Gleixner 已提交
3421 3422 3423 3424 3425
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3426
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3427

3428
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3429 3430 3431 3432
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3433
	struct perf_event *event = file->private_data;
3434
	struct ring_buffer *rb;
3435
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3436

3437
	/*
3438 3439
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3440 3441
	 */
	mutex_lock(&event->mmap_mutex);
3442 3443
	rb = event->rb;
	if (rb)
3444
		events = atomic_xchg(&rb->poll, 0);
3445 3446
	mutex_unlock(&event->mmap_mutex);

3447
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3448 3449 3450 3451

	return events;
}

3452
static void perf_event_reset(struct perf_event *event)
3453
{
3454
	(void)perf_event_read(event);
3455
	local64_set(&event->count, 0);
3456
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3457 3458
}

3459
/*
3460 3461 3462 3463
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3464
 */
3465 3466
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3467
{
3468
	struct perf_event *child;
P
Peter Zijlstra 已提交
3469

3470 3471 3472 3473
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3474
		func(child);
3475
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3476 3477
}

3478 3479
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3480
{
3481 3482
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3483

3484 3485
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3486
	event = event->group_leader;
3487

3488 3489
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3490
		perf_event_for_each_child(sibling, func);
3491
	mutex_unlock(&ctx->mutex);
3492 3493
}

3494
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3495
{
3496
	struct perf_event_context *ctx = event->ctx;
3497 3498 3499
	int ret = 0;
	u64 value;

3500
	if (!is_sampling_event(event))
3501 3502
		return -EINVAL;

3503
	if (copy_from_user(&value, arg, sizeof(value)))
3504 3505 3506 3507 3508
		return -EFAULT;

	if (!value)
		return -EINVAL;

3509
	raw_spin_lock_irq(&ctx->lock);
3510 3511
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3512 3513 3514 3515
			ret = -EINVAL;
			goto unlock;
		}

3516
		event->attr.sample_freq = value;
3517
	} else {
3518 3519
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3520 3521
	}
unlock:
3522
	raw_spin_unlock_irq(&ctx->lock);
3523 3524 3525 3526

	return ret;
}

3527 3528
static const struct file_operations perf_fops;

3529
static inline int perf_fget_light(int fd, struct fd *p)
3530
{
3531 3532 3533
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3534

3535 3536 3537
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3538
	}
3539 3540
	*p = f;
	return 0;
3541 3542 3543 3544
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3545
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3546

3547 3548
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3549 3550
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3551
	u32 flags = arg;
3552 3553

	switch (cmd) {
3554 3555
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3556
		break;
3557 3558
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3559
		break;
3560 3561
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3562
		break;
P
Peter Zijlstra 已提交
3563

3564 3565
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3566

3567 3568
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3569

3570 3571 3572 3573 3574 3575 3576 3577 3578
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3579
	case PERF_EVENT_IOC_SET_OUTPUT:
3580 3581 3582
	{
		int ret;
		if (arg != -1) {
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3593 3594 3595
		}
		return ret;
	}
3596

L
Li Zefan 已提交
3597 3598 3599
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3600
	default:
P
Peter Zijlstra 已提交
3601
		return -ENOTTY;
3602
	}
P
Peter Zijlstra 已提交
3603 3604

	if (flags & PERF_IOC_FLAG_GROUP)
3605
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3606
	else
3607
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3608 3609

	return 0;
3610 3611
}

3612
int perf_event_task_enable(void)
3613
{
3614
	struct perf_event *event;
3615

3616 3617 3618 3619
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3620 3621 3622 3623

	return 0;
}

3624
int perf_event_task_disable(void)
3625
{
3626
	struct perf_event *event;
3627

3628 3629 3630 3631
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3632 3633 3634 3635

	return 0;
}

3636
static int perf_event_index(struct perf_event *event)
3637
{
P
Peter Zijlstra 已提交
3638 3639 3640
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3641
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3642 3643
		return 0;

3644
	return event->pmu->event_idx(event);
3645 3646
}

3647
static void calc_timer_values(struct perf_event *event,
3648
				u64 *now,
3649 3650
				u64 *enabled,
				u64 *running)
3651
{
3652
	u64 ctx_time;
3653

3654 3655
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3656 3657 3658 3659
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3660
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3661 3662 3663
{
}

3664 3665 3666 3667 3668
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3669
void perf_event_update_userpage(struct perf_event *event)
3670
{
3671
	struct perf_event_mmap_page *userpg;
3672
	struct ring_buffer *rb;
3673
	u64 enabled, running, now;
3674 3675

	rcu_read_lock();
3676 3677 3678 3679
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3680 3681 3682 3683 3684 3685 3686 3687 3688
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3689
	calc_timer_values(event, &now, &enabled, &running);
3690

3691
	userpg = rb->user_page;
3692 3693 3694 3695 3696
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3697
	++userpg->lock;
3698
	barrier();
3699
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3700
	userpg->offset = perf_event_count(event);
3701
	if (userpg->index)
3702
		userpg->offset -= local64_read(&event->hw.prev_count);
3703

3704
	userpg->time_enabled = enabled +
3705
			atomic64_read(&event->child_total_time_enabled);
3706

3707
	userpg->time_running = running +
3708
			atomic64_read(&event->child_total_time_running);
3709

3710
	arch_perf_update_userpage(userpg, now);
3711

3712
	barrier();
3713
	++userpg->lock;
3714
	preempt_enable();
3715
unlock:
3716
	rcu_read_unlock();
3717 3718
}

3719 3720 3721
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3722
	struct ring_buffer *rb;
3723 3724 3725 3726 3727 3728 3729 3730 3731
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3732 3733
	rb = rcu_dereference(event->rb);
	if (!rb)
3734 3735 3736 3737 3738
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3739
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3754 3755 3756 3757 3758 3759 3760 3761 3762
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3763 3764
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3765 3766 3767
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3768
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3787 3788 3789 3790
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3791 3792 3793
	rcu_read_unlock();
}

3794
static void rb_free_rcu(struct rcu_head *rcu_head)
3795
{
3796
	struct ring_buffer *rb;
3797

3798 3799
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3800 3801
}

3802
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3803
{
3804
	struct ring_buffer *rb;
3805

3806
	rcu_read_lock();
3807 3808 3809 3810
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3811 3812 3813
	}
	rcu_read_unlock();

3814
	return rb;
3815 3816
}

3817
static void ring_buffer_put(struct ring_buffer *rb)
3818
{
3819
	if (!atomic_dec_and_test(&rb->refcount))
3820
		return;
3821

3822
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3823

3824
	call_rcu(&rb->rcu_head, rb_free_rcu);
3825 3826 3827 3828
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3829
	struct perf_event *event = vma->vm_file->private_data;
3830

3831
	atomic_inc(&event->mmap_count);
3832
	atomic_inc(&event->rb->mmap_count);
3833 3834
}

3835 3836 3837 3838 3839 3840 3841 3842
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3843 3844
static void perf_mmap_close(struct vm_area_struct *vma)
{
3845
	struct perf_event *event = vma->vm_file->private_data;
3846

3847 3848 3849 3850
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3851

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3884

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3900
		}
3901
		mutex_unlock(&event->mmap_mutex);
3902
		put_event(event);
3903

3904 3905 3906 3907 3908
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3909
	}
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3926 3927
}

3928
static const struct vm_operations_struct perf_mmap_vmops = {
3929 3930 3931 3932
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3933 3934 3935 3936
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3937
	struct perf_event *event = file->private_data;
3938
	unsigned long user_locked, user_lock_limit;
3939
	struct user_struct *user = current_user();
3940
	unsigned long locked, lock_limit;
3941
	struct ring_buffer *rb;
3942 3943
	unsigned long vma_size;
	unsigned long nr_pages;
3944
	long user_extra, extra;
3945
	int ret = 0, flags = 0;
3946

3947 3948 3949
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3950
	 * same rb.
3951 3952 3953 3954
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3955
	if (!(vma->vm_flags & VM_SHARED))
3956
		return -EINVAL;
3957 3958 3959 3960

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3961
	/*
3962
	 * If we have rb pages ensure they're a power-of-two number, so we
3963 3964 3965
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3966 3967
		return -EINVAL;

