core.c 189.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
T
Thomas Gleixner 已提交
44

45 46
#include "internal.h"

47 48
#include <asm/irq_regs.h>

49
struct remote_function_call {
50 51 52 53
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
87 88 89 90
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
111 112 113 114
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
115 116 117 118 119 120 121
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
124 125
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
126

127 128 129 130 131 132 133
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

134 135 136 137 138 139
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
140 141 142 143
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
144
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
145
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
146
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
147

148 149 150
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
151
static atomic_t nr_freq_events __read_mostly;
152

P
Peter Zijlstra 已提交
153 154 155 156
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

157
/*
158
 * perf event paranoia level:
159 160
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
161
 *   1 - disallow cpu events for unpriv
162
 *   2 - disallow kernel profiling for unpriv
163
 */
164
int sysctl_perf_event_paranoid __read_mostly = 1;
165

166 167
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
168 169

/*
170
 * max perf event sample rate
171
 */
172 173 174 175 176 177 178 179 180
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
181 182
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
183 184 185 186 187 188

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
189
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
190
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
191
}
P
Peter Zijlstra 已提交
192

193 194
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
195 196 197 198
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
199
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
200 201 202 203 204

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
223 224 225

	return 0;
}
226

227 228 229 230 231 232 233
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
234
static DEFINE_PER_CPU(u64, running_sample_length);
235

236
static void perf_duration_warn(struct irq_work *w)
237
{
238
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
239
	u64 avg_local_sample_len;
240
	u64 local_samples_len;
241 242 243 244 245 246 247

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
248
			avg_local_sample_len, allowed_ns >> 1,
249 250 251 252 253 254 255
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
256
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
257 258
	u64 avg_local_sample_len;
	u64 local_samples_len;
259

P
Peter Zijlstra 已提交
260
	if (allowed_ns == 0)
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
276
	if (avg_local_sample_len <= allowed_ns)
277 278 279 280 281 282 283 284 285 286
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
287

288 289 290 291 292 293
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
294 295
}

296
static atomic64_t perf_event_id;
297

298 299 300 301
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
302 303 304 305 306
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
307

308
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
309

310
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
311
{
312
	return "pmu";
T
Thomas Gleixner 已提交
313 314
}

315 316 317 318 319
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
320 321 322 323 324 325
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
342 343
#ifdef CONFIG_CGROUP_PERF

344 345 346 347 348 349 350 351 352 353 354
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
355
	struct perf_cgroup_info	__percpu *info;
356 357
};

358 359 360 361 362
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
363 364 365
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
366
	return container_of(task_css(task, perf_event_cgrp_id),
367
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
368 369 370 371 372 373 374 375
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
440 441
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
442
	/*
443 444
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
445
	 */
446
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
447 448
		return;

449 450 451 452 453 454
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
455 456 457
}

static inline void
458 459
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
460 461 462 463
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

464 465 466 467 468 469
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
470 471 472 473
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
474
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
507 508
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516 517

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
518 519
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
520 521 522 523 524 525 526 527 528 529 530

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
531
				WARN_ON_ONCE(cpuctx->cgrp);
532 533 534 535
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
536 537 538 539
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
540 541
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
542 543 544 545 546 547 548 549
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

550 551
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
552
{
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
575 576
}

577 578
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
579
{
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
598 599 600 601 602 603 604 605
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
606 607
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
608

609
	if (!f.file)
S
Stephane Eranian 已提交
610 611
		return -EBADF;

612 613
	css = css_tryget_online_from_dir(f.file->f_dentry,
					 &perf_event_cgrp_subsys);
614 615 616 617
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
631
out:
632
	fdput(f);
S
Stephane Eranian 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

706 707
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
708 709 710
{
}

711 712
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
713 714 715 716 717 718 719 720 721 722 723
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
724 725
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
819
	int timer;
820 821 822 823 824

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

825 826 827 828 829 830 831 832 833
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
856
void perf_pmu_disable(struct pmu *pmu)
857
{
P
Peter Zijlstra 已提交
858 859 860
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
861 862
}

P
Peter Zijlstra 已提交
863
void perf_pmu_enable(struct pmu *pmu)
864
{
P
Peter Zijlstra 已提交
865 866 867
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
868 869
}

870 871 872 873 874 875 876
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
877
static void perf_pmu_rotate_start(struct pmu *pmu)
878
{
P
Peter Zijlstra 已提交
879
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
880
	struct list_head *head = &__get_cpu_var(rotation_list);
881

882
	WARN_ON(!irqs_disabled());
883

884
	if (list_empty(&cpuctx->rotation_list))
885
		list_add(&cpuctx->rotation_list, head);
886 887
}

888
static void get_ctx(struct perf_event_context *ctx)
889
{
890
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
891 892
}

893
static void put_ctx(struct perf_event_context *ctx)
894
{
895 896 897
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
898 899
		if (ctx->task)
			put_task_struct(ctx->task);
900
		kfree_rcu(ctx, rcu_head);
901
	}
902 903
}

904
static void unclone_ctx(struct perf_event_context *ctx)
905 906 907 908 909
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
910
	ctx->generation++;
911 912
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

935
/*
936
 * If we inherit events we want to return the parent event id
937 938
 * to userspace.
 */
939
static u64 primary_event_id(struct perf_event *event)
940
{
941
	u64 id = event->id;
942

943 944
	if (event->parent)
		id = event->parent->id;
945 946 947 948

	return id;
}

949
/*
950
 * Get the perf_event_context for a task and lock it.
951 952 953
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
954
static struct perf_event_context *
P
Peter Zijlstra 已提交
955
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
956
{
957
	struct perf_event_context *ctx;
958

P
Peter Zijlstra 已提交
959
retry:
960 961 962 963 964 965 966 967 968 969 970
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
971
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
972 973 974 975
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
976
		 * perf_event_task_sched_out, though the
977 978 979 980 981 982
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
983
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
984
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
985
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
986 987
			rcu_read_unlock();
			preempt_enable();
988 989
			goto retry;
		}
990 991

		if (!atomic_inc_not_zero(&ctx->refcount)) {
992
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
993 994
			ctx = NULL;
		}
995 996
	}
	rcu_read_unlock();
997
	preempt_enable();
998 999 1000 1001 1002 1003 1004 1005
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1006 1007
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1008
{
1009
	struct perf_event_context *ctx;
1010 1011
	unsigned long flags;

