core.c 252.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
T
Thomas Gleixner 已提交
49

50 51
#include "internal.h"

52 53
#include <asm/irq_regs.h>

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
69 70 71 72 73 74 75 76 77 78 79
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
100
task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 102
{
	struct remote_function_call data = {
103 104 105
		.p	= p,
		.func	= func,
		.info	= info,
106
		.ret	= -EAGAIN,
107
	};
108
	int ret;
109

110 111 112 113 114
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
115

116
	return ret;
117 118 119 120 121 122 123 124 125 126 127
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
128
static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 130
{
	struct remote_function_call data = {
131 132 133 134
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
135 136 137 138 139 140 141
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

142 143 144 145 146 147 148 149
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
150
{
151 152 153 154 155 156 157 158 159 160 161 162 163
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

164 165 166 167
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
168
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
203
	struct perf_event_context *ctx = event->ctx;
204 205
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216
		if (ctx->task != current) {
217
			ret = -ESRCH;
218 219
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
246 247
{
	struct perf_event_context *ctx = event->ctx;
248
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 250 251 252 253
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
254

P
Peter Zijlstra 已提交
255 256 257 258 259 260 261 262
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
263 264

	if (!task) {
265
		cpu_function_call(event->cpu, event_function, &efs);
266 267 268
		return;
	}

269 270 271
	if (task == TASK_TOMBSTONE)
		return;

272
again:
273
	if (!task_function_call(task, event_function, &efs))
274 275 276
		return;

	raw_spin_lock_irq(&ctx->lock);
277 278 279 280 281
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
282 283 284
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
285
	}
286 287 288 289 290
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
291 292 293
	raw_spin_unlock_irq(&ctx->lock);
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
342 343
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
344 345
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
346

347 348 349 350 351 352 353
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

354 355 356
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
357
	EVENT_TIME = 0x4,
358 359 360
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
361 362 363 364
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
365 366 367 368 369 370 371

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
372
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
375

376 377 378
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
379
static atomic_t nr_freq_events __read_mostly;
380
static atomic_t nr_switch_events __read_mostly;
381

P
Peter Zijlstra 已提交
382 383 384 385
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

386
/*
387
 * perf event paranoia level:
388 389
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
390
 *   1 - disallow cpu events for unpriv
391
 *   2 - disallow kernel profiling for unpriv
392
 */
393
int sysctl_perf_event_paranoid __read_mostly = 2;
394

395 396
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 398

/*
399
 * max perf event sample rate
400
 */
401 402 403 404 405 406 407 408 409
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
410 411
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412

413
static void update_perf_cpu_limits(void)
414 415 416 417
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
418 419 420 421 422
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423
}
P
Peter Zijlstra 已提交
424

425 426
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
427 428 429 430
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
431
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
432 433 434 435

	if (ret || !write)
		return ret;

436 437 438 439 440 441 442
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
443
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

461 462
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
463 464 465 466 467 468
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
469 470 471

	return 0;
}
472

473 474 475 476 477 478 479
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
480
static DEFINE_PER_CPU(u64, running_sample_length);
481

482 483 484
static u64 __report_avg;
static u64 __report_allowed;

485
static void perf_duration_warn(struct irq_work *w)
486
{
487
	printk_ratelimited(KERN_INFO
488 489 490 491
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
492 493 494 495 496 497
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
498 499 500 501
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
502

503
	if (max_len == 0)
504 505
		return;

506 507 508 509 510
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
511 512

	/*
513 514
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 516
	 * from having to maintain a count.
	 */
517 518
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
519 520
		return;

521 522
	__report_avg = avg_len;
	__report_allowed = max_len;
523

524 525 526 527 528 529 530 531 532
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
533

534 535 536 537 538
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539

540
	if (!irq_work_queue(&perf_duration_work)) {
541
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542
			     "kernel.perf_event_max_sample_rate to %d\n",
543
			     __report_avg, __report_allowed,
544 545
			     sysctl_perf_event_sample_rate);
	}
546 547
}

548
static atomic64_t perf_event_id;
549

550 551 552 553
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
554 555 556 557 558
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
559

560
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
561

562
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
563
{
564
	return "pmu";
T
Thomas Gleixner 已提交
565 566
}

567 568 569 570 571
static inline u64 perf_clock(void)
{
	return local_clock();
}

572 573 574 575 576
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
577 578 579 580 581 582 583 584
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
601 602 603 604
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
605
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
644 645
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
646
	/*
647 648
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
649
	 */
650
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
651 652
		return;

653
	cgrp = perf_cgroup_from_task(current, event->ctx);
654 655 656 657 658
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
659 660 661
}

static inline void
662 663
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
664 665 666 667
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

668 669 670 671 672 673
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
674 675
		return;

676
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
677
	info = this_cpu_ptr(cgrp->info);
678
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
679 680 681 682 683 684 685 686 687 688 689
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
690
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 711
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
712 713 714 715 716 717 718 719 720

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
721 722
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
723 724 725 726 727 728 729 730 731 732 733

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
734
				WARN_ON_ONCE(cpuctx->cgrp);
735 736 737 738
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
739 740
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
741
				 */
742
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
743 744
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
745 746
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
747 748 749 750 751 752
		}
	}

	local_irq_restore(flags);
}

753 754
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
755
{
756 757 758
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

759
	rcu_read_lock();
760 761
	/*
	 * we come here when we know perf_cgroup_events > 0
762 763
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
764
	 */
765
	cgrp1 = perf_cgroup_from_task(task, NULL);
766
	cgrp2 = perf_cgroup_from_task(next, NULL);
767 768 769 770 771 772 773 774

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 776

	rcu_read_unlock();
S
Stephane Eranian 已提交
777 778
}

779 780
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
781
{
782 783 784
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

785
	rcu_read_lock();
786 787
	/*
	 * we come here when we know perf_cgroup_events > 0
788 789
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
790
	 */
791 792
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 794 795 796 797 798 799 800

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 802

	rcu_read_unlock();
S
Stephane Eranian 已提交
803 804 805 806 807 808 809 810
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
811 812
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
813

814
	if (!f.file)
S
Stephane Eranian 已提交
815 816
		return -EBADF;

A
Al Viro 已提交
817
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818
					 &perf_event_cgrp_subsys);
819 820 821 822
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
836
out:
837
	fdput(f);
S
Stephane Eranian 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
	cpuctx->cgrp = add ? event->cgrp : NULL;
}

S
Stephane Eranian 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

937 938
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
939 940 941
{
}

942 943
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
944 945 946 947 948 949 950 951 952 953 954
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
955 956
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
985 986 987 988 989 990 991

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
992 993
#endif

994 995 996 997 998 999 1000 1001
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
1002
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 1004 1005 1006 1007 1008 1009 1010 1011
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1012 1013
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1014
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1015 1016 1017
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018

P
Peter Zijlstra 已提交
1019
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 1021
}

1022
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023
{
1024
	struct hrtimer *timer = &cpuctx->hrtimer;
1025
	struct pmu *pmu = cpuctx->ctx.pmu;
1026
	u64 interval;
1027 1028 1029 1030 1031

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1032 1033 1034 1035
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1036 1037 1038
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039

1040
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041

P
Peter Zijlstra 已提交
1042 1043
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044
	timer->function = perf_mux_hrtimer_handler;
1045 1046
}

1047
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048
{
1049
	struct hrtimer *timer = &cpuctx->hrtimer;
1050
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1051
	unsigned long flags;
1052 1053 1054

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1055
		return 0;
1056

P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062 1063
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064

1065
	return 0;
1066 1067
}

P
Peter Zijlstra 已提交
1068
void perf_pmu_disable(struct pmu *pmu)
1069
{
P
Peter Zijlstra 已提交
1070 1071 1072
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1073 1074
}

P
Peter Zijlstra 已提交
1075
void perf_pmu_enable(struct pmu *pmu)
1076
{
P
Peter Zijlstra 已提交
1077 1078 1079
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1080 1081
}

1082
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 1084

/*
1085 1086 1087 1088
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1089
 */
1090
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091
{
1092
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093

1094
	WARN_ON(!irqs_disabled());
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1108 1109
}

1110
static void get_ctx(struct perf_event_context *ctx)
1111
{
1112
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1124
static void put_ctx(struct perf_event_context *ctx)
1125
{
1126 1127 1128
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1129
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130
			put_task_struct(ctx->task);
1131
		call_rcu(&ctx->rcu_head, free_ctx);
1132
	}
1133 1134
}

P
Peter Zijlstra 已提交
1135 1136 1137 1138 1139 1140 1141
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1142 1143 1144 1145
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1146 1147
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1188
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1189 1190 1191
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1192
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1193 1194 1195
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1196 1197
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1210
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1220 1221 1222 1223 1224 1225
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1226 1227 1228 1229 1230 1231 1232
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1233 1234 1235 1236 1237 1238 1239
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1240
{
1241 1242 1243 1244 1245
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1246
		ctx->parent_ctx = NULL;
1247
	ctx->generation++;
1248 1249

	return parent_ctx;
1250 1251
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1274
/*
1275
 * If we inherit events we want to return the parent event id
1276 1277
 * to userspace.
 */
1278
static u64 primary_event_id(struct perf_event *event)
1279
{
1280
	u64 id = event->id;
1281

1282 1283
	if (event->parent)
		id = event->parent->id;
1284 1285 1286 1287

	return id;
}

1288
/*
1289
 * Get the perf_event_context for a task and lock it.
1290
 *
1291 1292 1293
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1294
static struct perf_event_context *
P
Peter Zijlstra 已提交
1295
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296
{
1297
	struct perf_event_context *ctx;
1298

P
Peter Zijlstra 已提交
1299
retry:
1300 1301 1302
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303
	 * part of the read side critical section was irqs-enabled -- see
1304 1305 1306
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307
	 * side critical section has interrupts disabled.
1308
	 */
1309
	local_irq_save(*flags);
1310
	rcu_read_lock();
P
Peter Zijlstra 已提交
1311
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 1313 1314 1315
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1316
		 * perf_event_task_sched_out, though the
1317 1318 1319 1320 1321 1322
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1323
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1324
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325
			raw_spin_unlock(&ctx->lock);
1326
			rcu_read_unlock();
1327
			local_irq_restore(*flags);
1328 1329
			goto retry;
		}
1330

1331 1332
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1333
			raw_spin_unlock(&ctx->lock);
1334
			ctx = NULL;
P
Peter Zijlstra 已提交
1335 1336
		} else {
			WARN_ON_ONCE(ctx->task != task);
1337
		}
1338 1339
	}
	rcu_read_unlock();
1340 1341
	if (!ctx)
		local_irq_restore(*flags);
1342 1343 1344 1345 1346 1347 1348 1349
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1350 1351
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1352
{
1353
	struct perf_event_context *ctx;
1354 1355
	unsigned long flags;

P
Peter Zijlstra 已提交
1356
	ctx = perf_lock_task_context(task, ctxn, &flags);
1357 1358
	if (ctx) {
		++ctx->pin_count;
1359
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 1361 1362 1363
	}
	return ctx;
}

1364
static void perf_unpin_context(struct perf_event_context *ctx)
1365 1366 1367
{
	unsigned long flags;

1368
	raw_spin_lock_irqsave(&ctx->lock, flags);
1369
	--ctx->pin_count;
1370
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1384 1385 1386
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1387 1388 1389 1390

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1391 1392 1393
	return ctx ? ctx->time : 0;
}

1394 1395 1396 1397 1398 1399 1400 1401
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1402 1403
	lockdep_assert_held(&ctx->lock);

1404 1405 1406
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1407

S
Stephane Eranian 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1419
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1420 1421
	else if (ctx->is_active)
		run_end = ctx->time;
1422 1423 1424 1425
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1426 1427 1428 1429

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1430
		run_end = perf_event_time(event);
1431 1432

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1433

1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1448 1449 1450 1451 1452 1453 1454 1455 1456
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1457
/*
1458
 * Add a event from the lists for its context.
1459 1460
 * Must be called with ctx->mutex and ctx->lock held.
 */
1461
static void
1462
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463
{
1464

P
Peter Zijlstra 已提交
1465 1466
	lockdep_assert_held(&ctx->lock);

1467 1468
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1469 1470

	/*
1471 1472 1473
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1474
	 */
1475
	if (event->group_leader == event) {
1476 1477
		struct list_head *list;

1478
		event->group_caps = event->event_caps;
1479

1480 1481
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1482
	}
P
Peter Zijlstra 已提交
1483

1484
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1485

1486 1487 1488
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1489
		ctx->nr_stat++;
1490 1491

	ctx->generation++;
1492 1493
}

J
Jiri Olsa 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1503
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1519
		nr += nr_siblings;
1520 1521 1522 1523 1524 1525 1526
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1527
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1528 1529 1530 1531 1532 1533 1534
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1535 1536 1537 1538 1539 1540
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1541 1542 1543
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1544 1545 1546
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1547 1548 1549
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1550 1551 1552
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1553 1554 1555
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1567 1568 1569 1570 1571 1572
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1573 1574 1575 1576 1577 1578
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1579 1580 1581
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1582 1583 1584 1585 1586 1587 1588 1589 1590
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1591
	event->id_header_size = size;
1592 1593
}

P
Peter Zijlstra 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1615 1616
static void perf_group_attach(struct perf_event *event)
{
1617
	struct perf_event *group_leader = event->group_leader, *pos;
1618

P
Peter Zijlstra 已提交
1619 1620 1621 1622 1623 1624
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1625 1626 1627 1628 1629
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1630 1631
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1632
	group_leader->group_caps &= event->event_caps;
1633 1634 1635

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1636 1637 1638 1639 1640

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1641 1642
}

1643
/*
1644
 * Remove a event from the lists for its context.
1645
 * Must be called with ctx->mutex and ctx->lock held.
1646
 */
1647
static void
1648
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1649
{
P
Peter Zijlstra 已提交
1650 1651 1652
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1653 1654 1655 1656
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1657
		return;
1658 1659 1660

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1661
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1662

1663 1664
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1665
		ctx->nr_stat--;
1666

1667
	list_del_rcu(&event->event_entry);
1668

1669 1670
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1671

1672
	update_group_times(event);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1683 1684

	ctx->generation++;
1685 1686
}

1687
static void perf_group_detach(struct perf_event *event)
1688 1689
{
	struct perf_event *sibling, *tmp;
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1706
		goto out;
1707 1708 1709 1710
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1711

1712
	/*
1713 1714
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1715
	 * to whatever list we are on.
1716
	 */
1717
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1718 1719
		if (list)
			list_move_tail(&sibling->group_entry, list);
1720
		sibling->group_leader = sibling;
1721 1722

		/* Inherit group flags from the previous leader */
1723
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1724 1725

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1726
	}
1727 1728 1729 1730 1731 1732

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1733 1734
}

1735 1736
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1737
	return event->state == PERF_EVENT_STATE_DEAD;
1738 1739
}

1740
static inline int __pmu_filter_match(struct perf_event *event)
1741 1742 1743 1744 1745
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1767 1768 1769
static inline int
event_filter_match(struct perf_event *event)
{
1770 1771
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1772 1773
}

1774 1775
static void
event_sched_out(struct perf_event *event,
1776
		  struct perf_cpu_context *cpuctx,
1777
		  struct perf_event_context *ctx)
1778
{
1779
	u64 tstamp = perf_event_time(event);
1780
	u64 delta;
P
Peter Zijlstra 已提交
1781 1782 1783 1784

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1785 1786 1787 1788 1789 1790
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1791 1792
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1793
		delta = tstamp - event->tstamp_stopped;
1794
		event->tstamp_running += delta;
1795
		event->tstamp_stopped = tstamp;
1796 1797
	}

1798
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1799
		return;
1800

1801 1802
	perf_pmu_disable(event->pmu);

1803 1804 1805
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1806 1807 1808 1809
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1810
	}
1811

1812
	if (!is_software_event(event))
1813
		cpuctx->active_oncpu--;
1814 1815
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1816 1817
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1818
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1819
		cpuctx->exclusive = 0;
1820 1821

	perf_pmu_enable(event->pmu);
1822 1823
}

1824
static void
1825
group_sched_out(struct perf_event *group_event,
1826
		struct perf_cpu_context *cpuctx,
1827
		struct perf_event_context *ctx)
1828
{
1829
	struct perf_event *event;
1830
	int state = group_event->state;
1831

