core.c 224.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
typedef int (*remote_function_f)(void *);

54
struct remote_function_call {
55
	struct task_struct	*p;
56
	remote_function_f	func;
57 58
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
67 68 69 70 71 72 73 74 75 76 77
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
98
task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 100
{
	struct remote_function_call data = {
101 102 103
		.p	= p,
		.func	= func,
		.info	= info,
104
		.ret	= -EAGAIN,
105
	};
106
	int ret;
107

108 109 110 111 112
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
113

114
	return ret;
115 116 117 118 119 120 121 122 123 124 125
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
126
static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 128
{
	struct remote_function_call data = {
129 130 131 132
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
133 134 135 136 137 138 139
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

140 141 142 143 144 145 146 147
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
148
{
149 150 151 152 153 154 155 156 157 158 159 160 161
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

162 163 164 165
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
166
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

188 189 190 191 192 193 194 195 196 197 198 199 200
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
201
	struct perf_event_context *ctx = event->ctx;
202 203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204
	int ret = 0;
205 206 207

	WARN_ON_ONCE(!irqs_disabled());

208
	perf_ctx_lock(cpuctx, task_ctx);
209 210 211 212 213
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
214
		if (ctx->task != current) {
215
			ret = -ESRCH;
216 217
			goto unlock;
		}
218 219 220 221 222 223 224 225 226 227 228 229 230

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
231 232 233
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234
	}
235

236
	efs->func(event, cpuctx, ctx, efs->data);
237
unlock:
238 239
	perf_ctx_unlock(cpuctx, task_ctx);

240
	return ret;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
256 257
{
	struct perf_event_context *ctx = event->ctx;
258
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 260 261 262 263
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
264

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
273 274

	if (!task) {
275
		cpu_function_call(event->cpu, event_function, &efs);
276 277 278
		return;
	}

279 280 281
	if (task == TASK_TOMBSTONE)
		return;

282
again:
283
	if (!task_function_call(task, event_function, &efs))
284 285 286
		return;

	raw_spin_lock_irq(&ctx->lock);
287 288 289 290 291
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
292 293 294
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
295
	}
296 297 298 299 300
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
301 302 303
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
304 305
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
306 307
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
308

309 310 311 312 313 314 315
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

316 317 318
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
319
	EVENT_TIME = 0x4,
320 321 322
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
323 324 325 326
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
327 328 329 330 331 332 333

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
334
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
336

337 338 339
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
340
static atomic_t nr_freq_events __read_mostly;
341
static atomic_t nr_switch_events __read_mostly;
342

P
Peter Zijlstra 已提交
343 344 345 346
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

347
/*
348
 * perf event paranoia level:
349 350
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
351
 *   1 - disallow cpu events for unpriv
352
 *   2 - disallow kernel profiling for unpriv
353
 */
354
int sysctl_perf_event_paranoid __read_mostly = 1;
355

356 357
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 359

/*
360
 * max perf event sample rate
361
 */
362 363 364 365 366 367 368 369 370
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
371 372
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373

374
static void update_perf_cpu_limits(void)
375 376 377 378
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
379 380 381 382 383
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
384
}
P
Peter Zijlstra 已提交
385

386 387
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
388 389 390 391
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
392
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
393 394 395 396 397

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

415 416 417 418 419 420 421
	if (sysctl_perf_cpu_time_max_percent == 100) {
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
422 423 424

	return 0;
}
425

426 427 428 429 430 431 432
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
433
static DEFINE_PER_CPU(u64, running_sample_length);
434

435 436 437
static u64 __report_avg;
static u64 __report_allowed;

438
static void perf_duration_warn(struct irq_work *w)
439
{
440
	printk_ratelimited(KERN_WARNING
441 442 443 444
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
445 446 447 448 449 450
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
451 452 453 454
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
455

456
	if (max_len == 0)
457 458
		return;

459 460 461 462 463
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
464 465

	/*
466 467
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
468 469
	 * from having to maintain a count.
	 */
470 471
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
472 473
		return;

474 475
	__report_avg = avg_len;
	__report_allowed = max_len;
476

477 478 479 480 481 482 483 484 485
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
486

487 488 489 490 491
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
492

493
	if (!irq_work_queue(&perf_duration_work)) {
494
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
495
			     "kernel.perf_event_max_sample_rate to %d\n",
496
			     __report_avg, __report_allowed,
497 498
			     sysctl_perf_event_sample_rate);
	}
499 500
}

501
static atomic64_t perf_event_id;
502

503 504 505 506
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
507 508 509 510 511
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
512

513
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
514

515
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
516
{
517
	return "pmu";
T
Thomas Gleixner 已提交
518 519
}

520 521 522 523 524
static inline u64 perf_clock(void)
{
	return local_clock();
}

525 526 527 528 529
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
530 531 532 533 534 535 536 537
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
554 555 556 557
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
558
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
597 598
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
599
	/*
600 601
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
602
	 */
603
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
604 605
		return;

606
	cgrp = perf_cgroup_from_task(current, event->ctx);
607 608 609 610 611
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
612 613 614
}

static inline void
615 616
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
617 618 619 620
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

621 622 623 624 625 626
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
627 628
		return;

629
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
630
	info = this_cpu_ptr(cgrp->info);
631
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
632 633 634 635 636 637 638 639 640 641 642
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
643
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
663 664
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
665 666 667 668 669 670 671 672 673

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
674 675
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
676 677 678 679 680 681 682 683 684 685 686

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
687
				WARN_ON_ONCE(cpuctx->cgrp);
688 689 690 691
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
692 693
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
694
				 */
695
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
696 697
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
698 699
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
700 701 702 703 704 705
		}
	}

	local_irq_restore(flags);
}

706 707
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
708
{
709 710 711
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

712
	rcu_read_lock();
713 714
	/*
	 * we come here when we know perf_cgroup_events > 0
715 716
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
717
	 */
718
	cgrp1 = perf_cgroup_from_task(task, NULL);
719
	cgrp2 = perf_cgroup_from_task(next, NULL);
720 721 722 723 724 725 726 727

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
728 729

	rcu_read_unlock();
S
Stephane Eranian 已提交
730 731
}

732 733
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
734
{
735 736 737
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

738
	rcu_read_lock();
739 740
	/*
	 * we come here when we know perf_cgroup_events > 0
741 742
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
743
	 */
744 745
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
746 747 748 749 750 751 752 753

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
754 755

	rcu_read_unlock();
S
Stephane Eranian 已提交
756 757 758 759 760 761 762 763
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
764 765
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
766

767
	if (!f.file)
S
Stephane Eranian 已提交
768 769
		return -EBADF;

A
Al Viro 已提交
770
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
771
					 &perf_event_cgrp_subsys);
772 773 774 775
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
789
out:
790
	fdput(f);
S
Stephane Eranian 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

864 865
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
866 867 868
{
}

869 870
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
871 872 873 874 875 876 877 878 879 880 881
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
882 883
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

914 915 916 917 918 919 920 921
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
922
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
923 924 925 926 927 928 929 930 931
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
932 933
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
934
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
935 936 937
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
938

P
Peter Zijlstra 已提交
939
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
940 941
}

942
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
943
{
944
	struct hrtimer *timer = &cpuctx->hrtimer;
945
	struct pmu *pmu = cpuctx->ctx.pmu;
946
	u64 interval;
947 948 949 950 951

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

952 953 954 955
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
956 957 958
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
959

960
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
961

P
Peter Zijlstra 已提交
962 963
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
964
	timer->function = perf_mux_hrtimer_handler;
965 966
}

967
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
968
{
969
	struct hrtimer *timer = &cpuctx->hrtimer;
970
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
971
	unsigned long flags;
972 973 974

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
975
		return 0;
976

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
984

985
	return 0;
986 987
}

P
Peter Zijlstra 已提交
988
void perf_pmu_disable(struct pmu *pmu)
989
{
P
Peter Zijlstra 已提交
990 991 992
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
993 994
}

P
Peter Zijlstra 已提交
995
void perf_pmu_enable(struct pmu *pmu)
996
{
P
Peter Zijlstra 已提交
997 998 999
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1000 1001
}

1002
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1003 1004

/*
1005 1006 1007 1008
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1009
 */
1010
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1011
{
1012
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1013

1014
	WARN_ON(!irqs_disabled());
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1028 1029
}

1030
static void get_ctx(struct perf_event_context *ctx)
1031
{
1032
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1044
static void put_ctx(struct perf_event_context *ctx)
1045
{
1046 1047 1048
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1049
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1050
			put_task_struct(ctx->task);
1051
		call_rcu(&ctx->rcu_head, free_ctx);
1052
	}
1053 1054
}

P
Peter Zijlstra 已提交
1055 1056 1057 1058 1059 1060 1061
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1062 1063 1064 1065
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1066 1067
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1111
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1112 1113 1114
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1115 1116
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1129
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1139 1140 1141 1142 1143 1144
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1145 1146 1147 1148 1149 1150 1151
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1152 1153 1154 1155 1156 1157 1158
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1159
{
1160 1161 1162 1163 1164
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1165
		ctx->parent_ctx = NULL;
1166
	ctx->generation++;
1167 1168

	return parent_ctx;
1169 1170
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1193
/*
1194
 * If we inherit events we want to return the parent event id
1195 1196
 * to userspace.
 */
1197
static u64 primary_event_id(struct perf_event *event)
1198
{
1199
	u64 id = event->id;
1200

1201 1202
	if (event->parent)
		id = event->parent->id;
1203 1204 1205 1206

	return id;
}

1207
/*
1208
 * Get the perf_event_context for a task and lock it.
1209
 *
1210 1211 1212
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1213
static struct perf_event_context *
P
Peter Zijlstra 已提交
1214
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1215
{
1216
	struct perf_event_context *ctx;
1217

P
Peter Zijlstra 已提交
1218
retry:
1219 1220 1221
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1222
	 * part of the read side critical section was irqs-enabled -- see
1223 1224 1225
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1226
	 * side critical section has interrupts disabled.
1227
	 */
1228
	local_irq_save(*flags);
1229
	rcu_read_lock();
P
Peter Zijlstra 已提交
1230
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1231 1232 1233 1234
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1235
		 * perf_event_task_sched_out, though the
1236 1237 1238 1239 1240 1241
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1242
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1243
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1244
			raw_spin_unlock(&ctx->lock);
1245
			rcu_read_unlock();
1246
			local_irq_restore(*flags);
1247 1248
			goto retry;
		}
1249

1250 1251
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1252
			raw_spin_unlock(&ctx->lock);
1253
			ctx = NULL;
P
Peter Zijlstra 已提交
1254 1255
		} else {
			WARN_ON_ONCE(ctx->task != task);
1256
		}
1257 1258
	}
	rcu_read_unlock();
1259 1260
	if (!ctx)
		local_irq_restore(*flags);
1261 1262 1263 1264 1265 1266 1267 1268
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1269 1270
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1271
{
1272
	struct perf_event_context *ctx;
1273 1274
	unsigned long flags;

P
Peter Zijlstra 已提交
1275
	ctx = perf_lock_task_context(task, ctxn, &flags);
1276 1277
	if (ctx) {
		++ctx->pin_count;
1278
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1279 1280 1281 1282
	}
	return ctx;
}

1283
static void perf_unpin_context(struct perf_event_context *ctx)
1284 1285 1286
{
	unsigned long flags;

1287
	raw_spin_lock_irqsave(&ctx->lock, flags);
1288
	--ctx->pin_count;
1289
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1290 1291
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1303 1304 1305
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1306 1307 1308 1309

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1310 1311 1312
	return ctx ? ctx->time : 0;
}

1313 1314 1315 1316 1317 1318 1319 1320
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1321 1322
	lockdep_assert_held(&ctx->lock);

1323 1324 1325
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1326

S
Stephane Eranian 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1338
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1339 1340
	else if (ctx->is_active)
		run_end = ctx->time;
1341 1342 1343 1344
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1345 1346 1347 1348

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1349
		run_end = perf_event_time(event);
1350 1351

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1352

1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1367 1368 1369 1370 1371 1372 1373 1374 1375
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1376
/*
1377
 * Add a event from the lists for its context.
1378 1379
 * Must be called with ctx->mutex and ctx->lock held.
 */
1380
static void
1381
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1382
{
P
Peter Zijlstra 已提交
1383 1384
	lockdep_assert_held(&ctx->lock);

1385 1386
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1387 1388

	/*
1389 1390 1391
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1392
	 */
1393
	if (event->group_leader == event) {
1394 1395
		struct list_head *list;

1396 1397 1398
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1399 1400
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1401
	}
P
Peter Zijlstra 已提交
1402

1403
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1404 1405
		ctx->nr_cgroups++;

1406 1407 1408
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1409
		ctx->nr_stat++;
1410 1411

	ctx->generation++;
1412 1413
}

J
Jiri Olsa 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1423
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1439
		nr += nr_siblings;
1440 1441 1442 1443 1444 1445 1446
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1447
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1448 1449 1450 1451 1452 1453 1454
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1455 1456 1457 1458 1459 1460
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1461 1462 1463
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1464 1465 1466
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1467 1468 1469
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1470 1471 1472
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1473 1474 1475
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1487 1488 1489 1490 1491 1492
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1493 1494 1495 1496 1497 1498
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1499 1500 1501
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1502 1503 1504 1505 1506 1507 1508 1509 1510
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1511
	event->id_header_size = size;
1512 1513
}

P
Peter Zijlstra 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1535 1536
static void perf_group_attach(struct perf_event *event)
{
1537
	struct perf_event *group_leader = event->group_leader, *pos;
1538

P
Peter Zijlstra 已提交
1539 1540 1541 1542 1543 1544
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1545 1546 1547 1548 1549
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1550 1551
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1552 1553 1554 1555 1556 1557
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1558 1559 1560 1561 1562

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1563 1564
}

1565
/*
1566
 * Remove a event from the lists for its context.
1567
 * Must be called with ctx->mutex and ctx->lock held.
1568
 */
1569
static void
1570
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1571
{
1572
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1573 1574 1575 1576

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1577 1578 1579 1580
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1581
		return;
1582 1583 1584

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1585
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1586
		ctx->nr_cgroups--;
1587 1588 1589 1590
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1591 1592
		cpuctx = __get_cpu_context(ctx);
		/*
1593 1594
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1595 1596 1597 1598
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1599

1600 1601
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1602
		ctx->nr_stat--;
1603

1604
	list_del_rcu(&event->event_entry);
1605

1606 1607
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1608

1609
	update_group_times(event);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1620 1621

	ctx->generation++;
1622 1623
}

1624
static void perf_group_detach(struct perf_event *event)
1625 1626
{
	struct perf_event *sibling, *tmp;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1643
		goto out;
1644 1645 1646 1647
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1648

1649
	/*
1650 1651
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1652
	 * to whatever list we are on.
1653
	 */
1654
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1655 1656
		if (list)
			list_move_tail(&sibling->group_entry, list);
1657
		sibling->group_leader = sibling;
1658 1659 1660

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1661 1662

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1663
	}
1664 1665 1666 1667 1668 1669

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1670 1671
}

1672 1673
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1674
	return event->state == PERF_EVENT_STATE_DEAD;
1675 1676
}

1677 1678 1679 1680 1681 1682
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1683 1684 1685
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1686
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1687
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1688 1689
}