P
Peter Zijlstra 已提交
1012
	ctx = perf_lock_task_context(task, ctxn, &flags);
1013 1014
	if (ctx) {
		++ctx->pin_count;
1015
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1016 1017 1018 1019
	}
	return ctx;
}

1020
static void perf_unpin_context(struct perf_event_context *ctx)
1021 1022 1023
{
	unsigned long flags;

1024
	raw_spin_lock_irqsave(&ctx->lock, flags);
1025
	--ctx->pin_count;
1026
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1027 1028
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1040 1041 1042
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1043 1044 1045 1046

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1047 1048 1049
	return ctx ? ctx->time : 0;
}

1050 1051
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1052
 * The caller of this function needs to hold the ctx->lock.
1053 1054 1055 1056 1057 1058 1059 1060 1061
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1073
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1074 1075
	else if (ctx->is_active)
		run_end = ctx->time;
1076 1077 1078 1079
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1080 1081 1082 1083

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1084
		run_end = perf_event_time(event);
1085 1086

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1087

1088 1089
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1102 1103 1104 1105 1106 1107 1108 1109 1110
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1111
/*
1112
 * Add a event from the lists for its context.
1113 1114
 * Must be called with ctx->mutex and ctx->lock held.
 */
1115
static void
1116
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1117
{
1118 1119
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1120 1121

	/*
1122 1123 1124
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1125
	 */
1126
	if (event->group_leader == event) {
1127 1128
		struct list_head *list;

1129 1130 1131
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1132 1133
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1134
	}
P
Peter Zijlstra 已提交
1135

1136
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1137 1138
		ctx->nr_cgroups++;

1139 1140 1141
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1142
	list_add_rcu(&event->event_entry, &ctx->event_list);
1143
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1144
		perf_pmu_rotate_start(ctx->pmu);
1145 1146
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1147
		ctx->nr_stat++;
1148 1149

	ctx->generation++;
1150 1151
}

J
Jiri Olsa 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1200 1201 1202 1203 1204 1205
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1206 1207 1208
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1209 1210 1211
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1212 1213 1214
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1215 1216 1217
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1218 1219 1220 1221 1222 1223 1224 1225 1226
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1227 1228 1229 1230 1231 1232
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1233 1234 1235
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1236 1237 1238 1239 1240 1241 1242 1243 1244
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1245
	event->id_header_size = size;
1246 1247
}

1248 1249
static void perf_group_attach(struct perf_event *event)
{
1250
	struct perf_event *group_leader = event->group_leader, *pos;
1251

P
Peter Zijlstra 已提交
1252 1253 1254 1255 1256 1257
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1269 1270 1271 1272 1273

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1274 1275
}

1276
/*
1277
 * Remove a event from the lists for its context.
1278
 * Must be called with ctx->mutex and ctx->lock held.
1279
 */
1280
static void
1281
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1282
{
1283
	struct perf_cpu_context *cpuctx;
1284 1285 1286 1287
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1288
		return;
1289 1290 1291

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1292
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1293
		ctx->nr_cgroups--;
1294 1295 1296 1297 1298 1299 1300 1301 1302
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1303

1304 1305 1306
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1307 1308
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1309
		ctx->nr_stat--;
1310

1311
	list_del_rcu(&event->event_entry);
1312

1313 1314
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1315

1316
	update_group_times(event);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1327 1328

	ctx->generation++;
1329 1330
}

1331
static void perf_group_detach(struct perf_event *event)
1332 1333
{
	struct perf_event *sibling, *tmp;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1350
		goto out;
1351 1352 1353 1354
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1355

1356
	/*
1357 1358
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1359
	 * to whatever list we are on.
1360
	 */
1361
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1362 1363
		if (list)
			list_move_tail(&sibling->group_entry, list);
1364
		sibling->group_leader = sibling;
1365 1366 1367

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1368
	}
1369 1370 1371 1372 1373 1374

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1375 1376
}

1377 1378 1379
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1380 1381
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1382 1383
}

1384 1385
static void
event_sched_out(struct perf_event *event,
1386
		  struct perf_cpu_context *cpuctx,
1387
		  struct perf_event_context *ctx)
1388
{
1389
	u64 tstamp = perf_event_time(event);
1390 1391 1392 1393 1394 1395 1396 1397 1398
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1399
		delta = tstamp - event->tstamp_stopped;
1400
		event->tstamp_running += delta;
1401
		event->tstamp_stopped = tstamp;
1402 1403
	}

1404
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1405
		return;
1406

1407 1408
	perf_pmu_disable(event->pmu);

1409 1410 1411 1412
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1413
	}
1414
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1415
	event->pmu->del(event, 0);
1416
	event->oncpu = -1;
1417

1418
	if (!is_software_event(event))
1419 1420
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1421 1422
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1423
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1424
		cpuctx->exclusive = 0;
1425 1426

	perf_pmu_enable(event->pmu);
1427 1428
}

1429
static void
1430
group_sched_out(struct perf_event *group_event,
1431
		struct perf_cpu_context *cpuctx,
1432
		struct perf_event_context *ctx)
1433
{
1434
	struct perf_event *event;
1435
	int state = group_event->state;
1436

1437
	event_sched_out(group_event, cpuctx, ctx);
1438 1439 1440 1441

	/*
	 * Schedule out siblings (if any):
	 */
1442 1443
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1444

1445
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1446 1447 1448
		cpuctx->exclusive = 0;
}

1449 1450 1451 1452 1453
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1454
/*
1455
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1456
 *
1457
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1458 1459
 * remove it from the context list.
 */
1460
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1461
{
1462 1463
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1464
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1465
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1466

1467
	raw_spin_lock(&ctx->lock);
1468
	event_sched_out(event, cpuctx, ctx);
1469 1470
	if (re->detach_group)
		perf_group_detach(event);
1471
	list_del_event(event, ctx);
1472 1473 1474 1475
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1476
	raw_spin_unlock(&ctx->lock);
1477 1478

	return 0;
T
Thomas Gleixner 已提交
1479 1480 1481 1482
}


/*
1483
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1484
 *
1485
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1486
 * call when the task is on a CPU.
1487
 *
1488 1489
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1490 1491
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1492
 * When called from perf_event_exit_task, it's OK because the
1493
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1494
 */
1495
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1496
{
1497
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1498
	struct task_struct *task = ctx->task;
1499 1500 1501 1502
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1503