1832 1833
	perf_pmu_disable(ctx->pmu);

1834
	event_sched_out(group_event, cpuctx, ctx);
1835 1836 1837 1838

	/*
	 * Schedule out siblings (if any):
	 */
1839 1840
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1841

1842 1843
	perf_pmu_enable(ctx->pmu);

1844
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1845 1846 1847
		cpuctx->exclusive = 0;
}

1848
#define DETACH_GROUP	0x01UL
1849

T
Thomas Gleixner 已提交
1850
/*
1851
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1852
 *
1853
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1854 1855
 * remove it from the context list.
 */
1856 1857 1858 1859 1860
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1861
{
1862
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1863

1864
	event_sched_out(event, cpuctx, ctx);
1865
	if (flags & DETACH_GROUP)
1866
		perf_group_detach(event);
1867
	list_del_event(event, ctx);
1868 1869

	if (!ctx->nr_events && ctx->is_active) {
1870
		ctx->is_active = 0;
1871 1872 1873 1874
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1875
	}
T
Thomas Gleixner 已提交
1876 1877 1878
}

/*
1879
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1880
 *
1881 1882
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1883 1884
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1885
 * When called from perf_event_exit_task, it's OK because the
1886
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1887
 */
1888
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1889
{
1890
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1891

1892
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1893 1894
}

1895
/*
1896
 * Cross CPU call to disable a performance event
1897
 */
1898 1899 1900 1901
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1902
{
1903 1904
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1905

1906 1907 1908 1909 1910 1911 1912 1913
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1914 1915
}

1916
/*
1917
 * Disable a event.
1918
 *
1919 1920
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1921
 * remains valid.  This condition is satisifed when called through
1922 1923
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1924 1925
 * goes to exit will block in perf_event_exit_event().
 *
1926
 * When called from perf_pending_event it's OK because event->ctx
1927
 * is the current context on this CPU and preemption is disabled,
1928
 * hence we can't get into perf_event_task_sched_out for this context.
1929
 */
P
Peter Zijlstra 已提交
1930
static void _perf_event_disable(struct perf_event *event)
1931
{
1932
	struct perf_event_context *ctx = event->ctx;
1933

1934
	raw_spin_lock_irq(&ctx->lock);
1935
	if (event->state <= PERF_EVENT_STATE_OFF) {
1936
		raw_spin_unlock_irq(&ctx->lock);
1937
		return;
1938
	}
1939
	raw_spin_unlock_irq(&ctx->lock);
1940

1941 1942 1943 1944 1945 1946
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1947
}
P
Peter Zijlstra 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1961
EXPORT_SYMBOL_GPL(perf_event_disable);
1962

S
Stephane Eranian 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1998 1999 2000
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2001
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2002

2003
static int
2004
event_sched_in(struct perf_event *event,
2005
		 struct perf_cpu_context *cpuctx,
2006
		 struct perf_event_context *ctx)
2007
{
2008
	u64 tstamp = perf_event_time(event);
2009
	int ret = 0;
2010

2011 2012
	lockdep_assert_held(&ctx->lock);

2013
	if (event->state <= PERF_EVENT_STATE_OFF)
2014 2015
		return 0;

2016 2017 2018 2019 2020 2021 2022
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2034 2035 2036 2037 2038
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2039 2040
	perf_pmu_disable(event->pmu);

2041 2042
	perf_set_shadow_time(event, ctx, tstamp);

2043 2044
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2045
	if (event->pmu->add(event, PERF_EF_START)) {
2046 2047
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2048 2049
		ret = -EAGAIN;
		goto out;
2050 2051
	}

2052 2053
	event->tstamp_running += tstamp - event->tstamp_stopped;

2054
	if (!is_software_event(event))
2055
		cpuctx->active_oncpu++;
2056 2057
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2058 2059
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2060

2061
	if (event->attr.exclusive)
2062 2063
		cpuctx->exclusive = 1;

2064 2065 2066 2067
out:
	perf_pmu_enable(event->pmu);

	return ret;
2068 2069
}

2070
static int
2071
group_sched_in(struct perf_event *group_event,
2072
	       struct perf_cpu_context *cpuctx,
2073
	       struct perf_event_context *ctx)
2074
{
2075
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2076
	struct pmu *pmu = ctx->pmu;
2077 2078
	u64 now = ctx->time;
	bool simulate = false;
2079

2080
	if (group_event->state == PERF_EVENT_STATE_OFF)
2081 2082
		return 0;

2083
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2084

2085
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2086
		pmu->cancel_txn(pmu);
2087
		perf_mux_hrtimer_restart(cpuctx);
2088
		return -EAGAIN;
2089
	}
2090 2091 2092 2093

	/*
	 * Schedule in siblings as one group (if any):
	 */
2094
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2095
		if (event_sched_in(event, cpuctx, ctx)) {
2096
			partial_group = event;
2097 2098 2099 2100
			goto group_error;
		}
	}

2101
	if (!pmu->commit_txn(pmu))
2102
		return 0;
2103

2104 2105 2106 2107
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2118
	 */
2119 2120
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2121 2122 2123 2124 2125 2126 2127 2128
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2129
	}
2130
	event_sched_out(group_event, cpuctx, ctx);
2131

P
Peter Zijlstra 已提交
2132
	pmu->cancel_txn(pmu);
2133

2134
	perf_mux_hrtimer_restart(cpuctx);
2135

2136 2137 2138
	return -EAGAIN;
}

2139
/*
2140
 * Work out whether we can put this event group on the CPU now.
2141
 */
2142
static int group_can_go_on(struct perf_event *event,
2143 2144 2145 2146
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2147
	 * Groups consisting entirely of software events can always go on.
2148
	 */
2149
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2150 2151 2152
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2153
	 * events can go on.
2154 2155 2156 2157 2158
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2159
	 * events on the CPU, it can't go on.
2160
	 */
2161
	if (event->attr.exclusive && cpuctx->active_oncpu)
2162 2163 2164 2165 2166 2167 2168 2169
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2170 2171
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2172
{
2173 2174
	u64 tstamp = perf_event_time(event);

2175
	list_add_event(event, ctx);
2176
	perf_group_attach(event);
2177 2178 2179
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2180 2181
}

2182 2183 2184
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2185 2186 2187 2188 2189
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2215 2216
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2217
{
2218 2219 2220 2221 2222 2223
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2224 2225
}

T
Thomas Gleixner 已提交
2226
/*
2227
 * Cross CPU call to install and enable a performance event
2228
 *
2229 2230
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2231
 */
2232
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2233
{
2234 2235
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2236
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2237
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2238 2239
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2240

2241
	raw_spin_lock(&cpuctx->ctx.lock);
2242
	if (ctx->task) {
2243 2244
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2245 2246 2247 2248

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2249
			goto unlock;
2250
		}
2251

2252
		/*
2253 2254 2255
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2256
		 */
2257 2258 2259 2260 2261
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2262 2263
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2264
	}
2265

2266 2267 2268 2269 2270 2271 2272 2273
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2274
unlock:
2275
	perf_ctx_unlock(cpuctx, task_ctx);
2276

2277
	return ret;
T
Thomas Gleixner 已提交
2278 2279 2280
}

/*
2281 2282 2283
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2284 2285
 */
static void
2286 2287
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2288 2289
			int cpu)
{
2290
	struct task_struct *task = READ_ONCE(ctx->task);
2291

2292 2293
	lockdep_assert_held(&ctx->mutex);

2294 2295
	if (event->cpu != -1)
		event->cpu = cpu;
2296

2297 2298 2299 2300 2301 2302
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2314 2315 2316 2317
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2318
again:
2319
	/*
2320 2321
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2322
	 */
2323 2324 2325 2326 2327
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2328
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2329 2330 2331 2332 2333
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2334 2335 2336
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2337 2338
	raw_spin_unlock_irq(&ctx->lock);
	/*
2339 2340
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2341
	 */
2342
	goto again;
T
Thomas Gleixner 已提交
2343 2344
}

2345
/*
2346
 * Put a event into inactive state and update time fields.
2347 2348 2349 2350 2351 2352
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2353
static void __perf_event_mark_enabled(struct perf_event *event)
2354
{
2355
	struct perf_event *sub;
2356
	u64 tstamp = perf_event_time(event);
2357

2358
	event->state = PERF_EVENT_STATE_INACTIVE;
2359
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2360
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2361 2362
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2363
	}
2364 2365
}

2366
/*
2367
 * Cross CPU call to enable a performance event
2368
 */
2369 2370 2371 2372
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2373
{
2374
	struct perf_event *leader = event->group_leader;
2375
	struct perf_event_context *task_ctx;
2376

P
Peter Zijlstra 已提交
2377 2378
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2379
		return;
2380

2381 2382 2383
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2384
	__perf_event_mark_enabled(event);
2385

2386 2387 2388
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2389
	if (!event_filter_match(event)) {
2390
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2391
			perf_cgroup_defer_enabled(event);
2392
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2393
		return;
S
Stephane Eranian 已提交
2394
	}
2395

2396
	/*
2397
	 * If the event is in a group and isn't the group leader,
2398
	 * then don't put it on unless the group is on.
2399
	 */
2400 2401
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2402
		return;
2403
	}
2404

2405 2406 2407
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2408

2409
	ctx_resched(cpuctx, task_ctx);
2410 2411
}

2412
/*
2413
 * Enable a event.
2414
 *
2415 2416
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2417
 * remains valid.  This condition is satisfied when called through
2418 2419
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2420
 */
P
Peter Zijlstra 已提交
2421
static void _perf_event_enable(struct perf_event *event)
2422
{
2423
	struct perf_event_context *ctx = event->ctx;
2424

2425
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2426 2427
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2428
		raw_spin_unlock_irq(&ctx->lock);
2429 2430 2431 2432
		return;
	}

	/*
2433
	 * If the event is in error state, clear that first.
2434 2435 2436 2437
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2438
	 */
2439 2440
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2441
	raw_spin_unlock_irq(&ctx->lock);
2442

2443
	event_function_call(event, __perf_event_enable, NULL);
2444
}
P
Peter Zijlstra 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2457
EXPORT_SYMBOL_GPL(perf_event_enable);
2458

2459 2460 2461 2462 2463
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2464 2465
static int __perf_event_stop(void *info)
{
2466 2467
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2468

2469
	/* if it's already INACTIVE, do nothing */
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2495
		event->pmu->start(event, 0);
2496

2497 2498 2499
	return 0;
}

2500
static int perf_event_stop(struct perf_event *event, int restart)
2501 2502 2503
{
	struct stop_event_data sd = {
		.event		= event,
2504
		.restart	= restart,
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2565
static int _perf_event_refresh(struct perf_event *event, int refresh)
2566
{
2567
	/*
2568
	 * not supported on inherited events
2569
	 */
2570
	if (event->attr.inherit || !is_sampling_event(event))
2571 2572
		return -EINVAL;

2573
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2574
	_perf_event_enable(event);
2575 2576

	return 0;
2577
}
P
Peter Zijlstra 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2593
EXPORT_SYMBOL_GPL(perf_event_refresh);
2594

2595 2596 2597
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2598
{
2599
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2600
	struct perf_event *event;
2601

P
Peter Zijlstra 已提交
2602
	lockdep_assert_held(&ctx->lock);
2603

2604 2605 2606 2607 2608 2609 2610
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2611
		return;
2612 2613
	}

2614
	ctx->is_active &= ~event_type;
2615 2616 2617
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2618 2619 2620 2621 2622
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2623

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2634 2635 2636 2637 2638 2639
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2640 2641
	is_active ^= ctx->is_active; /* changed bits */

2642
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2643
		return;
2644

P
Peter Zijlstra 已提交
2645
	perf_pmu_disable(ctx->pmu);
2646
	if (is_active & EVENT_PINNED) {
2647 2648
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2649
	}
2650

2651
	if (is_active & EVENT_FLEXIBLE) {
2652
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2653
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2654
	}
P
Peter Zijlstra 已提交
2655
	perf_pmu_enable(ctx->pmu);
2656 2657
}

2658
/*
2659 2660 2661 2662 2663 2664
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2665
 */
2666 2667
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2668
{
2669 2670 2671
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2694 2695
}

2696 2697
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2698 2699 2700
{
	u64 value;

2701
	if (!event->attr.inherit_stat)
2702 2703 2704
		return;

	/*
2705
	 * Update the event value, we cannot use perf_event_read()
2706 2707
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2708
	 * we know the event must be on the current CPU, therefore we
2709 2710
	 * don't need to use it.
	 */
2711 2712
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2713 2714
		event->pmu->read(event);
		/* fall-through */
2715

2716 2717
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2718 2719 2720 2721 2722 2723 2724
		break;

	default:
		break;
	}

	/*
2725
	 * In order to keep per-task stats reliable we need to flip the event
2726 2727
	 * values when we flip the contexts.
	 */
2728 2729 2730
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2731

2732 2733
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2734

2735
	/*
2736
	 * Since we swizzled the values, update the user visible data too.
2737
	 */
2738 2739
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2740 2741
}

2742 2743
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2744
{
2745
	struct perf_event *event, *next_event;
2746 2747 2748 2749

	if (!ctx->nr_stat)
		return;

2750 2751
	update_context_time(ctx);

2752 2753
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2754

2755 2756
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2757

2758 2759
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2760

2761
		__perf_event_sync_stat(event, next_event);
2762

2763 2764
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2765 2766 2767
	}
}

2768 2769
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2770
{
P
Peter Zijlstra 已提交
2771
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2772
	struct perf_event_context *next_ctx;
2773
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2774
	struct perf_cpu_context *cpuctx;
2775
	int do_switch = 1;
T
Thomas Gleixner 已提交
2776

P
Peter Zijlstra 已提交
2777 2778
	if (likely(!ctx))
		return;
2779

P
Peter Zijlstra 已提交
2780 2781
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2782 2783
		return;

2784
	rcu_read_lock();
P
Peter Zijlstra 已提交
2785
	next_ctx = next->perf_event_ctxp[ctxn];
2786 2787 2788 2789 2790 2791 2792
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2793
	if (!parent && !next_parent)
2794 2795 2796
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2797 2798 2799 2800 2801 2802 2803 2804 2805
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2806 2807
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2808
		if (context_equiv(ctx, next_ctx)) {
2809 2810
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2811 2812 2813

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2824
			do_switch = 0;
2825

2826
			perf_event_sync_stat(ctx, next_ctx);
2827
		}
2828 2829
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2830
	}
2831
unlock:
2832
	rcu_read_unlock();
2833

2834
	if (do_switch) {
2835
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2836
		task_ctx_sched_out(cpuctx, ctx);
2837
		raw_spin_unlock(&ctx->lock);
2838
	}
T
Thomas Gleixner 已提交
2839 2840
}

2841 2842
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2843 2844
void perf_sched_cb_dec(struct pmu *pmu)
{
2845 2846
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2847
	this_cpu_dec(perf_sched_cb_usages);
2848 2849 2850

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2851 2852
}

2853

2854 2855
void perf_sched_cb_inc(struct pmu *pmu)
{
2856 2857 2858 2859 2860
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2861 2862 2863 2864 2865 2866
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2867 2868 2869 2870
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2882 2883
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2884

2885 2886
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
2887

2888 2889
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
2890

2891
		pmu->sched_task(cpuctx->task_ctx, sched_in);
2892

2893 2894
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2895 2896 2897
	}
}

2898 2899 2900
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2915 2916
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2917 2918 2919
{
	int ctxn;

2920 2921 2922
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2923 2924 2925
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2926 2927
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2928 2929 2930 2931 2932 2933

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2934
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2935
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2936 2937
}

2938 2939 2940 2941 2942 2943 2944
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2945 2946
}

2947
static void
2948
ctx_pinned_sched_in(struct perf_event_context *ctx,
2949
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2950
{
2951
	struct perf_event *event;
T
Thomas Gleixner 已提交
2952

2953 2954
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2955
			continue;
2956
		if (!event_filter_match(event))
2957 2958
			continue;

S
Stephane Eranian 已提交
2959 2960 2961 2962
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2963
		if (group_can_go_on(event, cpuctx, 1))
2964
			group_sched_in(event, cpuctx, ctx);
2965 2966 2967 2968 2969

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2970 2971 2972
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2973
		}
2974
	}
2975 2976 2977 2978
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2979
		      struct perf_cpu_context *cpuctx)
2980 2981 2982
{
	struct perf_event *event;
	int can_add_hw = 1;
2983