1690 1691
static void
event_sched_out(struct perf_event *event,
1692
		  struct perf_cpu_context *cpuctx,
1693
		  struct perf_event_context *ctx)
1694
{
1695
	u64 tstamp = perf_event_time(event);
1696
	u64 delta;
P
Peter Zijlstra 已提交
1697 1698 1699 1700

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1701 1702 1703 1704 1705 1706 1707 1708
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1709
		delta = tstamp - event->tstamp_stopped;
1710
		event->tstamp_running += delta;
1711
		event->tstamp_stopped = tstamp;
1712 1713
	}

1714
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1715
		return;
1716

1717 1718
	perf_pmu_disable(event->pmu);

1719 1720 1721
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1722 1723 1724 1725
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1726
	}
1727

1728
	if (!is_software_event(event))
1729
		cpuctx->active_oncpu--;
1730 1731
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1732 1733
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1734
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1735
		cpuctx->exclusive = 0;
1736 1737

	perf_pmu_enable(event->pmu);
1738 1739
}

1740
static void
1741
group_sched_out(struct perf_event *group_event,
1742
		struct perf_cpu_context *cpuctx,
1743
		struct perf_event_context *ctx)
1744
{
1745
	struct perf_event *event;
1746
	int state = group_event->state;
1747

1748
	event_sched_out(group_event, cpuctx, ctx);
1749 1750 1751 1752

	/*
	 * Schedule out siblings (if any):
	 */
1753 1754
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1755

1756
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1757 1758 1759
		cpuctx->exclusive = 0;
}

1760
#define DETACH_GROUP	0x01UL
1761

T
Thomas Gleixner 已提交
1762
/*
1763
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1764
 *
1765
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1766 1767
 * remove it from the context list.
 */
1768 1769 1770 1771 1772
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1773
{
1774
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1775

1776
	event_sched_out(event, cpuctx, ctx);
1777
	if (flags & DETACH_GROUP)
1778
		perf_group_detach(event);
1779
	list_del_event(event, ctx);
1780 1781

	if (!ctx->nr_events && ctx->is_active) {
1782
		ctx->is_active = 0;
1783 1784 1785 1786
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1787
	}
T
Thomas Gleixner 已提交
1788 1789 1790
}

/*
1791
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1792
 *
1793 1794
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1795 1796
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1797
 * When called from perf_event_exit_task, it's OK because the
1798
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1799
 */
1800
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1801
{
1802
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1803

1804
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1805 1806
}

1807
/*
1808
 * Cross CPU call to disable a performance event
1809
 */
1810 1811 1812 1813
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1814
{
1815 1816
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1817

1818 1819 1820 1821 1822 1823 1824 1825
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1826 1827
}

1828
/*
1829
 * Disable a event.
1830
 *
1831 1832
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1833
 * remains valid.  This condition is satisifed when called through
1834 1835
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1836 1837
 * goes to exit will block in perf_event_exit_event().
 *
1838
 * When called from perf_pending_event it's OK because event->ctx
1839
 * is the current context on this CPU and preemption is disabled,
1840
 * hence we can't get into perf_event_task_sched_out for this context.
1841
 */
P
Peter Zijlstra 已提交
1842
static void _perf_event_disable(struct perf_event *event)
1843
{
1844
	struct perf_event_context *ctx = event->ctx;
1845

1846
	raw_spin_lock_irq(&ctx->lock);
1847
	if (event->state <= PERF_EVENT_STATE_OFF) {
1848
		raw_spin_unlock_irq(&ctx->lock);
1849
		return;
1850
	}
1851
	raw_spin_unlock_irq(&ctx->lock);
1852

1853 1854 1855 1856 1857 1858
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1859
}
P
Peter Zijlstra 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1873
EXPORT_SYMBOL_GPL(perf_event_disable);
1874

S
Stephane Eranian 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1910 1911 1912
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1913
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1914

1915
static int
1916
event_sched_in(struct perf_event *event,
1917
		 struct perf_cpu_context *cpuctx,
1918
		 struct perf_event_context *ctx)
1919
{
1920
	u64 tstamp = perf_event_time(event);
1921
	int ret = 0;
1922

1923 1924
	lockdep_assert_held(&ctx->lock);

1925
	if (event->state <= PERF_EVENT_STATE_OFF)
1926 1927
		return 0;

1928
	event->state = PERF_EVENT_STATE_ACTIVE;
1929
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1941 1942 1943 1944 1945
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1946 1947
	perf_pmu_disable(event->pmu);

1948 1949
	perf_set_shadow_time(event, ctx, tstamp);

1950 1951
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1952
	if (event->pmu->add(event, PERF_EF_START)) {
1953 1954
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1955 1956
		ret = -EAGAIN;
		goto out;
1957 1958
	}

1959 1960
	event->tstamp_running += tstamp - event->tstamp_stopped;

1961
	if (!is_software_event(event))
1962
		cpuctx->active_oncpu++;
1963 1964
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1965 1966
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1967

1968
	if (event->attr.exclusive)
1969 1970
		cpuctx->exclusive = 1;

1971 1972 1973 1974
out:
	perf_pmu_enable(event->pmu);

	return ret;
1975 1976
}

1977
static int
1978
group_sched_in(struct perf_event *group_event,
1979
	       struct perf_cpu_context *cpuctx,
1980
	       struct perf_event_context *ctx)
1981
{
1982
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1983
	struct pmu *pmu = ctx->pmu;
1984 1985
	u64 now = ctx->time;
	bool simulate = false;
1986

1987
	if (group_event->state == PERF_EVENT_STATE_OFF)
1988 1989
		return 0;

1990
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1991

1992
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1993
		pmu->cancel_txn(pmu);
1994
		perf_mux_hrtimer_restart(cpuctx);
1995
		return -EAGAIN;
1996
	}
1997 1998 1999 2000

	/*
	 * Schedule in siblings as one group (if any):
	 */
2001
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2002
		if (event_sched_in(event, cpuctx, ctx)) {
2003
			partial_group = event;
2004 2005 2006 2007
			goto group_error;
		}
	}

2008
	if (!pmu->commit_txn(pmu))
2009
		return 0;
2010

2011 2012 2013 2014
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2025
	 */
2026 2027
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2028 2029 2030 2031 2032 2033 2034 2035
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2036
	}
2037
	event_sched_out(group_event, cpuctx, ctx);
2038

P
Peter Zijlstra 已提交
2039
	pmu->cancel_txn(pmu);
2040

2041
	perf_mux_hrtimer_restart(cpuctx);
2042

2043 2044 2045
	return -EAGAIN;
}

2046
/*
2047
 * Work out whether we can put this event group on the CPU now.
2048
 */
2049
static int group_can_go_on(struct perf_event *event,
2050 2051 2052 2053
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2054
	 * Groups consisting entirely of software events can always go on.
2055
	 */
2056
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2057 2058 2059
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2060
	 * events can go on.
2061 2062 2063 2064 2065
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2066
	 * events on the CPU, it can't go on.
2067
	 */
2068
	if (event->attr.exclusive && cpuctx->active_oncpu)
2069 2070 2071 2072 2073 2074 2075 2076
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2077 2078
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2079
{
2080 2081
	u64 tstamp = perf_event_time(event);

2082
	list_add_event(event, ctx);
2083
	perf_group_attach(event);
2084 2085 2086
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2087 2088
}

2089 2090 2091
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2092 2093 2094 2095 2096
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2122 2123
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2124
{
2125 2126 2127 2128 2129 2130
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2131 2132
}

T
Thomas Gleixner 已提交
2133
/*
2134
 * Cross CPU call to install and enable a performance event
2135
 *
2136 2137
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2138
 */
2139
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2140
{
2141 2142
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2143
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2145 2146
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2147

2148
	raw_spin_lock(&cpuctx->ctx.lock);
2149
	if (ctx->task) {
2150 2151
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2152 2153 2154 2155

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2156
			goto unlock;
2157
		}
2158

2159
		/*
2160 2161 2162
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2163
		 */
2164 2165 2166 2167 2168
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2169 2170
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2171
	}
2172

2173 2174 2175 2176 2177 2178 2179 2180
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2181
unlock:
2182
	perf_ctx_unlock(cpuctx, task_ctx);
2183

2184
	return ret;
T
Thomas Gleixner 已提交
2185 2186 2187
}

/*
2188 2189 2190
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2191 2192
 */
static void
2193 2194
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2195 2196
			int cpu)
{
2197
	struct task_struct *task = READ_ONCE(ctx->task);
2198

2199 2200
	lockdep_assert_held(&ctx->mutex);

2201
	event->ctx = ctx;
2202 2203
	if (event->cpu != -1)
		event->cpu = cpu;
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2216 2217 2218 2219
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2220
again:
2221
	/*
2222 2223
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2224
	 */
2225 2226 2227 2228 2229
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2230
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2231 2232 2233 2234 2235
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2236 2237 2238
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2239 2240
	raw_spin_unlock_irq(&ctx->lock);
	/*
2241 2242
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2243
	 */
2244
	goto again;
T
Thomas Gleixner 已提交
2245 2246
}

2247
/*
2248
 * Put a event into inactive state and update time fields.
2249 2250 2251 2252 2253 2254
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2255
static void __perf_event_mark_enabled(struct perf_event *event)
2256
{
2257
	struct perf_event *sub;
2258
	u64 tstamp = perf_event_time(event);
2259

2260
	event->state = PERF_EVENT_STATE_INACTIVE;
2261
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2262
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2263 2264
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2265
	}
2266 2267
}

2268
/*
2269
 * Cross CPU call to enable a performance event
2270
 */
2271 2272 2273 2274
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2275
{
2276
	struct perf_event *leader = event->group_leader;
2277
	struct perf_event_context *task_ctx;
2278

P
Peter Zijlstra 已提交
2279 2280
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2281
		return;
2282

2283 2284 2285
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2286
	__perf_event_mark_enabled(event);
2287

2288 2289 2290
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2291
	if (!event_filter_match(event)) {
2292
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2293
			perf_cgroup_defer_enabled(event);
2294
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2295
		return;
S
Stephane Eranian 已提交
2296
	}
2297

2298
	/*
2299
	 * If the event is in a group and isn't the group leader,
2300
	 * then don't put it on unless the group is on.
2301
	 */
2302 2303
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304
		return;
2305
	}
2306

2307 2308 2309
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2310

2311
	ctx_resched(cpuctx, task_ctx);
2312 2313
}

2314
/*
2315
 * Enable a event.
2316
 *
2317 2318
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2319
 * remains valid.  This condition is satisfied when called through
2320 2321
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2322
 */
P
Peter Zijlstra 已提交
2323
static void _perf_event_enable(struct perf_event *event)
2324
{
2325
	struct perf_event_context *ctx = event->ctx;
2326

2327
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2328 2329
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2330
		raw_spin_unlock_irq(&ctx->lock);
2331 2332 2333 2334
		return;
	}

	/*
2335
	 * If the event is in error state, clear that first.
2336 2337 2338 2339
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2340
	 */
2341 2342
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2343
	raw_spin_unlock_irq(&ctx->lock);
2344

2345
	event_function_call(event, __perf_event_enable, NULL);
2346
}
P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2359
EXPORT_SYMBOL_GPL(perf_event_enable);
2360

P
Peter Zijlstra 已提交
2361
static int _perf_event_refresh(struct perf_event *event, int refresh)
2362
{
2363
	/*
2364
	 * not supported on inherited events
2365
	 */
2366
	if (event->attr.inherit || !is_sampling_event(event))
2367 2368
		return -EINVAL;

2369
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2370
	_perf_event_enable(event);
2371 2372

	return 0;
2373
}
P
Peter Zijlstra 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2389
EXPORT_SYMBOL_GPL(perf_event_refresh);
2390

2391 2392 2393
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2394
{
2395
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2396
	struct perf_event *event;
2397

P
Peter Zijlstra 已提交
2398
	lockdep_assert_held(&ctx->lock);
2399

2400 2401 2402 2403 2404 2405 2406
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2407
		return;
2408 2409
	}

2410
	ctx->is_active &= ~event_type;
2411 2412 2413
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2414 2415 2416 2417 2418
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2419

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2430 2431 2432 2433 2434 2435
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2436 2437
	is_active ^= ctx->is_active; /* changed bits */

2438
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2439
		return;
2440

P
Peter Zijlstra 已提交
2441
	perf_pmu_disable(ctx->pmu);
2442
	if (is_active & EVENT_PINNED) {
2443 2444
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2445
	}
2446

2447
	if (is_active & EVENT_FLEXIBLE) {
2448
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2449
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2450
	}
P
Peter Zijlstra 已提交
2451
	perf_pmu_enable(ctx->pmu);
2452 2453
}

2454
/*
2455 2456 2457 2458 2459 2460
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2461
 */
2462 2463
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2464
{
2465 2466 2467
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2490 2491
}

2492 2493
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2494 2495 2496
{
	u64 value;

2497
	if (!event->attr.inherit_stat)
2498 2499 2500
		return;

	/*
2501
	 * Update the event value, we cannot use perf_event_read()
2502 2503
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2504
	 * we know the event must be on the current CPU, therefore we
2505 2506
	 * don't need to use it.
	 */
2507 2508
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2509 2510
		event->pmu->read(event);
		/* fall-through */
2511

2512 2513
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2514 2515 2516 2517 2518 2519 2520
		break;

	default:
		break;
	}

	/*
2521
	 * In order to keep per-task stats reliable we need to flip the event
2522 2523
	 * values when we flip the contexts.
	 */
2524 2525 2526
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2527

2528 2529
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2530

2531
	/*
2532
	 * Since we swizzled the values, update the user visible data too.
2533
	 */
2534 2535
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2536 2537
}

2538 2539
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2540
{
2541
	struct perf_event *event, *next_event;
2542 2543 2544 2545

	if (!ctx->nr_stat)
		return;

2546 2547
	update_context_time(ctx);

2548 2549
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2550

2551 2552
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2553

2554 2555
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2556

2557
		__perf_event_sync_stat(event, next_event);
2558

2559 2560
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2561 2562 2563
	}
}

2564 2565
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2566
{
P
Peter Zijlstra 已提交
2567
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2568
	struct perf_event_context *next_ctx;
2569
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2570
	struct perf_cpu_context *cpuctx;
2571
	int do_switch = 1;
T
Thomas Gleixner 已提交
2572

P
Peter Zijlstra 已提交
2573 2574
	if (likely(!ctx))
		return;
2575

P
Peter Zijlstra 已提交
2576 2577
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2578 2579
		return;

2580
	rcu_read_lock();
P
Peter Zijlstra 已提交
2581
	next_ctx = next->perf_event_ctxp[ctxn];
2582 2583 2584 2585 2586 2587 2588
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2589
	if (!parent && !next_parent)
2590 2591 2592
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2593 2594 2595 2596 2597 2598 2599 2600 2601
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2602 2603
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2604
		if (context_equiv(ctx, next_ctx)) {
2605 2606
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2607 2608 2609

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2620
			do_switch = 0;
2621

2622
			perf_event_sync_stat(ctx, next_ctx);
2623
		}
2624 2625
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2626
	}
2627
unlock:
2628
	rcu_read_unlock();
2629

2630
	if (do_switch) {
2631
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2632
		task_ctx_sched_out(cpuctx, ctx);
2633
		raw_spin_unlock(&ctx->lock);
2634
	}
T
Thomas Gleixner 已提交
2635 2636
}

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2687 2688 2689
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2704 2705
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2706 2707 2708
{
	int ctxn;

2709 2710 2711
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2712 2713 2714
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2715 2716
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2717 2718 2719 2720 2721 2722