1504 1505
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1506 1507
	if (!task) {
		/*
1508
		 * Per cpu events are removed via an smp call and
1509
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1510
		 */
1511
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1512 1513 1514 1515
		return;
	}

retry:
1516
	if (!task_function_call(task, __perf_remove_from_context, &re))
1517
		return;
T
Thomas Gleixner 已提交
1518

1519
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1520
	/*
1521 1522
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1523
	 */
1524
	if (ctx->is_active) {
1525
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1526 1527 1528 1529
		goto retry;
	}

	/*
1530 1531
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1532
	 */
1533 1534
	if (detach_group)
		perf_group_detach(event);
1535
	list_del_event(event, ctx);
1536
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1537 1538
}

1539
/*
1540
 * Cross CPU call to disable a performance event
1541
 */
1542
int __perf_event_disable(void *info)
1543
{
1544 1545
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1546
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1547 1548

	/*
1549 1550
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1551 1552 1553
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1554
	 */
1555
	if (ctx->task && cpuctx->task_ctx != ctx)
1556
		return -EINVAL;
1557

1558
	raw_spin_lock(&ctx->lock);
1559 1560

	/*
1561
	 * If the event is on, turn it off.
1562 1563
	 * If it is in error state, leave it in error state.
	 */
1564
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1565
		update_context_time(ctx);
S
Stephane Eranian 已提交
1566
		update_cgrp_time_from_event(event);
1567 1568 1569
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1570
		else
1571 1572
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1573 1574
	}

1575
	raw_spin_unlock(&ctx->lock);
1576 1577

	return 0;
1578 1579 1580
}

/*
1581
 * Disable a event.
1582
 *
1583 1584
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1585
 * remains valid.  This condition is satisifed when called through
1586 1587 1588 1589
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1590
 * is the current context on this CPU and preemption is disabled,
1591
 * hence we can't get into perf_event_task_sched_out for this context.
1592
 */
1593
void perf_event_disable(struct perf_event *event)
1594
{
1595
	struct perf_event_context *ctx = event->ctx;
1596 1597 1598 1599
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1600
		 * Disable the event on the cpu that it's on
1601
		 */
1602
		cpu_function_call(event->cpu, __perf_event_disable, event);
1603 1604 1605
		return;
	}

P
Peter Zijlstra 已提交
1606
retry:
1607 1608
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1609

1610
	raw_spin_lock_irq(&ctx->lock);
1611
	/*
1612
	 * If the event is still active, we need to retry the cross-call.
1613
	 */
1614
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1615
		raw_spin_unlock_irq(&ctx->lock);
1616 1617 1618 1619 1620
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1621 1622 1623 1624 1625 1626 1627
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1628 1629 1630
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1631
	}
1632
	raw_spin_unlock_irq(&ctx->lock);
1633
}
1634
EXPORT_SYMBOL_GPL(perf_event_disable);
1635

S
Stephane Eranian 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1671 1672 1673 1674
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1675
static int
1676
event_sched_in(struct perf_event *event,
1677
		 struct perf_cpu_context *cpuctx,
1678
		 struct perf_event_context *ctx)
1679
{
1680
	u64 tstamp = perf_event_time(event);
1681
	int ret = 0;
1682

1683 1684
	lockdep_assert_held(&ctx->lock);

1685
	if (event->state <= PERF_EVENT_STATE_OFF)
1686 1687
		return 0;

1688
	event->state = PERF_EVENT_STATE_ACTIVE;
1689
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1701 1702 1703 1704 1705
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1706 1707
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1708
	if (event->pmu->add(event, PERF_EF_START)) {
1709 1710
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1711 1712
		ret = -EAGAIN;
		goto out;
1713 1714
	}

1715
	event->tstamp_running += tstamp - event->tstamp_stopped;
1716

S
Stephane Eranian 已提交
1717
	perf_set_shadow_time(event, ctx, tstamp);
1718

1719
	if (!is_software_event(event))
1720
		cpuctx->active_oncpu++;
1721
	ctx->nr_active++;
1722 1723
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1724

1725
	if (event->attr.exclusive)
1726 1727
		cpuctx->exclusive = 1;

1728 1729 1730 1731
out:
	perf_pmu_enable(event->pmu);

	return ret;
1732 1733
}

1734
static int
1735
group_sched_in(struct perf_event *group_event,
1736
	       struct perf_cpu_context *cpuctx,
1737
	       struct perf_event_context *ctx)
1738
{
1739
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1740
	struct pmu *pmu = ctx->pmu;
1741 1742
	u64 now = ctx->time;
	bool simulate = false;
1743

1744
	if (group_event->state == PERF_EVENT_STATE_OFF)
1745 1746
		return 0;

P
Peter Zijlstra 已提交
1747
	pmu->start_txn(pmu);
1748

1749
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1750
		pmu->cancel_txn(pmu);
1751
		perf_cpu_hrtimer_restart(cpuctx);
1752
		return -EAGAIN;
1753
	}
1754 1755 1756 1757

	/*
	 * Schedule in siblings as one group (if any):
	 */
1758
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1759
		if (event_sched_in(event, cpuctx, ctx)) {
1760
			partial_group = event;
1761 1762 1763 1764
			goto group_error;
		}
	}

1765
	if (!pmu->commit_txn(pmu))
1766
		return 0;
1767

1768 1769 1770 1771
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1782
	 */
1783 1784
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1785 1786 1787 1788 1789 1790 1791 1792
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1793
	}
1794
	event_sched_out(group_event, cpuctx, ctx);
1795

P
Peter Zijlstra 已提交
1796
	pmu->cancel_txn(pmu);
1797

1798 1799
	perf_cpu_hrtimer_restart(cpuctx);

1800 1801 1802
	return -EAGAIN;
}

1803
/*
1804
 * Work out whether we can put this event group on the CPU now.
1805
 */
1806
static int group_can_go_on(struct perf_event *event,
1807 1808 1809 1810
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1811
	 * Groups consisting entirely of software events can always go on.
1812
	 */
1813
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1814 1815 1816
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1817
	 * events can go on.
1818 1819 1820 1821 1822
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1823
	 * events on the CPU, it can't go on.
1824
	 */
1825
	if (event->attr.exclusive && cpuctx->active_oncpu)
1826 1827 1828 1829 1830 1831 1832 1833
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1834 1835
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1836
{
1837 1838
	u64 tstamp = perf_event_time(event);