2984 2985 2986
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2987
			continue;
2988 2989
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2990
		 * of events:
2991
		 */
2992
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2993 2994
			continue;

S
Stephane Eranian 已提交
2995 2996 2997 2998
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2999
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3000
			if (group_sched_in(event, cpuctx, ctx))
3001
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3002
		}
T
Thomas Gleixner 已提交
3003
	}
3004 3005 3006 3007 3008
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3009 3010
	     enum event_type_t event_type,
	     struct task_struct *task)
3011
{
3012
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3013 3014 3015
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3016

3017
	if (likely(!ctx->nr_events))
3018
		return;
3019

3020
	ctx->is_active |= (event_type | EVENT_TIME);
3021 3022 3023 3024 3025 3026 3027
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3028 3029 3030 3031 3032 3033 3034 3035 3036
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3037 3038 3039 3040
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3041
	if (is_active & EVENT_PINNED)
3042
		ctx_pinned_sched_in(ctx, cpuctx);
3043 3044

	/* Then walk through the lower prio flexible groups */
3045
	if (is_active & EVENT_FLEXIBLE)
3046
		ctx_flexible_sched_in(ctx, cpuctx);
3047 3048
}

3049
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3050 3051
			     enum event_type_t event_type,
			     struct task_struct *task)
3052 3053 3054
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3055
	ctx_sched_in(ctx, cpuctx, event_type, task);
3056 3057
}

S
Stephane Eranian 已提交
3058 3059
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3060
{
P
Peter Zijlstra 已提交
3061
	struct perf_cpu_context *cpuctx;
3062

P
Peter Zijlstra 已提交
3063
	cpuctx = __get_cpu_context(ctx);
3064 3065 3066
	if (cpuctx->task_ctx == ctx)
		return;

3067
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3068
	perf_pmu_disable(ctx->pmu);
3069 3070 3071 3072 3073 3074
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3075
	perf_event_sched_in(cpuctx, ctx, task);
3076 3077
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3078 3079
}

P
Peter Zijlstra 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3091 3092
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3093 3094 3095 3096
{
	struct perf_event_context *ctx;
	int ctxn;

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3107 3108 3109 3110 3111
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3112
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3113
	}
3114

3115 3116 3117
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3118 3119
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3120 3121
}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3149
#define REDUCE_FLS(a, b)		\
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3189 3190 3191
	if (!divisor)
		return dividend;

3192 3193 3194
	return div64_u64(dividend, divisor);
}

3195 3196 3197
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3198
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3199
{
3200
	struct hw_perf_event *hwc = &event->hw;
3201
	s64 period, sample_period;
3202 3203
	s64 delta;

3204
	period = perf_calculate_period(event, nsec, count);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3215

3216
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3217 3218 3219
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3220
		local64_set(&hwc->period_left, 0);
3221 3222 3223

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3224
	}
3225 3226
}

3227 3228 3229 3230 3231 3232 3233
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3234
{
3235 3236
	struct perf_event *event;
	struct hw_perf_event *hwc;
3237
	u64 now, period = TICK_NSEC;
3238
	s64 delta;
3239

3240 3241 3242 3243 3244 3245
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3246 3247
		return;

3248
	raw_spin_lock(&ctx->lock);
3249
	perf_pmu_disable(ctx->pmu);
3250

3251
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3252
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3253 3254
			continue;

3255
		if (!event_filter_match(event))
3256 3257
			continue;

3258 3259
		perf_pmu_disable(event->pmu);

3260
		hwc = &event->hw;
3261

3262
		if (hwc->interrupts == MAX_INTERRUPTS) {
3263
			hwc->interrupts = 0;
3264
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3265
			event->pmu->start(event, 0);
3266 3267
		}

3268
		if (!event->attr.freq || !event->attr.sample_freq)
3269
			goto next;
3270

3271 3272 3273 3274 3275
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3276
		now = local64_read(&event->count);
3277 3278
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3279

3280 3281 3282
		/*
		 * restart the event
		 * reload only if value has changed
3283 3284 3285
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3286
		 */
3287
		if (delta > 0)
3288
			perf_adjust_period(event, period, delta, false);
3289 3290

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3291 3292
	next:
		perf_pmu_enable(event->pmu);
3293
	}
3294

3295
	perf_pmu_enable(ctx->pmu);
3296
	raw_spin_unlock(&ctx->lock);
3297 3298
}

3299
/*
3300
 * Round-robin a context's events:
3301
 */
3302
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3303
{
3304 3305 3306 3307 3308 3309
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3310 3311
}

3312
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3313
{
P
Peter Zijlstra 已提交
3314
	struct perf_event_context *ctx = NULL;
3315
	int rotate = 0;
3316

3317 3318 3319 3320
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3321

P
Peter Zijlstra 已提交
3322
	ctx = cpuctx->task_ctx;
3323 3324 3325 3326
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3327

3328
	if (!rotate)
3329 3330
		goto done;

3331
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3332
	perf_pmu_disable(cpuctx->ctx.pmu);
3333

3334 3335 3336
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3337

3338 3339 3340
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3341

3342
	perf_event_sched_in(cpuctx, ctx, current);
3343

3344 3345
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3346
done:
3347 3348

	return rotate;
3349 3350 3351 3352
}

void perf_event_task_tick(void)
{
3353 3354
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3355
	int throttled;
3356

3357 3358
	WARN_ON(!irqs_disabled());

3359 3360
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3361
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3362

3363
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3364
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3365 3366
}

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3377
	__perf_event_mark_enabled(event);
3378 3379 3380 3381

	return 1;
}

3382
/*
3383
 * Enable all of a task's events that have been marked enable-on-exec.
3384 3385
 * This expects task == current.
 */
3386
static void perf_event_enable_on_exec(int ctxn)
3387
{
3388
	struct perf_event_context *ctx, *clone_ctx = NULL;
3389
	struct perf_cpu_context *cpuctx;
3390
	struct perf_event *event;
3391 3392 3393 3394
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3395
	ctx = current->perf_event_ctxp[ctxn];
3396
	if (!ctx || !ctx->nr_events)
3397 3398
		goto out;

3399 3400
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3401
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3402 3403
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3404 3405

	/*
3406
	 * Unclone and reschedule this context if we enabled any event.
3407
	 */
3408
	if (enabled) {
3409
		clone_ctx = unclone_ctx(ctx);
3410 3411 3412
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3413

P
Peter Zijlstra 已提交
3414
out:
3415
	local_irq_restore(flags);
3416 3417 3418

	if (clone_ctx)
		put_ctx(clone_ctx);
3419 3420
}

3421 3422 3423
struct perf_read_data {
	struct perf_event *event;
	bool group;
3424
	int ret;
3425 3426
};

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
static int find_cpu_to_read(struct perf_event *event, int local_cpu)
{
	int event_cpu = event->oncpu;
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
		event_pkg =  topology_physical_package_id(event_cpu);
		local_pkg =  topology_physical_package_id(local_cpu);

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3443
/*
3444
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3445
 */
3446
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3447
{
3448 3449
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3450
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3451
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3452
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3453

3454 3455 3456 3457
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3458 3459
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3460 3461 3462 3463
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3464
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3465
	if (ctx->is_active) {
3466
		update_context_time(ctx);
S
Stephane Eranian 已提交
3467 3468
		update_cgrp_time_from_event(event);
	}
3469

3470
	update_event_times(event);
3471 3472
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3473

3474 3475 3476
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3477
		goto unlock;
3478 3479 3480 3481 3482
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3483 3484 3485

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3486 3487 3488 3489 3490
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3491
			sub->pmu->read(sub);
3492
		}
3493
	}
3494 3495

	data->ret = pmu->commit_txn(pmu);
3496 3497

unlock:
3498
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3499 3500
}

P
Peter Zijlstra 已提交
3501 3502
static inline u64 perf_event_count(struct perf_event *event)
{
3503 3504 3505 3506
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3507 3508
}

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3562
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3563
{
3564
	int ret = 0, cpu_to_read, local_cpu;
3565

T
Thomas Gleixner 已提交
3566
	/*
3567 3568
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3569
	 */
3570
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3571 3572 3573
		struct perf_read_data data = {
			.event = event,
			.group = group,
3574
			.ret = 0,
3575
		};
3576 3577 3578 3579 3580

		local_cpu = get_cpu();
		cpu_to_read = find_cpu_to_read(event, local_cpu);
		put_cpu();

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
		 * If event->oncpu isn't a valid CPU it means the event got
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3591
		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3592
		ret = data.ret;
3593
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3594 3595 3596
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3597
		raw_spin_lock_irqsave(&ctx->lock, flags);
3598 3599 3600 3601 3602
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3603
		if (ctx->is_active) {
3604
			update_context_time(ctx);
S
Stephane Eranian 已提交
3605 3606
			update_cgrp_time_from_event(event);
		}
3607 3608 3609 3610
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3611
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3612
	}
3613 3614

	return ret;
T
Thomas Gleixner 已提交
3615 3616
}

3617
/*
3618
 * Initialize the perf_event context in a task_struct:
3619
 */
3620
static void __perf_event_init_context(struct perf_event_context *ctx)
3621
{
3622
	raw_spin_lock_init(&ctx->lock);
3623
	mutex_init(&ctx->mutex);
3624
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3625 3626
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3627 3628
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3644
	}
3645 3646 3647
	ctx->pmu = pmu;

	return ctx;
3648 3649
}

3650 3651 3652 3653
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3654 3655

	rcu_read_lock();
3656
	if (!vpid)
T
Thomas Gleixner 已提交
3657 3658
		task = current;
	else
3659
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3660 3661 3662 3663 3664 3665 3666
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3667 3668 3669
	return task;
}

3670 3671 3672
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3673
static struct perf_event_context *
3674 3675
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3676
{
3677
	struct perf_event_context *ctx, *clone_ctx = NULL;
3678
	struct perf_cpu_context *cpuctx;
3679
	void *task_ctx_data = NULL;
3680
	unsigned long flags;
P
Peter Zijlstra 已提交
3681
	int ctxn, err;
3682
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3683

3684
	if (!task) {
3685
		/* Must be root to operate on a CPU event: */
3686
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3687 3688 3689
			return ERR_PTR(-EACCES);

		/*
3690
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3691 3692 3693
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3694
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3695 3696
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3697
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3698
		ctx = &cpuctx->ctx;
3699
		get_ctx(ctx);
3700
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3701 3702 3703 3704

		return ctx;
	}

P
Peter Zijlstra 已提交
3705 3706 3707 3708 3709
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3710 3711 3712 3713 3714 3715 3716 3717
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3718
retry:
P
Peter Zijlstra 已提交
3719
	ctx = perf_lock_task_context(task, ctxn, &flags);
3720
	if (ctx) {
3721
		clone_ctx = unclone_ctx(ctx);
3722
		++ctx->pin_count;
3723 3724 3725 3726 3727

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3728
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3729 3730 3731

		if (clone_ctx)
			put_ctx(clone_ctx);
3732
	} else {
3733
		ctx = alloc_perf_context(pmu, task);
3734 3735 3736
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3737

3738 3739 3740 3741 3742
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3753
		else {
3754
			get_ctx(ctx);
3755
			++ctx->pin_count;
3756
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3757
		}
3758 3759 3760
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3761
			put_ctx(ctx);
3762 3763 3764 3765

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3766 3767 3768
		}
	}

3769
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3770
	return ctx;
3771

P
Peter Zijlstra 已提交
3772
errout:
3773
	kfree(task_ctx_data);
3774
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3775 3776
}

L
Li Zefan 已提交
3777
static void perf_event_free_filter(struct perf_event *event);
3778
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3779

3780
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3781
{
3782
	struct perf_event *event;
P
Peter Zijlstra 已提交
3783

3784 3785 3786
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3787
	perf_event_free_filter(event);
3788
	kfree(event);
P
Peter Zijlstra 已提交
3789 3790
}

3791 3792
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3793

3794 3795 3796 3797 3798 3799 3800 3801 3802
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3803
static bool is_sb_event(struct perf_event *event)
3804
{
3805 3806
	struct perf_event_attr *attr = &event->attr;

3807
	if (event->parent)
3808
		return false;
3809 3810

	if (event->attach_state & PERF_ATTACH_TASK)
3811
		return false;
3812

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3825 3826
}

3827
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3828
{
3829 3830 3831 3832 3833 3834
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3835

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3858 3859
static void unaccount_event(struct perf_event *event)
{
3860 3861
	bool dec = false;

3862 3863 3864 3865
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3866
		dec = true;
3867 3868 3869 3870 3871 3872
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3873
	if (event->attr.freq)
3874
		unaccount_freq_event();
3875
	if (event->attr.context_switch) {
3876
		dec = true;
3877 3878
		atomic_dec(&nr_switch_events);
	}
3879
	if (is_cgroup_event(event))
3880
		dec = true;
3881
	if (has_branch_stack(event))
3882 3883
		dec = true;

3884 3885 3886 3887
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3888 3889

	unaccount_event_cpu(event, event->cpu);
3890 3891

	unaccount_pmu_sb_event(event);
3892
}
3893

3894 3895 3896 3897 3898 3899 3900 3901
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3912
 * _free_event()), the latter -- before the first perf_install_in_context().
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
3961
	if ((e1->pmu == e2->pmu) &&
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3987 3988 3989
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
3990
static void _free_event(struct perf_event *event)
3991
{
3992
	irq_work_sync(&event->pending);
3993

3994
	unaccount_event(event);
3995

3996
	if (event->rb) {
3997 3998 3999 4000 4001 4002 4003
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4004
		ring_buffer_attach(event, NULL);
4005
		mutex_unlock(&event->mmap_mutex);
4006 4007
	}

S
Stephane Eranian 已提交
4008 4009 4010
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4011 4012 4013 4014 4015 4016
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4017 4018
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4019 4020 4021 4022 4023 4024 4025

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4026 4027
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4028 4029

	call_rcu(&event->rcu_head, free_event_rcu);
4030 4031
}

P
Peter Zijlstra 已提交
4032 4033 4034 4035 4036
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4037
{
P
Peter Zijlstra 已提交
4038 4039 4040 4041 4042 4043
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4044

P
Peter Zijlstra 已提交
4045
	_free_event(event);
T
Thomas Gleixner 已提交
4046 4047
}

4048
/*
4049
 * Remove user event from the owner task.
4050
 */
4051
static void perf_remove_from_owner(struct perf_event *event)
4052
{
P
Peter Zijlstra 已提交
4053
	struct task_struct *owner;
4054

P
Peter Zijlstra 已提交
4055 4056
	rcu_read_lock();
	/*
4057 4058 4059
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4060 4061
	 * owner->perf_event_mutex.
	 */
4062
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4084 4085 4086 4087 4088 4089
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4090
		if (event->owner) {
P
Peter Zijlstra 已提交
4091
			list_del_init(&event->owner_entry);
4092 4093
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4094 4095 4096
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4097 4098 4099 4100 4101 4102 4103
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4114
	struct perf_event_context *ctx = event->ctx;
4115 4116
	struct perf_event *child, *tmp;

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4127 4128
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4129

4130
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4131
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4132
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4133

P
Peter Zijlstra 已提交
4134
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4135
	/*
P
Peter Zijlstra 已提交
4136 4137
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
4138
	 *
P
Peter Zijlstra 已提交
4139 4140 4141
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4142
	 *
4143 4144
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4145
	 */
P
Peter Zijlstra 已提交
4146 4147 4148 4149
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4150

4151 4152 4153
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4154

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4204 4205
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4206 4207 4208 4209
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4210 4211 4212
/*
 * Called when the last reference to the file is gone.
 */
4213 4214
static int perf_release(struct inode *inode, struct file *file)
{
4215
	perf_event_release_kernel(file->private_data);
4216
	return 0;
4217 4218
}

4219
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4220
{
4221
	struct perf_event *child;
4222 4223
	u64 total = 0;

4224 4225 4226
	*enabled = 0;
	*running = 0;

4227
	mutex_lock(&event->child_mutex);
4228

4229
	(void)perf_event_read(event, false);
4230 4231
	total += perf_event_count(event);