3968
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3969 3970
		return -EINVAL;

3971 3972
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3973

3974
	WARN_ON_ONCE(event->ctx->parent_ctx);
3975
again:
3976
	mutex_lock(&event->mmap_mutex);
3977
	if (event->rb) {
3978
		if (event->rb->nr_pages != nr_pages) {
3979
			ret = -EINVAL;
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

3993 3994 3995
		goto unlock;
	}

3996
	user_extra = nr_pages + 1;
3997
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3998 3999 4000 4001 4002 4003

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4004
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4005

4006 4007 4008
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4009

4010
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4011
	lock_limit >>= PAGE_SHIFT;
4012
	locked = vma->vm_mm->pinned_vm + extra;
4013

4014 4015
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4016 4017 4018
		ret = -EPERM;
		goto unlock;
	}
4019

4020
	WARN_ON(event->rb);
4021

4022
	if (vma->vm_flags & VM_WRITE)
4023
		flags |= RING_BUFFER_WRITABLE;
4024

4025 4026 4027 4028
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4029
	if (!rb) {
4030
		ret = -ENOMEM;
4031
		goto unlock;
4032
	}
P
Peter Zijlstra 已提交
4033

4034
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4035 4036
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4037

4038
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4039 4040
	vma->vm_mm->pinned_vm += extra;

4041
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4042
	rcu_assign_pointer(event->rb, rb);
4043

4044 4045
	perf_event_update_userpage(event);

4046
unlock:
4047 4048
	if (!ret)
		atomic_inc(&event->mmap_count);
4049
	mutex_unlock(&event->mmap_mutex);
4050

4051 4052 4053 4054
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4055
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4056
	vma->vm_ops = &perf_mmap_vmops;
4057 4058

	return ret;
4059 4060
}

P
Peter Zijlstra 已提交
4061 4062
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4063
	struct inode *inode = file_inode(filp);
4064
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4065 4066 4067
	int retval;

	mutex_lock(&inode->i_mutex);
4068
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4069 4070 4071 4072 4073 4074 4075 4076
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4077
static const struct file_operations perf_fops = {
4078
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4079 4080 4081
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4082 4083
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4084
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4085
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4086 4087
};

4088
/*
4089
 * Perf event wakeup
4090 4091 4092 4093 4094
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4095
void perf_event_wakeup(struct perf_event *event)
4096
{
4097
	ring_buffer_wakeup(event);
4098

4099 4100 4101
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4102
	}
4103 4104
}

4105
static void perf_pending_event(struct irq_work *entry)
4106
{
4107 4108
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4109

4110 4111 4112
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4113 4114
	}

4115 4116 4117
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4118 4119 4120
	}
}

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4268 4269 4270
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4286
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4298 4299 4300
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4325 4326 4327

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4328 4329
}

4330 4331 4332
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4333 4334 4335 4336 4337
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4338
static void perf_output_read_one(struct perf_output_handle *handle,
4339 4340
				 struct perf_event *event,
				 u64 enabled, u64 running)
4341
{
4342
	u64 read_format = event->attr.read_format;
4343 4344 4345
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4346
	values[n++] = perf_event_count(event);
4347
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4348
		values[n++] = enabled +
4349
			atomic64_read(&event->child_total_time_enabled);
4350 4351
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4352
		values[n++] = running +
4353
			atomic64_read(&event->child_total_time_running);
4354 4355
	}
	if (read_format & PERF_FORMAT_ID)
4356
		values[n++] = primary_event_id(event);
4357

4358
	__output_copy(handle, values, n * sizeof(u64));
4359 4360 4361
}

/*
4362
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4363 4364
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4365 4366
			    struct perf_event *event,
			    u64 enabled, u64 running)
4367
{
4368 4369
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4370 4371 4372 4373 4374 4375
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4376
		values[n++] = enabled;
4377 4378

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4379
		values[n++] = running;
4380

4381
	if (leader != event)
4382 4383
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4384
	values[n++] = perf_event_count(leader);
4385
	if (read_format & PERF_FORMAT_ID)
4386
		values[n++] = primary_event_id(leader);
4387

4388
	__output_copy(handle, values, n * sizeof(u64));
4389

4390
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391 4392
		n = 0;

4393 4394
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4395 4396
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4397
		values[n++] = perf_event_count(sub);
4398
		if (read_format & PERF_FORMAT_ID)
4399
			values[n++] = primary_event_id(sub);
4400

4401
		__output_copy(handle, values, n * sizeof(u64));
4402 4403 4404
	}
}

4405 4406 4407
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4408
static void perf_output_read(struct perf_output_handle *handle,
4409
			     struct perf_event *event)
4410
{
4411
	u64 enabled = 0, running = 0, now;
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4423
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4424
		calc_timer_values(event, &now, &enabled, &running);
4425

4426
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4427
		perf_output_read_group(handle, event, enabled, running);
4428
	else
4429
		perf_output_read_one(handle, event, enabled, running);
4430 4431
}

4432 4433 4434
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4435
			struct perf_event *event)
4436 4437 4438 4439 4440
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4441 4442 4443
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4469
		perf_output_read(handle, event);
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4480
			__output_copy(handle, data->callchain, size);
4481 4482 4483 4484 4485 4486 4487 4488 4489
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4490 4491
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4503

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4538

4539
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4540 4541 4542
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4543
	}
A
Andi Kleen 已提交
4544 4545 4546

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4547 4548 4549

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4564 4565 4566 4567
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4568
			 struct perf_event *event,
4569
			 struct pt_regs *regs)
4570
{
4571
	u64 sample_type = event->attr.sample_type;
4572

4573
	header->type = PERF_RECORD_SAMPLE;
4574
	header->size = sizeof(*header) + event->header_size;
4575 4576 4577

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4578

4579
	__perf_event_header__init_id(header, data, event);
4580

4581
	if (sample_type & PERF_SAMPLE_IP)
4582 4583
		data->ip = perf_instruction_pointer(regs);

4584
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4585
		int size = 1;
4586

4587
		data->callchain = perf_callchain(event, regs);
4588 4589 4590 4591 4592

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4593 4594
	}

4595
	if (sample_type & PERF_SAMPLE_RAW) {
4596 4597 4598 4599 4600 4601 4602 4603
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4604
		header->size += size;
4605
	}
4606 4607 4608 4609 4610 4611 4612 4613 4614

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4658
}
4659

4660
static void perf_event_output(struct perf_event *event,
4661 4662 4663 4664 4665
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4666

4667 4668 4669
	/* protect the callchain buffers */
	rcu_read_lock();

4670
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4671

4672
	if (perf_output_begin(&handle, event, header.size))
4673
		goto exit;
4674

4675
	perf_output_sample(&handle, &header, data, event);
4676

4677
	perf_output_end(&handle);
4678 4679 4680

exit:
	rcu_read_unlock();
4681 4682
}

4683
/*
4684
 * read event_id
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4695
perf_event_read_event(struct perf_event *event,
4696 4697 4698
			struct task_struct *task)
{
	struct perf_output_handle handle;
4699
	struct perf_sample_data sample;
4700
	struct perf_read_event read_event = {
4701
		.header = {
4702
			.type = PERF_RECORD_READ,
4703
			.misc = 0,
4704
			.size = sizeof(read_event) + event->read_size,
4705
		},
4706 4707
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4708
	};
4709
	int ret;
4710

4711
	perf_event_header__init_id(&read_event.header, &sample, event);
4712
	ret = perf_output_begin(&handle, event, read_event.header.size);
4713 4714 4715
	if (ret)
		return;

4716
	perf_output_put(&handle, read_event);
4717
	perf_output_read(&handle, event);
4718
	perf_event__output_id_sample(event, &handle, &sample);
4719

4720 4721 4722
	perf_output_end(&handle);
}

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4737
		output(event, data);
4738 4739 4740 4741
	}
}

static void
4742
perf_event_aux(perf_event_aux_output_cb output, void *data,
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4755
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4756 4757 4758 4759 4760 4761 4762
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4763
			perf_event_aux_ctx(ctx, output, data);
4764 4765 4766 4767 4768 4769
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4770
		perf_event_aux_ctx(task_ctx, output, data);
4771 4772 4773 4774 4775
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4776
/*
P
Peter Zijlstra 已提交
4777 4778
 * task tracking -- fork/exit
 *
4779
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4780 4781
 */