1839
	list_add_event(event, ctx);
1840
	perf_group_attach(event);
1841 1842 1843
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1844 1845
}

1846 1847 1848 1849 1850 1851
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1865
/*
1866
 * Cross CPU call to install and enable a performance event
1867 1868
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1869
 */
1870
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1871
{
1872 1873
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1874
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1875 1876 1877
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1878
	perf_ctx_lock(cpuctx, task_ctx);
1879
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1880 1881

	/*
1882
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1883
	 */
1884
	if (task_ctx)
1885
		task_ctx_sched_out(task_ctx);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1900 1901
		task = task_ctx->task;
	}
1902

1903
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1904

1905
	update_context_time(ctx);
S
Stephane Eranian 已提交
1906 1907 1908 1909 1910 1911
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1912

1913
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1914

1915
	/*
1916
	 * Schedule everything back in
1917
	 */
1918
	perf_event_sched_in(cpuctx, task_ctx, task);
1919 1920 1921

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1922 1923

	return 0;
T
Thomas Gleixner 已提交
1924 1925 1926
}

/*
1927
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1928
 *
1929 1930
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1931
 *
1932
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1933 1934 1935 1936
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1937 1938
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1939 1940 1941 1942
			int cpu)
{
	struct task_struct *task = ctx->task;

1943 1944
	lockdep_assert_held(&ctx->mutex);

1945
	event->ctx = ctx;
1946 1947
	if (event->cpu != -1)
		event->cpu = cpu;
1948

T
Thomas Gleixner 已提交
1949 1950
	if (!task) {
		/*
1951
		 * Per cpu events are installed via an smp call and
1952
		 * the install is always successful.
T
Thomas Gleixner 已提交
1953
		 */
1954
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1955 1956 1957 1958
		return;
	}

retry:
1959 1960
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1961

1962
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1963
	/*
1964 1965
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1966
	 */
1967
	if (ctx->is_active) {
1968
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1969 1970 1971 1972
		goto retry;
	}

	/*
1973 1974
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1975
	 */
1976
	add_event_to_ctx(event, ctx);
1977
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1978 1979
}

1980
/*
1981
 * Put a event into inactive state and update time fields.
1982 1983 1984 1985 1986 1987
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1988
static void __perf_event_mark_enabled(struct perf_event *event)
1989
{
1990
	struct perf_event *sub;
1991
	u64 tstamp = perf_event_time(event);
1992

1993
	event->state = PERF_EVENT_STATE_INACTIVE;
1994
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1995
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1996 1997
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1998
	}
1999 2000
}

2001
/*
2002
 * Cross CPU call to enable a performance event
2003
 */
2004
static int __perf_event_enable(void *info)
2005
{
2006 2007 2008
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2009
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2010
	int err;
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2022
		return -EINVAL;
2023

2024
	raw_spin_lock(&ctx->lock);
2025
	update_context_time(ctx);
2026

2027
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2028
		goto unlock;
S
Stephane Eranian 已提交
2029 2030 2031 2032

	/*
	 * set current task's cgroup time reference point
	 */
2033
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2034

2035
	__perf_event_mark_enabled(event);
2036

S
Stephane Eranian 已提交
2037 2038 2039
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2040
		goto unlock;
S
Stephane Eranian 已提交
2041
	}
2042

2043
	/*
2044
	 * If the event is in a group and isn't the group leader,
2045
	 * then don't put it on unless the group is on.
2046
	 */
2047
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2048
		goto unlock;
2049

2050
	if (!group_can_go_on(event, cpuctx, 1)) {
2051
		err = -EEXIST;
2052
	} else {
2053
		if (event == leader)
2054
			err = group_sched_in(event, cpuctx, ctx);
2055
		else
2056
			err = event_sched_in(event, cpuctx, ctx);
2057
	}
2058 2059 2060

	if (err) {
		/*
2061
		 * If this event can't go on and it's part of a
2062 2063
		 * group, then the whole group has to come off.
		 */
2064
		if (leader != event) {
2065
			group_sched_out(leader, cpuctx, ctx);
2066 2067
			perf_cpu_hrtimer_restart(cpuctx);
		}
2068
		if (leader->attr.pinned) {
2069
			update_group_times(leader);
2070
			leader->state = PERF_EVENT_STATE_ERROR;
2071
		}
2072 2073
	}

P
Peter Zijlstra 已提交
2074
unlock:
2075
	raw_spin_unlock(&ctx->lock);
2076 2077

	return 0;
2078 2079 2080
}

/*
2081
 * Enable a event.
2082
 *
2083 2084
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2085
 * remains valid.  This condition is satisfied when called through
2086 2087
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2088
 */
2089
void perf_event_enable(struct perf_event *event)
2090
{
2091
	struct perf_event_context *ctx = event->ctx;
2092 2093 2094 2095
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2096
		 * Enable the event on the cpu that it's on
2097
		 */
2098
		cpu_function_call(event->cpu, __perf_event_enable, event);
2099 2100 2101
		return;
	}

2102
	raw_spin_lock_irq(&ctx->lock);
2103
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2104 2105 2106
		goto out;

	/*
2107 2108
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2109 2110 2111 2112
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2113 2114
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2115

P
Peter Zijlstra 已提交
2116
retry:
2117
	if (!ctx->is_active) {
2118
		__perf_event_mark_enabled(event);
2119 2120 2121
		goto out;
	}

2122
	raw_spin_unlock_irq(&ctx->lock);
2123 2124 2125

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2126

2127
	raw_spin_lock_irq(&ctx->lock);
2128 2129

	/*
2130
	 * If the context is active and the event is still off,
2131 2132
	 * we need to retry the cross-call.
	 */
2133 2134 2135 2136 2137 2138
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2139
		goto retry;
2140
	}
2141

P
Peter Zijlstra 已提交
2142
out:
2143
	raw_spin_unlock_irq(&ctx->lock);
2144
}
2145
EXPORT_SYMBOL_GPL(perf_event_enable);
2146