4232 4233 4234 4235 4236 4237
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4238
		(void)perf_event_read(child, false);
4239
		total += perf_event_count(child);
4240 4241 4242
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4243
	mutex_unlock(&event->child_mutex);
4244 4245 4246

	return total;
}
4247
EXPORT_SYMBOL_GPL(perf_event_read_value);
4248

4249
static int __perf_read_group_add(struct perf_event *leader,
4250
					u64 read_format, u64 *values)
4251
{
4252 4253
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4254
	int ret;
P
Peter Zijlstra 已提交
4255

4256 4257 4258
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4259

4260 4261 4262 4263 4264 4265 4266 4267 4268
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4269

4270 4271 4272 4273 4274 4275 4276 4277 4278
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4279 4280
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4281

4282 4283 4284 4285 4286
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4287 4288

	return 0;
4289
}
4290

4291 4292 4293 4294 4295
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4296
	int ret;
4297
	u64 *values;
4298

4299
	lockdep_assert_held(&ctx->mutex);
4300

4301 4302 4303
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4304

4305 4306 4307 4308 4309 4310 4311
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4312

4313 4314 4315 4316 4317 4318 4319 4320 4321
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4322

4323
	mutex_unlock(&leader->child_mutex);
4324

4325
	ret = event->read_size;
4326 4327
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4328
	goto out;
4329

4330 4331 4332
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4333
	kfree(values);
4334
	return ret;
4335 4336
}

4337
static int perf_read_one(struct perf_event *event,
4338 4339
				 u64 read_format, char __user *buf)
{
4340
	u64 enabled, running;
4341 4342 4343
	u64 values[4];
	int n = 0;

4344 4345 4346 4347 4348
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4349
	if (read_format & PERF_FORMAT_ID)
4350
		values[n++] = primary_event_id(event);
4351 4352 4353 4354 4355 4356 4357

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4358 4359 4360 4361
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4362
	if (event->state > PERF_EVENT_STATE_EXIT)
4363 4364 4365 4366 4367 4368 4369 4370
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4371
/*
4372
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4373 4374
 */
static ssize_t
4375
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4376
{
4377
	u64 read_format = event->attr.read_format;
4378
	int ret;
T
Thomas Gleixner 已提交
4379

4380
	/*
4381
	 * Return end-of-file for a read on a event that is in
4382 4383 4384
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4385
	if (event->state == PERF_EVENT_STATE_ERROR)
4386 4387
		return 0;

4388
	if (count < event->read_size)
4389 4390
		return -ENOSPC;

4391
	WARN_ON_ONCE(event->ctx->parent_ctx);
4392
	if (read_format & PERF_FORMAT_GROUP)
4393
		ret = perf_read_group(event, read_format, buf);
4394
	else
4395
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4396

4397
	return ret;
T
Thomas Gleixner 已提交
4398 4399 4400 4401 4402
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4403
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4404 4405
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4406

P
Peter Zijlstra 已提交
4407
	ctx = perf_event_ctx_lock(event);
4408
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4409 4410 4411
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4412 4413 4414 4415
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4416
	struct perf_event *event = file->private_data;
4417
	struct ring_buffer *rb;
4418
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4419

4420
	poll_wait(file, &event->waitq, wait);
4421

4422
	if (is_event_hup(event))
4423
		return events;
P
Peter Zijlstra 已提交
4424

4425
	/*
4426 4427
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4428 4429
	 */
	mutex_lock(&event->mmap_mutex);
4430 4431
	rb = event->rb;
	if (rb)
4432
		events = atomic_xchg(&rb->poll, 0);
4433
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4434 4435 4436
	return events;
}

P
Peter Zijlstra 已提交
4437
static void _perf_event_reset(struct perf_event *event)
4438
{
4439
	(void)perf_event_read(event, false);
4440
	local64_set(&event->count, 0);
4441
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4442 4443
}

4444
/*
4445 4446
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4447
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4448
 * task existence requirements of perf_event_enable/disable.
4449
 */
4450 4451
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4452
{
4453
	struct perf_event *child;
P
Peter Zijlstra 已提交
4454

4455
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4456

4457 4458 4459
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4460
		func(child);
4461
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4462 4463
}

4464 4465
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4466
{
4467 4468
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4469

P
Peter Zijlstra 已提交
4470 4471
	lockdep_assert_held(&ctx->mutex);

4472
	event = event->group_leader;
4473

4474 4475
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4476
		perf_event_for_each_child(sibling, func);
4477 4478
}

4479 4480 4481 4482
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4483
{
4484
	u64 value = *((u64 *)info);
4485
	bool active;
4486

4487 4488
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4489
	} else {
4490 4491
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4492
	}
4493 4494 4495 4496

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4497 4498 4499 4500 4501 4502 4503 4504
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4505 4506 4507 4508 4509 4510 4511 4512 4513
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4532
	event_function_call(event, __perf_event_period, &value);
4533

4534
	return 0;
4535 4536
}

4537 4538
static const struct file_operations perf_fops;

4539
static inline int perf_fget_light(int fd, struct fd *p)
4540
{
4541 4542 4543
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4544

4545 4546 4547
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4548
	}
4549 4550
	*p = f;
	return 0;
4551 4552 4553 4554
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4555
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4556
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4557

P
Peter Zijlstra 已提交
4558
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4559
{
4560
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4561
	u32 flags = arg;
4562 4563

	switch (cmd) {
4564
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4565
		func = _perf_event_enable;
4566
		break;
4567
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4568
		func = _perf_event_disable;
4569
		break;
4570
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4571
		func = _perf_event_reset;
4572
		break;
P
Peter Zijlstra 已提交
4573

4574
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4575
		return _perf_event_refresh(event, arg);
4576

4577 4578
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4579

4580 4581 4582 4583 4584 4585 4586 4587 4588
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4589
	case PERF_EVENT_IOC_SET_OUTPUT:
4590 4591 4592
	{
		int ret;
		if (arg != -1) {
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4603 4604 4605
		}
		return ret;
	}
4606

L
Li Zefan 已提交
4607 4608 4609
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4610 4611 4612
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4626
	default:
P
Peter Zijlstra 已提交
4627
		return -ENOTTY;
4628
	}
P
Peter Zijlstra 已提交
4629 4630

	if (flags & PERF_IOC_FLAG_GROUP)
4631
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4632
	else
4633
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4634 4635

	return 0;
4636 4637
}

P
Peter Zijlstra 已提交
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4671
int perf_event_task_enable(void)
4672
{
P
Peter Zijlstra 已提交
4673
	struct perf_event_context *ctx;
4674
	struct perf_event *event;
4675

4676
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4677 4678 4679 4680 4681
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4682
	mutex_unlock(&current->perf_event_mutex);
4683 4684 4685 4686

	return 0;
}

4687
int perf_event_task_disable(void)
4688
{
P
Peter Zijlstra 已提交
4689
	struct perf_event_context *ctx;
4690
	struct perf_event *event;
4691

4692
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4693 4694 4695 4696 4697
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4698
	mutex_unlock(&current->perf_event_mutex);
4699 4700 4701 4702

	return 0;
}

4703
static int perf_event_index(struct perf_event *event)
4704
{
P
Peter Zijlstra 已提交
4705 4706 4707
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4708
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4709 4710
		return 0;

4711
	return event->pmu->event_idx(event);
4712 4713
}

4714
static void calc_timer_values(struct perf_event *event,
4715
				u64 *now,
4716 4717
				u64 *enabled,
				u64 *running)
4718
{
4719
	u64 ctx_time;
4720

4721 4722
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4723 4724 4725 4726
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4742 4743
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4744 4745 4746 4747 4748

unlock:
	rcu_read_unlock();
}

4749 4750
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4751 4752 4753
{
}

4754 4755 4756 4757 4758
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4759
void perf_event_update_userpage(struct perf_event *event)
4760
{
4761
	struct perf_event_mmap_page *userpg;
4762
	struct ring_buffer *rb;
4763
	u64 enabled, running, now;
4764 4765

	rcu_read_lock();
4766 4767 4768 4769
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4770 4771 4772 4773 4774 4775 4776 4777 4778
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4779
	calc_timer_values(event, &now, &enabled, &running);
4780

4781
	userpg = rb->user_page;
4782 4783 4784 4785 4786
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4787
	++userpg->lock;
4788
	barrier();
4789
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4790
	userpg->offset = perf_event_count(event);
4791
	if (userpg->index)
4792
		userpg->offset -= local64_read(&event->hw.prev_count);
4793

4794
	userpg->time_enabled = enabled +
4795
			atomic64_read(&event->child_total_time_enabled);
4796

4797
	userpg->time_running = running +
4798
			atomic64_read(&event->child_total_time_running);
4799

4800
	arch_perf_update_userpage(event, userpg, now);
4801

4802
	barrier();
4803
	++userpg->lock;
4804
	preempt_enable();
4805
unlock:
4806
	rcu_read_unlock();
4807 4808
}

4809 4810 4811
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4812
	struct ring_buffer *rb;
4813 4814 4815 4816 4817 4818 4819 4820 4821
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4822 4823
	rb = rcu_dereference(event->rb);
	if (!rb)
4824 4825 4826 4827 4828
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4829
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4844 4845 4846
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4847
	struct ring_buffer *old_rb = NULL;
4848 4849
	unsigned long flags;

4850 4851 4852 4853 4854 4855
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4856

4857 4858 4859 4860
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4861

4862 4863
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4864
	}
4865

4866
	if (rb) {
4867 4868 4869 4870 4871
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4872 4873 4874 4875 4876
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4901 4902 4903 4904 4905 4906 4907 4908
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4909 4910 4911 4912
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4913 4914 4915
	rcu_read_unlock();
}

4916
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4917
{
4918
	struct ring_buffer *rb;
4919

4920
	rcu_read_lock();
4921 4922 4923 4924
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4925 4926 4927
	}
	rcu_read_unlock();

4928
	return rb;
4929 4930
}

4931
void ring_buffer_put(struct ring_buffer *rb)
4932
{
4933
	if (!atomic_dec_and_test(&rb->refcount))
4934
		return;
4935

4936
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4937

4938
	call_rcu(&rb->rcu_head, rb_free_rcu);
4939 4940 4941 4942
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4943
	struct perf_event *event = vma->vm_file->private_data;
4944

4945
	atomic_inc(&event->mmap_count);
4946
	atomic_inc(&event->rb->mmap_count);
4947

4948 4949 4950
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4951 4952
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4953 4954
}

4955 4956
static void perf_pmu_output_stop(struct perf_event *event);

4957 4958 4959 4960 4961 4962 4963 4964
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4965 4966
static void perf_mmap_close(struct vm_area_struct *vma)
{
4967
	struct perf_event *event = vma->vm_file->private_data;
4968

4969
	struct ring_buffer *rb = ring_buffer_get(event);
4970 4971 4972
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4973

4974 4975 4976
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4977 4978 4979 4980 4981 4982 4983
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4984 4985 4986 4987 4988 4989 4990 4991 4992
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
4993 4994 4995
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

4996
		/* this has to be the last one */
4997
		rb_free_aux(rb);
4998 4999
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5000 5001 5002
		mutex_unlock(&event->mmap_mutex);
	}

5003 5004 5005
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5006
		goto out_put;
5007

5008
	ring_buffer_attach(event, NULL);
5009 5010 5011
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5012 5013
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5014

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5031

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5043 5044 5045
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5046
		mutex_unlock(&event->mmap_mutex);
5047
		put_event(event);
5048

5049 5050 5051 5052 5053
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5054
	}
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5070
out_put:
5071
	ring_buffer_put(rb); /* could be last */
5072 5073
}

5074
static const struct vm_operations_struct perf_mmap_vmops = {
5075
	.open		= perf_mmap_open,
5076
	.close		= perf_mmap_close, /* non mergable */
5077 5078
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5079 5080 5081 5082
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5083
	struct perf_event *event = file->private_data;
5084
	unsigned long user_locked, user_lock_limit;
5085
	struct user_struct *user = current_user();
5086
	unsigned long locked, lock_limit;
5087
	struct ring_buffer *rb = NULL;
5088 5089
	unsigned long vma_size;
	unsigned long nr_pages;
5090
	long user_extra = 0, extra = 0;
5091
	int ret = 0, flags = 0;
5092

5093 5094 5095
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5096
	 * same rb.
5097 5098 5099 5100
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5101
	if (!(vma->vm_flags & VM_SHARED))
5102
		return -EINVAL;
5103 5104

	vma_size = vma->vm_end - vma->vm_start;
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5165

5166
	/*
5167
	 * If we have rb pages ensure they're a power-of-two number, so we
5168 5169
	 * can do bitmasks instead of modulo.
	 */
5170
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5171 5172
		return -EINVAL;

5173
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5174 5175
		return -EINVAL;

5176
	WARN_ON_ONCE(event->ctx->parent_ctx);
5177
again:
5178
	mutex_lock(&event->mmap_mutex);
5179
	if (event->rb) {
5180
		if (event->rb->nr_pages != nr_pages) {
5181
			ret = -EINVAL;
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5195 5196 5197
		goto unlock;
	}

5198
	user_extra = nr_pages + 1;
5199 5200

accounting:
5201
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5202 5203 5204 5205 5206 5207

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5208
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5209

5210 5211
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5212

5213
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5214
	lock_limit >>= PAGE_SHIFT;
5215
	locked = vma->vm_mm->pinned_vm + extra;
5216

5217 5218
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5219 5220 5221
		ret = -EPERM;
		goto unlock;
	}
5222

5223
	WARN_ON(!rb && event->rb);
5224

5225
	if (vma->vm_flags & VM_WRITE)
5226
		flags |= RING_BUFFER_WRITABLE;
5227

5228
	if (!rb) {
5229 5230 5231
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5232

5233 5234 5235 5236
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5237

5238 5239 5240
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5241

5242
		ring_buffer_attach(event, rb);
5243

5244 5245 5246
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5247 5248
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5249 5250 5251
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5252

5253
unlock:
5254 5255 5256 5257
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5258
		atomic_inc(&event->mmap_count);
5259 5260 5261 5262
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5263
	mutex_unlock(&event->mmap_mutex);
5264

5265 5266 5267 5268
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5269
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5270
	vma->vm_ops = &perf_mmap_vmops;
5271

5272 5273 5274
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5275
	return ret;
5276 5277
}

P
Peter Zijlstra 已提交
5278 5279
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5280
	struct inode *inode = file_inode(filp);
5281
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5282 5283
	int retval;

A
Al Viro 已提交
5284
	inode_lock(inode);
5285
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5286
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5287 5288 5289 5290 5291 5292 5293

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5294
static const struct file_operations perf_fops = {
5295
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5296 5297 5298
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5299
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5300
	.compat_ioctl		= perf_compat_ioctl,
5301
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5302
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5303 5304
};

5305
/*
5306
 * Perf event wakeup
5307 5308 5309 5310 5311
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5312 5313 5314 5315 5316 5317 5318 5319
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5320
void perf_event_wakeup(struct perf_event *event)
5321
{
5322
	ring_buffer_wakeup(event);
5323

5324
	if (event->pending_kill) {
5325
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5326
		event->pending_kill = 0;
5327
	}
5328 5329
}

5330
static void perf_pending_event(struct irq_work *entry)
5331
{
5332 5333
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5334 5335 5336 5337 5338 5339 5340
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5341

5342 5343
	if (event->pending_disable) {
		event->pending_disable = 0;
5344
		perf_event_disable_local(event);
5345 5346
	}

5347 5348 5349
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5350
	}
5351 5352 5353

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5354 5355
}

5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5377 5378 5379 5380 5381
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5382
	DECLARE_BITMAP(_mask, 64);
5383

5384 5385
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5386 5387 5388 5389 5390 5391 5392
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5393
static void perf_sample_regs_user(struct perf_regs *regs_user,
5394 5395
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5396
{
5397 5398
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5399
		regs_user->regs = regs;
5400 5401
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5402 5403 5404
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5405 5406 5407
	}
}

5408 5409 5410 5411 5412 5413 5414 5415
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5511 5512 5513
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5527
		data->time = perf_event_clock(event);
5528

5529
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5541 5542 5543
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5568 5569 5570

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5571 5572
}

5573 5574 5575
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5576 5577 5578 5579 5580
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5581
static void perf_output_read_one(struct perf_output_handle *handle,
5582 5583
				 struct perf_event *event,
				 u64 enabled, u64 running)
5584
{
5585
	u64 read_format = event->attr.read_format;
5586 5587 5588
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5589
	values[n++] = perf_event_count(event);
5590
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5591
		values[n++] = enabled +
5592
			atomic64_read(&event->child_total_time_enabled);
5593 5594
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5595
		values[n++] = running +
5596
			atomic64_read(&event->child_total_time_running);
5597 5598
	}
	if (read_format & PERF_FORMAT_ID)
5599
		values[n++] = primary_event_id(event);
5600