P
Peter Zijlstra 已提交
4782
struct perf_task_event {
4783
	struct task_struct		*task;
4784
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4785 4786 4787 4788 4789 4790

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4791 4792
		u32				tid;
		u32				ptid;
4793
		u64				time;
4794
	} event_id;
P
Peter Zijlstra 已提交
4795 4796
};

4797 4798 4799 4800 4801 4802
static int perf_event_task_match(struct perf_event *event)
{
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
}

4803
static void perf_event_task_output(struct perf_event *event,
4804
				   void *data)
P
Peter Zijlstra 已提交
4805
{
4806
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4807
	struct perf_output_handle handle;
4808
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4809
	struct task_struct *task = task_event->task;
4810
	int ret, size = task_event->event_id.header.size;
4811

4812 4813 4814
	if (!perf_event_task_match(event))
		return;

4815
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4816

4817
	ret = perf_output_begin(&handle, event,
4818
				task_event->event_id.header.size);
4819
	if (ret)
4820
		goto out;
P
Peter Zijlstra 已提交
4821

4822 4823
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4824

4825 4826
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4827

4828
	perf_output_put(&handle, task_event->event_id);
4829

4830 4831
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4832
	perf_output_end(&handle);
4833 4834
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4835 4836
}

4837 4838
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4839
			      int new)
P
Peter Zijlstra 已提交
4840
{
P
Peter Zijlstra 已提交
4841
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4842

4843 4844 4845
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4846 4847
		return;

P
Peter Zijlstra 已提交
4848
	task_event = (struct perf_task_event){
4849 4850
		.task	  = task,
		.task_ctx = task_ctx,
4851
		.event_id    = {
P
Peter Zijlstra 已提交
4852
			.header = {
4853
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4854
				.misc = 0,
4855
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4856
			},
4857 4858
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4859 4860
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4861
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4862 4863 4864
		},
	};

4865
	perf_event_aux(perf_event_task_output,
4866 4867
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4868 4869
}

4870
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4871
{
4872
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4873 4874
}

4875 4876 4877 4878 4879
/*
 * comm tracking
 */

struct perf_comm_event {
4880 4881
	struct task_struct	*task;
	char			*comm;
4882 4883 4884 4885 4886 4887 4888
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4889
	} event_id;
4890 4891
};

4892 4893 4894 4895 4896
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4897
static void perf_event_comm_output(struct perf_event *event,
4898
				   void *data)
4899
{
4900
	struct perf_comm_event *comm_event = data;
4901
	struct perf_output_handle handle;
4902
	struct perf_sample_data sample;
4903
	int size = comm_event->event_id.header.size;
4904 4905
	int ret;

4906 4907 4908
	if (!perf_event_comm_match(event))
		return;

4909 4910
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4911
				comm_event->event_id.header.size);
4912 4913

	if (ret)
4914
		goto out;
4915

4916 4917
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4918

4919
	perf_output_put(&handle, comm_event->event_id);
4920
	__output_copy(&handle, comm_event->comm,
4921
				   comm_event->comm_size);
4922 4923 4924

	perf_event__output_id_sample(event, &handle, &sample);

4925
	perf_output_end(&handle);
4926 4927
out:
	comm_event->event_id.header.size = size;
4928 4929
}

4930
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4931
{
4932
	char comm[TASK_COMM_LEN];
4933 4934
	unsigned int size;

4935
	memset(comm, 0, sizeof(comm));
4936
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4937
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4938 4939 4940 4941

	comm_event->comm = comm;
	comm_event->comm_size = size;

4942
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4943

4944
	perf_event_aux(perf_event_comm_output,
4945 4946
		       comm_event,
		       NULL);
4947 4948
}

4949
void perf_event_comm(struct task_struct *task)
4950
{
4951
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4952 4953
	struct perf_event_context *ctx;
	int ctxn;
4954

4955
	rcu_read_lock();
P
Peter Zijlstra 已提交
4956 4957 4958 4959
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4960

P
Peter Zijlstra 已提交
4961 4962
		perf_event_enable_on_exec(ctx);
	}
4963
	rcu_read_unlock();
4964

4965
	if (!atomic_read(&nr_comm_events))
4966
		return;
4967

4968
	comm_event = (struct perf_comm_event){
4969
		.task	= task,
4970 4971
		/* .comm      */
		/* .comm_size */
4972
		.event_id  = {
4973
			.header = {
4974
				.type = PERF_RECORD_COMM,
4975 4976 4977 4978 4979
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4980 4981 4982
		},
	};

4983
	perf_event_comm_event(&comm_event);
4984 4985
}

4986 4987 4988 4989 4990
/*
 * mmap tracking
 */

struct perf_mmap_event {
4991 4992 4993 4994
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4995 4996 4997 4998 4999 5000 5001 5002 5003

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5004
	} event_id;
5005 5006
};

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
}

5018
static void perf_event_mmap_output(struct perf_event *event,
5019
				   void *data)
5020
{
5021
	struct perf_mmap_event *mmap_event = data;
5022
	struct perf_output_handle handle;
5023
	struct perf_sample_data sample;
5024
	int size = mmap_event->event_id.header.size;
5025
	int ret;
5026

5027 5028 5029
	if (!perf_event_mmap_match(event, data))
		return;

5030 5031
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5032
				mmap_event->event_id.header.size);
5033
	if (ret)
5034
		goto out;
5035

5036 5037
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5038

5039
	perf_output_put(&handle, mmap_event->event_id);
5040
	__output_copy(&handle, mmap_event->file_name,
5041
				   mmap_event->file_size);
5042 5043 5044

	perf_event__output_id_sample(event, &handle, &sample);

5045
	perf_output_end(&handle);
5046 5047
out:
	mmap_event->event_id.header.size = size;
5048 5049
}

5050
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5051
{
5052 5053
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5054 5055 5056
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5057
	const char *name;
5058

5059 5060
	memset(tmp, 0, sizeof(tmp));

5061
	if (file) {
5062
		/*
5063
		 * d_path works from the end of the rb backwards, so we
5064 5065 5066 5067
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5068 5069 5070 5071
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
5072
		name = d_path(&file->f_path, buf, PATH_MAX);
5073 5074 5075 5076 5077
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
5078 5079
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5080 5081
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
5082
			goto got_name;
5083
		}
5084 5085 5086 5087

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
5088 5089 5090 5091 5092 5093 5094 5095
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
5096 5097
		}

5098 5099 5100 5101 5102
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
5103
	size = ALIGN(strlen(name)+1, sizeof(u64));
5104 5105 5106 5107

	mmap_event->file_name = name;
	mmap_event->file_size = size;

5108 5109 5110
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5111
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5112

5113
	perf_event_aux(perf_event_mmap_output,
5114 5115
		       mmap_event,
		       NULL);
5116

5117 5118 5119
	kfree(buf);
}

5120
void perf_event_mmap(struct vm_area_struct *vma)
5121
{
5122 5123
	struct perf_mmap_event mmap_event;

5124
	if (!atomic_read(&nr_mmap_events))
5125 5126 5127
		return;

	mmap_event = (struct perf_mmap_event){
5128
		.vma	= vma,
5129 5130
		/* .file_name */
		/* .file_size */
5131
		.event_id  = {
5132
			.header = {
5133
				.type = PERF_RECORD_MMAP,
5134
				.misc = PERF_RECORD_MISC_USER,
5135 5136 5137 5138
				/* .size */
			},
			/* .pid */
			/* .tid */
5139 5140
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5141
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5142 5143 5144
		},
	};

5145
	perf_event_mmap_event(&mmap_event);
5146 5147
}

5148 5149 5150 5151
/*
 * IRQ throttle logging
 */

5152
static void perf_log_throttle(struct perf_event *event, int enable)
5153 5154
{
	struct perf_output_handle handle;
5155
	struct perf_sample_data sample;
5156 5157 5158 5159 5160
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5161
		u64				id;
5162
		u64				stream_id;
5163 5164
	} throttle_event = {
		.header = {
5165
			.type = PERF_RECORD_THROTTLE,
5166 5167 5168
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5169
		.time		= perf_clock(),
5170 5171
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5172 5173
	};