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2723
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2724
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2725 2726
}

2727 2728 2729 2730 2731 2732 2733
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2734 2735
}

2736
static void
2737
ctx_pinned_sched_in(struct perf_event_context *ctx,
2738
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2739
{
2740
	struct perf_event *event;
T
Thomas Gleixner 已提交
2741

2742 2743
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2744
			continue;
2745
		if (!event_filter_match(event))
2746 2747
			continue;

S
Stephane Eranian 已提交
2748 2749 2750 2751
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2752
		if (group_can_go_on(event, cpuctx, 1))
2753
			group_sched_in(event, cpuctx, ctx);
2754 2755 2756 2757 2758

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2759 2760 2761
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2762
		}
2763
	}
2764 2765 2766 2767
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2768
		      struct perf_cpu_context *cpuctx)
2769 2770 2771
{
	struct perf_event *event;
	int can_add_hw = 1;
2772

2773 2774 2775
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2776
			continue;
2777 2778
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2779
		 * of events:
2780
		 */
2781
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2782 2783
			continue;

S
Stephane Eranian 已提交
2784 2785 2786 2787
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2788
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2789
			if (group_sched_in(event, cpuctx, ctx))
2790
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2791
		}
T
Thomas Gleixner 已提交
2792
	}
2793 2794 2795 2796 2797
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2798 2799
	     enum event_type_t event_type,
	     struct task_struct *task)
2800
{
2801
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2802 2803 2804
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2805

2806
	if (likely(!ctx->nr_events))
2807
		return;
2808

2809
	ctx->is_active |= (event_type | EVENT_TIME);
2810 2811 2812 2813 2814 2815 2816
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

2817 2818 2819 2820 2821 2822 2823 2824 2825
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

2826 2827 2828 2829
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2830
	if (is_active & EVENT_PINNED)
2831
		ctx_pinned_sched_in(ctx, cpuctx);
2832 2833

	/* Then walk through the lower prio flexible groups */
2834
	if (is_active & EVENT_FLEXIBLE)
2835
		ctx_flexible_sched_in(ctx, cpuctx);
2836 2837
}

2838
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2839 2840
			     enum event_type_t event_type,
			     struct task_struct *task)
2841 2842 2843
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2844
	ctx_sched_in(ctx, cpuctx, event_type, task);
2845 2846
}

S
Stephane Eranian 已提交
2847 2848
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2849
{
P
Peter Zijlstra 已提交
2850
	struct perf_cpu_context *cpuctx;
2851

P
Peter Zijlstra 已提交
2852
	cpuctx = __get_cpu_context(ctx);
2853 2854 2855
	if (cpuctx->task_ctx == ctx)
		return;

2856
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2857
	perf_pmu_disable(ctx->pmu);
2858 2859 2860 2861 2862 2863
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2864
	perf_event_sched_in(cpuctx, ctx, task);
2865 2866
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2867 2868
}

P
Peter Zijlstra 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2880 2881
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2882 2883 2884 2885
{
	struct perf_event_context *ctx;
	int ctxn;

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2896 2897 2898 2899 2900
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2901
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2902
	}
2903

2904 2905 2906
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2907 2908
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2909 2910
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2938
#define REDUCE_FLS(a, b)		\
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2978 2979 2980
	if (!divisor)
		return dividend;

2981 2982 2983
	return div64_u64(dividend, divisor);
}

2984 2985 2986
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2987
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2988
{
2989
	struct hw_perf_event *hwc = &event->hw;
2990
	s64 period, sample_period;
2991 2992
	s64 delta;

2993
	period = perf_calculate_period(event, nsec, count);
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3004

3005
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3006 3007 3008
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3009
		local64_set(&hwc->period_left, 0);
3010 3011 3012

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3013
	}
3014 3015
}

3016 3017 3018 3019 3020 3021 3022
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3023
{
3024 3025
	struct perf_event *event;
	struct hw_perf_event *hwc;
3026
	u64 now, period = TICK_NSEC;
3027
	s64 delta;
3028

3029 3030 3031 3032 3033 3034
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3035 3036
		return;

3037
	raw_spin_lock(&ctx->lock);
3038
	perf_pmu_disable(ctx->pmu);
3039

3040
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3041
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3042 3043
			continue;

3044
		if (!event_filter_match(event))
3045 3046
			continue;

3047 3048
		perf_pmu_disable(event->pmu);

3049
		hwc = &event->hw;
3050

3051
		if (hwc->interrupts == MAX_INTERRUPTS) {
3052
			hwc->interrupts = 0;
3053
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3054
			event->pmu->start(event, 0);
3055 3056
		}

3057
		if (!event->attr.freq || !event->attr.sample_freq)
3058
			goto next;
3059

3060 3061 3062 3063 3064
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3065
		now = local64_read(&event->count);
3066 3067
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3068

3069 3070 3071
		/*
		 * restart the event
		 * reload only if value has changed
3072 3073 3074
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3075
		 */
3076
		if (delta > 0)
3077
			perf_adjust_period(event, period, delta, false);
3078 3079

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3080 3081
	next:
		perf_pmu_enable(event->pmu);
3082
	}
3083

3084
	perf_pmu_enable(ctx->pmu);
3085
	raw_spin_unlock(&ctx->lock);
3086 3087
}

3088
/*
3089
 * Round-robin a context's events:
3090
 */
3091
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3092
{
3093 3094 3095 3096 3097 3098
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3099 3100
}

3101
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3102
{
P
Peter Zijlstra 已提交
3103
	struct perf_event_context *ctx = NULL;
3104
	int rotate = 0;
3105

3106 3107 3108 3109
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3110

P
Peter Zijlstra 已提交
3111
	ctx = cpuctx->task_ctx;
3112 3113 3114 3115
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3116

3117
	if (!rotate)
3118 3119
		goto done;

3120
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3121
	perf_pmu_disable(cpuctx->ctx.pmu);
3122

3123 3124 3125
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3126

3127 3128 3129
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3130

3131
	perf_event_sched_in(cpuctx, ctx, current);
3132

3133 3134
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3135
done:
3136 3137

	return rotate;
3138 3139 3140 3141
}

void perf_event_task_tick(void)
{
3142 3143
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3144
	int throttled;
3145

3146 3147
	WARN_ON(!irqs_disabled());

3148 3149
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3150
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3151

3152
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3153
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3154 3155
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3166
	__perf_event_mark_enabled(event);
3167 3168 3169 3170

	return 1;
}

3171
/*
3172
 * Enable all of a task's events that have been marked enable-on-exec.
3173 3174
 * This expects task == current.
 */
3175
static void perf_event_enable_on_exec(int ctxn)
3176
{
3177
	struct perf_event_context *ctx, *clone_ctx = NULL;
3178
	struct perf_cpu_context *cpuctx;
3179
	struct perf_event *event;
3180 3181 3182 3183
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3184
	ctx = current->perf_event_ctxp[ctxn];
3185
	if (!ctx || !ctx->nr_events)
3186 3187
		goto out;

3188 3189
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3190
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3191 3192
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3193 3194

	/*
3195
	 * Unclone and reschedule this context if we enabled any event.
3196
	 */
3197
	if (enabled) {
3198
		clone_ctx = unclone_ctx(ctx);
3199 3200 3201
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3202

P
Peter Zijlstra 已提交
3203
out:
3204
	local_irq_restore(flags);
3205 3206 3207

	if (clone_ctx)
		put_ctx(clone_ctx);
3208 3209
}

3210 3211 3212 3213 3214
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3215 3216
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3217 3218 3219
	rcu_read_unlock();
}

3220 3221 3222
struct perf_read_data {
	struct perf_event *event;
	bool group;
3223
	int ret;
3224 3225
};

T
Thomas Gleixner 已提交
3226
/*
3227
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3228
 */
3229
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3230
{
3231 3232
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3233
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3234
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3235
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3236

3237 3238 3239 3240
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3241 3242
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3243 3244 3245 3246
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3247
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3248
	if (ctx->is_active) {
3249
		update_context_time(ctx);
S
Stephane Eranian 已提交
3250 3251
		update_cgrp_time_from_event(event);
	}
3252

3253
	update_event_times(event);
3254 3255
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3256

3257 3258 3259
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3260
		goto unlock;
3261 3262 3263 3264 3265
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3266 3267 3268

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3269 3270 3271 3272 3273
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3274
			sub->pmu->read(sub);
3275
		}
3276
	}
3277 3278

	data->ret = pmu->commit_txn(pmu);
3279 3280

unlock:
3281
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3282 3283
}

P
Peter Zijlstra 已提交
3284 3285
static inline u64 perf_event_count(struct perf_event *event)
{
3286 3287 3288 3289
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3290 3291
}

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3345
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3346
{
3347 3348
	int ret = 0;

T
Thomas Gleixner 已提交
3349
	/*
3350 3351
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3352
	 */
3353
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3354 3355 3356
		struct perf_read_data data = {
			.event = event,
			.group = group,
3357
			.ret = 0,
3358
		};
3359
		smp_call_function_single(event->oncpu,
3360
					 __perf_event_read, &data, 1);
3361
		ret = data.ret;
3362
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3363 3364 3365
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3366
		raw_spin_lock_irqsave(&ctx->lock, flags);
3367 3368 3369 3370 3371
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3372
		if (ctx->is_active) {
3373
			update_context_time(ctx);
S
Stephane Eranian 已提交
3374 3375
			update_cgrp_time_from_event(event);
		}
3376 3377 3378 3379
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3380
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3381
	}
3382 3383

	return ret;
T
Thomas Gleixner 已提交
3384 3385
}

3386
/*
3387
 * Initialize the perf_event context in a task_struct:
3388
 */
3389
static void __perf_event_init_context(struct perf_event_context *ctx)
3390
{
3391
	raw_spin_lock_init(&ctx->lock);
3392
	mutex_init(&ctx->mutex);
3393
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3394 3395
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3396 3397
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3413
	}
3414 3415 3416
	ctx->pmu = pmu;

	return ctx;
3417 3418
}

3419 3420 3421 3422 3423
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3424 3425

	rcu_read_lock();
3426
	if (!vpid)
T
Thomas Gleixner 已提交
3427 3428
		task = current;
	else
3429
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3430 3431 3432 3433 3434 3435 3436 3437
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3438
	err = -EACCES;
3439
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3440 3441
		goto errout;

3442 3443 3444 3445 3446 3447 3448
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3449 3450 3451
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3452
static struct perf_event_context *
3453 3454
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3455
{
3456
	struct perf_event_context *ctx, *clone_ctx = NULL;
3457
	struct perf_cpu_context *cpuctx;
3458
	void *task_ctx_data = NULL;
3459
	unsigned long flags;
P
Peter Zijlstra 已提交
3460
	int ctxn, err;
3461
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3462

3463
	if (!task) {
3464
		/* Must be root to operate on a CPU event: */
3465
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3466 3467 3468
			return ERR_PTR(-EACCES);

		/*
3469
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3470 3471 3472
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3473
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3474 3475
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3476
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3477
		ctx = &cpuctx->ctx;
3478
		get_ctx(ctx);
3479
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3480 3481 3482 3483

		return ctx;
	}

P
Peter Zijlstra 已提交
3484 3485 3486 3487 3488
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3489 3490 3491 3492 3493 3494 3495 3496
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3497
retry:
P
Peter Zijlstra 已提交
3498
	ctx = perf_lock_task_context(task, ctxn, &flags);
3499
	if (ctx) {
3500
		clone_ctx = unclone_ctx(ctx);
3501
		++ctx->pin_count;
3502 3503 3504 3505 3506

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3507
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3508 3509 3510

		if (clone_ctx)
			put_ctx(clone_ctx);
3511
	} else {
3512
		ctx = alloc_perf_context(pmu, task);
3513 3514 3515
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3516

3517 3518 3519 3520 3521
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3532
		else {
3533
			get_ctx(ctx);
3534
			++ctx->pin_count;
3535
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3536
		}
3537 3538 3539
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3540
			put_ctx(ctx);
3541 3542 3543 3544

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3545 3546 3547
		}
	}

3548
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3549
	return ctx;
3550

P
Peter Zijlstra 已提交
3551
errout:
3552
	kfree(task_ctx_data);
3553
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3554 3555
}

L
Li Zefan 已提交
3556
static void perf_event_free_filter(struct perf_event *event);
3557
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3558

3559
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3560
{
3561
	struct perf_event *event;
P
Peter Zijlstra 已提交
3562

3563 3564 3565
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3566
	perf_event_free_filter(event);
3567
	kfree(event);
P
Peter Zijlstra 已提交
3568 3569
}

3570 3571
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3572

3573
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3574
{
3575 3576 3577 3578 3579 3580
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3604 3605
static void unaccount_event(struct perf_event *event)
{
3606 3607
	bool dec = false;

3608 3609 3610 3611
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3612
		dec = true;
3613 3614 3615 3616 3617 3618
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3619
	if (event->attr.freq)
3620
		unaccount_freq_event();
3621
	if (event->attr.context_switch) {
3622
		dec = true;
3623 3624
		atomic_dec(&nr_switch_events);
	}
3625
	if (is_cgroup_event(event))
3626
		dec = true;
3627
	if (has_branch_stack(event))
3628 3629
		dec = true;

3630 3631 3632 3633
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3634 3635 3636

	unaccount_event_cpu(event, event->cpu);
}
3637

3638 3639 3640 3641 3642 3643 3644 3645
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3656
 * _free_event()), the latter -- before the first perf_install_in_context().
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3731
static void _free_event(struct perf_event *event)
3732
{
3733
	irq_work_sync(&event->pending);
3734

3735
	unaccount_event(event);
3736

3737
	if (event->rb) {
3738 3739 3740 3741 3742 3743 3744
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3745
		ring_buffer_attach(event, NULL);
3746
		mutex_unlock(&event->mmap_mutex);
3747 3748
	}

S
Stephane Eranian 已提交
3749 3750 3751
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3771 3772
}

P
Peter Zijlstra 已提交
3773 3774 3775 3776 3777
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3778
{
P
Peter Zijlstra 已提交
3779 3780 3781 3782 3783 3784
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3785

P
Peter Zijlstra 已提交
3786
	_free_event(event);
T
Thomas Gleixner 已提交
3787 3788
}

3789
/*
3790
 * Remove user event from the owner task.
3791
 */
3792
static void perf_remove_from_owner(struct perf_event *event)
3793
{
P
Peter Zijlstra 已提交
3794
	struct task_struct *owner;
3795

P
Peter Zijlstra 已提交
3796 3797
	rcu_read_lock();
	/*
3798 3799 3800
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3801 3802
	 * owner->perf_event_mutex.
	 */
3803
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3825 3826 3827 3828 3829 3830
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3831
		if (event->owner) {
P
Peter Zijlstra 已提交
3832
			list_del_init(&event->owner_entry);
3833 3834
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3835 3836 3837
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3838 3839 3840 3841 3842 3843 3844
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
3855
	struct perf_event_context *ctx = event->ctx;
3856 3857
	struct perf_event *child, *tmp;

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

3868 3869
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3870

3871
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3872
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3873
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
3874

P
Peter Zijlstra 已提交
3875
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
3876
	/*
P
Peter Zijlstra 已提交
3877 3878
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
3879
	 *
P
Peter Zijlstra 已提交
3880 3881 3882
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
3883
	 *
3884 3885
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3886
	 */
P
Peter Zijlstra 已提交
3887 3888 3889 3890
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3891