5601
	__output_copy(handle, values, n * sizeof(u64));
5602 5603 5604
}

/*
5605
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5606 5607
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5608 5609
			    struct perf_event *event,
			    u64 enabled, u64 running)
5610
{
5611 5612
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5613 5614 5615 5616 5617 5618
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5619
		values[n++] = enabled;
5620 5621

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5622
		values[n++] = running;
5623

5624
	if (leader != event)
5625 5626
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5627
	values[n++] = perf_event_count(leader);
5628
	if (read_format & PERF_FORMAT_ID)
5629
		values[n++] = primary_event_id(leader);
5630

5631
	__output_copy(handle, values, n * sizeof(u64));
5632

5633
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5634 5635
		n = 0;

5636 5637
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5638 5639
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5640
		values[n++] = perf_event_count(sub);
5641
		if (read_format & PERF_FORMAT_ID)
5642
			values[n++] = primary_event_id(sub);
5643

5644
		__output_copy(handle, values, n * sizeof(u64));
5645 5646 5647
	}
}

5648 5649 5650
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5651
static void perf_output_read(struct perf_output_handle *handle,
5652
			     struct perf_event *event)
5653
{
5654
	u64 enabled = 0, running = 0, now;
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5666
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5667
		calc_timer_values(event, &now, &enabled, &running);
5668

5669
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5670
		perf_output_read_group(handle, event, enabled, running);
5671
	else
5672
		perf_output_read_one(handle, event, enabled, running);
5673 5674
}

5675 5676 5677
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5678
			struct perf_event *event)
5679 5680 5681 5682 5683
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5684 5685 5686
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5712
		perf_output_read(handle, event);
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5723
			__output_copy(handle, data->callchain, size);
5724 5725 5726 5727 5728 5729 5730
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5762

5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5797

5798
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5799 5800 5801
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5802
	}
A
Andi Kleen 已提交
5803 5804 5805

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5806 5807 5808

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5809

A
Andi Kleen 已提交
5810 5811 5812
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5843 5844 5845 5846
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5847
			 struct perf_event *event,
5848
			 struct pt_regs *regs)
5849
{
5850
	u64 sample_type = event->attr.sample_type;
5851

5852
	header->type = PERF_RECORD_SAMPLE;
5853
	header->size = sizeof(*header) + event->header_size;
5854 5855 5856

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5857

5858
	__perf_event_header__init_id(header, data, event);
5859

5860
	if (sample_type & PERF_SAMPLE_IP)
5861 5862
		data->ip = perf_instruction_pointer(regs);

5863
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5864
		int size = 1;
5865

5866
		data->callchain = perf_callchain(event, regs);
5867 5868 5869 5870 5871

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5872 5873
	}

5874
	if (sample_type & PERF_SAMPLE_RAW) {
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
5895

5896
		header->size += size;
5897
	}
5898 5899 5900 5901 5902 5903 5904 5905 5906

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5907

5908
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5909 5910
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5911

5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5935
						     data->regs_user.regs);
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5963
}
5964

5965 5966 5967 5968 5969 5970 5971
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
5972 5973 5974
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5975

5976 5977 5978
	/* protect the callchain buffers */
	rcu_read_lock();

5979
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5980

5981
	if (output_begin(&handle, event, header.size))
5982
		goto exit;
5983

5984
	perf_output_sample(&handle, &header, data, event);
5985

5986
	perf_output_end(&handle);
5987 5988 5989

exit:
	rcu_read_unlock();
5990 5991
}

5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6016
/*
6017
 * read event_id
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6028
perf_event_read_event(struct perf_event *event,
6029 6030 6031
			struct task_struct *task)
{
	struct perf_output_handle handle;
6032
	struct perf_sample_data sample;
6033
	struct perf_read_event read_event = {
6034
		.header = {
6035
			.type = PERF_RECORD_READ,
6036
			.misc = 0,
6037
			.size = sizeof(read_event) + event->read_size,
6038
		},
6039 6040
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6041
	};
6042
	int ret;
6043

6044
	perf_event_header__init_id(&read_event.header, &sample, event);
6045
	ret = perf_output_begin(&handle, event, read_event.header.size);
6046 6047 6048
	if (ret)
		return;

6049
	perf_output_put(&handle, read_event);
6050
	perf_output_read(&handle, event);
6051
	perf_event__output_id_sample(event, &handle, &sample);
6052

6053 6054 6055
	perf_output_end(&handle);
}

6056
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6057 6058

static void
6059 6060
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6061
		   void *data, bool all)
6062 6063 6064 6065
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6066 6067 6068 6069 6070 6071 6072
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6073
		output(event, data);
6074 6075 6076
	}
}

6077
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6078 6079 6080 6081 6082
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6083 6084 6085 6086 6087 6088 6089 6090
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6091 6092 6093 6094 6095 6096 6097 6098
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6099 6100 6101 6102 6103 6104
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6105
static void
6106
perf_iterate_sb(perf_iterate_f output, void *data,
6107 6108 6109 6110 6111
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6112 6113 6114
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6115
	/*
6116 6117
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6118 6119 6120
	 * context.
	 */
	if (task_ctx) {
6121 6122
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6123 6124
	}

6125
	perf_iterate_sb_cpu(output, data);
6126 6127

	for_each_task_context_nr(ctxn) {
6128 6129
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6130
			perf_iterate_ctx(ctx, output, data, false);
6131
	}
6132
done:
6133
	preempt_enable();
6134
	rcu_read_unlock();
6135 6136
}

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6166
		perf_event_stop(event, 1);
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6182
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6183 6184 6185 6186 6187
				   true);
	}
	rcu_read_unlock();
}

6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6198 6199 6200
	struct stop_event_data sd = {
		.event	= event,
	};
6201 6202 6203 6204 6205 6206 6207 6208 6209

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6210 6211 6212 6213 6214 6215 6216
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6217 6218
	 */
	if (rcu_dereference(parent->rb) == rb)
6219
		ro->err = __perf_event_stop(&sd);
6220 6221 6222 6223 6224 6225
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6226
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6227 6228 6229 6230 6231
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6232
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6233
	if (cpuctx->task_ctx)
6234
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6235
				   &ro, false);
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6269 6270
}

P
Peter Zijlstra 已提交
6271
/*
P
Peter Zijlstra 已提交
6272 6273
 * task tracking -- fork/exit
 *
6274
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6275 6276
 */

P
Peter Zijlstra 已提交
6277
struct perf_task_event {
6278
	struct task_struct		*task;
6279
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6280 6281 6282 6283 6284 6285

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6286 6287
		u32				tid;
		u32				ptid;
6288
		u64				time;
6289
	} event_id;
P
Peter Zijlstra 已提交
6290 6291
};

6292 6293
static int perf_event_task_match(struct perf_event *event)
{
6294 6295 6296
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6297 6298
}

6299
static void perf_event_task_output(struct perf_event *event,
6300
				   void *data)
P
Peter Zijlstra 已提交
6301
{
6302
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6303
	struct perf_output_handle handle;
6304
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6305
	struct task_struct *task = task_event->task;
6306
	int ret, size = task_event->event_id.header.size;
6307

6308 6309 6310
	if (!perf_event_task_match(event))
		return;

6311
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6312

6313
	ret = perf_output_begin(&handle, event,
6314
				task_event->event_id.header.size);
6315
	if (ret)
6316
		goto out;
P
Peter Zijlstra 已提交
6317

6318 6319
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6320

6321 6322
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6323

6324 6325
	task_event->event_id.time = perf_event_clock(event);

6326
	perf_output_put(&handle, task_event->event_id);
6327

6328 6329
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6330
	perf_output_end(&handle);
6331 6332
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6333 6334
}

6335 6336
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6337
			      int new)
P
Peter Zijlstra 已提交
6338
{
P
Peter Zijlstra 已提交
6339
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6340

6341 6342 6343
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6344 6345
		return;

P
Peter Zijlstra 已提交
6346
	task_event = (struct perf_task_event){
6347 6348
		.task	  = task,
		.task_ctx = task_ctx,
6349
		.event_id    = {
P
Peter Zijlstra 已提交
6350
			.header = {
6351
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6352
				.misc = 0,
6353
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6354
			},
6355 6356
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6357 6358
			/* .tid  */
			/* .ptid */
6359
			/* .time */
P
Peter Zijlstra 已提交
6360 6361 6362
		},
	};

6363
	perf_iterate_sb(perf_event_task_output,
6364 6365
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6366 6367
}

6368
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6369
{
6370
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
6371 6372
}

6373 6374 6375 6376 6377
/*
 * comm tracking
 */

struct perf_comm_event {
6378 6379
	struct task_struct	*task;
	char			*comm;
6380 6381 6382 6383 6384 6385 6386
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6387
	} event_id;
6388 6389
};

6390 6391 6392 6393 6394
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6395
static void perf_event_comm_output(struct perf_event *event,
6396
				   void *data)
6397
{
6398
	struct perf_comm_event *comm_event = data;
6399
	struct perf_output_handle handle;
6400
	struct perf_sample_data sample;
6401
	int size = comm_event->event_id.header.size;
6402 6403
	int ret;

6404 6405 6406
	if (!perf_event_comm_match(event))
		return;

6407 6408
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6409
				comm_event->event_id.header.size);
6410 6411

	if (ret)
6412
		goto out;
6413

6414 6415
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6416

6417
	perf_output_put(&handle, comm_event->event_id);
6418
	__output_copy(&handle, comm_event->comm,
6419
				   comm_event->comm_size);
6420 6421 6422

	perf_event__output_id_sample(event, &handle, &sample);

6423
	perf_output_end(&handle);
6424 6425
out:
	comm_event->event_id.header.size = size;
6426 6427
}

6428
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6429
{
6430
	char comm[TASK_COMM_LEN];
6431 6432
	unsigned int size;

6433
	memset(comm, 0, sizeof(comm));
6434
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6435
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6436 6437 6438 6439

	comm_event->comm = comm;
	comm_event->comm_size = size;

6440
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6441

6442
	perf_iterate_sb(perf_event_comm_output,
6443 6444
		       comm_event,
		       NULL);
6445 6446
}

6447
void perf_event_comm(struct task_struct *task, bool exec)
6448
{
6449 6450
	struct perf_comm_event comm_event;

6451
	if (!atomic_read(&nr_comm_events))
6452
		return;
6453

6454
	comm_event = (struct perf_comm_event){
6455
		.task	= task,
6456 6457
		/* .comm      */
		/* .comm_size */
6458
		.event_id  = {
6459
			.header = {
6460
				.type = PERF_RECORD_COMM,
6461
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6462 6463 6464 6465
				/* .size */
			},
			/* .pid */
			/* .tid */
6466 6467 6468
		},
	};

6469
	perf_event_comm_event(&comm_event);
6470 6471
}

6472 6473 6474 6475 6476
/*
 * mmap tracking
 */

struct perf_mmap_event {
6477 6478 6479 6480
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6481 6482 6483
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6484
	u32			prot, flags;
6485 6486 6487 6488 6489 6490 6491 6492 6493

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6494
	} event_id;
6495 6496
};

6497 6498 6499 6500 6501 6502 6503 6504
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6505
	       (executable && (event->attr.mmap || event->attr.mmap2));
6506 6507
}

6508
static void perf_event_mmap_output(struct perf_event *event,
6509
				   void *data)
6510
{
6511
	struct perf_mmap_event *mmap_event = data;
6512
	struct perf_output_handle handle;
6513
	struct perf_sample_data sample;
6514
	int size = mmap_event->event_id.header.size;
6515
	int ret;
6516

6517 6518 6519
	if (!perf_event_mmap_match(event, data))
		return;

6520 6521 6522 6523 6524
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6525
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6526 6527
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6528 6529
	}

6530 6531
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6532
				mmap_event->event_id.header.size);
6533
	if (ret)
6534
		goto out;
6535

6536 6537
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6538

6539
	perf_output_put(&handle, mmap_event->event_id);
6540 6541 6542 6543 6544 6545

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6546 6547
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6548 6549
	}

6550
	__output_copy(&handle, mmap_event->file_name,
6551
				   mmap_event->file_size);
6552 6553 6554

	perf_event__output_id_sample(event, &handle, &sample);

6555
	perf_output_end(&handle);
6556 6557
out:
	mmap_event->event_id.header.size = size;
6558 6559
}

6560
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6561
{
6562 6563
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6564 6565
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6566
	u32 prot = 0, flags = 0;
6567 6568 6569
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6570
	char *name;
6571

6572
	if (file) {
6573 6574
		struct inode *inode;
		dev_t dev;
6575

6576
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6577
		if (!buf) {
6578 6579
			name = "//enomem";
			goto cpy_name;
6580
		}
6581
		/*
6582
		 * d_path() works from the end of the rb backwards, so we
6583 6584 6585
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6586
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6587
		if (IS_ERR(name)) {
6588 6589
			name = "//toolong";
			goto cpy_name;
6590
		}
6591 6592 6593 6594 6595 6596
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6619
		goto got_name;
6620
	} else {
6621 6622 6623 6624 6625 6626
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6627
		name = (char *)arch_vma_name(vma);
6628 6629
		if (name)
			goto cpy_name;
6630

6631
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6632
				vma->vm_end >= vma->vm_mm->brk) {
6633 6634
			name = "[heap]";
			goto cpy_name;
6635 6636
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6637
				vma->vm_end >= vma->vm_mm->start_stack) {
6638 6639
			name = "[stack]";
			goto cpy_name;
6640 6641
		}

6642 6643
		name = "//anon";
		goto cpy_name;
6644 6645
	}

6646 6647 6648
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6649
got_name:
6650 6651 6652 6653 6654 6655 6656 6657
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6658 6659 6660

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6661 6662 6663 6664
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6665 6666
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6667

6668 6669 6670
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6671
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6672

6673
	perf_iterate_sb(perf_event_mmap_output,
6674 6675
		       mmap_event,
		       NULL);
6676

6677 6678 6679
	kfree(buf);
}

6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
	if (filter->inode != file->f_inode)
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6730
		perf_event_stop(event, 1);
6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

6741 6742 6743 6744 6745 6746 6747
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

6748 6749 6750 6751 6752 6753
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

6754
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6755 6756 6757 6758
	}
	rcu_read_unlock();
}

6759
void perf_event_mmap(struct vm_area_struct *vma)
6760
{
6761 6762
	struct perf_mmap_event mmap_event;

6763
	if (!atomic_read(&nr_mmap_events))
6764 6765 6766
		return;

	mmap_event = (struct perf_mmap_event){
6767
		.vma	= vma,
6768 6769
		/* .file_name */
		/* .file_size */
6770
		.event_id  = {
6771
			.header = {
6772
				.type = PERF_RECORD_MMAP,
6773
				.misc = PERF_RECORD_MISC_USER,
6774 6775 6776 6777
				/* .size */
			},
			/* .pid */
			/* .tid */
6778 6779
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6780
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6781
		},
6782 6783 6784 6785
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6786 6787
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6788 6789
	};

6790
	perf_addr_filters_adjust(vma);
6791
	perf_event_mmap_event(&mmap_event);
6792 6793
}

A
Alexander Shishkin 已提交
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

6941
	perf_iterate_sb(perf_event_switch_output,
6942 6943 6944 6945
		       &switch_event,
		       NULL);
}

6946 6947 6948 6949
/*
 * IRQ throttle logging
 */

6950
static void perf_log_throttle(struct perf_event *event, int enable)
6951 6952
{
	struct perf_output_handle handle;
6953
	struct perf_sample_data sample;
6954 6955 6956 6957 6958
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6959
		u64				id;
6960
		u64				stream_id;
6961 6962
	} throttle_event = {
		.header = {
6963
			.type = PERF_RECORD_THROTTLE,
6964 6965 6966
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6967
		.time		= perf_event_clock(event),
6968 6969
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6970 6971
	};

6972
	if (enable)
6973
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6974

6975 6976 6977
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6978
				throttle_event.header.size);
6979 6980 6981 6982
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6983
	perf_event__output_id_sample(event, &handle, &sample);
6984 6985 6986
	perf_output_end(&handle);
}