5174
	if (enable)
5175
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5176

5177 5178 5179
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5180
				throttle_event.header.size);
5181 5182 5183 5184
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5185
	perf_event__output_id_sample(event, &handle, &sample);
5186 5187 5188
	perf_output_end(&handle);
}

5189
/*
5190
 * Generic event overflow handling, sampling.
5191 5192
 */

5193
static int __perf_event_overflow(struct perf_event *event,
5194 5195
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5196
{
5197 5198
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5199
	u64 seq;
5200 5201
	int ret = 0;

5202 5203 5204 5205 5206 5207 5208
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5209 5210 5211 5212 5213 5214 5215 5216 5217
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5218 5219
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5220
			tick_nohz_full_kick();
5221 5222
			ret = 1;
		}
5223
	}
5224

5225
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5226
		u64 now = perf_clock();
5227
		s64 delta = now - hwc->freq_time_stamp;
5228

5229
		hwc->freq_time_stamp = now;
5230

5231
		if (delta > 0 && delta < 2*TICK_NSEC)
5232
			perf_adjust_period(event, delta, hwc->last_period, true);
5233 5234
	}

5235 5236
	/*
	 * XXX event_limit might not quite work as expected on inherited
5237
	 * events
5238 5239
	 */

5240 5241
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5242
		ret = 1;
5243
		event->pending_kill = POLL_HUP;
5244 5245
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5246 5247
	}

5248
	if (event->overflow_handler)
5249
		event->overflow_handler(event, data, regs);
5250
	else
5251
		perf_event_output(event, data, regs);
5252

P
Peter Zijlstra 已提交
5253
	if (event->fasync && event->pending_kill) {
5254 5255
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5256 5257
	}

5258
	return ret;
5259 5260
}

5261
int perf_event_overflow(struct perf_event *event,
5262 5263
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5264
{
5265
	return __perf_event_overflow(event, 1, data, regs);
5266 5267
}

5268
/*
5269
 * Generic software event infrastructure
5270 5271
 */

5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5283
/*
5284 5285
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5286 5287 5288 5289
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5290
u64 perf_swevent_set_period(struct perf_event *event)
5291
{
5292
	struct hw_perf_event *hwc = &event->hw;
5293 5294 5295 5296 5297
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5298 5299

again:
5300
	old = val = local64_read(&hwc->period_left);
5301 5302
	if (val < 0)
		return 0;
5303

5304 5305 5306
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5307
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5308
		goto again;
5309

5310
	return nr;
5311 5312
}

5313
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5314
				    struct perf_sample_data *data,
5315
				    struct pt_regs *regs)
5316
{
5317
	struct hw_perf_event *hwc = &event->hw;
5318
	int throttle = 0;
5319

5320 5321
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5322

5323 5324
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5325

5326
	for (; overflow; overflow--) {
5327
		if (__perf_event_overflow(event, throttle,
5328
					    data, regs)) {
5329 5330 5331 5332 5333 5334
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5335
		throttle = 1;
5336
	}
5337 5338
}

P
Peter Zijlstra 已提交
5339
static void perf_swevent_event(struct perf_event *event, u64 nr,
5340
			       struct perf_sample_data *data,
5341
			       struct pt_regs *regs)
5342
{
5343
	struct hw_perf_event *hwc = &event->hw;
5344

5345
	local64_add(nr, &event->count);
5346

5347 5348 5349
	if (!regs)
		return;

5350
	if (!is_sampling_event(event))
5351
		return;
5352

5353 5354 5355 5356 5357 5358
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5359
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5360
		return perf_swevent_overflow(event, 1, data, regs);
5361

5362
	if (local64_add_negative(nr, &hwc->period_left))
5363
		return;
5364

5365
	perf_swevent_overflow(event, 0, data, regs);
5366 5367
}

5368 5369 5370
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5371
	if (event->hw.state & PERF_HES_STOPPED)
5372
		return 1;
P
Peter Zijlstra 已提交
5373

5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5385
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5386
				enum perf_type_id type,
L
Li Zefan 已提交
5387 5388 5389
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5390
{
5391
	if (event->attr.type != type)
5392
		return 0;
5393

5394
	if (event->attr.config != event_id)
5395 5396
		return 0;

5397 5398
	if (perf_exclude_event(event, regs))
		return 0;
5399 5400 5401 5402

	return 1;
}

5403 5404 5405 5406 5407 5408 5409
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5410 5411
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5412
{
5413 5414 5415 5416
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5417

5418 5419
/* For the read side: events when they trigger */
static inline struct hlist_head *
5420
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5421 5422
{
	struct swevent_hlist *hlist;
5423

5424
	hlist = rcu_dereference(swhash->swevent_hlist);
5425 5426 5427
	if (!hlist)
		return NULL;

5428 5429 5430 5431 5432
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5433
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5444
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5445 5446 5447 5448 5449
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5450 5451 5452
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5453
				    u64 nr,
5454 5455
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5456
{
5457
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5458
	struct perf_event *event;
5459
	struct hlist_head *head;
5460

5461
	rcu_read_lock();
5462
	head = find_swevent_head_rcu(swhash, type, event_id);
5463 5464 5465
	if (!head)
		goto end;

5466
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5467
		if (perf_swevent_match(event, type, event_id, data, regs))
5468
			perf_swevent_event(event, nr, data, regs);
5469
	}
5470 5471
end:
	rcu_read_unlock();
5472 5473
}

5474
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5475
{
5476
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5477

5478
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5479
}
I
Ingo Molnar 已提交
5480
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5481

5482
inline void perf_swevent_put_recursion_context(int rctx)
5483
{
5484
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5485

5486
	put_recursion_context(swhash->recursion, rctx);
5487
}
5488

5489
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5490
{
5491
	struct perf_sample_data data;
5492 5493
	int rctx;

5494
	preempt_disable_notrace();
5495 5496 5497
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5498

5499
	perf_sample_data_init(&data, addr, 0);
5500

5501
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5502 5503

	perf_swevent_put_recursion_context(rctx);
5504
	preempt_enable_notrace();
5505 5506
}

5507
static void perf_swevent_read(struct perf_event *event)
5508 5509 5510
{
}

P
Peter Zijlstra 已提交
5511
static int perf_swevent_add(struct perf_event *event, int flags)
5512
{
5513
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5514
	struct hw_perf_event *hwc = &event->hw;
5515 5516
	struct hlist_head *head;

5517
	if (is_sampling_event(event)) {
5518
		hwc->last_period = hwc->sample_period;
5519
		perf_swevent_set_period(event);
5520
	}
5521

P
Peter Zijlstra 已提交
5522 5523
	hwc->state = !(flags & PERF_EF_START);

5524
	head = find_swevent_head(swhash, event);
5525 5526 5527 5528 5529
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5530 5531 5532
	return 0;
}

P
Peter Zijlstra 已提交
5533
static void perf_swevent_del(struct perf_event *event, int flags)
5534
{
5535
	hlist_del_rcu(&event->hlist_entry);
5536 5537
}

P
Peter Zijlstra 已提交
5538
static void perf_swevent_start(struct perf_event *event, int flags)
5539
{
P
Peter Zijlstra 已提交
5540
	event->hw.state = 0;
5541
}
I
Ingo Molnar 已提交
5542

P
Peter Zijlstra 已提交
5543
static void perf_swevent_stop(struct perf_event *event, int flags)
5544
{
P
Peter Zijlstra 已提交
5545
	event->hw.state = PERF_HES_STOPPED;
5546 5547
}

5548 5549
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5550
swevent_hlist_deref(struct swevent_htable *swhash)
5551
{
5552 5553
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5554 5555
}

5556
static void swevent_hlist_release(struct swevent_htable *swhash)
5557
{
5558
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5559

5560
	if (!hlist)
5561 5562
		return;

5563
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5564
	kfree_rcu(hlist, rcu_head);
5565 5566 5567 5568
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5569
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5570

5571
	mutex_lock(&swhash->hlist_mutex);
5572

5573 5574
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5575

5576
	mutex_unlock(&swhash->hlist_mutex);
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5594
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5595 5596
	int err = 0;