3892 3893 3894
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3895

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

3945 3946
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
3947 3948 3949 3950
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3951 3952 3953
/*
 * Called when the last reference to the file is gone.
 */
3954 3955
static int perf_release(struct inode *inode, struct file *file)
{
3956
	perf_event_release_kernel(file->private_data);
3957
	return 0;
3958 3959
}

3960
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3961
{
3962
	struct perf_event *child;
3963 3964
	u64 total = 0;

3965 3966 3967
	*enabled = 0;
	*running = 0;

3968
	mutex_lock(&event->child_mutex);
3969

3970
	(void)perf_event_read(event, false);
3971 3972
	total += perf_event_count(event);

3973 3974 3975 3976 3977 3978
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3979
		(void)perf_event_read(child, false);
3980
		total += perf_event_count(child);
3981 3982 3983
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3984
	mutex_unlock(&event->child_mutex);
3985 3986 3987

	return total;
}
3988
EXPORT_SYMBOL_GPL(perf_event_read_value);
3989

3990
static int __perf_read_group_add(struct perf_event *leader,
3991
					u64 read_format, u64 *values)
3992
{
3993 3994
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3995
	int ret;
P
Peter Zijlstra 已提交
3996

3997 3998 3999
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4000

4001 4002 4003 4004 4005 4006 4007 4008 4009
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4010

4011 4012 4013 4014 4015 4016 4017 4018 4019
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4020 4021
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4022

4023 4024 4025 4026 4027
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4028 4029

	return 0;
4030
}
4031

4032 4033 4034 4035 4036
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4037
	int ret;
4038
	u64 *values;
4039

4040
	lockdep_assert_held(&ctx->mutex);
4041

4042 4043 4044
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4045

4046 4047 4048 4049 4050 4051 4052
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4053

4054 4055 4056 4057 4058 4059 4060 4061 4062
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4063

4064
	mutex_unlock(&leader->child_mutex);
4065

4066
	ret = event->read_size;
4067 4068
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4069
	goto out;
4070

4071 4072 4073
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4074
	kfree(values);
4075
	return ret;
4076 4077
}

4078
static int perf_read_one(struct perf_event *event,
4079 4080
				 u64 read_format, char __user *buf)
{
4081
	u64 enabled, running;
4082 4083 4084
	u64 values[4];
	int n = 0;

4085 4086 4087 4088 4089
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4090
	if (read_format & PERF_FORMAT_ID)
4091
		values[n++] = primary_event_id(event);
4092 4093 4094 4095 4096 4097 4098

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4099 4100 4101 4102
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4103
	if (event->state > PERF_EVENT_STATE_EXIT)
4104 4105 4106 4107 4108 4109 4110 4111
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4112
/*
4113
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4114 4115
 */
static ssize_t
4116
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4117
{
4118
	u64 read_format = event->attr.read_format;
4119
	int ret;
T
Thomas Gleixner 已提交
4120

4121
	/*
4122
	 * Return end-of-file for a read on a event that is in
4123 4124 4125
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4126
	if (event->state == PERF_EVENT_STATE_ERROR)
4127 4128
		return 0;

4129
	if (count < event->read_size)
4130 4131
		return -ENOSPC;

4132
	WARN_ON_ONCE(event->ctx->parent_ctx);
4133
	if (read_format & PERF_FORMAT_GROUP)
4134
		ret = perf_read_group(event, read_format, buf);
4135
	else
4136
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4137

4138
	return ret;
T
Thomas Gleixner 已提交
4139 4140 4141 4142 4143
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4144
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4145 4146
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4147

P
Peter Zijlstra 已提交
4148
	ctx = perf_event_ctx_lock(event);
4149
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4150 4151 4152
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4153 4154 4155 4156
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4157
	struct perf_event *event = file->private_data;
4158
	struct ring_buffer *rb;
4159
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4160

4161
	poll_wait(file, &event->waitq, wait);
4162

4163
	if (is_event_hup(event))
4164
		return events;
P
Peter Zijlstra 已提交
4165

4166
	/*
4167 4168
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4169 4170
	 */
	mutex_lock(&event->mmap_mutex);
4171 4172
	rb = event->rb;
	if (rb)
4173
		events = atomic_xchg(&rb->poll, 0);
4174
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4175 4176 4177
	return events;
}

P
Peter Zijlstra 已提交
4178
static void _perf_event_reset(struct perf_event *event)
4179
{
4180
	(void)perf_event_read(event, false);
4181
	local64_set(&event->count, 0);
4182
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4183 4184
}

4185
/*
4186 4187
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4188
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4189
 * task existence requirements of perf_event_enable/disable.
4190
 */
4191 4192
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4193
{
4194
	struct perf_event *child;
P
Peter Zijlstra 已提交
4195

4196
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4197

4198 4199 4200
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4201
		func(child);
4202
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4203 4204
}

4205 4206
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4207
{
4208 4209
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4210

P
Peter Zijlstra 已提交
4211 4212
	lockdep_assert_held(&ctx->mutex);

4213
	event = event->group_leader;
4214

4215 4216
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4217
		perf_event_for_each_child(sibling, func);
4218 4219
}

4220 4221 4222 4223
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4224
{
4225
	u64 value = *((u64 *)info);
4226
	bool active;
4227

4228 4229
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4230
	} else {
4231 4232
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4233
	}
4234 4235 4236 4237

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4238 4239 4240 4241 4242 4243 4244 4245
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4246 4247 4248 4249 4250 4251 4252 4253 4254
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4273
	event_function_call(event, __perf_event_period, &value);
4274

4275
	return 0;
4276 4277
}

4278 4279
static const struct file_operations perf_fops;

4280
static inline int perf_fget_light(int fd, struct fd *p)
4281
{
4282 4283 4284
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4285

4286 4287 4288
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4289
	}
4290 4291
	*p = f;
	return 0;
4292 4293 4294 4295
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4296
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4297
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4298

P
Peter Zijlstra 已提交
4299
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4300
{
4301
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4302
	u32 flags = arg;
4303 4304

	switch (cmd) {
4305
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4306
		func = _perf_event_enable;
4307
		break;
4308
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4309
		func = _perf_event_disable;
4310
		break;
4311
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4312
		func = _perf_event_reset;
4313
		break;
P
Peter Zijlstra 已提交
4314

4315
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4316
		return _perf_event_refresh(event, arg);
4317

4318 4319
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4320

4321 4322 4323 4324 4325 4326 4327 4328 4329
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4330
	case PERF_EVENT_IOC_SET_OUTPUT:
4331 4332 4333
	{
		int ret;
		if (arg != -1) {
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4344 4345 4346
		}
		return ret;
	}
4347

L
Li Zefan 已提交
4348 4349 4350
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4351 4352 4353
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4354
	default:
P
Peter Zijlstra 已提交
4355
		return -ENOTTY;
4356
	}
P
Peter Zijlstra 已提交
4357 4358

	if (flags & PERF_IOC_FLAG_GROUP)
4359
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4360
	else
4361
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4362 4363

	return 0;
4364 4365
}

P
Peter Zijlstra 已提交
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4399
int perf_event_task_enable(void)
4400
{
P
Peter Zijlstra 已提交
4401
	struct perf_event_context *ctx;
4402
	struct perf_event *event;
4403

4404
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4405 4406 4407 4408 4409
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4410
	mutex_unlock(&current->perf_event_mutex);
4411 4412 4413 4414

	return 0;
}

4415
int perf_event_task_disable(void)
4416
{
P
Peter Zijlstra 已提交
4417
	struct perf_event_context *ctx;
4418
	struct perf_event *event;
4419

4420
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4421 4422 4423 4424 4425
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4426
	mutex_unlock(&current->perf_event_mutex);
4427 4428 4429 4430

	return 0;
}

4431
static int perf_event_index(struct perf_event *event)
4432
{
P
Peter Zijlstra 已提交
4433 4434 4435
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4436
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4437 4438
		return 0;

4439
	return event->pmu->event_idx(event);
4440 4441
}

4442
static void calc_timer_values(struct perf_event *event,
4443
				u64 *now,
4444 4445
				u64 *enabled,
				u64 *running)
4446
{
4447
	u64 ctx_time;
4448

4449 4450
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4451 4452 4453 4454
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4470 4471
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4472 4473 4474 4475 4476

unlock:
	rcu_read_unlock();
}

4477 4478
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4479 4480 4481
{
}

4482 4483 4484 4485 4486
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4487
void perf_event_update_userpage(struct perf_event *event)
4488
{
4489
	struct perf_event_mmap_page *userpg;
4490
	struct ring_buffer *rb;
4491
	u64 enabled, running, now;
4492 4493

	rcu_read_lock();
4494 4495 4496 4497
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4498 4499 4500 4501 4502 4503 4504 4505 4506
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4507
	calc_timer_values(event, &now, &enabled, &running);
4508

4509
	userpg = rb->user_page;
4510 4511 4512 4513 4514
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4515
	++userpg->lock;
4516
	barrier();
4517
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4518
	userpg->offset = perf_event_count(event);
4519
	if (userpg->index)
4520
		userpg->offset -= local64_read(&event->hw.prev_count);
4521

4522
	userpg->time_enabled = enabled +
4523
			atomic64_read(&event->child_total_time_enabled);
4524

4525
	userpg->time_running = running +
4526
			atomic64_read(&event->child_total_time_running);
4527

4528
	arch_perf_update_userpage(event, userpg, now);
4529

4530
	barrier();
4531
	++userpg->lock;
4532
	preempt_enable();
4533
unlock:
4534
	rcu_read_unlock();
4535 4536
}

4537 4538 4539
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4540
	struct ring_buffer *rb;
4541 4542 4543 4544 4545 4546 4547 4548 4549
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4550 4551
	rb = rcu_dereference(event->rb);
	if (!rb)
4552 4553 4554 4555 4556
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4557
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4572 4573 4574
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4575
	struct ring_buffer *old_rb = NULL;
4576 4577
	unsigned long flags;

4578 4579 4580 4581 4582 4583
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4584

4585 4586 4587 4588
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4589

4590 4591
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4592
	}
4593

4594
	if (rb) {
4595 4596 4597 4598 4599
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4616 4617 4618 4619 4620 4621 4622 4623
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4624 4625 4626 4627
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4628 4629 4630
	rcu_read_unlock();
}

4631
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4632
{
4633
	struct ring_buffer *rb;
4634

4635
	rcu_read_lock();
4636 4637 4638 4639
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4640 4641 4642
	}
	rcu_read_unlock();

4643
	return rb;
4644 4645
}

4646
void ring_buffer_put(struct ring_buffer *rb)
4647
{
4648
	if (!atomic_dec_and_test(&rb->refcount))
4649
		return;
4650

4651
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4652

4653
	call_rcu(&rb->rcu_head, rb_free_rcu);
4654 4655 4656 4657
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4658
	struct perf_event *event = vma->vm_file->private_data;
4659

4660
	atomic_inc(&event->mmap_count);
4661
	atomic_inc(&event->rb->mmap_count);
4662

4663 4664 4665
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4666 4667
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4668 4669
}

4670 4671 4672 4673 4674 4675 4676 4677
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4678 4679
static void perf_mmap_close(struct vm_area_struct *vma)
{
4680
	struct perf_event *event = vma->vm_file->private_data;
4681

4682
	struct ring_buffer *rb = ring_buffer_get(event);
4683 4684 4685
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4686

4687 4688 4689
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4704 4705 4706
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4707
		goto out_put;
4708

4709
	ring_buffer_attach(event, NULL);
4710 4711 4712
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4713 4714
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4715

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4732

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4744 4745 4746
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4747
		mutex_unlock(&event->mmap_mutex);
4748
		put_event(event);
4749

4750 4751 4752 4753 4754
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4755
	}
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4771
out_put:
4772
	ring_buffer_put(rb); /* could be last */
4773 4774
}

4775
static const struct vm_operations_struct perf_mmap_vmops = {
4776
	.open		= perf_mmap_open,
4777
	.close		= perf_mmap_close, /* non mergable */
4778 4779
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4780 4781 4782 4783
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4784
	struct perf_event *event = file->private_data;
4785
	unsigned long user_locked, user_lock_limit;
4786
	struct user_struct *user = current_user();
4787
	unsigned long locked, lock_limit;
4788
	struct ring_buffer *rb = NULL;
4789 4790
	unsigned long vma_size;
	unsigned long nr_pages;
4791
	long user_extra = 0, extra = 0;
4792
	int ret = 0, flags = 0;
4793

4794 4795 4796
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4797
	 * same rb.
4798 4799 4800 4801
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4802
	if (!(vma->vm_flags & VM_SHARED))
4803
		return -EINVAL;
4804 4805

	vma_size = vma->vm_end - vma->vm_start;
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4866

4867
	/*
4868
	 * If we have rb pages ensure they're a power-of-two number, so we
4869 4870
	 * can do bitmasks instead of modulo.
	 */
4871
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4872 4873
		return -EINVAL;

4874
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4875 4876
		return -EINVAL;

4877
	WARN_ON_ONCE(event->ctx->parent_ctx);
4878
again:
4879
	mutex_lock(&event->mmap_mutex);
4880
	if (event->rb) {
4881
		if (event->rb->nr_pages != nr_pages) {
4882
			ret = -EINVAL;
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4896 4897 4898
		goto unlock;
	}

4899
	user_extra = nr_pages + 1;
4900 4901

accounting:
4902
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4903 4904 4905 4906 4907 4908

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4909
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4910

4911 4912
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4913

4914
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4915
	lock_limit >>= PAGE_SHIFT;
4916
	locked = vma->vm_mm->pinned_vm + extra;
4917

4918 4919
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4920 4921 4922
		ret = -EPERM;
		goto unlock;
	}
4923

4924
	WARN_ON(!rb && event->rb);
4925

4926
	if (vma->vm_flags & VM_WRITE)
4927
		flags |= RING_BUFFER_WRITABLE;
4928

4929
	if (!rb) {
4930 4931 4932
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4933

4934 4935 4936 4937
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4938

4939 4940 4941
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4942

4943
		ring_buffer_attach(event, rb);
4944

4945 4946 4947
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4948 4949
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4950 4951 4952
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4953

4954
unlock:
4955 4956 4957 4958
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4959
		atomic_inc(&event->mmap_count);
4960 4961 4962 4963
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4964
	mutex_unlock(&event->mmap_mutex);
4965

4966 4967 4968 4969
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4970
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4971
	vma->vm_ops = &perf_mmap_vmops;
4972

4973 4974 4975
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4976
	return ret;
4977 4978
}

P
Peter Zijlstra 已提交
4979 4980
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4981
	struct inode *inode = file_inode(filp);
4982
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4983 4984
	int retval;

A
Al Viro 已提交
4985
	inode_lock(inode);
4986
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
4987
	inode_unlock(inode);
P
Peter Zijlstra 已提交
4988 4989 4990 4991 4992 4993 4994

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4995
static const struct file_operations perf_fops = {
4996
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4997 4998 4999
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5000
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5001
	.compat_ioctl		= perf_compat_ioctl,
5002
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5003
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5004 5005
};

5006
/*
5007
 * Perf event wakeup
5008 5009 5010 5011 5012
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5013 5014 5015 5016 5017 5018 5019 5020
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5021
void perf_event_wakeup(struct perf_event *event)
5022
{
5023
	ring_buffer_wakeup(event);
5024

5025
	if (event->pending_kill) {
5026
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5027
		event->pending_kill = 0;
5028
	}
5029 5030
}