6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7023
/*
7024
 * Generic event overflow handling, sampling.
7025 7026
 */

7027
static int __perf_event_overflow(struct perf_event *event,
7028 7029
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
7030
{
7031 7032
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
7033
	u64 seq;
7034 7035
	int ret = 0;

7036 7037 7038 7039 7040 7041 7042
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

7043 7044 7045 7046 7047 7048 7049 7050 7051
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7052
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7053 7054
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7055 7056
			ret = 1;
		}
7057
	}
7058

7059
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7060
		u64 now = perf_clock();
7061
		s64 delta = now - hwc->freq_time_stamp;
7062

7063
		hwc->freq_time_stamp = now;
7064

7065
		if (delta > 0 && delta < 2*TICK_NSEC)
7066
			perf_adjust_period(event, delta, hwc->last_period, true);
7067 7068
	}

7069 7070
	/*
	 * XXX event_limit might not quite work as expected on inherited
7071
	 * events
7072 7073
	 */

7074 7075
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7076
		ret = 1;
7077
		event->pending_kill = POLL_HUP;
7078 7079
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
7080 7081
	}

7082
	READ_ONCE(event->overflow_handler)(event, data, regs);
7083

7084
	if (*perf_event_fasync(event) && event->pending_kill) {
7085 7086
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7087 7088
	}

7089
	return ret;
7090 7091
}

7092
int perf_event_overflow(struct perf_event *event,
7093 7094
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7095
{
7096
	return __perf_event_overflow(event, 1, data, regs);
7097 7098
}

7099
/*
7100
 * Generic software event infrastructure
7101 7102
 */

7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7114
/*
7115 7116
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7117 7118 7119 7120
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7121
u64 perf_swevent_set_period(struct perf_event *event)
7122
{
7123
	struct hw_perf_event *hwc = &event->hw;
7124 7125 7126 7127 7128
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7129 7130

again:
7131
	old = val = local64_read(&hwc->period_left);
7132 7133
	if (val < 0)
		return 0;
7134

7135 7136 7137
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7138
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7139
		goto again;
7140

7141
	return nr;
7142 7143
}

7144
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7145
				    struct perf_sample_data *data,
7146
				    struct pt_regs *regs)
7147
{
7148
	struct hw_perf_event *hwc = &event->hw;
7149
	int throttle = 0;
7150

7151 7152
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7153

7154 7155
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7156

7157
	for (; overflow; overflow--) {
7158
		if (__perf_event_overflow(event, throttle,
7159
					    data, regs)) {
7160 7161 7162 7163 7164 7165
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7166
		throttle = 1;
7167
	}
7168 7169
}

P
Peter Zijlstra 已提交
7170
static void perf_swevent_event(struct perf_event *event, u64 nr,
7171
			       struct perf_sample_data *data,
7172
			       struct pt_regs *regs)
7173
{
7174
	struct hw_perf_event *hwc = &event->hw;
7175

7176
	local64_add(nr, &event->count);
7177

7178 7179 7180
	if (!regs)
		return;

7181
	if (!is_sampling_event(event))
7182
		return;
7183

7184 7185 7186 7187 7188 7189
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7190
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7191
		return perf_swevent_overflow(event, 1, data, regs);
7192

7193
	if (local64_add_negative(nr, &hwc->period_left))
7194
		return;
7195

7196
	perf_swevent_overflow(event, 0, data, regs);
7197 7198
}

7199 7200 7201
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7202
	if (event->hw.state & PERF_HES_STOPPED)
7203
		return 1;
P
Peter Zijlstra 已提交
7204

7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7216
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7217
				enum perf_type_id type,
L
Li Zefan 已提交
7218 7219 7220
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7221
{
7222
	if (event->attr.type != type)
7223
		return 0;
7224

7225
	if (event->attr.config != event_id)
7226 7227
		return 0;

7228 7229
	if (perf_exclude_event(event, regs))
		return 0;
7230 7231 7232 7233

	return 1;
}

7234 7235 7236 7237 7238 7239 7240
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7241 7242
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7243
{
7244 7245 7246 7247
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7248

7249 7250
/* For the read side: events when they trigger */
static inline struct hlist_head *
7251
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7252 7253
{
	struct swevent_hlist *hlist;
7254

7255
	hlist = rcu_dereference(swhash->swevent_hlist);
7256 7257 7258
	if (!hlist)
		return NULL;

7259 7260 7261 7262 7263
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7264
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7275
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7276 7277 7278 7279 7280
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7281 7282 7283
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7284
				    u64 nr,
7285 7286
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7287
{
7288
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7289
	struct perf_event *event;
7290
	struct hlist_head *head;
7291

7292
	rcu_read_lock();
7293
	head = find_swevent_head_rcu(swhash, type, event_id);
7294 7295 7296
	if (!head)
		goto end;

7297
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7298
		if (perf_swevent_match(event, type, event_id, data, regs))
7299
			perf_swevent_event(event, nr, data, regs);
7300
	}
7301 7302
end:
	rcu_read_unlock();
7303 7304
}

7305 7306
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7307
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7308
{
7309
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7310

7311
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7312
}
I
Ingo Molnar 已提交
7313
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7314

7315
void perf_swevent_put_recursion_context(int rctx)
7316
{
7317
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7318

7319
	put_recursion_context(swhash->recursion, rctx);
7320
}
7321

7322
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7323
{
7324
	struct perf_sample_data data;
7325

7326
	if (WARN_ON_ONCE(!regs))
7327
		return;
7328

7329
	perf_sample_data_init(&data, addr, 0);
7330
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7343 7344

	perf_swevent_put_recursion_context(rctx);
7345
fail:
7346
	preempt_enable_notrace();
7347 7348
}

7349
static void perf_swevent_read(struct perf_event *event)
7350 7351 7352
{
}

P
Peter Zijlstra 已提交
7353
static int perf_swevent_add(struct perf_event *event, int flags)
7354
{
7355
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7356
	struct hw_perf_event *hwc = &event->hw;
7357 7358
	struct hlist_head *head;

7359
	if (is_sampling_event(event)) {
7360
		hwc->last_period = hwc->sample_period;
7361
		perf_swevent_set_period(event);
7362
	}
7363

P
Peter Zijlstra 已提交
7364 7365
	hwc->state = !(flags & PERF_EF_START);

7366
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7367
	if (WARN_ON_ONCE(!head))
7368 7369 7370
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7371
	perf_event_update_userpage(event);
7372

7373 7374 7375
	return 0;
}

P
Peter Zijlstra 已提交
7376
static void perf_swevent_del(struct perf_event *event, int flags)
7377
{
7378
	hlist_del_rcu(&event->hlist_entry);
7379 7380
}

P
Peter Zijlstra 已提交
7381
static void perf_swevent_start(struct perf_event *event, int flags)
7382
{
P
Peter Zijlstra 已提交
7383
	event->hw.state = 0;
7384
}
I
Ingo Molnar 已提交
7385

P
Peter Zijlstra 已提交
7386
static void perf_swevent_stop(struct perf_event *event, int flags)
7387
{
P
Peter Zijlstra 已提交
7388
	event->hw.state = PERF_HES_STOPPED;
7389 7390
}

7391 7392
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7393
swevent_hlist_deref(struct swevent_htable *swhash)
7394
{
7395 7396
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7397 7398
}

7399
static void swevent_hlist_release(struct swevent_htable *swhash)
7400
{
7401
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7402

7403
	if (!hlist)
7404 7405
		return;

7406
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7407
	kfree_rcu(hlist, rcu_head);
7408 7409
}

7410
static void swevent_hlist_put_cpu(int cpu)
7411
{
7412
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7413

7414
	mutex_lock(&swhash->hlist_mutex);
7415

7416 7417
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7418

7419
	mutex_unlock(&swhash->hlist_mutex);
7420 7421
}

7422
static void swevent_hlist_put(void)
7423 7424 7425 7426
{
	int cpu;

	for_each_possible_cpu(cpu)
7427
		swevent_hlist_put_cpu(cpu);
7428 7429
}

7430
static int swevent_hlist_get_cpu(int cpu)
7431
{
7432
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7433 7434
	int err = 0;

7435 7436
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7437 7438 7439 7440 7441 7442 7443
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7444
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7445
	}
7446
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7447
exit:
7448
	mutex_unlock(&swhash->hlist_mutex);
7449 7450 7451 7452

	return err;
}

7453
static int swevent_hlist_get(void)
7454
{
7455
	int err, cpu, failed_cpu;
7456 7457 7458

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7459
		err = swevent_hlist_get_cpu(cpu);
7460 7461 7462 7463 7464 7465 7466 7467
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7468
fail:
7469 7470 7471
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7472
		swevent_hlist_put_cpu(cpu);
7473 7474 7475 7476 7477 7478
	}

	put_online_cpus();
	return err;
}

7479
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7480

7481 7482 7483
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7484

7485 7486
	WARN_ON(event->parent);

7487
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7488
	swevent_hlist_put();
7489 7490 7491 7492
}

static int perf_swevent_init(struct perf_event *event)
{
7493
	u64 event_id = event->attr.config;
7494 7495 7496 7497

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7498 7499 7500 7501 7502 7503
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7504 7505 7506 7507 7508 7509 7510 7511 7512
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7513
	if (event_id >= PERF_COUNT_SW_MAX)
7514 7515 7516 7517 7518
		return -ENOENT;

	if (!event->parent) {
		int err;

7519
		err = swevent_hlist_get();
7520 7521 7522
		if (err)
			return err;

7523
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7524 7525 7526 7527 7528 7529 7530
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7531
	.task_ctx_nr	= perf_sw_context,
7532

7533 7534
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7535
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7536 7537 7538 7539
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7540 7541 7542
	.read		= perf_swevent_read,
};

7543 7544
#ifdef CONFIG_EVENT_TRACING

7545 7546 7547
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7548
	void *record = data->raw->frag.data;
7549

7550 7551 7552 7553
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7554 7555 7556 7557 7558 7559 7560 7561 7562
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7563 7564
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7565 7566 7567 7568
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7569 7570 7571 7572 7573 7574 7575 7576
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7596
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7597 7598
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7599 7600
{
	struct perf_sample_data data;
7601 7602
	struct perf_event *event;

7603
	struct perf_raw_record raw = {
7604 7605 7606 7607
		.frag = {
			.size = entry_size,
			.data = record,
		},
7608 7609
	};

7610
	perf_sample_data_init(&data, 0, 0);
7611 7612
	data.raw = &raw;

7613 7614
	perf_trace_buf_update(record, event_type);

7615
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7616
		if (perf_tp_event_match(event, &data, regs))
7617
			perf_swevent_event(event, count, &data, regs);
7618
	}
7619

7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7645
	perf_swevent_put_recursion_context(rctx);
7646 7647 7648
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7649
static void tp_perf_event_destroy(struct perf_event *event)
7650
{
7651
	perf_trace_destroy(event);
7652 7653
}

7654
static int perf_tp_event_init(struct perf_event *event)
7655
{
7656 7657
	int err;

7658 7659 7660
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7661 7662 7663 7664 7665 7666
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7667 7668
	err = perf_trace_init(event);
	if (err)
7669
		return err;
7670

7671
	event->destroy = tp_perf_event_destroy;
7672

7673 7674 7675 7676
	return 0;
}

static struct pmu perf_tracepoint = {
7677 7678
	.task_ctx_nr	= perf_sw_context,

7679
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7680 7681 7682 7683
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7684 7685 7686 7687 7688
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7689
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7690
}
L
Li Zefan 已提交
7691 7692 7693 7694 7695 7696

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
	ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

7765 7766
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
7767
	bool is_kprobe, is_tracepoint;
7768 7769
	struct bpf_prog *prog;

7770 7771 7772 7773
	if (event->attr.type == PERF_TYPE_HARDWARE ||
	    event->attr.type == PERF_TYPE_SOFTWARE)
		return perf_event_set_bpf_handler(event, prog_fd);

7774 7775 7776 7777 7778 7779
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7780 7781 7782 7783
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
7784 7785 7786 7787 7788 7789
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7790 7791
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7792 7793 7794 7795 7796
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

7797 7798 7799 7800 7801 7802 7803 7804
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
7805 7806 7807 7808 7809 7810 7811 7812 7813
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

7814 7815
	perf_event_free_bpf_handler(event);

7816 7817 7818 7819 7820 7821
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
7822
		bpf_prog_put(prog);
7823 7824 7825
	}
}

7826
#else
L
Li Zefan 已提交
7827

7828
static inline void perf_tp_register(void)
7829 7830
{
}
L
Li Zefan 已提交
7831 7832 7833 7834 7835

static void perf_event_free_filter(struct perf_event *event)
{
}

7836 7837 7838 7839 7840 7841 7842 7843
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7844
#endif /* CONFIG_EVENT_TRACING */
7845

7846
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7847
void perf_bp_event(struct perf_event *bp, void *data)
7848
{
7849 7850 7851
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7852
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7853

P
Peter Zijlstra 已提交
7854
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7855
		perf_swevent_event(bp, 1, &sample, regs);
7856 7857 7858
}
#endif

7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

7974 7975 7976 7977 7978
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
7993
	perf_event_stop(event, 1);
7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8109 8110 8111 8112
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	/*
	 * For now, we only support filtering in per-task events; doing so
	 * for CPU-wide events requires additional context switching trickery,
	 * since same object code will be mapped at different virtual
	 * addresses in different processes.
	 */
	if (!event->ctx->task)
		return -EOPNOTSUPP;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
		return ret;

	ret = event->pmu->addr_filters_validate(&filters);
	if (ret) {
		free_filters_list(&filters);
		return ret;
	}

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

	return ret;
}

8221 8222 8223 8224 8225
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8226 8227 8228
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8229 8230 8231 8232 8233 8234 8235 8236 8237 8238
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8239 8240
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8241 8242 8243 8244 8245

	kfree(filter_str);
	return ret;
}

8246 8247 8248
/*
 * hrtimer based swevent callback
 */
8249

8250
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8251
{
8252 8253 8254 8255 8256
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8257

8258
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8259 8260 8261 8262

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8263
	event->pmu->read(event);
8264

8265
	perf_sample_data_init(&data, 0, event->hw.last_period);
8266 8267 8268
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8269
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8270
			if (__perf_event_overflow(event, 1, &data, regs))
8271 8272
				ret = HRTIMER_NORESTART;
	}
8273

8274 8275
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8276

8277
	return ret;
8278 8279
}

8280
static void perf_swevent_start_hrtimer(struct perf_event *event)
8281
{
8282
	struct hw_perf_event *hwc = &event->hw;
8283 8284 8285 8286
	s64 period;

	if (!is_sampling_event(event))
		return;
8287

8288 8289 8290 8291
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8292

8293 8294 8295 8296
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8297 8298
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8299
}
8300 8301

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8302
{
8303 8304
	struct hw_perf_event *hwc = &event->hw;

8305
	if (is_sampling_event(event)) {
8306
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8307
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8308 8309 8310

		hrtimer_cancel(&hwc->hrtimer);
	}
8311 8312
}

P
Peter Zijlstra 已提交
8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8333
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8334 8335 8336 8337
		event->attr.freq = 0;
	}
}

8338 8339 8340 8341 8342
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8343
{
8344 8345 8346
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8347
	now = local_clock();
8348 8349
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8350 8351
}

P
Peter Zijlstra 已提交
8352
static void cpu_clock_event_start(struct perf_event *event, int flags)
8353
{
P
Peter Zijlstra 已提交
8354
	local64_set(&event->hw.prev_count, local_clock());
8355 8356 8357
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8358
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8359
{
8360 8361 8362
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8363

P
Peter Zijlstra 已提交
8364 8365 8366 8367
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8368
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8369 8370 8371 8372 8373 8374 8375 8376 8377

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8378 8379 8380 8381
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8382

8383 8384 8385 8386 8387 8388 8389 8390
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8391 8392 8393 8394 8395 8396
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8397 8398
	perf_swevent_init_hrtimer(event);

8399
	return 0;
8400 8401
}

8402
static struct pmu perf_cpu_clock = {
8403 8404
	.task_ctx_nr	= perf_sw_context,

8405 8406
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8407
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8408 8409 8410 8411
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8412 8413 8414 8415 8416 8417 8418 8419
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8420
{
8421 8422
	u64 prev;
	s64 delta;
8423