2147
int perf_event_refresh(struct perf_event *event, int refresh)
2148
{
2149
	/*
2150
	 * not supported on inherited events
2151
	 */
2152
	if (event->attr.inherit || !is_sampling_event(event))
2153 2154
		return -EINVAL;

2155 2156
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2157 2158

	return 0;
2159
}
2160
EXPORT_SYMBOL_GPL(perf_event_refresh);
2161

2162 2163 2164
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2165
{
2166
	struct perf_event *event;
2167
	int is_active = ctx->is_active;
2168

2169
	ctx->is_active &= ~event_type;
2170
	if (likely(!ctx->nr_events))
2171 2172
		return;

2173
	update_context_time(ctx);
S
Stephane Eranian 已提交
2174
	update_cgrp_time_from_cpuctx(cpuctx);
2175
	if (!ctx->nr_active)
2176
		return;
2177

P
Peter Zijlstra 已提交
2178
	perf_pmu_disable(ctx->pmu);
2179
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2180 2181
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2182
	}
2183

2184
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2185
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2186
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2187
	}
P
Peter Zijlstra 已提交
2188
	perf_pmu_enable(ctx->pmu);
2189 2190
}

2191
/*
2192 2193 2194 2195 2196 2197
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2198
 */
2199 2200
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2201
{
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2224 2225
}

2226 2227
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2228 2229 2230
{
	u64 value;

2231
	if (!event->attr.inherit_stat)
2232 2233 2234
		return;

	/*
2235
	 * Update the event value, we cannot use perf_event_read()
2236 2237
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2238
	 * we know the event must be on the current CPU, therefore we
2239 2240
	 * don't need to use it.
	 */
2241 2242
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2243 2244
		event->pmu->read(event);
		/* fall-through */
2245

2246 2247
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2248 2249 2250 2251 2252 2253 2254
		break;

	default:
		break;
	}

	/*
2255
	 * In order to keep per-task stats reliable we need to flip the event
2256 2257
	 * values when we flip the contexts.
	 */
2258 2259 2260
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2261

2262 2263
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2264

2265
	/*
2266
	 * Since we swizzled the values, update the user visible data too.
2267
	 */
2268 2269
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2270 2271
}

2272 2273
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2274
{
2275
	struct perf_event *event, *next_event;
2276 2277 2278 2279

	if (!ctx->nr_stat)
		return;

2280 2281
	update_context_time(ctx);

2282 2283
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2284

2285 2286
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2287

2288 2289
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2290

2291
		__perf_event_sync_stat(event, next_event);
2292

2293 2294
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2295 2296 2297
	}
}

2298 2299
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2300
{
P
Peter Zijlstra 已提交
2301
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2302
	struct perf_event_context *next_ctx;
2303
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2304
	struct perf_cpu_context *cpuctx;
2305
	int do_switch = 1;
T
Thomas Gleixner 已提交
2306

P
Peter Zijlstra 已提交
2307 2308
	if (likely(!ctx))
		return;
2309

P
Peter Zijlstra 已提交
2310 2311
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2312 2313
		return;

2314
	rcu_read_lock();
P
Peter Zijlstra 已提交
2315
	next_ctx = next->perf_event_ctxp[ctxn];
2316 2317 2318 2319 2320 2321 2322
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2323
	if (!parent || !next_parent)
2324 2325 2326
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2327 2328 2329 2330 2331 2332 2333 2334 2335
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2336 2337
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2338
		if (context_equiv(ctx, next_ctx)) {
2339 2340
			/*
			 * XXX do we need a memory barrier of sorts
2341
			 * wrt to rcu_dereference() of perf_event_ctxp
2342
			 */
P
Peter Zijlstra 已提交
2343 2344
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2345 2346 2347
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2348

2349
			perf_event_sync_stat(ctx, next_ctx);
2350
		}
2351 2352
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2353
	}
2354
unlock:
2355
	rcu_read_unlock();
2356

2357
	if (do_switch) {
2358
		raw_spin_lock(&ctx->lock);
2359
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2360
		cpuctx->task_ctx = NULL;
2361
		raw_spin_unlock(&ctx->lock);
2362
	}
T
Thomas Gleixner 已提交
2363 2364
}

P
Peter Zijlstra 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2379 2380
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2381 2382 2383 2384 2385
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2386 2387 2388 2389 2390 2391 2392

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2393
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2394 2395
}

2396
static void task_ctx_sched_out(struct perf_event_context *ctx)
2397
{
P
Peter Zijlstra 已提交
2398
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2399

2400 2401
	if (!cpuctx->task_ctx)
		return;
2402 2403 2404 2405

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2406
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2407 2408 2409
	cpuctx->task_ctx = NULL;
}

2410 2411 2412 2413 2414 2415 2416
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2417 2418
}

2419
static void
2420
ctx_pinned_sched_in(struct perf_event_context *ctx,
2421
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2422
{
2423
	struct perf_event *event;
T
Thomas Gleixner 已提交
2424

2425 2426
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2427
			continue;
2428
		if (!event_filter_match(event))
2429 2430
			continue;

S
Stephane Eranian 已提交
2431 2432 2433 2434
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2435
		if (group_can_go_on(event, cpuctx, 1))
2436
			group_sched_in(event, cpuctx, ctx);
2437 2438 2439 2440 2441

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2442 2443 2444
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2445
		}
2446
	}
2447 2448 2449 2450
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2451
		      struct perf_cpu_context *cpuctx)
2452 2453 2454
{
	struct perf_event *event;
	int can_add_hw = 1;
2455

2456 2457 2458
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2459
			continue;
2460 2461
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2462
		 * of events:
2463
		 */
2464
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2465 2466
			continue;

S
Stephane Eranian 已提交
2467 2468 2469 2470
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2471
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2472
			if (group_sched_in(event, cpuctx, ctx))
2473
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2474
		}
T
Thomas Gleixner 已提交
2475
	}
2476 2477 2478 2479 2480
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2481 2482
	     enum event_type_t event_type,
	     struct task_struct *task)
2483
{
S
Stephane Eranian 已提交
2484
	u64 now;
2485
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2486

2487
	ctx->is_active |= event_type;
2488
	if (likely(!ctx->nr_events))
2489
		return;
2490

S
Stephane Eranian 已提交
2491 2492
	now = perf_clock();
	ctx->timestamp = now;
2493
	perf_cgroup_set_timestamp(task, ctx);
2494 2495 2496 2497
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2498
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2499
		ctx_pinned_sched_in(ctx, cpuctx);
2500 2501