5031
static void perf_pending_event(struct irq_work *entry)
5032
{
5033 5034
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5035 5036 5037 5038 5039 5040 5041
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5042

5043 5044
	if (event->pending_disable) {
		event->pending_disable = 0;
5045
		perf_event_disable_local(event);
5046 5047
	}

5048 5049 5050
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5051
	}
5052 5053 5054

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5055 5056
}

5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5093
static void perf_sample_regs_user(struct perf_regs *regs_user,
5094 5095
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5096
{
5097 5098
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5099
		regs_user->regs = regs;
5100 5101
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5102 5103 5104
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5105 5106 5107
	}
}

5108 5109 5110 5111 5112 5113 5114 5115
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5211 5212 5213
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5227
		data->time = perf_event_clock(event);
5228

5229
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5241 5242 5243
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5268 5269 5270

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5271 5272
}

5273 5274 5275
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5276 5277 5278 5279 5280
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5281
static void perf_output_read_one(struct perf_output_handle *handle,
5282 5283
				 struct perf_event *event,
				 u64 enabled, u64 running)
5284
{
5285
	u64 read_format = event->attr.read_format;
5286 5287 5288
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5289
	values[n++] = perf_event_count(event);
5290
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5291
		values[n++] = enabled +
5292
			atomic64_read(&event->child_total_time_enabled);
5293 5294
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5295
		values[n++] = running +
5296
			atomic64_read(&event->child_total_time_running);
5297 5298
	}
	if (read_format & PERF_FORMAT_ID)
5299
		values[n++] = primary_event_id(event);
5300

5301
	__output_copy(handle, values, n * sizeof(u64));
5302 5303 5304
}

/*
5305
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5306 5307
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5308 5309
			    struct perf_event *event,
			    u64 enabled, u64 running)
5310
{
5311 5312
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5313 5314 5315 5316 5317 5318
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5319
		values[n++] = enabled;
5320 5321

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5322
		values[n++] = running;
5323

5324
	if (leader != event)
5325 5326
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5327
	values[n++] = perf_event_count(leader);
5328
	if (read_format & PERF_FORMAT_ID)
5329
		values[n++] = primary_event_id(leader);
5330

5331
	__output_copy(handle, values, n * sizeof(u64));
5332

5333
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5334 5335
		n = 0;

5336 5337
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5338 5339
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5340
		values[n++] = perf_event_count(sub);
5341
		if (read_format & PERF_FORMAT_ID)
5342
			values[n++] = primary_event_id(sub);
5343

5344
		__output_copy(handle, values, n * sizeof(u64));
5345 5346 5347
	}
}

5348 5349 5350
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5351
static void perf_output_read(struct perf_output_handle *handle,
5352
			     struct perf_event *event)
5353
{
5354
	u64 enabled = 0, running = 0, now;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5366
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5367
		calc_timer_values(event, &now, &enabled, &running);
5368

5369
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5370
		perf_output_read_group(handle, event, enabled, running);
5371
	else
5372
		perf_output_read_one(handle, event, enabled, running);
5373 5374
}

5375 5376 5377
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5378
			struct perf_event *event)
5379 5380 5381 5382 5383
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5384 5385 5386
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5412
		perf_output_read(handle, event);
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5423
			__output_copy(handle, data->callchain, size);
5424 5425 5426 5427 5428 5429 5430 5431
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5432 5433 5434 5435 5436 5437 5438 5439 5440
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5452

5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5487

5488
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5489 5490 5491
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5492
	}
A
Andi Kleen 已提交
5493 5494 5495

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5496 5497 5498

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5499

A
Andi Kleen 已提交
5500 5501 5502
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5533 5534 5535 5536
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5537
			 struct perf_event *event,
5538
			 struct pt_regs *regs)
5539
{
5540
	u64 sample_type = event->attr.sample_type;
5541

5542
	header->type = PERF_RECORD_SAMPLE;
5543
	header->size = sizeof(*header) + event->header_size;
5544 5545 5546

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5547

5548
	__perf_event_header__init_id(header, data, event);
5549

5550
	if (sample_type & PERF_SAMPLE_IP)
5551 5552
		data->ip = perf_instruction_pointer(regs);

5553
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5554
		int size = 1;
5555

5556
		data->callchain = perf_callchain(event, regs);
5557 5558 5559 5560 5561

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5562 5563
	}

5564
	if (sample_type & PERF_SAMPLE_RAW) {
5565 5566 5567 5568 5569 5570 5571
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5572
		header->size += round_up(size, sizeof(u64));
5573
	}
5574 5575 5576 5577 5578 5579 5580 5581 5582

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5583

5584
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5585 5586
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5587

5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5611
						     data->regs_user.regs);
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5639
}
5640

5641 5642 5643
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5644 5645 5646
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5647

5648 5649 5650
	/* protect the callchain buffers */
	rcu_read_lock();

5651
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5652

5653
	if (perf_output_begin(&handle, event, header.size))
5654
		goto exit;
5655

5656
	perf_output_sample(&handle, &header, data, event);
5657

5658
	perf_output_end(&handle);
5659 5660 5661

exit:
	rcu_read_unlock();
5662 5663
}

5664
/*
5665
 * read event_id
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5676
perf_event_read_event(struct perf_event *event,
5677 5678 5679
			struct task_struct *task)
{
	struct perf_output_handle handle;
5680
	struct perf_sample_data sample;
5681
	struct perf_read_event read_event = {
5682
		.header = {
5683
			.type = PERF_RECORD_READ,
5684
			.misc = 0,
5685
			.size = sizeof(read_event) + event->read_size,
5686
		},
5687 5688
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5689
	};
5690
	int ret;
5691

5692
	perf_event_header__init_id(&read_event.header, &sample, event);
5693
	ret = perf_output_begin(&handle, event, read_event.header.size);
5694 5695 5696
	if (ret)
		return;

5697
	perf_output_put(&handle, read_event);
5698
	perf_output_read(&handle, event);
5699
	perf_event__output_id_sample(event, &handle, &sample);
5700

5701 5702 5703
	perf_output_end(&handle);
}

5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5718
		output(event, data);
5719 5720 5721
	}
}

J
Jiri Olsa 已提交
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5733
static void
5734
perf_event_aux(perf_event_aux_output_cb output, void *data,
5735 5736 5737 5738 5739 5740 5741
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5753 5754 5755 5756 5757
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5758
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5759 5760 5761 5762 5763
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5764
			perf_event_aux_ctx(ctx, output, data);
5765 5766 5767 5768 5769 5770
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5771
/*
P
Peter Zijlstra 已提交
5772 5773
 * task tracking -- fork/exit
 *
5774
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5775 5776
 */

P
Peter Zijlstra 已提交
5777
struct perf_task_event {
5778
	struct task_struct		*task;
5779
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5780 5781 5782 5783 5784 5785

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5786 5787
		u32				tid;
		u32				ptid;
5788
		u64				time;
5789
	} event_id;
P
Peter Zijlstra 已提交
5790 5791
};

5792 5793
static int perf_event_task_match(struct perf_event *event)
{
5794 5795 5796
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5797 5798
}

5799
static void perf_event_task_output(struct perf_event *event,
5800
				   void *data)
P
Peter Zijlstra 已提交
5801
{
5802
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5803
	struct perf_output_handle handle;
5804
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5805
	struct task_struct *task = task_event->task;
5806
	int ret, size = task_event->event_id.header.size;
5807

5808 5809 5810
	if (!perf_event_task_match(event))
		return;

5811
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5812

5813
	ret = perf_output_begin(&handle, event,
5814
				task_event->event_id.header.size);
5815
	if (ret)
5816
		goto out;
P
Peter Zijlstra 已提交
5817

5818 5819
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5820

5821 5822
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5823

5824 5825
	task_event->event_id.time = perf_event_clock(event);

5826
	perf_output_put(&handle, task_event->event_id);
5827

5828 5829
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5830
	perf_output_end(&handle);
5831 5832
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5833 5834
}

5835 5836
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5837
			      int new)
P
Peter Zijlstra 已提交
5838
{
P
Peter Zijlstra 已提交
5839
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5840

5841 5842 5843
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5844 5845
		return;

P
Peter Zijlstra 已提交
5846
	task_event = (struct perf_task_event){
5847 5848
		.task	  = task,
		.task_ctx = task_ctx,
5849
		.event_id    = {
P
Peter Zijlstra 已提交
5850
			.header = {
5851
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5852
				.misc = 0,
5853
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5854
			},
5855 5856
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5857 5858
			/* .tid  */
			/* .ptid */
5859
			/* .time */
P
Peter Zijlstra 已提交
5860 5861 5862
		},
	};

5863
	perf_event_aux(perf_event_task_output,
5864 5865
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5866 5867
}

5868
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5869
{
5870
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5871 5872
}

5873 5874 5875 5876 5877
/*
 * comm tracking
 */

struct perf_comm_event {
5878 5879
	struct task_struct	*task;
	char			*comm;
5880 5881 5882 5883 5884 5885 5886
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5887
	} event_id;
5888 5889
};

5890 5891 5892 5893 5894
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5895
static void perf_event_comm_output(struct perf_event *event,
5896
				   void *data)
5897
{
5898
	struct perf_comm_event *comm_event = data;
5899
	struct perf_output_handle handle;
5900
	struct perf_sample_data sample;
5901
	int size = comm_event->event_id.header.size;
5902 5903
	int ret;

5904 5905 5906
	if (!perf_event_comm_match(event))
		return;

5907 5908
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5909
				comm_event->event_id.header.size);
5910 5911

	if (ret)
5912
		goto out;
5913

5914 5915
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5916

5917
	perf_output_put(&handle, comm_event->event_id);
5918
	__output_copy(&handle, comm_event->comm,
5919
				   comm_event->comm_size);
5920 5921 5922

	perf_event__output_id_sample(event, &handle, &sample);

5923
	perf_output_end(&handle);
5924 5925
out:
	comm_event->event_id.header.size = size;
5926 5927
}

5928
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5929
{
5930
	char comm[TASK_COMM_LEN];
5931 5932
	unsigned int size;

5933
	memset(comm, 0, sizeof(comm));
5934
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5935
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5936 5937 5938 5939

	comm_event->comm = comm;
	comm_event->comm_size = size;

5940
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5941

5942
	perf_event_aux(perf_event_comm_output,
5943 5944
		       comm_event,
		       NULL);
5945 5946
}

5947
void perf_event_comm(struct task_struct *task, bool exec)
5948
{
5949 5950
	struct perf_comm_event comm_event;

5951
	if (!atomic_read(&nr_comm_events))
5952
		return;
5953

5954
	comm_event = (struct perf_comm_event){
5955
		.task	= task,
5956 5957
		/* .comm      */
		/* .comm_size */
5958
		.event_id  = {
5959
			.header = {
5960
				.type = PERF_RECORD_COMM,
5961
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5962 5963 5964 5965
				/* .size */
			},
			/* .pid */
			/* .tid */
5966 5967 5968
		},
	};

5969
	perf_event_comm_event(&comm_event);
5970 5971
}

5972 5973 5974 5975 5976
/*
 * mmap tracking
 */

struct perf_mmap_event {
5977 5978 5979 5980
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5981 5982 5983
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5984
	u32			prot, flags;
5985 5986 5987 5988 5989 5990 5991 5992 5993

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5994
	} event_id;
5995 5996
};

5997 5998 5999 6000 6001 6002 6003 6004
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6005
	       (executable && (event->attr.mmap || event->attr.mmap2));
6006 6007
}

6008
static void perf_event_mmap_output(struct perf_event *event,
6009
				   void *data)
6010
{
6011
	struct perf_mmap_event *mmap_event = data;
6012
	struct perf_output_handle handle;
6013
	struct perf_sample_data sample;
6014
	int size = mmap_event->event_id.header.size;
6015
	int ret;
6016

6017 6018 6019
	if (!perf_event_mmap_match(event, data))
		return;

6020 6021 6022 6023 6024
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6025
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6026 6027
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6028 6029
	}

6030 6031
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6032
				mmap_event->event_id.header.size);
6033
	if (ret)
6034
		goto out;
6035

6036 6037
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6038

6039
	perf_output_put(&handle, mmap_event->event_id);
6040 6041 6042 6043 6044 6045

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6046 6047
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6048 6049
	}

6050
	__output_copy(&handle, mmap_event->file_name,
6051
				   mmap_event->file_size);
6052 6053 6054

	perf_event__output_id_sample(event, &handle, &sample);

6055
	perf_output_end(&handle);
6056 6057
out:
	mmap_event->event_id.header.size = size;
6058 6059
}

6060
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6061
{
6062 6063
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6064 6065
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6066
	u32 prot = 0, flags = 0;
6067 6068 6069
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6070
	char *name;
6071

6072
	if (file) {
6073 6074
		struct inode *inode;
		dev_t dev;
6075

6076
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6077
		if (!buf) {
6078 6079
			name = "//enomem";
			goto cpy_name;
6080
		}
6081
		/*
6082
		 * d_path() works from the end of the rb backwards, so we
6083 6084 6085
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6086
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6087
		if (IS_ERR(name)) {
6088 6089
			name = "//toolong";
			goto cpy_name;
6090
		}
6091 6092 6093 6094 6095 6096
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6119
		goto got_name;
6120
	} else {
6121 6122 6123 6124 6125 6126
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6127
		name = (char *)arch_vma_name(vma);
6128 6129
		if (name)
			goto cpy_name;
6130

6131
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6132
				vma->vm_end >= vma->vm_mm->brk) {
6133 6134
			name = "[heap]";
			goto cpy_name;
6135 6136
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6137
				vma->vm_end >= vma->vm_mm->start_stack) {
6138 6139
			name = "[stack]";
			goto cpy_name;
6140 6141
		}

6142 6143
		name = "//anon";
		goto cpy_name;
6144 6145
	}

6146 6147 6148
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6149
got_name:
6150 6151 6152 6153 6154 6155 6156 6157
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6158 6159 6160

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6161 6162 6163 6164
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6165 6166
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6167

6168 6169 6170
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6171
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6172

6173
	perf_event_aux(perf_event_mmap_output,
6174 6175
		       mmap_event,
		       NULL);
6176

6177 6178 6179
	kfree(buf);
}

6180
void perf_event_mmap(struct vm_area_struct *vma)
6181
{
6182 6183
	struct perf_mmap_event mmap_event;

6184
	if (!atomic_read(&nr_mmap_events))
6185 6186 6187
		return;

	mmap_event = (struct perf_mmap_event){
6188
		.vma	= vma,
6189 6190
		/* .file_name */
		/* .file_size */
6191
		.event_id  = {
6192
			.header = {
6193
				.type = PERF_RECORD_MMAP,
6194
				.misc = PERF_RECORD_MISC_USER,
6195 6196 6197 6198
				/* .size */
			},
			/* .pid */
			/* .tid */
6199 6200
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6201
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6202
		},
6203 6204 6205 6206
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6207 6208
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6209 6210
	};

6211
	perf_event_mmap_event(&mmap_event);
6212 6213
}

A
Alexander Shishkin 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6366 6367 6368 6369
/*
 * IRQ throttle logging
 */

6370
static void perf_log_throttle(struct perf_event *event, int enable)
6371 6372
{
	struct perf_output_handle handle;
6373
	struct perf_sample_data sample;
6374 6375 6376 6377 6378
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6379
		u64				id;
6380
		u64				stream_id;
6381 6382
	} throttle_event = {
		.header = {
6383
			.type = PERF_RECORD_THROTTLE,
6384 6385 6386
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6387
		.time		= perf_event_clock(event),
6388 6389
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6390 6391
	};