5597
	mutex_lock(&swhash->hlist_mutex);
5598

5599
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5600 5601 5602 5603 5604 5605 5606
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5607
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5608
	}
5609
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5610
exit:
5611
	mutex_unlock(&swhash->hlist_mutex);
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5635
fail:
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5646
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5647

5648 5649 5650
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5651

5652 5653
	WARN_ON(event->parent);

5654
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5655 5656 5657 5658 5659
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5660
	u64 event_id = event->attr.config;
5661 5662 5663 5664

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5665 5666 5667 5668 5669 5670
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5671 5672 5673 5674 5675 5676 5677 5678 5679
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5680
	if (event_id >= PERF_COUNT_SW_MAX)
5681 5682 5683 5684 5685 5686 5687 5688 5689
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5690
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5691 5692 5693 5694 5695 5696
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5697 5698 5699 5700 5701
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5702
static struct pmu perf_swevent = {
5703
	.task_ctx_nr	= perf_sw_context,
5704

5705
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5706 5707 5708 5709
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5710
	.read		= perf_swevent_read,
5711 5712

	.event_idx	= perf_swevent_event_idx,
5713 5714
};

5715 5716
#ifdef CONFIG_EVENT_TRACING

5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5731 5732
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5733 5734 5735 5736
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5737 5738 5739 5740 5741 5742 5743 5744 5745
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5746 5747
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5748 5749
{
	struct perf_sample_data data;
5750 5751
	struct perf_event *event;

5752 5753 5754 5755 5756
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5757
	perf_sample_data_init(&data, addr, 0);
5758 5759
	data.raw = &raw;

5760
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5761
		if (perf_tp_event_match(event, &data, regs))
5762
			perf_swevent_event(event, count, &data, regs);
5763
	}
5764

5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5790
	perf_swevent_put_recursion_context(rctx);
5791 5792 5793
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5794
static void tp_perf_event_destroy(struct perf_event *event)
5795
{
5796
	perf_trace_destroy(event);
5797 5798
}

5799
static int perf_tp_event_init(struct perf_event *event)
5800
{
5801 5802
	int err;

5803 5804 5805
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5806 5807 5808 5809 5810 5811
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5812 5813
	err = perf_trace_init(event);
	if (err)
5814
		return err;
5815

5816
	event->destroy = tp_perf_event_destroy;
5817

5818 5819 5820 5821
	return 0;
}

static struct pmu perf_tracepoint = {
5822 5823
	.task_ctx_nr	= perf_sw_context,

5824
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5825 5826 5827 5828
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5829
	.read		= perf_swevent_read,
5830 5831

	.event_idx	= perf_swevent_event_idx,
5832 5833 5834 5835
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5836
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5837
}
L
Li Zefan 已提交
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5862
#else
L
Li Zefan 已提交
5863

5864
static inline void perf_tp_register(void)
5865 5866
{
}
L
Li Zefan 已提交
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5877
#endif /* CONFIG_EVENT_TRACING */
5878

5879
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5880
void perf_bp_event(struct perf_event *bp, void *data)
5881
{
5882 5883 5884
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5885
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5886

P
Peter Zijlstra 已提交
5887
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5888
		perf_swevent_event(bp, 1, &sample, regs);
5889 5890 5891
}
#endif

5892 5893 5894
/*
 * hrtimer based swevent callback
 */
5895

5896
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5897
{
5898 5899 5900 5901 5902
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5903

5904
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5905 5906 5907 5908

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5909
	event->pmu->read(event);
5910

5911
	perf_sample_data_init(&data, 0, event->hw.last_period);
5912 5913 5914
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5915
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5916
			if (__perf_event_overflow(event, 1, &data, regs))
5917 5918
				ret = HRTIMER_NORESTART;
	}
5919

5920 5921
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5922

5923
	return ret;
5924 5925
}

5926
static void perf_swevent_start_hrtimer(struct perf_event *event)
5927
{
5928
	struct hw_perf_event *hwc = &event->hw;
5929 5930 5931 5932
	s64 period;

	if (!is_sampling_event(event))
		return;
5933

5934 5935 5936 5937
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5938

5939 5940 5941 5942 5943
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5944
				ns_to_ktime(period), 0,
5945
				HRTIMER_MODE_REL_PINNED, 0);
5946
}
5947 5948

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5949
{
5950 5951
	struct hw_perf_event *hwc = &event->hw;

5952
	if (is_sampling_event(event)) {
5953
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5954
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5955 5956 5957

		hrtimer_cancel(&hwc->hrtimer);
	}
5958 5959
}

P
Peter Zijlstra 已提交
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5980
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5981 5982 5983 5984
		event->attr.freq = 0;
	}
}

5985 5986 5987 5988 5989
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5990
{
5991 5992 5993
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5994
	now = local_clock();
5995 5996
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5997 5998
}

P
Peter Zijlstra 已提交
5999
static void cpu_clock_event_start(struct perf_event *event, int flags)
6000
{
P
Peter Zijlstra 已提交
6001
	local64_set(&event->hw.prev_count, local_clock());
6002 6003 6004
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6005
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6006
{
6007 6008 6009
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6010

P
Peter Zijlstra 已提交
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6024 6025 6026 6027
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6028

6029 6030 6031 6032 6033 6034 6035 6036
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6037 6038 6039 6040 6041 6042
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6043 6044
	perf_swevent_init_hrtimer(event);

6045
	return 0;
6046 6047
}

6048
static struct pmu perf_cpu_clock = {
6049 6050
	.task_ctx_nr	= perf_sw_context,

6051
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6052 6053 6054 6055
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6056
	.read		= cpu_clock_event_read,
6057 6058

	.event_idx	= perf_swevent_event_idx,
6059 6060 6061 6062 6063 6064 6065
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6066
{
6067 6068
	u64 prev;
	s64 delta;
6069

6070 6071 6072 6073
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6074

P
Peter Zijlstra 已提交
6075
static void task_clock_event_start(struct perf_event *event, int flags)
6076
{
P
Peter Zijlstra 已提交
6077
	local64_set(&event->hw.prev_count, event->ctx->time);
6078 6079 6080
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6081
static void task_clock_event_stop(struct perf_event *event, int flags)
6082 6083 6084
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6085 6086 6087 6088 6089 6090
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6091

P
Peter Zijlstra 已提交
6092 6093 6094 6095 6096 6097
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6098 6099 6100 6101
}

static void task_clock_event_read(struct perf_event *event)
{
6102 6103 6104
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6105 6106 6107 6108 6109

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6110
{
6111 6112 6113 6114 6115 6116
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6117 6118 6119 6120 6121 6122
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6123 6124
	perf_swevent_init_hrtimer(event);

6125
	return 0;
L
Li Zefan 已提交
6126 6127
}

6128
static struct pmu perf_task_clock = {
6129 6130
	.task_ctx_nr	= perf_sw_context,

6131
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6132 6133 6134 6135
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6136
	.read		= task_clock_event_read,
6137 6138

	.event_idx	= perf_swevent_event_idx,
6139
};
L
Li Zefan 已提交
6140

P
Peter Zijlstra 已提交
6141
static void perf_pmu_nop_void(struct pmu *pmu)
6142 6143
{
}
L
Li Zefan 已提交
6144

P
Peter Zijlstra 已提交
6145
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6146
{
P
Peter Zijlstra 已提交
6147
	return 0;
L
Li Zefan 已提交
6148 6149
}

P
Peter Zijlstra 已提交
6150
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6151
{
P
Peter Zijlstra 已提交
6152
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6153 6154
}

P
Peter Zijlstra 已提交
6155 6156 6157 6158 6159
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6160

P
Peter Zijlstra 已提交
6161
static void perf_pmu_cancel_txn(struct pmu *pmu)
6162
{
P
Peter Zijlstra 已提交
6163
	perf_pmu_enable(pmu);
6164 6165
}

6166 6167 6168 6169 6170
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6171 6172 6173 6174 6175
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6176
{
P
Peter Zijlstra 已提交
6177
	struct pmu *pmu;
6178

P
Peter Zijlstra 已提交
6179 6180
	if (ctxn < 0)
		return NULL;
6181

P
Peter Zijlstra 已提交
6182 6183 6184 6185
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6186