	/* Then walk through the lower prio flexible groups */
2502
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2503
		ctx_flexible_sched_in(ctx, cpuctx);
2504 2505
}

2506
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2507 2508
			     enum event_type_t event_type,
			     struct task_struct *task)
2509 2510 2511
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2512
	ctx_sched_in(ctx, cpuctx, event_type, task);
2513 2514
}

S
Stephane Eranian 已提交
2515 2516
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2517
{
P
Peter Zijlstra 已提交
2518
	struct perf_cpu_context *cpuctx;
2519

P
Peter Zijlstra 已提交
2520
	cpuctx = __get_cpu_context(ctx);
2521 2522 2523
	if (cpuctx->task_ctx == ctx)
		return;

2524
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2525
	perf_pmu_disable(ctx->pmu);
2526 2527 2528 2529 2530 2531 2532
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2533 2534
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2535

2536 2537
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2538 2539 2540
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2541 2542 2543 2544
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2545
	perf_pmu_rotate_start(ctx->pmu);
2546 2547
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2617 2618
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2628
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2629
	}
S
Stephane Eranian 已提交
2630 2631 2632 2633 2634 2635
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2636
		perf_cgroup_sched_in(prev, task);
2637 2638 2639 2640

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2641 2642
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2670
#define REDUCE_FLS(a, b)		\
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2710 2711 2712
	if (!divisor)
		return dividend;

2713 2714 2715
	return div64_u64(dividend, divisor);
}

2716 2717 2718
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2719
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2720
{
2721
	struct hw_perf_event *hwc = &event->hw;
2722
	s64 period, sample_period;
2723 2724
	s64 delta;

2725
	period = perf_calculate_period(event, nsec, count);
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2736

2737
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2738 2739 2740
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2741
		local64_set(&hwc->period_left, 0);
2742 2743 2744

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2745
	}
2746 2747
}

2748 2749 2750 2751 2752 2753 2754
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2755
{
2756 2757
	struct perf_event *event;
	struct hw_perf_event *hwc;
2758
	u64 now, period = TICK_NSEC;
2759
	s64 delta;
2760

2761 2762 2763 2764 2765 2766
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2767 2768
		return;

2769
	raw_spin_lock(&ctx->lock);
2770
	perf_pmu_disable(ctx->pmu);
2771

2772
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2773
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2774 2775
			continue;

2776
		if (!event_filter_match(event))
2777 2778
			continue;

2779 2780
		perf_pmu_disable(event->pmu);

2781
		hwc = &event->hw;
2782

2783
		if (hwc->interrupts == MAX_INTERRUPTS) {
2784
			hwc->interrupts = 0;
2785
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2786
			event->pmu->start(event, 0);
2787 2788
		}

2789
		if (!event->attr.freq || !event->attr.sample_freq)
2790
			goto next;
2791

2792 2793 2794 2795 2796
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2797
		now = local64_read(&event->count);
2798 2799
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2800

2801 2802 2803
		/*
		 * restart the event
		 * reload only if value has changed
2804 2805 2806
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2807
		 */
2808
		if (delta > 0)
2809
			perf_adjust_period(event, period, delta, false);
2810 2811

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2812 2813
	next:
		perf_pmu_enable(event->pmu);
2814
	}
2815

2816
	perf_pmu_enable(ctx->pmu);
2817
	raw_spin_unlock(&ctx->lock);
2818 2819
}

2820
/*
2821
 * Round-robin a context's events:
2822
 */
2823
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2824
{
2825 2826 2827 2828 2829 2830
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2831 2832
}

2833
/*
2834 2835 2836
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2837
 */
2838
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2839
{
P
Peter Zijlstra 已提交
2840
	struct perf_event_context *ctx = NULL;
2841
	int rotate = 0, remove = 1;
2842

2843
	if (cpuctx->ctx.nr_events) {
2844
		remove = 0;
2845 2846 2847
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2848

P
Peter Zijlstra 已提交
2849
	ctx = cpuctx->task_ctx;
2850
	if (ctx && ctx->nr_events) {
2851
		remove = 0;
2852 2853 2854
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2855

2856
	if (!rotate)
2857 2858
		goto done;

2859
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2860
	perf_pmu_disable(cpuctx->ctx.pmu);
2861

2862 2863 2864
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2865

2866 2867 2868
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2869

2870
	perf_event_sched_in(cpuctx, ctx, current);
2871

2872 2873
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2874
done:
2875 2876
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2877 2878

	return rotate;
2879 2880
}

2881 2882 2883
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2884
	if (atomic_read(&nr_freq_events) ||
2885
	    __this_cpu_read(perf_throttled_count))
2886
		return false;
2887 2888
	else
		return true;
2889 2890 2891
}
#endif

2892 2893 2894 2895
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2896 2897
	struct perf_event_context *ctx;
	int throttled;
2898

2899 2900
	WARN_ON(!irqs_disabled());

2901 2902 2903
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2904
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2905 2906 2907 2908 2909 2910
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2911
	}
T
Thomas Gleixner 已提交
2912 2913
}

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2924
	__perf_event_mark_enabled(event);
2925 2926 2927 2928

	return 1;
}

2929
/*
2930
 * Enable all of a task's events that have been marked enable-on-exec.
2931 2932
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2933
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2934
{
2935
	struct perf_event *event;
2936 2937
	unsigned long flags;
	int enabled = 0;
2938
	int ret;
2939 2940

	local_irq_save(flags);
2941
	if (!ctx || !ctx->nr_events)
2942 2943
		goto out;

2944 2945 2946 2947 2948 2949 2950
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2951
	perf_cgroup_sched_out(current, NULL);
2952

2953
	raw_spin_lock(&ctx->lock);
2954
	task_ctx_sched_out(ctx);
2955

2956
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2957 2958 2959
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2960 2961 2962
	}

	/*
2963
	 * Unclone this context if we enabled any event.
2964
	 */
2965 2966
	if (enabled)
		unclone_ctx(ctx);
2967

2968
	raw_spin_unlock(&ctx->lock);
2969

2970 2971 2972
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2973
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2974
out:
2975 2976 2977
	local_irq_restore(flags);
}