6392
	if (enable)
6393
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6394

6395 6396 6397
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6398
				throttle_event.header.size);
6399 6400 6401 6402
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6403
	perf_event__output_id_sample(event, &handle, &sample);
6404 6405 6406
	perf_output_end(&handle);
}

6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6443
/*
6444
 * Generic event overflow handling, sampling.
6445 6446
 */

6447
static int __perf_event_overflow(struct perf_event *event,
6448 6449
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6450
{
6451 6452
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6453
	u64 seq;
6454 6455
	int ret = 0;

6456 6457 6458 6459 6460 6461 6462
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6463 6464 6465 6466 6467 6468 6469 6470 6471
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
6472
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
6473 6474
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6475 6476
			ret = 1;
		}
6477
	}
6478

6479
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6480
		u64 now = perf_clock();
6481
		s64 delta = now - hwc->freq_time_stamp;
6482

6483
		hwc->freq_time_stamp = now;
6484

6485
		if (delta > 0 && delta < 2*TICK_NSEC)
6486
			perf_adjust_period(event, delta, hwc->last_period, true);
6487 6488
	}

6489 6490
	/*
	 * XXX event_limit might not quite work as expected on inherited
6491
	 * events
6492 6493
	 */

6494 6495
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6496
		ret = 1;
6497
		event->pending_kill = POLL_HUP;
6498 6499
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6500 6501
	}

6502
	if (event->overflow_handler)
6503
		event->overflow_handler(event, data, regs);
6504
	else
6505
		perf_event_output(event, data, regs);
6506

6507
	if (*perf_event_fasync(event) && event->pending_kill) {
6508 6509
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6510 6511
	}

6512
	return ret;
6513 6514
}

6515
int perf_event_overflow(struct perf_event *event,
6516 6517
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6518
{
6519
	return __perf_event_overflow(event, 1, data, regs);
6520 6521
}

6522
/*
6523
 * Generic software event infrastructure
6524 6525
 */

6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6537
/*
6538 6539
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6540 6541 6542 6543
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6544
u64 perf_swevent_set_period(struct perf_event *event)
6545
{
6546
	struct hw_perf_event *hwc = &event->hw;
6547 6548 6549 6550 6551
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6552 6553

again:
6554
	old = val = local64_read(&hwc->period_left);
6555 6556
	if (val < 0)
		return 0;
6557

6558 6559 6560
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6561
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6562
		goto again;
6563

6564
	return nr;
6565 6566
}

6567
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6568
				    struct perf_sample_data *data,
6569
				    struct pt_regs *regs)
6570
{
6571
	struct hw_perf_event *hwc = &event->hw;
6572
	int throttle = 0;
6573

6574 6575
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6576

6577 6578
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6579

6580
	for (; overflow; overflow--) {
6581
		if (__perf_event_overflow(event, throttle,
6582
					    data, regs)) {
6583 6584 6585 6586 6587 6588
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6589
		throttle = 1;
6590
	}
6591 6592
}

P
Peter Zijlstra 已提交
6593
static void perf_swevent_event(struct perf_event *event, u64 nr,
6594
			       struct perf_sample_data *data,
6595
			       struct pt_regs *regs)
6596
{
6597
	struct hw_perf_event *hwc = &event->hw;
6598

6599
	local64_add(nr, &event->count);
6600

6601 6602 6603
	if (!regs)
		return;

6604
	if (!is_sampling_event(event))
6605
		return;
6606

6607 6608 6609 6610 6611 6612
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6613
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6614
		return perf_swevent_overflow(event, 1, data, regs);
6615

6616
	if (local64_add_negative(nr, &hwc->period_left))
6617
		return;
6618

6619
	perf_swevent_overflow(event, 0, data, regs);
6620 6621
}

6622 6623 6624
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6625
	if (event->hw.state & PERF_HES_STOPPED)
6626
		return 1;
P
Peter Zijlstra 已提交
6627

6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6639
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6640
				enum perf_type_id type,
L
Li Zefan 已提交
6641 6642 6643
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6644
{
6645
	if (event->attr.type != type)
6646
		return 0;
6647

6648
	if (event->attr.config != event_id)
6649 6650
		return 0;

6651 6652
	if (perf_exclude_event(event, regs))
		return 0;
6653 6654 6655 6656

	return 1;
}

6657 6658 6659 6660 6661 6662 6663
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6664 6665
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6666
{
6667 6668 6669 6670
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6671

6672 6673
/* For the read side: events when they trigger */
static inline struct hlist_head *
6674
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6675 6676
{
	struct swevent_hlist *hlist;
6677

6678
	hlist = rcu_dereference(swhash->swevent_hlist);
6679 6680 6681
	if (!hlist)
		return NULL;

6682 6683 6684 6685 6686
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6687
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6698
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6699 6700 6701 6702 6703
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6704 6705 6706
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6707
				    u64 nr,
6708 6709
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6710
{
6711
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6712
	struct perf_event *event;
6713
	struct hlist_head *head;
6714

6715
	rcu_read_lock();
6716
	head = find_swevent_head_rcu(swhash, type, event_id);
6717 6718 6719
	if (!head)
		goto end;

6720
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6721
		if (perf_swevent_match(event, type, event_id, data, regs))
6722
			perf_swevent_event(event, nr, data, regs);
6723
	}
6724 6725
end:
	rcu_read_unlock();
6726 6727
}

6728 6729
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6730
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6731
{
6732
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6733

6734
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6735
}
I
Ingo Molnar 已提交
6736
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6737

6738
inline void perf_swevent_put_recursion_context(int rctx)
6739
{
6740
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6741

6742
	put_recursion_context(swhash->recursion, rctx);
6743
}
6744

6745
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6746
{
6747
	struct perf_sample_data data;
6748

6749
	if (WARN_ON_ONCE(!regs))
6750
		return;
6751

6752
	perf_sample_data_init(&data, addr, 0);
6753
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6766 6767

	perf_swevent_put_recursion_context(rctx);
6768
fail:
6769
	preempt_enable_notrace();
6770 6771
}

6772
static void perf_swevent_read(struct perf_event *event)
6773 6774 6775
{
}

P
Peter Zijlstra 已提交
6776
static int perf_swevent_add(struct perf_event *event, int flags)
6777
{
6778
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6779
	struct hw_perf_event *hwc = &event->hw;
6780 6781
	struct hlist_head *head;

6782
	if (is_sampling_event(event)) {
6783
		hwc->last_period = hwc->sample_period;
6784
		perf_swevent_set_period(event);
6785
	}
6786

P
Peter Zijlstra 已提交
6787 6788
	hwc->state = !(flags & PERF_EF_START);

6789
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6790
	if (WARN_ON_ONCE(!head))
6791 6792 6793
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6794
	perf_event_update_userpage(event);
6795

6796 6797 6798
	return 0;
}

P
Peter Zijlstra 已提交
6799
static void perf_swevent_del(struct perf_event *event, int flags)
6800
{
6801
	hlist_del_rcu(&event->hlist_entry);
6802 6803
}

P
Peter Zijlstra 已提交
6804
static void perf_swevent_start(struct perf_event *event, int flags)
6805
{
P
Peter Zijlstra 已提交
6806
	event->hw.state = 0;
6807
}
I
Ingo Molnar 已提交
6808

P
Peter Zijlstra 已提交
6809
static void perf_swevent_stop(struct perf_event *event, int flags)
6810
{
P
Peter Zijlstra 已提交
6811
	event->hw.state = PERF_HES_STOPPED;
6812 6813
}

6814 6815
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6816
swevent_hlist_deref(struct swevent_htable *swhash)
6817
{
6818 6819
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6820 6821
}

6822
static void swevent_hlist_release(struct swevent_htable *swhash)
6823
{
6824
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6825

6826
	if (!hlist)
6827 6828
		return;

6829
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6830
	kfree_rcu(hlist, rcu_head);
6831 6832
}

6833
static void swevent_hlist_put_cpu(int cpu)
6834
{
6835
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6836

6837
	mutex_lock(&swhash->hlist_mutex);
6838

6839 6840
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6841

6842
	mutex_unlock(&swhash->hlist_mutex);
6843 6844
}

6845
static void swevent_hlist_put(void)
6846 6847 6848 6849
{
	int cpu;

	for_each_possible_cpu(cpu)
6850
		swevent_hlist_put_cpu(cpu);
6851 6852
}

6853
static int swevent_hlist_get_cpu(int cpu)
6854
{
6855
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6856 6857
	int err = 0;

6858 6859
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6860 6861 6862 6863 6864 6865 6866
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6867
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6868
	}
6869
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6870
exit:
6871
	mutex_unlock(&swhash->hlist_mutex);
6872 6873 6874 6875

	return err;
}

6876
static int swevent_hlist_get(void)
6877
{
6878
	int err, cpu, failed_cpu;
6879 6880 6881

	get_online_cpus();
	for_each_possible_cpu(cpu) {
6882
		err = swevent_hlist_get_cpu(cpu);
6883 6884 6885 6886 6887 6888 6889 6890
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6891
fail:
6892 6893 6894
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
6895
		swevent_hlist_put_cpu(cpu);
6896 6897 6898 6899 6900 6901
	}

	put_online_cpus();
	return err;
}

6902
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6903

6904 6905 6906
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6907

6908 6909
	WARN_ON(event->parent);

6910
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6911
	swevent_hlist_put();
6912 6913 6914 6915
}

static int perf_swevent_init(struct perf_event *event)
{
6916
	u64 event_id = event->attr.config;
6917 6918 6919 6920

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6921 6922 6923 6924 6925 6926
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6927 6928 6929 6930 6931 6932 6933 6934 6935
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6936
	if (event_id >= PERF_COUNT_SW_MAX)
6937 6938 6939 6940 6941
		return -ENOENT;

	if (!event->parent) {
		int err;

6942
		err = swevent_hlist_get();
6943 6944 6945
		if (err)
			return err;

6946
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6947 6948 6949 6950 6951 6952 6953
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6954
	.task_ctx_nr	= perf_sw_context,
6955

6956 6957
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6958
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6959 6960 6961 6962
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6963 6964 6965
	.read		= perf_swevent_read,
};

6966 6967
#ifdef CONFIG_EVENT_TRACING

6968 6969 6970 6971 6972
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6973 6974 6975 6976
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6977 6978 6979 6980 6981 6982 6983 6984 6985
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6986 6987
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6988 6989 6990 6991
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6992 6993 6994 6995 6996 6997 6998 6999 7000
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7001 7002
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7003 7004
{
	struct perf_sample_data data;
7005 7006
	struct perf_event *event;

7007 7008 7009 7010 7011
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

7012
	perf_sample_data_init(&data, addr, 0);
7013 7014
	data.raw = &raw;

7015
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7016
		if (perf_tp_event_match(event, &data, regs))
7017
			perf_swevent_event(event, count, &data, regs);
7018
	}
7019

7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7045
	perf_swevent_put_recursion_context(rctx);
7046 7047 7048
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7049
static void tp_perf_event_destroy(struct perf_event *event)
7050
{
7051
	perf_trace_destroy(event);
7052 7053
}

7054
static int perf_tp_event_init(struct perf_event *event)
7055
{
7056 7057
	int err;

7058 7059 7060
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7061 7062 7063 7064 7065 7066
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7067 7068
	err = perf_trace_init(event);
	if (err)
7069
		return err;
7070

7071
	event->destroy = tp_perf_event_destroy;
7072

7073 7074 7075 7076
	return 0;
}

static struct pmu perf_tracepoint = {
7077 7078
	.task_ctx_nr	= perf_sw_context,

7079
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7080 7081 7082 7083
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7084 7085 7086 7087 7088
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7089
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7090
}
L
Li Zefan 已提交
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7125 7126
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7127 7128 7129 7130 7131 7132
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7133
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7158
#else
L
Li Zefan 已提交
7159

7160
static inline void perf_tp_register(void)
7161 7162
{
}
L
Li Zefan 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7173 7174 7175 7176 7177 7178 7179 7180
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7181
#endif /* CONFIG_EVENT_TRACING */
7182

7183
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7184
void perf_bp_event(struct perf_event *bp, void *data)
7185
{
7186 7187 7188
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7189
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7190

P
Peter Zijlstra 已提交
7191
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7192
		perf_swevent_event(bp, 1, &sample, regs);
7193 7194 7195
}
#endif

7196 7197 7198
/*
 * hrtimer based swevent callback
 */
7199

7200
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7201
{
7202 7203 7204 7205 7206
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7207

7208
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7209 7210 7211 7212

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7213
	event->pmu->read(event);
7214

7215
	perf_sample_data_init(&data, 0, event->hw.last_period);
7216 7217 7218
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7219
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7220
			if (__perf_event_overflow(event, 1, &data, regs))
7221 7222
				ret = HRTIMER_NORESTART;
	}
7223

7224 7225
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7226

7227
	return ret;
7228 7229
}

7230
static void perf_swevent_start_hrtimer(struct perf_event *event)
7231
{
7232
	struct hw_perf_event *hwc = &event->hw;
7233 7234 7235 7236
	s64 period;

	if (!is_sampling_event(event))
		return;
7237

7238 7239 7240 7241
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7242

7243 7244 7245 7246
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7247 7248
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7249
}
7250 7251

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7252
{
7253 7254
	struct hw_perf_event *hwc = &event->hw;

7255
	if (is_sampling_event(event)) {
7256
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7257
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7258 7259 7260

		hrtimer_cancel(&hwc->hrtimer);
	}
7261 7262
}

P
Peter Zijlstra 已提交
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7283
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7284 7285 7286 7287
		event->attr.freq = 0;
	}
}

7288 7289 7290 7291 7292
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7293
{
7294 7295 7296
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7297
	now = local_clock();
7298 7299
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7300 7301
}

P
Peter Zijlstra 已提交
7302
static void cpu_clock_event_start(struct perf_event *event, int flags)
7303
{
P
Peter Zijlstra 已提交
7304
	local64_set(&event->hw.prev_count, local_clock());
7305 7306 7307
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7308
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7309
{
7310 7311 7312
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7313

P
Peter Zijlstra 已提交
7314 7315 7316 7317
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7318
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7319 7320 7321 7322 7323 7324 7325 7326 7327

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7328 7329 7330 7331
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7332

7333 7334 7335 7336 7337 7338 7339 7340
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7341 7342 7343 7344 7345 7346
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7347 7348
	perf_swevent_init_hrtimer(event);

7349
	return 0;
7350 7351
}

7352
static struct pmu perf_cpu_clock = {
7353 7354
	.task_ctx_nr	= perf_sw_context,

7355 7356
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7357
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7358 7359 7360 7361
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7362 7363 7364 7365 7366 7367 7368 7369
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7370
{
7371 7372
	u64 prev;
	s64 delta;
7373

7374 7375 7376 7377
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7378

P
Peter Zijlstra 已提交
7379
static void task_clock_event_start(struct perf_event *event, int flags)
7380
{
P
Peter Zijlstra 已提交
7381
	local64_set(&event->hw.prev_count, event->ctx->time);
7382 7383 7384
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7385
static void task_clock_event_stop(struct perf_event *event, int flags)
7386 7387 7388
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7389 7390 7391 7392 7393 7394
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7395
	perf_event_update_userpage(event);
7396