P
Peter Zijlstra 已提交
6187
	return NULL;
6188 6189
}

6190
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6191
{
6192 6193 6194 6195 6196 6197 6198
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6199 6200
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6201 6202 6203 6204 6205 6206
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6207

P
Peter Zijlstra 已提交
6208
	mutex_lock(&pmus_lock);
6209
	/*
P
Peter Zijlstra 已提交
6210
	 * Like a real lame refcount.
6211
	 */
6212 6213 6214
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6215
			goto out;
6216
		}
P
Peter Zijlstra 已提交
6217
	}
6218

6219
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6220 6221
out:
	mutex_unlock(&pmus_lock);
6222
}
P
Peter Zijlstra 已提交
6223
static struct idr pmu_idr;
6224

P
Peter Zijlstra 已提交
6225 6226 6227 6228 6229 6230 6231 6232
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

P
Peter Zijlstra 已提交
6277
static struct device_attribute pmu_dev_attrs[] = {
6278 6279 6280
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6302
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6323
static struct lock_class_key cpuctx_mutex;
6324
static struct lock_class_key cpuctx_lock;
6325

6326
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6327
{
P
Peter Zijlstra 已提交
6328
	int cpu, ret;
6329

6330
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6331 6332 6333 6334
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6335

P
Peter Zijlstra 已提交
6336 6337 6338 6339 6340 6341
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6342 6343 6344
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6345 6346 6347 6348 6349
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6350 6351 6352 6353 6354 6355
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6356
skip_type:
P
Peter Zijlstra 已提交
6357 6358 6359
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6360

W
Wei Yongjun 已提交
6361
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6362 6363
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6364
		goto free_dev;
6365

P
Peter Zijlstra 已提交
6366 6367 6368 6369
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6370
		__perf_event_init_context(&cpuctx->ctx);
6371
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6372
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6373
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6374
		cpuctx->ctx.pmu = pmu;
6375 6376 6377

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6378
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6379
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6380
	}
6381

P
Peter Zijlstra 已提交
6382
got_cpu_context:
P
Peter Zijlstra 已提交
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6397
		}
6398
	}
6399

P
Peter Zijlstra 已提交
6400 6401 6402 6403 6404
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6405 6406 6407
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6408
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6409 6410
	ret = 0;
unlock:
6411 6412
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6413
	return ret;
P
Peter Zijlstra 已提交
6414

P
Peter Zijlstra 已提交
6415 6416 6417 6418
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6419 6420 6421 6422
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6423 6424 6425
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6426 6427
}

6428
void perf_pmu_unregister(struct pmu *pmu)
6429
{
6430 6431 6432
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6433

6434
	/*
P
Peter Zijlstra 已提交
6435 6436
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6437
	 */
6438
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6439
	synchronize_rcu();
6440

P
Peter Zijlstra 已提交
6441
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6442 6443
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6444 6445
	device_del(pmu->dev);
	put_device(pmu->dev);
6446
	free_pmu_context(pmu);
6447
}
6448

6449 6450 6451 6452
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6453
	int ret;
6454 6455

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6456 6457 6458 6459

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6460
	if (pmu) {
6461
		event->pmu = pmu;
6462 6463 6464
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6465
		goto unlock;
6466
	}
P
Peter Zijlstra 已提交
6467

6468
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6469
		event->pmu = pmu;
6470
		ret = pmu->event_init(event);
6471
		if (!ret)
P
Peter Zijlstra 已提交
6472
			goto unlock;
6473

6474 6475
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6476
			goto unlock;
6477
		}
6478
	}
P
Peter Zijlstra 已提交
6479 6480
	pmu = ERR_PTR(-ENOENT);
unlock:
6481
	srcu_read_unlock(&pmus_srcu, idx);
6482

6483
	return pmu;
6484 6485
}

6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6499 6500
static void account_event(struct perf_event *event)
{
6501 6502 6503
	if (event->parent)
		return;

6504 6505 6506 6507 6508 6509 6510 6511
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6512 6513 6514 6515
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6516
	if (has_branch_stack(event))
6517
		static_key_slow_inc(&perf_sched_events.key);
6518
	if (is_cgroup_event(event))
6519
		static_key_slow_inc(&perf_sched_events.key);
6520 6521

	account_event_cpu(event, event->cpu);
6522 6523
}

T
Thomas Gleixner 已提交
6524
/*
6525
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6526
 */
6527
static struct perf_event *
6528
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6529 6530 6531
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6532 6533
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6534
{
P
Peter Zijlstra 已提交
6535
	struct pmu *pmu;
6536 6537
	struct perf_event *event;
	struct hw_perf_event *hwc;
6538
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6539

6540 6541 6542 6543 6544
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6545
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6546
	if (!event)
6547
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6548

6549
	/*
6550
	 * Single events are their own group leaders, with an
6551 6552 6553
	 * empty sibling list:
	 */
	if (!group_leader)
6554
		group_leader = event;
6555

6556 6557
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6558

6559 6560 6561
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6562 6563
	INIT_LIST_HEAD(&event->rb_entry);

6564
	init_waitqueue_head(&event->waitq);
6565
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6566

6567
	mutex_init(&event->mmap_mutex);
6568

6569
	atomic_long_set(&event->refcount, 1);
6570 6571 6572 6573 6574
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6575

6576
	event->parent		= parent_event;
6577

6578
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6579
	event->id		= atomic64_inc_return(&perf_event_id);
6580

6581
	event->state		= PERF_EVENT_STATE_INACTIVE;
6582

6583 6584
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6585 6586 6587

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6588 6589 6590 6591
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6592
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6593 6594 6595 6596
			event->hw.bp_target = task;
#endif
	}

6597
	if (!overflow_handler && parent_event) {
6598
		overflow_handler = parent_event->overflow_handler;
6599 6600
		context = parent_event->overflow_handler_context;
	}
6601

6602
	event->overflow_handler	= overflow_handler;
6603
	event->overflow_handler_context = context;
6604

J
Jiri Olsa 已提交
6605
	perf_event__state_init(event);
6606

6607
	pmu = NULL;
6608

6609
	hwc = &event->hw;
6610
	hwc->sample_period = attr->sample_period;
6611
	if (attr->freq && attr->sample_freq)
6612
		hwc->sample_period = 1;
6613
	hwc->last_period = hwc->sample_period;
6614

6615
	local64_set(&hwc->period_left, hwc->sample_period);
6616

6617
	/*
6618
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6619
	 */
6620
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6621
		goto err_ns;
6622

6623
	pmu = perf_init_event(event);
6624
	if (!pmu)
6625 6626
		goto err_ns;
	else if (IS_ERR(pmu)) {
6627
		err = PTR_ERR(pmu);
6628
		goto err_ns;
I
Ingo Molnar 已提交
6629
	}
6630

6631
	if (!event->parent) {
6632 6633 6634 6635 6636
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err)
				goto err_pmu;
		}
6637
	}
6638

6639
	return event;
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6650 6651
}

6652 6653
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6654 6655
{
	u32 size;
6656
	int ret;
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6681 6682 6683
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6684 6685
	 */
	if (size > sizeof(*attr)) {
6686 6687 6688
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6689

6690 6691
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6692

6693
		for (; addr < end; addr++) {
6694 6695 6696 6697 6698 6699
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6700
		size = sizeof(*attr);
6701 6702 6703 6704 6705 6706
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6707
	if (attr->__reserved_1)
6708 6709 6710 6711 6712 6713 6714 6715
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6744 6745
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6746 6747
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6748
	}
6749

6750
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6751
		ret = perf_reg_validate(attr->sample_regs_user);
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6770

6771 6772 6773 6774 6775 6776 6777 6778 6779
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6780 6781
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6782
{
6783
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6784 6785
	int ret = -EINVAL;

6786
	if (!output_event)
6787 6788
		goto set;

6789 6790
	/* don't allow circular references */
	if (event == output_event)
6791 6792
		goto out;

6793 6794 6795 6796 6797 6798 6799
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6800
	 * If its not a per-cpu rb, it must be the same task.
6801 6802 6803 6804
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6805
set:
6806
	mutex_lock(&event->mmap_mutex);
6807 6808 6809
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6810

6811 6812
	old_rb = event->rb;