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
2994
/*
2995
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2996
 */
2997
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2998
{
2999 3000
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3001
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3002

3003 3004 3005 3006
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3007 3008
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3009 3010 3011 3012
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3013
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3014
	if (ctx->is_active) {
3015
		update_context_time(ctx);
S
Stephane Eranian 已提交
3016 3017
		update_cgrp_time_from_event(event);
	}
3018
	update_event_times(event);
3019 3020
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3021
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3022 3023
}

P
Peter Zijlstra 已提交
3024 3025
static inline u64 perf_event_count(struct perf_event *event)
{
3026
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3027 3028
}

3029
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3030 3031
{
	/*
3032 3033
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3034
	 */
3035 3036 3037 3038
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3039 3040 3041
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3042
		raw_spin_lock_irqsave(&ctx->lock, flags);
3043 3044 3045 3046 3047
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3048
		if (ctx->is_active) {
3049
			update_context_time(ctx);
S
Stephane Eranian 已提交
3050 3051
			update_cgrp_time_from_event(event);
		}
3052
		update_event_times(event);
3053
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3054 3055
	}

P
Peter Zijlstra 已提交
3056
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3057 3058
}

3059
/*
3060
 * Initialize the perf_event context in a task_struct:
3061
 */
3062
static void __perf_event_init_context(struct perf_event_context *ctx)
3063
{
3064
	raw_spin_lock_init(&ctx->lock);
3065
	mutex_init(&ctx->mutex);
3066 3067
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3068 3069
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3085
	}
3086 3087 3088
	ctx->pmu = pmu;

	return ctx;
3089 3090
}

3091 3092 3093 3094 3095
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3096 3097

	rcu_read_lock();
3098
	if (!vpid)
T
Thomas Gleixner 已提交
3099 3100
		task = current;
	else
3101
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3102 3103 3104 3105 3106 3107 3108 3109
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3110 3111 3112 3113
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3114 3115 3116 3117 3118 3119 3120
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3121 3122 3123
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3124
static struct perf_event_context *
M
Matt Helsley 已提交
3125
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3126
{
3127
	struct perf_event_context *ctx;
3128
	struct perf_cpu_context *cpuctx;
3129
	unsigned long flags;
P
Peter Zijlstra 已提交
3130
	int ctxn, err;
T
Thomas Gleixner 已提交
3131

3132
	if (!task) {
3133
		/* Must be root to operate on a CPU event: */
3134
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3135 3136 3137
			return ERR_PTR(-EACCES);

		/*
3138
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3139 3140 3141
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3142
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3143 3144
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3145
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3146
		ctx = &cpuctx->ctx;
3147
		get_ctx(ctx);
3148
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3149 3150 3151 3152

		return ctx;
	}

P
Peter Zijlstra 已提交
3153 3154 3155 3156 3157
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3158
retry:
P
Peter Zijlstra 已提交
3159
	ctx = perf_lock_task_context(task, ctxn, &flags);
3160
	if (ctx) {
3161
		unclone_ctx(ctx);
3162
		++ctx->pin_count;
3163
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3164
	} else {
3165
		ctx = alloc_perf_context(pmu, task);
3166 3167 3168
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3180
		else {
3181
			get_ctx(ctx);
3182
			++ctx->pin_count;
3183
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3184
		}
3185 3186 3187
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3188
			put_ctx(ctx);
3189 3190 3191 3192

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3193 3194 3195
		}
	}

T
Thomas Gleixner 已提交
3196
	return ctx;
3197

P
Peter Zijlstra 已提交
3198
errout:
3199
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3200 3201
}

L
Li Zefan 已提交
3202 3203
static void perf_event_free_filter(struct perf_event *event);

3204
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3205
{
3206
	struct perf_event *event;
P
Peter Zijlstra 已提交
3207

3208 3209 3210
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3211
	perf_event_free_filter(event);
3212
	kfree(event);
P
Peter Zijlstra 已提交
3213 3214
}

3215
static void ring_buffer_put(struct ring_buffer *rb);
3216 3217
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3218

3219
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3220
{
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3231

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3245 3246
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3247 3248 3249 3250 3251 3252 3253
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3254

3255 3256
static void __free_event(struct perf_event *event)
{
3257
	if (!event->parent) {
3258 3259
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3260
	}
3261

3262 3263 3264 3265 3266 3267
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3268 3269 3270
	if (event->pmu)
		module_put(event->pmu->module);

3271 3272
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3273 3274

static void _free_event(struct perf_event *event)
3275
{
3276
	irq_work_sync(&event->pending);
3277

3278
	unaccount_event(event);
3279

3280
	if (event->rb) {
3281 3282 3283 3284 3285 3286 3287
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3288
		ring_buffer_attach(event, NULL);
3289
		mutex_unlock(&event->mmap_mutex);
3290 3291
	}

S
Stephane Eranian 已提交
3292 3293 3294
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3295
	__free_event(event);
3296 3297
}

P
Peter Zijlstra 已提交
3298 3299 3300 3301 3302
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3303
{
P
Peter Zijlstra 已提交
3304 3305 3306 3307 3308 3309
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3310

P
Peter Zijlstra 已提交
3311
	_free_event(event);
T
Thomas Gleixner 已提交
3312 3313
}

3314 3315 3316
/*
 * Called when the last reference to the file is gone.
 */
3317
static void put_event(struct perf_event *event)
3318
{
P
Peter Zijlstra 已提交
3319
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3320
	struct task_struct *owner;
3321

3322 3323
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3324

P
Peter Zijlstra 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

P
Peter Zijlstra 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	WARN_ON_ONCE(ctx->parent_ctx);
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3376 3377
}

P
Peter Zijlstra 已提交
3378 3379 3380 3381 3382 3383 3384
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3385 3386 3387 3388
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3389 3390
}

3391
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3392
{
3393
	struct perf_event *child;
3394 3395
	u64 total = 0;

3396 3397 3398
	*enabled = 0;
	*running = 0;

3399
	mutex_lock(&event->child_mutex);
3400
	total += perf_event_read(event);
3401 3402 3403 3404 3405 3406
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3407
		total += perf_event_read(child);
3408 3409 3410
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3411
	mutex_unlock(&event->child_mutex);
3412 3413 3414

	return total;
}
3415
EXPORT_SYMBOL_GPL(perf_event_read_value);
3416

3417
static int perf_event_read_group(struct perf_event *event,
3418 3419
				   u64 read_format, char __user *buf)
{
3420
	struct perf_event *leader = event->group_leader, *sub;
3421 3422
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3423
	u64 values[5];
3424
	u64 count, enabled, running;
3425