P
Peter Zijlstra 已提交
7397 7398 7399 7400 7401 7402
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7403 7404 7405 7406
}

static void task_clock_event_read(struct perf_event *event)
{
7407 7408 7409
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7410 7411 7412 7413 7414

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7415
{
7416 7417 7418 7419 7420 7421
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7422 7423 7424 7425 7426 7427
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7428 7429
	perf_swevent_init_hrtimer(event);

7430
	return 0;
L
Li Zefan 已提交
7431 7432
}

7433
static struct pmu perf_task_clock = {
7434 7435
	.task_ctx_nr	= perf_sw_context,

7436 7437
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7438
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7439 7440 7441 7442
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7443 7444
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7445

P
Peter Zijlstra 已提交
7446
static void perf_pmu_nop_void(struct pmu *pmu)
7447 7448
{
}
L
Li Zefan 已提交
7449

7450 7451 7452 7453
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7454
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7455
{
P
Peter Zijlstra 已提交
7456
	return 0;
L
Li Zefan 已提交
7457 7458
}

7459
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7460 7461

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7462
{
7463 7464 7465 7466 7467
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7468
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7469 7470
}

P
Peter Zijlstra 已提交
7471 7472
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7473 7474 7475 7476 7477 7478 7479
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7480 7481 7482
	perf_pmu_enable(pmu);
	return 0;
}
7483

P
Peter Zijlstra 已提交
7484
static void perf_pmu_cancel_txn(struct pmu *pmu)
7485
{
7486 7487 7488 7489 7490 7491 7492
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7493
	perf_pmu_enable(pmu);
7494 7495
}

7496 7497
static int perf_event_idx_default(struct perf_event *event)
{
7498
	return 0;
7499 7500
}

P
Peter Zijlstra 已提交
7501 7502 7503 7504
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7505
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7506
{
P
Peter Zijlstra 已提交
7507
	struct pmu *pmu;
7508

P
Peter Zijlstra 已提交
7509 7510
	if (ctxn < 0)
		return NULL;
7511

P
Peter Zijlstra 已提交
7512 7513 7514 7515
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7516

P
Peter Zijlstra 已提交
7517
	return NULL;
7518 7519
}

7520
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7521
{
7522 7523 7524 7525 7526 7527 7528
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7529 7530
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7531 7532 7533 7534 7535 7536
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7537

P
Peter Zijlstra 已提交
7538
	mutex_lock(&pmus_lock);
7539
	/*
P
Peter Zijlstra 已提交
7540
	 * Like a real lame refcount.
7541
	 */
7542 7543 7544
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7545
			goto out;
7546
		}
P
Peter Zijlstra 已提交
7547
	}
7548

7549
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7550 7551
out:
	mutex_unlock(&pmus_lock);
7552
}
P
Peter Zijlstra 已提交
7553
static struct idr pmu_idr;
7554

P
Peter Zijlstra 已提交
7555 7556 7557 7558 7559 7560 7561
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7562
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7563

7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7574 7575
static DEFINE_MUTEX(mux_interval_mutex);

7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7595
	mutex_lock(&mux_interval_mutex);
7596 7597 7598
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7599 7600
	get_online_cpus();
	for_each_online_cpu(cpu) {
7601 7602 7603 7604
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7605 7606
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7607
	}
7608 7609
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7610 7611 7612

	return count;
}
7613
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7614

7615 7616 7617 7618
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7619
};
7620
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7621 7622 7623 7624

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7625
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7641
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7662
static struct lock_class_key cpuctx_mutex;
7663
static struct lock_class_key cpuctx_lock;
7664

7665
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7666
{
P
Peter Zijlstra 已提交
7667
	int cpu, ret;
7668

7669
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7670 7671 7672 7673
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7674

P
Peter Zijlstra 已提交
7675 7676 7677 7678 7679 7680
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7681 7682 7683
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7684 7685 7686 7687 7688
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7689 7690 7691 7692 7693 7694
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7695
skip_type:
P
Peter Zijlstra 已提交
7696 7697 7698
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7699

W
Wei Yongjun 已提交
7700
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7701 7702
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7703
		goto free_dev;
7704

P
Peter Zijlstra 已提交
7705 7706 7707 7708
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7709
		__perf_event_init_context(&cpuctx->ctx);
7710
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7711
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7712
		cpuctx->ctx.pmu = pmu;
7713

7714
		__perf_mux_hrtimer_init(cpuctx, cpu);
7715

7716
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7717
	}
7718

P
Peter Zijlstra 已提交
7719
got_cpu_context:
P
Peter Zijlstra 已提交
7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7731
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7732 7733
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7734
		}
7735
	}
7736

P
Peter Zijlstra 已提交
7737 7738 7739 7740 7741
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7742 7743 7744
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7745
	list_add_rcu(&pmu->entry, &pmus);
7746
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7747 7748
	ret = 0;
unlock:
7749 7750
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7751
	return ret;
P
Peter Zijlstra 已提交
7752

P
Peter Zijlstra 已提交
7753 7754 7755 7756
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7757 7758 7759 7760
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7761 7762 7763
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7764
}
7765
EXPORT_SYMBOL_GPL(perf_pmu_register);
7766

7767
void perf_pmu_unregister(struct pmu *pmu)
7768
{
7769 7770 7771
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7772

7773
	/*
P
Peter Zijlstra 已提交
7774 7775
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7776
	 */
7777
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7778
	synchronize_rcu();
7779

P
Peter Zijlstra 已提交
7780
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7781 7782
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7783 7784
	device_del(pmu->dev);
	put_device(pmu->dev);
7785
	free_pmu_context(pmu);
7786
}
7787
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7788

7789 7790
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7791
	struct perf_event_context *ctx = NULL;
7792 7793 7794 7795
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7796 7797

	if (event->group_leader != event) {
7798 7799 7800 7801 7802 7803
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7804 7805 7806
		BUG_ON(!ctx);
	}

7807 7808
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7809 7810 7811 7812

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7813 7814 7815 7816 7817 7818
	if (ret)
		module_put(pmu->module);

	return ret;
}

7819
static struct pmu *perf_init_event(struct perf_event *event)
7820 7821 7822
{
	struct pmu *pmu = NULL;
	int idx;
7823
	int ret;
7824 7825

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7826 7827 7828 7829

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7830
	if (pmu) {
7831
		ret = perf_try_init_event(pmu, event);
7832 7833
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7834
		goto unlock;
7835
	}
P
Peter Zijlstra 已提交
7836

7837
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7838
		ret = perf_try_init_event(pmu, event);
7839
		if (!ret)
P
Peter Zijlstra 已提交
7840
			goto unlock;
7841

7842 7843
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7844
			goto unlock;
7845
		}
7846
	}
P
Peter Zijlstra 已提交
7847 7848
	pmu = ERR_PTR(-ENOENT);
unlock:
7849
	srcu_read_unlock(&pmus_srcu, idx);
7850

7851
	return pmu;
7852 7853
}

7854 7855 7856 7857 7858 7859 7860 7861 7862
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


7884 7885
static void account_event(struct perf_event *event)
{
7886 7887
	bool inc = false;

7888 7889 7890
	if (event->parent)
		return;

7891
	if (event->attach_state & PERF_ATTACH_TASK)
7892
		inc = true;
7893 7894 7895 7896 7897 7898
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7899 7900
	if (event->attr.freq)
		account_freq_event();
7901 7902
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7903
		inc = true;
7904
	}
7905
	if (has_branch_stack(event))
7906
		inc = true;
7907
	if (is_cgroup_event(event))
7908 7909
		inc = true;

7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
7932 7933

	account_event_cpu(event, event->cpu);
7934 7935
}

T
Thomas Gleixner 已提交
7936
/*
7937
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7938
 */
7939
static struct perf_event *
7940
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7941 7942 7943
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7944
		 perf_overflow_handler_t overflow_handler,
7945
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7946
{
P
Peter Zijlstra 已提交
7947
	struct pmu *pmu;
7948 7949
	struct perf_event *event;
	struct hw_perf_event *hwc;
7950
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7951

7952 7953 7954 7955 7956
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7957
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7958
	if (!event)
7959
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7960

7961
	/*
7962
	 * Single events are their own group leaders, with an
7963 7964 7965
	 * empty sibling list:
	 */
	if (!group_leader)
7966
		group_leader = event;
7967

7968 7969
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7970

7971 7972 7973
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7974
	INIT_LIST_HEAD(&event->rb_entry);
7975
	INIT_LIST_HEAD(&event->active_entry);
7976 7977
	INIT_HLIST_NODE(&event->hlist_entry);

7978

7979
	init_waitqueue_head(&event->waitq);
7980
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7981

7982
	mutex_init(&event->mmap_mutex);
7983

7984
	atomic_long_set(&event->refcount, 1);
7985 7986 7987 7988 7989
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7990

7991
	event->parent		= parent_event;
7992

7993
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7994
	event->id		= atomic64_inc_return(&perf_event_id);
7995

7996
	event->state		= PERF_EVENT_STATE_INACTIVE;
7997

7998 7999 8000
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
8001 8002 8003
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
8004
		 */
8005
		event->hw.target = task;
8006 8007
	}

8008 8009 8010 8011
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

8012
	if (!overflow_handler && parent_event) {
8013
		overflow_handler = parent_event->overflow_handler;
8014 8015
		context = parent_event->overflow_handler_context;
	}
8016

8017
	event->overflow_handler	= overflow_handler;
8018
	event->overflow_handler_context = context;
8019

J
Jiri Olsa 已提交
8020
	perf_event__state_init(event);
8021

8022
	pmu = NULL;
8023

8024
	hwc = &event->hw;
8025
	hwc->sample_period = attr->sample_period;
8026
	if (attr->freq && attr->sample_freq)
8027
		hwc->sample_period = 1;
8028
	hwc->last_period = hwc->sample_period;
8029

8030
	local64_set(&hwc->period_left, hwc->sample_period);
8031

8032
	/*
8033
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8034
	 */
8035
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8036
		goto err_ns;
8037 8038 8039

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
8040

8041 8042 8043 8044 8045 8046
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

8047
	pmu = perf_init_event(event);
8048
	if (!pmu)
8049 8050
		goto err_ns;
	else if (IS_ERR(pmu)) {
8051
		err = PTR_ERR(pmu);
8052
		goto err_ns;
I
Ingo Molnar 已提交
8053
	}
8054

8055 8056 8057 8058
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

8059
	if (!event->parent) {
8060 8061
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
8062
			if (err)
8063
				goto err_per_task;
8064
		}
8065
	}
8066

8067 8068 8069
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

8070
	return event;
8071

8072 8073 8074
err_per_task:
	exclusive_event_destroy(event);

8075 8076 8077
err_pmu:
	if (event->destroy)
		event->destroy(event);
8078
	module_put(pmu->module);
8079
err_ns:
8080 8081
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
8082 8083 8084 8085 8086
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
8087 8088
}

8089 8090
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
8091 8092
{
	u32 size;
8093
	int ret;
8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8118 8119 8120
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8121 8122
	 */
	if (size > sizeof(*attr)) {
8123 8124 8125
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8126

8127 8128
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8129

8130
		for (; addr < end; addr++) {
8131 8132 8133 8134 8135 8136
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8137
		size = sizeof(*attr);
8138 8139 8140 8141 8142 8143
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8144
	if (attr->__reserved_1)
8145 8146 8147 8148 8149 8150 8151 8152
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8181 8182
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8183 8184
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8185
	}
8186

8187
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8188
		ret = perf_reg_validate(attr->sample_regs_user);
8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8207

8208 8209
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8210 8211 8212 8213 8214 8215 8216 8217 8218
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8219 8220
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8221
{
8222
	struct ring_buffer *rb = NULL;
8223 8224
	int ret = -EINVAL;

8225
	if (!output_event)
8226 8227
		goto set;

8228 8229
	/* don't allow circular references */
	if (event == output_event)
8230 8231
		goto out;

8232 8233 8234 8235 8236 8237 8238
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8239
	 * If its not a per-cpu rb, it must be the same task.
8240 8241 8242 8243
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8244 8245 8246 8247 8248 8249
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8250 8251 8252 8253 8254 8255 8256
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8257
set:
8258
	mutex_lock(&event->mmap_mutex);
8259 8260 8261
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8262

8263
	if (output_event) {
8264 8265 8266
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8267
			goto unlock;
8268 8269
	}

8270
	ring_buffer_attach(event, rb);
8271

8272
	ret = 0;
8273 8274 8275
unlock:
	mutex_unlock(&event->mmap_mutex);

8276 8277 8278 8279
out:
	return ret;
}

P
Peter Zijlstra 已提交
8280 8281 8282 8283 8284 8285 8286 8287 8288
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8326
/**
8327
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8328
 *
8329
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8330
 * @pid:		target pid
I
Ingo Molnar 已提交
8331
 * @cpu:		target cpu
8332
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8333
 */
8334 8335
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8336
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8337
{
8338 8339
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8340
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8341
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8342
	struct file *event_file = NULL;
8343
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8344
	struct task_struct *task = NULL;
8345
	struct pmu *pmu;
8346
	int event_fd;
8347
	int move_group = 0;
8348
	int err;
8349
	int f_flags = O_RDWR;
8350
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8351

8352
	/* for future expandability... */
S
Stephane Eranian 已提交
8353
	if (flags & ~PERF_FLAG_ALL)
8354 8355
		return -EINVAL;

8356 8357 8358
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8359

8360 8361 8362 8363 8364
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8365
	if (attr.freq) {
8366
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8367
			return -EINVAL;
8368 8369 8370
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8371 8372
	}

S
Stephane Eranian 已提交
8373 8374 8375 8376 8377 8378 8379 8380 8381
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8382 8383 8384 8385
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8386 8387 8388
	if (event_fd < 0)
		return event_fd;

8389
	if (group_fd != -1) {
8390 8391
		err = perf_fget_light(group_fd, &group);
		if (err)
8392
			goto err_fd;
8393
		group_leader = group.file->private_data;
8394 8395 8396 8397 8398 8399
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8400
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8401 8402 8403 8404 8405 8406 8407
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8408 8409 8410 8411 8412 8413
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8414 8415
	get_online_cpus();

8416 8417 8418
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8419
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8420
				 NULL, NULL, cgroup_fd);
8421 8422
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8423
		goto err_cpus;
8424 8425
	}

8426 8427 8428 8429 8430 8431 8432
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8433 8434 8435 8436 8437
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8438

8439 8440 8441 8442 8443 8444
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8467 8468 8469 8470

	/*
	 * Get the target context (task or percpu):
	 */
8471
	ctx = find_get_context(pmu, task, event);
8472 8473
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8474
		goto err_alloc;
8475 8476
	}

8477 8478 8479 8480 8481
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8482 8483 8484 8485 8486
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8487
	/*
8488
	 * Look up the group leader (we will attach this event to it):
8489
	 */
8490
	if (group_leader) {
8491
		err = -EINVAL;
8492 8493

		/*
I
Ingo Molnar 已提交
8494 8495 8496 8497
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8498
			goto err_context;
8499 8500 8501 8502 8503

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8504 8505 8506
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8507
		 */
8508
		if (move_group) {
8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8522 8523 8524 8525 8526 8527
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8528 8529 8530
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8531
		if (attr.exclusive || attr.pinned)
8532
			goto err_context;
8533 8534 8535 8536 8537
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8538
			goto err_context;
8539
	}
T
Thomas Gleixner 已提交
8540