8424 8425 8426 8427
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8428

P
Peter Zijlstra 已提交
8429
static void task_clock_event_start(struct perf_event *event, int flags)
8430
{
P
Peter Zijlstra 已提交
8431
	local64_set(&event->hw.prev_count, event->ctx->time);
8432 8433 8434
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8435
static void task_clock_event_stop(struct perf_event *event, int flags)
8436 8437 8438
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8439 8440 8441 8442 8443 8444
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8445
	perf_event_update_userpage(event);
8446

P
Peter Zijlstra 已提交
8447 8448 8449 8450 8451 8452
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8453 8454 8455 8456
}

static void task_clock_event_read(struct perf_event *event)
{
8457 8458 8459
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8460 8461 8462 8463 8464

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8465
{
8466 8467 8468 8469 8470 8471
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8472 8473 8474 8475 8476 8477
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8478 8479
	perf_swevent_init_hrtimer(event);

8480
	return 0;
L
Li Zefan 已提交
8481 8482
}

8483
static struct pmu perf_task_clock = {
8484 8485
	.task_ctx_nr	= perf_sw_context,

8486 8487
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8488
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8489 8490 8491 8492
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8493 8494
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8495

P
Peter Zijlstra 已提交
8496
static void perf_pmu_nop_void(struct pmu *pmu)
8497 8498
{
}
L
Li Zefan 已提交
8499

8500 8501 8502 8503
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8504
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8505
{
P
Peter Zijlstra 已提交
8506
	return 0;
L
Li Zefan 已提交
8507 8508
}

8509
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8510 8511

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8512
{
8513 8514 8515 8516 8517
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8518
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8519 8520
}

P
Peter Zijlstra 已提交
8521 8522
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8523 8524 8525 8526 8527 8528 8529
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8530 8531 8532
	perf_pmu_enable(pmu);
	return 0;
}
8533

P
Peter Zijlstra 已提交
8534
static void perf_pmu_cancel_txn(struct pmu *pmu)
8535
{
8536 8537 8538 8539 8540 8541 8542
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8543
	perf_pmu_enable(pmu);
8544 8545
}

8546 8547
static int perf_event_idx_default(struct perf_event *event)
{
8548
	return 0;
8549 8550
}

P
Peter Zijlstra 已提交
8551 8552 8553 8554
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8555
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8556
{
P
Peter Zijlstra 已提交
8557
	struct pmu *pmu;
8558

P
Peter Zijlstra 已提交
8559 8560
	if (ctxn < 0)
		return NULL;
8561

P
Peter Zijlstra 已提交
8562 8563 8564 8565
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8566

P
Peter Zijlstra 已提交
8567
	return NULL;
8568 8569
}

8570
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8571
{
8572 8573 8574 8575 8576 8577 8578
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

8579 8580
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
8581 8582 8583 8584 8585 8586
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
8587

P
Peter Zijlstra 已提交
8588
	mutex_lock(&pmus_lock);
8589
	/*
P
Peter Zijlstra 已提交
8590
	 * Like a real lame refcount.
8591
	 */
8592 8593 8594
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
8595
			goto out;
8596
		}
P
Peter Zijlstra 已提交
8597
	}
8598

8599
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8600 8601
out:
	mutex_unlock(&pmus_lock);
8602
}
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8617
static struct idr pmu_idr;
8618

P
Peter Zijlstra 已提交
8619 8620 8621 8622 8623 8624 8625
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8626
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8627

8628 8629 8630 8631 8632 8633 8634 8635 8636 8637
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8638 8639
static DEFINE_MUTEX(mux_interval_mutex);

8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8659
	mutex_lock(&mux_interval_mutex);
8660 8661 8662
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8663 8664
	get_online_cpus();
	for_each_online_cpu(cpu) {
8665 8666 8667 8668
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8669 8670
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8671
	}
8672 8673
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
8674 8675 8676

	return count;
}
8677
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8678

8679 8680 8681 8682
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8683
};
8684
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8685 8686 8687 8688

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8689
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8705
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8718 8719 8720 8721 8722 8723 8724
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8725 8726 8727
out:
	return ret;

8728 8729 8730
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8731 8732 8733 8734 8735
free_dev:
	put_device(pmu->dev);
	goto out;
}

8736
static struct lock_class_key cpuctx_mutex;
8737
static struct lock_class_key cpuctx_lock;
8738

8739
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8740
{
P
Peter Zijlstra 已提交
8741
	int cpu, ret;
8742

8743
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
8744 8745 8746 8747
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
8748

P
Peter Zijlstra 已提交
8749 8750 8751 8752 8753 8754
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
8755 8756 8757
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
8758 8759 8760 8761 8762
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
8763 8764 8765 8766 8767 8768
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
8769
skip_type:
8770 8771 8772
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

8773 8774 8775 8776 8777 8778 8779
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8780 8781 8782 8783 8784
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
8785 8786 8787
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
8788

W
Wei Yongjun 已提交
8789
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
8790 8791
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
8792
		goto free_dev;
8793

P
Peter Zijlstra 已提交
8794 8795 8796 8797
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8798
		__perf_event_init_context(&cpuctx->ctx);
8799
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8800
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
8801
		cpuctx->ctx.pmu = pmu;
8802

8803
		__perf_mux_hrtimer_init(cpuctx, cpu);
8804

8805
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
8806
	}
8807

P
Peter Zijlstra 已提交
8808
got_cpu_context:
P
Peter Zijlstra 已提交
8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
8820
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
8821 8822
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
8823
		}
8824
	}
8825

P
Peter Zijlstra 已提交
8826 8827 8828 8829 8830
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

8831 8832 8833
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

8834
	list_add_rcu(&pmu->entry, &pmus);
8835
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
8836 8837
	ret = 0;
unlock:
8838 8839
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
8840
	return ret;
P
Peter Zijlstra 已提交
8841

P
Peter Zijlstra 已提交
8842 8843 8844 8845
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
8846 8847 8848 8849
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
8850 8851 8852
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
8853
}
8854
EXPORT_SYMBOL_GPL(perf_pmu_register);
8855

8856
void perf_pmu_unregister(struct pmu *pmu)
8857
{
8858 8859 8860
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
8861

8862
	/*
P
Peter Zijlstra 已提交
8863 8864
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
8865
	 */
8866
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
8867
	synchronize_rcu();
8868

P
Peter Zijlstra 已提交
8869
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
8870 8871
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
8872 8873
	if (pmu->nr_addr_filters)
		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
P
Peter Zijlstra 已提交
8874 8875
	device_del(pmu->dev);
	put_device(pmu->dev);
8876
	free_pmu_context(pmu);
8877
}
8878
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8879

8880 8881
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
8882
	struct perf_event_context *ctx = NULL;
8883 8884 8885 8886
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
8887 8888

	if (event->group_leader != event) {
8889 8890 8891 8892 8893 8894
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
8895 8896 8897
		BUG_ON(!ctx);
	}

8898 8899
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
8900 8901 8902 8903

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

8904 8905 8906 8907 8908 8909
	if (ret)
		module_put(pmu->module);

	return ret;
}

8910
static struct pmu *perf_init_event(struct perf_event *event)
8911 8912 8913
{
	struct pmu *pmu = NULL;
	int idx;
8914
	int ret;
8915 8916

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
8917 8918 8919 8920

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
8921
	if (pmu) {
8922
		ret = perf_try_init_event(pmu, event);
8923 8924
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8925
		goto unlock;
8926
	}
P
Peter Zijlstra 已提交
8927

8928
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8929
		ret = perf_try_init_event(pmu, event);
8930
		if (!ret)
P
Peter Zijlstra 已提交
8931
			goto unlock;
8932

8933 8934
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8935
			goto unlock;
8936
		}
8937
	}
P
Peter Zijlstra 已提交
8938 8939
	pmu = ERR_PTR(-ENOENT);
unlock:
8940
	srcu_read_unlock(&pmus_srcu, idx);
8941

8942
	return pmu;
8943 8944
}

8945 8946 8947 8948 8949 8950 8951 8952 8953
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

8954 8955 8956 8957 8958 8959 8960
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
8961 8962
static void account_pmu_sb_event(struct perf_event *event)
{
8963
	if (is_sb_event(event))
8964 8965 8966
		attach_sb_event(event);
}

8967 8968 8969 8970 8971 8972 8973 8974 8975
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


8997 8998
static void account_event(struct perf_event *event)
{
8999 9000
	bool inc = false;

9001 9002 9003
	if (event->parent)
		return;

9004
	if (event->attach_state & PERF_ATTACH_TASK)
9005
		inc = true;
9006 9007 9008 9009 9010 9011
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9012 9013
	if (event->attr.freq)
		account_freq_event();
9014 9015
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9016
		inc = true;
9017
	}
9018
	if (has_branch_stack(event))
9019
		inc = true;
9020
	if (is_cgroup_event(event))
9021 9022
		inc = true;

9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9045 9046

	account_event_cpu(event, event->cpu);
9047 9048

	account_pmu_sb_event(event);
9049 9050
}

T
Thomas Gleixner 已提交
9051
/*
9052
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9053
 */
9054
static struct perf_event *
9055
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9056 9057 9058
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9059
		 perf_overflow_handler_t overflow_handler,
9060
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9061
{
P
Peter Zijlstra 已提交
9062
	struct pmu *pmu;
9063 9064
	struct perf_event *event;
	struct hw_perf_event *hwc;
9065
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9066

9067 9068 9069 9070 9071
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9072
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9073
	if (!event)
9074
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9075

9076
	/*
9077
	 * Single events are their own group leaders, with an
9078 9079 9080
	 * empty sibling list:
	 */
	if (!group_leader)
9081
		group_leader = event;
9082

9083 9084
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9085

9086 9087 9088
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9089
	INIT_LIST_HEAD(&event->rb_entry);
9090
	INIT_LIST_HEAD(&event->active_entry);
9091
	INIT_LIST_HEAD(&event->addr_filters.list);
9092 9093
	INIT_HLIST_NODE(&event->hlist_entry);

9094

9095
	init_waitqueue_head(&event->waitq);
9096
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9097

9098
	mutex_init(&event->mmap_mutex);
9099
	raw_spin_lock_init(&event->addr_filters.lock);
9100

9101
	atomic_long_set(&event->refcount, 1);
9102 9103 9104 9105 9106
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9107

9108
	event->parent		= parent_event;
9109

9110
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9111
	event->id		= atomic64_inc_return(&perf_event_id);
9112

9113
	event->state		= PERF_EVENT_STATE_INACTIVE;
9114

9115 9116 9117
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9118 9119 9120
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9121
		 */
9122
		event->hw.target = task;
9123 9124
	}

9125 9126 9127 9128
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9129
	if (!overflow_handler && parent_event) {
9130
		overflow_handler = parent_event->overflow_handler;
9131
		context = parent_event->overflow_handler_context;
9132
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9145
	}
9146

9147 9148 9149
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9150 9151 9152
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9153
	} else {
9154
		event->overflow_handler = perf_event_output_forward;
9155 9156
		event->overflow_handler_context = NULL;
	}
9157

J
Jiri Olsa 已提交
9158
	perf_event__state_init(event);
9159

9160
	pmu = NULL;
9161

9162
	hwc = &event->hw;
9163
	hwc->sample_period = attr->sample_period;
9164
	if (attr->freq && attr->sample_freq)
9165
		hwc->sample_period = 1;
9166
	hwc->last_period = hwc->sample_period;
9167

9168
	local64_set(&hwc->period_left, hwc->sample_period);
9169

9170
	/*
9171
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9172
	 */
9173
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9174
		goto err_ns;
9175 9176 9177

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9178

9179 9180 9181 9182 9183 9184
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9185
	pmu = perf_init_event(event);
9186
	if (!pmu)
9187 9188
		goto err_ns;
	else if (IS_ERR(pmu)) {
9189
		err = PTR_ERR(pmu);
9190
		goto err_ns;
I
Ingo Molnar 已提交
9191
	}
9192

9193 9194 9195 9196
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
		if (!event->addr_filters_offs)
			goto err_per_task;

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9208
	if (!event->parent) {
9209
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9210
			err = get_callchain_buffers(attr->sample_max_stack);
9211
			if (err)
9212
				goto err_addr_filters;
9213
		}
9214
	}
9215

9216 9217 9218
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9219
	return event;
9220

9221 9222 9223
err_addr_filters:
	kfree(event->addr_filters_offs);

9224 9225 9226
err_per_task:
	exclusive_event_destroy(event);

9227 9228 9229
err_pmu:
	if (event->destroy)
		event->destroy(event);
9230
	module_put(pmu->module);
9231
err_ns:
9232 9233
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9234 9235 9236 9237 9238
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9239 9240
}

9241 9242
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9243 9244
{
	u32 size;
9245
	int ret;
9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9270 9271 9272
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9273 9274
	 */
	if (size > sizeof(*attr)) {
9275 9276 9277
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9278

9279 9280
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9281

9282
		for (; addr < end; addr++) {
9283 9284 9285 9286 9287 9288
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9289
		size = sizeof(*attr);
9290 9291 9292 9293 9294 9295
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9296
	if (attr->__reserved_1)
9297 9298 9299 9300 9301 9302 9303 9304
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9333 9334
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9335 9336
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9337
	}
9338

9339
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9340
		ret = perf_reg_validate(attr->sample_regs_user);
9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9359

9360 9361
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9362 9363 9364 9365 9366 9367 9368 9369 9370
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9371 9372
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9373
{
9374
	struct ring_buffer *rb = NULL;
9375 9376
	int ret = -EINVAL;

9377
	if (!output_event)
9378 9379
		goto set;

9380 9381
	/* don't allow circular references */
	if (event == output_event)
9382 9383
		goto out;

9384 9385 9386 9387 9388 9389 9390
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9391
	 * If its not a per-cpu rb, it must be the same task.
9392 9393 9394 9395
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9396 9397 9398 9399 9400 9401
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9402 9403 9404 9405 9406 9407 9408
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9409 9410 9411 9412 9413 9414 9415
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9416
set:
9417
	mutex_lock(&event->mmap_mutex);
9418 9419 9420
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9421

9422
	if (output_event) {
9423 9424 9425
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9426
			goto unlock;
9427 9428
	}

9429
	ring_buffer_attach(event, rb);
9430

9431
	ret = 0;
9432 9433 9434
unlock:
	mutex_unlock(&event->mmap_mutex);

9435 9436 9437 9438
out:
	return ret;
}

P
Peter Zijlstra 已提交
9439 9440 9441 9442 9443 9444 9445 9446 9447
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
9485
/**
9486
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9487
 *
9488
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9489
 * @pid:		target pid
I
Ingo Molnar 已提交
9490
 * @cpu:		target cpu
9491
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9492
 */
9493 9494
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9495
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9496
{
9497 9498
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9499
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9500
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9501
	struct file *event_file = NULL;
9502
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9503
	struct task_struct *task = NULL;
9504
	struct pmu *pmu;
9505
	int event_fd;
9506
	int move_group = 0;
9507
	int err;
9508
	int f_flags = O_RDWR;
9509
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9510

9511
	/* for future expandability... */
S
Stephane Eranian 已提交
9512
	if (flags & ~PERF_FLAG_ALL)
9513 9514
		return -EINVAL;

9515 9516 9517
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9518

9519 9520 9521 9522 9523
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9524
	if (attr.freq) {
9525
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9526
			return -EINVAL;
9527 9528 9529
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9530 9531
	}

9532 9533 9534
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9535 9536 9537 9538 9539 9540 9541 9542 9543
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9544 9545 9546 9547
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9548 9549 9550
	if (event_fd < 0)
		return event_fd;

9551
	if (group_fd != -1) {
9552 9553
		err = perf_fget_light(group_fd, &group);
		if (err)
9554
			goto err_fd;
9555
		group_leader = group.file->private_data;
9556 9557 9558 9559 9560 9561
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9562
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9563 9564 9565 9566 9567 9568 9569
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9570 9571 9572 9573 9574 9575
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9576 9577
	get_online_cpus();

9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9596 9597 9598
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9599
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9600
				 NULL, NULL, cgroup_fd);
9601 9602
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9603
		goto err_cred;
9604 9605
	}

9606 9607
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9608
			err = -EOPNOTSUPP;
9609 9610 9611 9612
			goto err_alloc;
		}
	}

9613 9614 9615 9616 9617
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9618