6813
	if (output_event) {
6814 6815 6816
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6817
			goto unlock;
6818 6819
	}

6820 6821
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6838
	ret = 0;
6839 6840 6841
unlock:
	mutex_unlock(&event->mmap_mutex);

6842 6843 6844 6845
out:
	return ret;
}

T
Thomas Gleixner 已提交
6846
/**
6847
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6848
 *
6849
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6850
 * @pid:		target pid
I
Ingo Molnar 已提交
6851
 * @cpu:		target cpu
6852
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6853
 */
6854 6855
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6856
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6857
{
6858 6859
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6860 6861 6862
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6863
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6864
	struct task_struct *task = NULL;
6865
	struct pmu *pmu;
6866
	int event_fd;
6867
	int move_group = 0;
6868
	int err;
T
Thomas Gleixner 已提交
6869

6870
	/* for future expandability... */
S
Stephane Eranian 已提交
6871
	if (flags & ~PERF_FLAG_ALL)
6872 6873
		return -EINVAL;

6874 6875 6876
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6877

6878 6879 6880 6881 6882
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6883
	if (attr.freq) {
6884
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6885 6886 6887
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6897
	event_fd = get_unused_fd();
6898 6899 6900
	if (event_fd < 0)
		return event_fd;

6901
	if (group_fd != -1) {
6902 6903
		err = perf_fget_light(group_fd, &group);
		if (err)
6904
			goto err_fd;
6905
		group_leader = group.file->private_data;
6906 6907 6908 6909 6910 6911
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6912
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6913 6914 6915 6916 6917 6918 6919
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6920 6921
	get_online_cpus();

6922 6923
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6924 6925
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6926
		goto err_task;
6927 6928
	}

S
Stephane Eranian 已提交
6929 6930
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6931 6932 6933 6934
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
6935 6936
	}

6937 6938
	account_event(event);

6939 6940 6941 6942 6943
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6967 6968 6969 6970

	/*
	 * Get the target context (task or percpu):
	 */
6971
	ctx = find_get_context(pmu, task, event->cpu);
6972 6973
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6974
		goto err_alloc;
6975 6976
	}

6977 6978 6979 6980 6981
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6982
	/*
6983
	 * Look up the group leader (we will attach this event to it):
6984
	 */
6985
	if (group_leader) {
6986
		err = -EINVAL;
6987 6988

		/*
I
Ingo Molnar 已提交
6989 6990 6991 6992
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6993
			goto err_context;
I
Ingo Molnar 已提交
6994 6995 6996
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6997
		 */
6998 6999 7000 7001 7002 7003 7004 7005
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7006 7007 7008
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7009
		if (attr.exclusive || attr.pinned)
7010
			goto err_context;
7011 7012 7013 7014 7015
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7016
			goto err_context;
7017
	}
T
Thomas Gleixner 已提交
7018

7019 7020 7021
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7022
		goto err_context;
7023
	}
7024

7025 7026 7027 7028
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7029
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7030 7031 7032 7033 7034 7035 7036

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7037 7038
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7039
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7040
			perf_event__state_init(sibling);
7041 7042 7043 7044
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7045
	}
7046

7047
	WARN_ON_ONCE(ctx->parent_ctx);
7048
	mutex_lock(&ctx->mutex);
7049 7050

	if (move_group) {
7051
		synchronize_rcu();
7052
		perf_install_in_context(ctx, group_leader, event->cpu);
7053 7054 7055
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7056
			perf_install_in_context(ctx, sibling, event->cpu);
7057 7058 7059 7060
			get_ctx(ctx);
		}
	}

7061
	perf_install_in_context(ctx, event, event->cpu);
7062
	++ctx->generation;
7063
	perf_unpin_context(ctx);
7064
	mutex_unlock(&ctx->mutex);
7065

7066 7067
	put_online_cpus();

7068
	event->owner = current;
P
Peter Zijlstra 已提交
7069

7070 7071 7072
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7073

7074 7075 7076 7077
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7078
	perf_event__id_header_size(event);
7079

7080 7081 7082 7083 7084 7085
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7086
	fdput(group);
7087 7088
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7089

7090
err_context:
7091
	perf_unpin_context(ctx);
7092
	put_ctx(ctx);
7093
err_alloc:
7094
	free_event(event);
P
Peter Zijlstra 已提交
7095
err_task:
7096
	put_online_cpus();
P
Peter Zijlstra 已提交
7097 7098
	if (task)
		put_task_struct(task);
7099
err_group_fd:
7100
	fdput(group);
7101 7102
err_fd:
	put_unused_fd(event_fd);
7103
	return err;
T
Thomas Gleixner 已提交
7104 7105
}

7106 7107 7108 7109 7110
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7111
 * @task: task to profile (NULL for percpu)
7112 7113 7114
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7115
				 struct task_struct *task,
7116 7117
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7118 7119
{
	struct perf_event_context *ctx;
7120
	struct perf_event *event;
7121
	int err;
7122

7123 7124 7125
	/*
	 * Get the target context (task or percpu):
	 */
7126

7127 7128
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7129 7130 7131 7132
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7133

7134 7135
	account_event(event);

M
Matt Helsley 已提交
7136
	ctx = find_get_context(event->pmu, task, cpu);
7137 7138
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7139
		goto err_free;
7140
	}
7141 7142 7143 7144 7145

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
7146
	perf_unpin_context(ctx);
7147 7148 7149 7150
	mutex_unlock(&ctx->mutex);

	return event;

7151 7152 7153
err_free:
	free_event(event);
err:
7154
	return ERR_PTR(err);
7155
}
7156
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7157

7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7172
		unaccount_event_cpu(event, src_cpu);
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7185
		account_event_cpu(event, dst_cpu);
7186 7187 7188 7189 7190 7191 7192
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7193
static void sync_child_event(struct perf_event *child_event,
7194
			       struct task_struct *child)
7195
{
7196
	struct perf_event *parent_event = child_event->parent;
7197
	u64 child_val;
7198

7199 7200
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7201

P
Peter Zijlstra 已提交
7202
	child_val = perf_event_count(child_event);
7203 7204 7205 7206

	/*
	 * Add back the child's count to the parent's count:
	 */
7207
	atomic64_add(child_val, &parent_event->child_count);
7208 7209 7210 7211
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7212 7213

	/*
7214
	 * Remove this event from the parent's list
7215
	 */
7216 7217 7218 7219
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7220 7221

	/*
7222
	 * Release the parent event, if this was the last
7223 7224
	 * reference to it.
	 */
7225
	put_event(parent_event);
7226 7227
}

7228
static void
7229 7230
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7231
			 struct task_struct *child)
7232
{
7233 7234 7235 7236 7237
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7238

7239
	perf_remove_from_context(child_event);
7240

7241
	/*
7242
	 * It can happen that the parent exits first, and has events
7243
	 * that are still around due to the child reference. These
7244
	 * events need to be zapped.
7245
	 */
7246
	if (child_event->parent) {
7247 7248
		sync_child_event(child_event, child);
		free_event(child_event);
7249
	}
7250 7251
}

P
Peter Zijlstra 已提交
7252
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7253
{
7254 7255
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7256
	unsigned long flags;
7257

P
Peter Zijlstra 已提交
7258
	if (likely(!child->perf_event_ctxp[ctxn])) {
7259
		perf_event_task(child, NULL, 0);
7260
		return;
P
Peter Zijlstra 已提交
7261
	}
7262

7263
	local_irq_save(flags);
7264 7265 7266 7267 7268 7269
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7270
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7271 7272 7273

	/*
	 * Take the context lock here so that if find_get_context is
7274
	 * reading child->perf_event_ctxp, we wait until it has
7275 7276
	 * incremented the context's refcount before we do put_ctx below.
	 */
7277
	raw_spin_lock(&child_ctx->lock);
7278
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7279
	child->perf_event_ctxp[ctxn] = NULL;
7280 7281 7282
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7283
	 * the events from it.
7284 7285
	 */
	unclone_ctx(child_ctx);
7286
	update_context_time(child_ctx);
7287
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7288 7289

	/*
7290 7291 7292
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7293
	 */
7294
	perf_event_task(child, child_ctx, 0);
7295