8541 8542
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8543 8544
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8545
		goto err_context;
8546
	}
8547

8548
	if (move_group) {
P
Peter Zijlstra 已提交
8549
		gctx = group_leader->ctx;
8550
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8551 8552 8553 8554
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
8555 8556 8557 8558
	} else {
		mutex_lock(&ctx->mutex);
	}

8559 8560 8561 8562 8563
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
8564 8565 8566 8567 8568
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8569 8570 8571 8572 8573 8574 8575
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8576

8577 8578 8579
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8580

8581 8582 8583
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8584 8585 8586 8587
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8588
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8589

8590 8591
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8592
			perf_remove_from_context(sibling, 0);
8593 8594 8595
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8596 8597 8598 8599
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8600
		synchronize_rcu();
P
Peter Zijlstra 已提交
8601

8602 8603 8604 8605 8606 8607 8608 8609 8610 8611
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8612 8613
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8614
			perf_event__state_init(sibling);
8615
			perf_install_in_context(ctx, sibling, sibling->cpu);
8616 8617
			get_ctx(ctx);
		}
8618 8619 8620 8621 8622 8623 8624 8625 8626

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8627

8628 8629 8630 8631 8632 8633
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8634 8635
	}

8636 8637 8638 8639 8640 8641 8642 8643 8644
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8645 8646
	event->owner = current;

8647
	perf_install_in_context(ctx, event, event->cpu);
8648
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8649

8650
	if (move_group)
P
Peter Zijlstra 已提交
8651
		mutex_unlock(&gctx->mutex);
8652
	mutex_unlock(&ctx->mutex);
8653

8654 8655
	put_online_cpus();

8656 8657 8658
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8659

8660 8661 8662 8663 8664 8665
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8666
	fdput(group);
8667 8668
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8669

8670 8671 8672 8673 8674 8675
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8676
err_context:
8677
	perf_unpin_context(ctx);
8678
	put_ctx(ctx);
8679
err_alloc:
P
Peter Zijlstra 已提交
8680 8681 8682 8683 8684 8685
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
8686
err_cpus:
8687
	put_online_cpus();
8688
err_task:
P
Peter Zijlstra 已提交
8689 8690
	if (task)
		put_task_struct(task);
8691
err_group_fd:
8692
	fdput(group);
8693 8694
err_fd:
	put_unused_fd(event_fd);
8695
	return err;
T
Thomas Gleixner 已提交
8696 8697
}

8698 8699 8700 8701 8702
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8703
 * @task: task to profile (NULL for percpu)
8704 8705 8706
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8707
				 struct task_struct *task,
8708 8709
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8710 8711
{
	struct perf_event_context *ctx;
8712
	struct perf_event *event;
8713
	int err;
8714

8715 8716 8717
	/*
	 * Get the target context (task or percpu):
	 */
8718

8719
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8720
				 overflow_handler, context, -1);
8721 8722 8723 8724
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8725

8726
	/* Mark owner so we could distinguish it from user events. */
8727
	event->owner = TASK_TOMBSTONE;
8728

8729
	ctx = find_get_context(event->pmu, task, event);
8730 8731
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8732
		goto err_free;
8733
	}
8734 8735 8736

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8737 8738 8739 8740 8741
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

8742 8743
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
8744
		goto err_unlock;
8745 8746
	}

8747
	perf_install_in_context(ctx, event, cpu);
8748
	perf_unpin_context(ctx);
8749 8750 8751 8752
	mutex_unlock(&ctx->mutex);

	return event;

8753 8754 8755 8756
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
8757 8758 8759
err_free:
	free_event(event);
err:
8760
	return ERR_PTR(err);
8761
}
8762
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8763

8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8774 8775 8776 8777 8778
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8779 8780
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8781
		perf_remove_from_context(event, 0);
8782
		unaccount_event_cpu(event, src_cpu);
8783
		put_ctx(src_ctx);
8784
		list_add(&event->migrate_entry, &events);
8785 8786
	}

8787 8788 8789
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8790 8791
	synchronize_rcu();

8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8816 8817
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8818 8819
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8820
		account_event_cpu(event, dst_cpu);
8821 8822 8823 8824
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8825
	mutex_unlock(&src_ctx->mutex);
8826 8827 8828
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8829
static void sync_child_event(struct perf_event *child_event,
8830
			       struct task_struct *child)
8831
{
8832
	struct perf_event *parent_event = child_event->parent;
8833
	u64 child_val;
8834

8835 8836
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8837

P
Peter Zijlstra 已提交
8838
	child_val = perf_event_count(child_event);
8839 8840 8841 8842

	/*
	 * Add back the child's count to the parent's count:
	 */
8843
	atomic64_add(child_val, &parent_event->child_count);
8844 8845 8846 8847
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8848 8849
}

8850
static void
8851 8852 8853
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8854
{
8855 8856
	struct perf_event *parent_event = child_event->parent;

8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8869 8870 8871
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

8872
	if (parent_event)
8873 8874
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
8875
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8876
	raw_spin_unlock_irq(&child_ctx->lock);
8877

8878
	/*
8879
	 * Parent events are governed by their filedesc, retain them.
8880
	 */
8881
	if (!parent_event) {
8882
		perf_event_wakeup(child_event);
8883
		return;
8884
	}
8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
8905 8906
}

P
Peter Zijlstra 已提交
8907
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8908
{
8909
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8910 8911 8912
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8913

8914
	child_ctx = perf_pin_task_context(child, ctxn);
8915
	if (!child_ctx)
8916 8917
		return;

8918
	/*
8919 8920 8921 8922 8923 8924 8925 8926
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
8927
	 */
8928
	mutex_lock(&child_ctx->mutex);
8929 8930

	/*
8931 8932 8933
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
8934
	 */
8935
	raw_spin_lock_irq(&child_ctx->lock);
8936
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8937

8938
	/*
8939 8940
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8941
	 */
8942 8943 8944 8945
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8946

8947
	clone_ctx = unclone_ctx(child_ctx);
8948
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8949

8950 8951
	if (clone_ctx)
		put_ctx(clone_ctx);
8952

P
Peter Zijlstra 已提交
8953
	/*
8954 8955 8956
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8957
	 */
8958
	perf_event_task(child, child_ctx, 0);
8959

8960
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8961
		perf_event_exit_event(child_event, child_ctx, child);
8962

8963 8964 8965
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8966 8967
}

P
Peter Zijlstra 已提交
8968 8969 8970 8971 8972
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8973
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8974 8975
	int ctxn;

P
Peter Zijlstra 已提交
8976 8977 8978 8979 8980 8981 8982 8983 8984 8985
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
8986
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
8987 8988 8989
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8990 8991
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8992 8993 8994 8995 8996 8997 8998 8999

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
9000 9001
}

9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

9014
	put_event(parent);
9015

P
Peter Zijlstra 已提交
9016
	raw_spin_lock_irq(&ctx->lock);
9017
	perf_group_detach(event);
9018
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
9019
	raw_spin_unlock_irq(&ctx->lock);
9020 9021 9022
	free_event(event);
}

9023
/*
P
Peter Zijlstra 已提交
9024
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
9025
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
9026 9027 9028
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
9029
 */
9030
void perf_event_free_task(struct task_struct *task)
9031
{
P
Peter Zijlstra 已提交
9032
	struct perf_event_context *ctx;
9033
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
9034
	int ctxn;
9035

P
Peter Zijlstra 已提交
9036 9037 9038 9039
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
9040

P
Peter Zijlstra 已提交
9041
		mutex_lock(&ctx->mutex);
9042
again:
P
Peter Zijlstra 已提交
9043 9044 9045
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
9046

P
Peter Zijlstra 已提交
9047 9048 9049
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
9050

P
Peter Zijlstra 已提交
9051 9052 9053
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
9054

P
Peter Zijlstra 已提交
9055
		mutex_unlock(&ctx->mutex);
9056

P
Peter Zijlstra 已提交
9057 9058
		put_ctx(ctx);
	}
9059 9060
}

9061 9062 9063 9064 9065 9066 9067 9068
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

9069
struct file *perf_event_get(unsigned int fd)
9070
{
9071
	struct file *file;
9072

9073 9074 9075
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
9076

9077 9078 9079 9080
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
9081

9082
	return file;
9083 9084 9085 9086 9087 9088 9089 9090 9091 9092
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
9104
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
9105
	struct perf_event *child_event;
9106
	unsigned long flags;
P
Peter Zijlstra 已提交
9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9119
					   child,
P
Peter Zijlstra 已提交
9120
					   group_leader, parent_event,
9121
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9122 9123
	if (IS_ERR(child_event))
		return child_event;
9124

9125 9126 9127 9128 9129 9130 9131
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
9132 9133
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9134
		mutex_unlock(&parent_event->child_mutex);
9135 9136 9137 9138
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9139 9140 9141 9142 9143 9144 9145
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9146
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9163 9164
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9165

9166 9167 9168 9169
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9170
	perf_event__id_header_size(child_event);
9171

P
Peter Zijlstra 已提交
9172 9173 9174
	/*
	 * Link it up in the child's context:
	 */
9175
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9176
	add_event_to_ctx(child_event, child_ctx);
9177
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9209 9210 9211 9212 9213
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9214
		   struct task_struct *child, int ctxn,
9215 9216 9217
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9218
	struct perf_event_context *child_ctx;
9219 9220 9221 9222

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9223 9224
	}

9225
	child_ctx = child->perf_event_ctxp[ctxn];
9226 9227 9228 9229 9230 9231 9232
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9233

9234
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9235 9236
		if (!child_ctx)
			return -ENOMEM;
9237

P
Peter Zijlstra 已提交
9238
		child->perf_event_ctxp[ctxn] = child_ctx;
9239 9240 9241 9242 9243 9244 9245 9246 9247
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9248 9249
}

9250
/*
9251
 * Initialize the perf_event context in task_struct
9252
 */
9253
static int perf_event_init_context(struct task_struct *child, int ctxn)
9254
{
9255
	struct perf_event_context *child_ctx, *parent_ctx;
9256 9257
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9258
	struct task_struct *parent = current;
9259
	int inherited_all = 1;
9260
	unsigned long flags;
9261
	int ret = 0;
9262

P
Peter Zijlstra 已提交
9263
	if (likely(!parent->perf_event_ctxp[ctxn]))
9264 9265
		return 0;

9266
	/*
9267 9268
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9269
	 */
P
Peter Zijlstra 已提交
9270
	parent_ctx = perf_pin_task_context(parent, ctxn);
9271 9272
	if (!parent_ctx)
		return 0;
9273

9274 9275 9276 9277 9278 9279 9280
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9281 9282 9283 9284
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9285
	mutex_lock(&parent_ctx->mutex);
9286 9287 9288 9289 9290

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9291
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9292 9293
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9294 9295 9296
		if (ret)
			break;
	}
9297

9298 9299 9300 9301 9302 9303 9304 9305 9306
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9307
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9308 9309
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9310
		if (ret)
9311
			break;
9312 9313
	}

9314 9315 9316
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9317
	child_ctx = child->perf_event_ctxp[ctxn];
9318

9319
	if (child_ctx && inherited_all) {
9320 9321 9322
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9323 9324 9325
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9326
		 */
P
Peter Zijlstra 已提交
9327
		cloned_ctx = parent_ctx->parent_ctx;
9328 9329
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9330
			child_ctx->parent_gen = parent_ctx->parent_gen;
9331 9332 9333 9334 9335
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9336 9337
	}

P
Peter Zijlstra 已提交
9338
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9339
	mutex_unlock(&parent_ctx->mutex);
9340

9341
	perf_unpin_context(parent_ctx);
9342
	put_ctx(parent_ctx);
9343

9344
	return ret;
9345 9346
}

P
Peter Zijlstra 已提交
9347 9348 9349 9350 9351 9352 9353
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9354 9355 9356 9357
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9358 9359
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9360 9361
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9362
			return ret;
P
Peter Zijlstra 已提交
9363
		}
P
Peter Zijlstra 已提交
9364 9365 9366 9367 9368
	}

	return 0;
}

9369 9370
static void __init perf_event_init_all_cpus(void)
{
9371
	struct swevent_htable *swhash;
9372 9373 9374
	int cpu;

	for_each_possible_cpu(cpu) {
9375 9376
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9377
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9378 9379 9380
	}
}

9381
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9382
{
P
Peter Zijlstra 已提交
9383
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9384

9385
	mutex_lock(&swhash->hlist_mutex);
9386
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9387 9388
		struct swevent_hlist *hlist;

9389 9390 9391
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9392
	}
9393
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9394 9395
}

9396
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9397
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9398
{
P
Peter Zijlstra 已提交
9399
	struct perf_event_context *ctx = __info;
9400 9401
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9402

9403 9404
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9405
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9406
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9407
}
P
Peter Zijlstra 已提交
9408 9409 9410 9411 9412 9413 9414 9415 9416

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9417
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9418 9419 9420 9421 9422 9423 9424 9425

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9426
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9427
{
P
Peter Zijlstra 已提交
9428
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9429 9430
}
#else
9431
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9432 9433
#endif

P
Peter Zijlstra 已提交
9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9454
static int
T
Thomas Gleixner 已提交
9455 9456 9457 9458
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9459
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9460 9461

	case CPU_UP_PREPARE:
9462 9463 9464 9465 9466 9467 9468
		/*
		 * This must be done before the CPU comes alive, because the
		 * moment we can run tasks we can encounter (software) events.
		 *
		 * Specifically, someone can have inherited events on kthreadd
		 * or a pre-existing worker thread that gets re-bound.
		 */
9469
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9470 9471 9472
		break;

	case CPU_DOWN_PREPARE:
9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
		/*
		 * This must be done before the CPU dies because after that an
		 * active event might want to IPI the CPU and that'll not work
		 * so great for dead CPUs.
		 *
		 * XXX smp_call_function_single() return -ENXIO without a warn
		 * so we could possibly deal with this.
		 *
		 * This is safe against new events arriving because
		 * sys_perf_event_open() serializes against hotplug using
		 * get_online_cpus().
		 */
9485
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9486 9487 9488 9489 9490 9491 9492 9493
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9494
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9495
{
9496 9497
	int ret;

P
Peter Zijlstra 已提交
9498 9499
	idr_init(&pmu_idr);

9500
	perf_event_init_all_cpus();
9501
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9502 9503 9504
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9505 9506
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9507
	register_reboot_notifier(&perf_reboot_notifier);
9508 9509 9510

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9511

9512 9513 9514 9515 9516 9517
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9518
}
P
Peter Zijlstra 已提交
9519

9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
9531
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9532

P
Peter Zijlstra 已提交
9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9560 9561

#ifdef CONFIG_CGROUP_PERF
9562 9563
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9564 9565 9566
{
	struct perf_cgroup *jc;

9567
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9580
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9581
{
9582 9583
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9584 9585 9586 9587 9588 9589 9590
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9591
	rcu_read_lock();
S
Stephane Eranian 已提交
9592
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9593
	rcu_read_unlock();
S
Stephane Eranian 已提交
9594 9595 9596
	return 0;
}

9597
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9598
{
9599
	struct task_struct *task;
9600
	struct cgroup_subsys_state *css;
9601

9602
	cgroup_taskset_for_each(task, css, tset)
9603
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9604 9605
}

9606
struct cgroup_subsys perf_event_cgrp_subsys = {
9607 9608
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9609
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9610 9611
};
#endif /* CONFIG_CGROUP_PERF */