9619 9620 9621 9622 9623 9624
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9625 9626 9627
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9641
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9642 9643 9644 9645 9646 9647 9648 9649
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9650 9651 9652 9653

	/*
	 * Get the target context (task or percpu):
	 */
9654
	ctx = find_get_context(pmu, task, event);
9655 9656
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9657
		goto err_alloc;
9658 9659
	}

9660 9661 9662 9663 9664
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9665
	/*
9666
	 * Look up the group leader (we will attach this event to it):
9667
	 */
9668
	if (group_leader) {
9669
		err = -EINVAL;
9670 9671

		/*
I
Ingo Molnar 已提交
9672 9673 9674 9675
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9676
			goto err_context;
9677 9678 9679 9680 9681

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9682 9683 9684
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9685
		 */
9686
		if (move_group) {
9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
9700 9701 9702 9703 9704 9705
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

9706 9707 9708
		/*
		 * Only a group leader can be exclusive or pinned
		 */
9709
		if (attr.exclusive || attr.pinned)
9710
			goto err_context;
9711 9712 9713 9714 9715
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
9716
			goto err_context;
9717
	}
T
Thomas Gleixner 已提交
9718

9719 9720
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
9721 9722
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
9723
		event_file = NULL;
9724
		goto err_context;
9725
	}
9726

9727
	if (move_group) {
P
Peter Zijlstra 已提交
9728
		gctx = group_leader->ctx;
9729
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9730 9731 9732 9733
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
9734 9735 9736 9737
	} else {
		mutex_lock(&ctx->mutex);
	}

9738 9739 9740 9741 9742
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
9743 9744 9745 9746 9747
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

9748 9749 9750 9751 9752 9753 9754
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
9755

9756 9757 9758
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
9759

9760 9761
	WARN_ON_ONCE(ctx->parent_ctx);

9762 9763 9764 9765 9766
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

9767
	if (move_group) {
P
Peter Zijlstra 已提交
9768 9769 9770 9771
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
9772
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
9773

9774 9775
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9776
			perf_remove_from_context(sibling, 0);
9777 9778 9779
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
9780 9781 9782 9783
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
9784
		synchronize_rcu();
P
Peter Zijlstra 已提交
9785

9786 9787 9788 9789 9790 9791 9792 9793 9794 9795
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
9796 9797
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9798
			perf_event__state_init(sibling);
9799
			perf_install_in_context(ctx, sibling, sibling->cpu);
9800 9801
			get_ctx(ctx);
		}
9802 9803 9804 9805 9806 9807 9808 9809 9810

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
9811

9812 9813 9814 9815 9816 9817
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
9818 9819
	}

9820 9821 9822 9823 9824 9825 9826 9827 9828
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
9829 9830
	event->owner = current;

9831
	perf_install_in_context(ctx, event, event->cpu);
9832
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
9833

9834
	if (move_group)
P
Peter Zijlstra 已提交
9835
		mutex_unlock(&gctx->mutex);
9836
	mutex_unlock(&ctx->mutex);
9837

9838 9839 9840 9841 9842
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

9843 9844
	put_online_cpus();

9845 9846 9847
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
9848

9849 9850 9851 9852 9853 9854
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
9855
	fdput(group);
9856 9857
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
9858

9859 9860 9861 9862 9863 9864
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
9865
err_context:
9866
	perf_unpin_context(ctx);
9867
	put_ctx(ctx);
9868
err_alloc:
P
Peter Zijlstra 已提交
9869 9870 9871 9872 9873 9874
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
9875 9876 9877
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
9878
err_cpus:
9879
	put_online_cpus();
9880
err_task:
P
Peter Zijlstra 已提交
9881 9882
	if (task)
		put_task_struct(task);
9883
err_group_fd:
9884
	fdput(group);
9885 9886
err_fd:
	put_unused_fd(event_fd);
9887
	return err;
T
Thomas Gleixner 已提交
9888 9889
}

9890 9891 9892 9893 9894
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
9895
 * @task: task to profile (NULL for percpu)
9896 9897 9898
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
9899
				 struct task_struct *task,
9900 9901
				 perf_overflow_handler_t overflow_handler,
				 void *context)
9902 9903
{
	struct perf_event_context *ctx;
9904
	struct perf_event *event;
9905
	int err;
9906

9907 9908 9909
	/*
	 * Get the target context (task or percpu):
	 */
9910

9911
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9912
				 overflow_handler, context, -1);
9913 9914 9915 9916
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
9917

9918
	/* Mark owner so we could distinguish it from user events. */
9919
	event->owner = TASK_TOMBSTONE;
9920

9921
	ctx = find_get_context(event->pmu, task, event);
9922 9923
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9924
		goto err_free;
9925
	}
9926 9927 9928

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
9929 9930 9931 9932 9933
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

9934 9935
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
9936
		goto err_unlock;
9937 9938
	}

9939
	perf_install_in_context(ctx, event, cpu);
9940
	perf_unpin_context(ctx);
9941 9942 9943 9944
	mutex_unlock(&ctx->mutex);

	return event;

9945 9946 9947 9948
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
9949 9950 9951
err_free:
	free_event(event);
err:
9952
	return ERR_PTR(err);
9953
}
9954
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9955

9956 9957 9958 9959 9960 9961 9962 9963 9964 9965
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
9966 9967 9968 9969 9970
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9971 9972
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
9973
		perf_remove_from_context(event, 0);
9974
		unaccount_event_cpu(event, src_cpu);
9975
		put_ctx(src_ctx);
9976
		list_add(&event->migrate_entry, &events);
9977 9978
	}

9979 9980 9981
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
9982 9983
	synchronize_rcu();

9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10008 10009
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10010 10011
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10012
		account_event_cpu(event, dst_cpu);
10013 10014 10015 10016
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10017
	mutex_unlock(&src_ctx->mutex);
10018 10019 10020
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10021
static void sync_child_event(struct perf_event *child_event,
10022
			       struct task_struct *child)
10023
{
10024
	struct perf_event *parent_event = child_event->parent;
10025
	u64 child_val;
10026

10027 10028
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10029

P
Peter Zijlstra 已提交
10030
	child_val = perf_event_count(child_event);
10031 10032 10033 10034

	/*
	 * Add back the child's count to the parent's count:
	 */
10035
	atomic64_add(child_val, &parent_event->child_count);
10036 10037 10038 10039
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10040 10041
}

10042
static void
10043 10044 10045
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10046
{
10047 10048
	struct perf_event *parent_event = child_event->parent;

10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10061 10062 10063
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10064
	if (parent_event)
10065 10066
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10067
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10068
	raw_spin_unlock_irq(&child_ctx->lock);
10069

10070
	/*
10071
	 * Parent events are governed by their filedesc, retain them.
10072
	 */
10073
	if (!parent_event) {
10074
		perf_event_wakeup(child_event);
10075
		return;
10076
	}
10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10097 10098
}

P
Peter Zijlstra 已提交
10099
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10100
{
10101
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10102 10103 10104
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10105

10106
	child_ctx = perf_pin_task_context(child, ctxn);
10107
	if (!child_ctx)
10108 10109
		return;

10110
	/*
10111 10112 10113 10114 10115 10116 10117 10118
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10119
	 */
10120
	mutex_lock(&child_ctx->mutex);
10121 10122

	/*
10123 10124 10125
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10126
	 */
10127
	raw_spin_lock_irq(&child_ctx->lock);
10128
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10129

10130
	/*
10131 10132
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10133
	 */
10134 10135 10136 10137
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10138

10139
	clone_ctx = unclone_ctx(child_ctx);
10140
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10141

10142 10143
	if (clone_ctx)
		put_ctx(clone_ctx);
10144

P
Peter Zijlstra 已提交
10145
	/*
10146 10147 10148
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10149
	 */
10150
	perf_event_task(child, child_ctx, 0);
10151

10152
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10153
		perf_event_exit_event(child_event, child_ctx, child);
10154

10155 10156 10157
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10158 10159
}

P
Peter Zijlstra 已提交
10160 10161
/*
 * When a child task exits, feed back event values to parent events.
10162 10163 10164
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10165 10166 10167
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10168
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10169 10170
	int ctxn;

P
Peter Zijlstra 已提交
10171 10172 10173 10174 10175 10176 10177 10178 10179 10180
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10181
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10182 10183 10184
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10185 10186
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10187 10188 10189 10190 10191 10192 10193 10194

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10195 10196
}

10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10209
	put_event(parent);
10210

P
Peter Zijlstra 已提交
10211
	raw_spin_lock_irq(&ctx->lock);
10212
	perf_group_detach(event);
10213
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10214
	raw_spin_unlock_irq(&ctx->lock);
10215 10216 10217
	free_event(event);
}

10218
/*
P
Peter Zijlstra 已提交
10219
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10220
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10221 10222 10223
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10224
 */
10225
void perf_event_free_task(struct task_struct *task)
10226
{
P
Peter Zijlstra 已提交
10227
	struct perf_event_context *ctx;
10228
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10229
	int ctxn;
10230

P
Peter Zijlstra 已提交
10231 10232 10233 10234
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10235

P
Peter Zijlstra 已提交
10236
		mutex_lock(&ctx->mutex);
10237
again:
P
Peter Zijlstra 已提交
10238 10239 10240
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
10241

P
Peter Zijlstra 已提交
10242 10243 10244
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
10245

P
Peter Zijlstra 已提交
10246 10247 10248
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
10249

P
Peter Zijlstra 已提交
10250
		mutex_unlock(&ctx->mutex);
10251

P
Peter Zijlstra 已提交
10252 10253
		put_ctx(ctx);
	}
10254 10255
}

10256 10257 10258 10259 10260 10261 10262 10263
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10264
struct file *perf_event_get(unsigned int fd)
10265
{
10266
	struct file *file;
10267

10268 10269 10270
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10271

10272 10273 10274 10275
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10276

10277
	return file;
10278 10279 10280 10281 10282 10283 10284 10285 10286 10287
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10299
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10300
	struct perf_event *child_event;
10301
	unsigned long flags;
P
Peter Zijlstra 已提交
10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10314
					   child,
P
Peter Zijlstra 已提交
10315
					   group_leader, parent_event,
10316
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10317 10318
	if (IS_ERR(child_event))
		return child_event;
10319

10320 10321 10322 10323 10324 10325 10326
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10327 10328
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10329
		mutex_unlock(&parent_event->child_mutex);
10330 10331 10332 10333
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10334 10335 10336 10337 10338 10339 10340
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10341
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10358 10359
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10360

10361 10362 10363 10364
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10365
	perf_event__id_header_size(child_event);
10366

P
Peter Zijlstra 已提交
10367 10368 10369
	/*
	 * Link it up in the child's context:
	 */
10370
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10371
	add_event_to_ctx(child_event, child_ctx);
10372
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10404 10405 10406 10407 10408
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10409
		   struct task_struct *child, int ctxn,
10410 10411 10412
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10413
	struct perf_event_context *child_ctx;
10414 10415 10416 10417

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10418 10419
	}

10420
	child_ctx = child->perf_event_ctxp[ctxn];
10421 10422 10423 10424 10425 10426 10427
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10428

10429
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10430 10431
		if (!child_ctx)
			return -ENOMEM;
10432

P
Peter Zijlstra 已提交
10433
		child->perf_event_ctxp[ctxn] = child_ctx;
10434 10435 10436 10437 10438 10439 10440 10441 10442
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10443 10444
}

10445
/*
10446
 * Initialize the perf_event context in task_struct
10447
 */
10448
static int perf_event_init_context(struct task_struct *child, int ctxn)
10449
{
10450
	struct perf_event_context *child_ctx, *parent_ctx;
10451 10452
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10453
	struct task_struct *parent = current;
10454
	int inherited_all = 1;
10455
	unsigned long flags;
10456
	int ret = 0;
10457

P
Peter Zijlstra 已提交
10458
	if (likely(!parent->perf_event_ctxp[ctxn]))
10459 10460
		return 0;

10461
	/*
10462 10463
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10464
	 */
P
Peter Zijlstra 已提交
10465
	parent_ctx = perf_pin_task_context(parent, ctxn);
10466 10467
	if (!parent_ctx)
		return 0;
10468

10469 10470 10471 10472 10473 10474 10475
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10476 10477 10478 10479
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10480
	mutex_lock(&parent_ctx->mutex);
10481 10482 10483 10484 10485

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10486
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10487 10488
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10489 10490 10491
		if (ret)
			break;
	}
10492

10493 10494 10495 10496 10497 10498 10499 10500 10501
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10502
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10503 10504
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10505
		if (ret)
10506
			break;
10507 10508
	}

10509 10510 10511
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10512
	child_ctx = child->perf_event_ctxp[ctxn];
10513

10514
	if (child_ctx && inherited_all) {
10515 10516 10517
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10518 10519 10520
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10521
		 */
P
Peter Zijlstra 已提交
10522
		cloned_ctx = parent_ctx->parent_ctx;
10523 10524
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10525
			child_ctx->parent_gen = parent_ctx->parent_gen;
10526 10527 10528 10529 10530
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10531 10532
	}

P
Peter Zijlstra 已提交
10533
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10534
	mutex_unlock(&parent_ctx->mutex);
10535

10536
	perf_unpin_context(parent_ctx);
10537
	put_ctx(parent_ctx);
10538

10539
	return ret;
10540 10541
}

P
Peter Zijlstra 已提交
10542 10543 10544 10545 10546 10547 10548
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10549 10550 10551 10552
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10553 10554
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10555 10556
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10557
			return ret;
P
Peter Zijlstra 已提交
10558
		}
P
Peter Zijlstra 已提交
10559 10560 10561 10562 10563
	}

	return 0;
}

10564 10565
static void __init perf_event_init_all_cpus(void)
{
10566
	struct swevent_htable *swhash;
10567 10568 10569
	int cpu;

	for_each_possible_cpu(cpu) {
10570 10571
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10572
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10573 10574 10575

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10576 10577

		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10578 10579 10580
	}
}

10581
int perf_event_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10582
{
P
Peter Zijlstra 已提交
10583
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10584

10585
	mutex_lock(&swhash->hlist_mutex);
10586
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10587 10588
		struct swevent_hlist *hlist;

10589 10590 10591
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10592
	}
10593
	mutex_unlock(&swhash->hlist_mutex);
10594
	return 0;
T
Thomas Gleixner 已提交
10595 10596
}

10597
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10598
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10599
{
P
Peter Zijlstra 已提交
10600
	struct perf_event_context *ctx = __info;
10601 10602
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10603

10604 10605
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10606
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10607
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10608
}
P
Peter Zijlstra 已提交
10609 10610 10611 10612 10613 10614 10615 10616 10617

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
10618
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
10619 10620 10621 10622 10623 10624 10625

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}
10626 10627 10628 10629 10630
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
10631

10632
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10633
{
P
Peter Zijlstra 已提交
10634
	perf_event_exit_cpu_context(cpu);
10635
	return 0;
T
Thomas Gleixner 已提交
10636 10637
}

P
Peter Zijlstra 已提交
10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

10658
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
10659
{
10660 10661
	int ret;

P
Peter Zijlstra 已提交
10662 10663
	idr_init(&pmu_idr);

10664
	perf_event_init_all_cpus();
10665
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
10666 10667 10668
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
10669
	perf_tp_register();
10670
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
10671
	register_reboot_notifier(&perf_reboot_notifier);
10672 10673 10674

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10675

10676 10677 10678 10679 10680 10681
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
10682
}
P
Peter Zijlstra 已提交
10683

10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
10695
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10696

P
Peter Zijlstra 已提交
10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
10724 10725

#ifdef CONFIG_CGROUP_PERF
10726 10727
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
10728 10729 10730
{
	struct perf_cgroup *jc;

10731
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

10744
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
10745
{
10746 10747
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
10748 10749 10750 10751 10752 10753 10754
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
10755
	rcu_read_lock();
S
Stephane Eranian 已提交
10756
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10757
	rcu_read_unlock();
S
Stephane Eranian 已提交
10758 10759 10760
	return 0;
}

10761
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
10762
{
10763
	struct task_struct *task;
10764
	struct cgroup_subsys_state *css;
10765

10766
	cgroup_taskset_for_each(task, css, tset)
10767
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
10768 10769
}

10770
struct cgroup_subsys perf_event_cgrp_subsys = {
10771 10772
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
10773
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
10774 10775
};
#endif /* CONFIG_CGROUP_PERF */