7296 7297 7298
	/*
	 * We can recurse on the same lock type through:
	 *
7299 7300
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7301 7302
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7303 7304 7305
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7306
	mutex_lock(&child_ctx->mutex);
7307

7308
again:
7309 7310 7311 7312 7313
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7314
				 group_entry)
7315
		__perf_event_exit_task(child_event, child_ctx, child);
7316 7317

	/*
7318
	 * If the last event was a group event, it will have appended all
7319 7320 7321
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7322 7323
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7324
		goto again;
7325 7326 7327 7328

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7329 7330
}

P
Peter Zijlstra 已提交
7331 7332 7333 7334 7335
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7336
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7337 7338
	int ctxn;

P
Peter Zijlstra 已提交
7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7354 7355 7356 7357
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7370
	put_event(parent);
7371

7372
	perf_group_detach(event);
7373 7374 7375 7376
	list_del_event(event, ctx);
	free_event(event);
}

7377 7378
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7379
 * perf_event_init_task below, used by fork() in case of fail.
7380
 */
7381
void perf_event_free_task(struct task_struct *task)
7382
{
P
Peter Zijlstra 已提交
7383
	struct perf_event_context *ctx;
7384
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7385
	int ctxn;
7386

P
Peter Zijlstra 已提交
7387 7388 7389 7390
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7391

P
Peter Zijlstra 已提交
7392
		mutex_lock(&ctx->mutex);
7393
again:
P
Peter Zijlstra 已提交
7394 7395 7396
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7397

P
Peter Zijlstra 已提交
7398 7399 7400
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7401

P
Peter Zijlstra 已提交
7402 7403 7404
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7405

P
Peter Zijlstra 已提交
7406
		mutex_unlock(&ctx->mutex);
7407

P
Peter Zijlstra 已提交
7408 7409
		put_ctx(ctx);
	}
7410 7411
}

7412 7413 7414 7415 7416 7417 7418 7419
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7432
	unsigned long flags;
P
Peter Zijlstra 已提交
7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7445
					   child,
P
Peter Zijlstra 已提交
7446
					   group_leader, parent_event,
7447
				           NULL, NULL);
P
Peter Zijlstra 已提交
7448 7449
	if (IS_ERR(child_event))
		return child_event;
7450 7451 7452 7453 7454 7455

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7480 7481
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7482

7483 7484 7485 7486
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7487
	perf_event__id_header_size(child_event);
7488

P
Peter Zijlstra 已提交
7489 7490 7491
	/*
	 * Link it up in the child's context:
	 */
7492
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7493
	add_event_to_ctx(child_event, child_ctx);
7494
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7528 7529 7530 7531 7532
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7533
		   struct task_struct *child, int ctxn,
7534 7535 7536
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7537
	struct perf_event_context *child_ctx;
7538 7539 7540 7541

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7542 7543
	}

7544
	child_ctx = child->perf_event_ctxp[ctxn];
7545 7546 7547 7548 7549 7550 7551
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7552

7553
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7554 7555
		if (!child_ctx)
			return -ENOMEM;
7556

P
Peter Zijlstra 已提交
7557
		child->perf_event_ctxp[ctxn] = child_ctx;
7558 7559 7560 7561 7562 7563 7564 7565 7566
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7567 7568
}

7569
/*
7570
 * Initialize the perf_event context in task_struct
7571
 */
P
Peter Zijlstra 已提交
7572
int perf_event_init_context(struct task_struct *child, int ctxn)
7573
{
7574
	struct perf_event_context *child_ctx, *parent_ctx;
7575 7576
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7577
	struct task_struct *parent = current;
7578
	int inherited_all = 1;
7579
	unsigned long flags;
7580
	int ret = 0;
7581

P
Peter Zijlstra 已提交
7582
	if (likely(!parent->perf_event_ctxp[ctxn]))
7583 7584
		return 0;

7585
	/*
7586 7587
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7588
	 */
P
Peter Zijlstra 已提交
7589
	parent_ctx = perf_pin_task_context(parent, ctxn);
7590

7591 7592 7593 7594 7595 7596 7597
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7598 7599 7600 7601
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7602
	mutex_lock(&parent_ctx->mutex);
7603 7604 7605 7606 7607

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7608
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7609 7610
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7611 7612 7613
		if (ret)
			break;
	}
7614

7615 7616 7617 7618 7619 7620 7621 7622 7623
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7624
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7625 7626
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7627
		if (ret)
7628
			break;
7629 7630
	}

7631 7632 7633
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7634
	child_ctx = child->perf_event_ctxp[ctxn];
7635

7636
	if (child_ctx && inherited_all) {
7637 7638 7639
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7640 7641 7642
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7643
		 */
P
Peter Zijlstra 已提交
7644
		cloned_ctx = parent_ctx->parent_ctx;
7645 7646
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7647
			child_ctx->parent_gen = parent_ctx->parent_gen;
7648 7649 7650 7651 7652
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7653 7654
	}

P
Peter Zijlstra 已提交
7655
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7656
	mutex_unlock(&parent_ctx->mutex);
7657

7658
	perf_unpin_context(parent_ctx);
7659
	put_ctx(parent_ctx);
7660

7661
	return ret;
7662 7663
}

P
Peter Zijlstra 已提交
7664 7665 7666 7667 7668 7669 7670
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7671 7672 7673 7674
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7675 7676 7677 7678 7679 7680 7681 7682 7683
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7684 7685
static void __init perf_event_init_all_cpus(void)
{
7686
	struct swevent_htable *swhash;
7687 7688 7689
	int cpu;

	for_each_possible_cpu(cpu) {
7690 7691
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7692
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7693 7694 7695
	}
}

7696
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7697
{
P
Peter Zijlstra 已提交
7698
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7699

7700
	mutex_lock(&swhash->hlist_mutex);
7701
	if (swhash->hlist_refcount > 0) {
7702 7703
		struct swevent_hlist *hlist;

7704 7705 7706
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7707
	}
7708
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7709 7710
}

P
Peter Zijlstra 已提交
7711
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7712
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7713
{
7714 7715 7716 7717 7718 7719 7720
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7721
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7722
{
P
Peter Zijlstra 已提交
7723
	struct perf_event_context *ctx = __info;
7724
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7725

P
Peter Zijlstra 已提交
7726
	perf_pmu_rotate_stop(ctx->pmu);
7727

7728
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7729
		__perf_remove_from_context(event);
7730
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7731
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7732
}
P
Peter Zijlstra 已提交
7733 7734 7735 7736 7737 7738 7739 7740 7741

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7742
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7743 7744 7745 7746 7747 7748 7749 7750

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7751
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7752
{
7753
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7754

7755 7756 7757
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7758

P
Peter Zijlstra 已提交
7759
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7760 7761
}
#else
7762
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7763 7764
#endif

P
Peter Zijlstra 已提交
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7785
static int
T
Thomas Gleixner 已提交
7786 7787 7788 7789
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7790
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7791 7792

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7793
	case CPU_DOWN_FAILED:
7794
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7795 7796
		break;

P
Peter Zijlstra 已提交
7797
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7798
	case CPU_DOWN_PREPARE:
7799
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7800 7801 7802 7803 7804 7805 7806 7807
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7808
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7809
{
7810 7811
	int ret;

P
Peter Zijlstra 已提交
7812 7813
	idr_init(&pmu_idr);

7814
	perf_event_init_all_cpus();
7815
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7816 7817 7818
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7819 7820
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7821
	register_reboot_notifier(&perf_reboot_notifier);
7822 7823 7824

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7825 7826 7827

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7828 7829 7830 7831 7832 7833 7834

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7835
}
P
Peter Zijlstra 已提交
7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7864 7865

#ifdef CONFIG_CGROUP_PERF
7866
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7867 7868 7869
{
	struct perf_cgroup *jc;

7870
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7883
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7899
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7900
{
7901 7902 7903 7904
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7905 7906
}

7907 7908
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7909 7910 7911 7912 7913 7914 7915 7916 7917
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7918
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7919 7920 7921
}

struct cgroup_subsys perf_subsys = {
7922 7923
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7924 7925
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7926
	.exit		= perf_cgroup_exit,
7927
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7928 7929
};
#endif /* CONFIG_CGROUP_PERF */