3426
	mutex_lock(&ctx->mutex);
3427
	count = perf_event_read_value(leader, &enabled, &running);
3428 3429

	values[n++] = 1 + leader->nr_siblings;
3430 3431 3432 3433
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3434 3435 3436
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3437 3438 3439 3440

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3441
		goto unlock;
3442

3443
	ret = size;
3444

3445
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3446
		n = 0;
3447

3448
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3449 3450 3451 3452 3453
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3454
		if (copy_to_user(buf + ret, values, size)) {
3455 3456 3457
			ret = -EFAULT;
			goto unlock;
		}
3458 3459

		ret += size;
3460
	}
3461 3462
unlock:
	mutex_unlock(&ctx->mutex);
3463

3464
	return ret;
3465 3466
}

3467
static int perf_event_read_one(struct perf_event *event,
3468 3469
				 u64 read_format, char __user *buf)
{
3470
	u64 enabled, running;
3471 3472 3473
	u64 values[4];
	int n = 0;

3474 3475 3476 3477 3478
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3479
	if (read_format & PERF_FORMAT_ID)
3480
		values[n++] = primary_event_id(event);
3481 3482 3483 3484 3485 3486 3487

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3488
/*
3489
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3490 3491
 */
static ssize_t
3492
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3493
{
3494
	u64 read_format = event->attr.read_format;
3495
	int ret;
T
Thomas Gleixner 已提交
3496

3497
	/*
3498
	 * Return end-of-file for a read on a event that is in
3499 3500 3501
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3502
	if (event->state == PERF_EVENT_STATE_ERROR)
3503 3504
		return 0;

3505
	if (count < event->read_size)
3506 3507
		return -ENOSPC;

3508
	WARN_ON_ONCE(event->ctx->parent_ctx);
3509
	if (read_format & PERF_FORMAT_GROUP)
3510
		ret = perf_event_read_group(event, read_format, buf);
3511
	else
3512
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3513

3514
	return ret;
T
Thomas Gleixner 已提交
3515 3516 3517 3518 3519
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3520
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3521

3522
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3523 3524 3525 3526
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3527
	struct perf_event *event = file->private_data;
3528
	struct ring_buffer *rb;
3529
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3530

3531
	/*
3532 3533
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3534 3535
	 */
	mutex_lock(&event->mmap_mutex);
3536 3537
	rb = event->rb;
	if (rb)
3538
		events = atomic_xchg(&rb->poll, 0);
3539 3540
	mutex_unlock(&event->mmap_mutex);

3541
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3542 3543 3544 3545

	return events;
}

3546
static void perf_event_reset(struct perf_event *event)
3547
{
3548
	(void)perf_event_read(event);
3549
	local64_set(&event->count, 0);
3550
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3551 3552
}

3553
/*
3554 3555 3556 3557
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3558
 */
3559 3560
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3561
{
3562
	struct perf_event *child;
P
Peter Zijlstra 已提交
3563

3564 3565 3566 3567
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3568
		func(child);
3569
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3570 3571
}

3572 3573
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3574
{
3575 3576
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3577

3578 3579
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3580
	event = event->group_leader;
3581

3582 3583
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3584
		perf_event_for_each_child(sibling, func);
3585
	mutex_unlock(&ctx->mutex);
3586 3587
}

3588
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3589
{
3590
	struct perf_event_context *ctx = event->ctx;
3591
	int ret = 0, active;
3592 3593
	u64 value;

3594
	if (!is_sampling_event(event))
3595 3596
		return -EINVAL;

3597
	if (copy_from_user(&value, arg, sizeof(value)))
3598 3599 3600 3601 3602
		return -EFAULT;

	if (!value)
		return -EINVAL;

3603
	raw_spin_lock_irq(&ctx->lock);
3604 3605
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3606 3607 3608 3609
			ret = -EINVAL;
			goto unlock;
		}

3610
		event->attr.sample_freq = value;
3611
	} else {
3612 3613
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3614
	}
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3629
unlock:
3630
	raw_spin_unlock_irq(&ctx->lock);
3631 3632 3633 3634

	return ret;
}

3635 3636
static const struct file_operations perf_fops;

3637
static inline int perf_fget_light(int fd, struct fd *p)
3638
{
3639 3640 3641
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3642

3643 3644 3645
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3646
	}
3647 3648
	*p = f;
	return 0;
3649 3650 3651 3652
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3653
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3654

3655 3656
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3657 3658
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3659
	u32 flags = arg;
3660 3661

	switch (cmd) {
3662 3663
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3664
		break;
3665 3666
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3667
		break;
3668 3669
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3670
		break;
P
Peter Zijlstra 已提交
3671

3672 3673
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3674

3675 3676
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3677

3678 3679 3680 3681 3682 3683 3684 3685 3686
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3687
	case PERF_EVENT_IOC_SET_OUTPUT:
3688 3689 3690
	{
		int ret;
		if (arg != -1) {
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3701 3702 3703
		}
		return ret;
	}
3704

L
Li Zefan 已提交
3705 3706 3707
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3708
	default:
P
Peter Zijlstra 已提交
3709
		return -ENOTTY;
3710
	}
P
Peter Zijlstra 已提交
3711 3712

	if (flags & PERF_IOC_FLAG_GROUP)
3713
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3714
	else
3715
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3716 3717

	return 0;
3718 3719
}

3720
int perf_event_task_enable(void)
3721
{
3722
	struct perf_event *event;
3723

3724 3725 3726 3727
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3728 3729 3730 3731

	return 0;
}

3732
int perf_event_task_disable(void)
3733
{
3734
	struct perf_event *event;
3735

3736 3737 3738 3739
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3740 3741 3742 3743

	return 0;
}

3744
static int perf_event_index(struct perf_event *event)
3745
{
P
Peter Zijlstra 已提交
3746 3747 3748
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3749
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3750 3751
		return 0;

3752
	return event->pmu->event_idx(event);
3753 3754
}

3755
static void calc_timer_values(struct perf_event *event,
3756
				u64 *now,
3757 3758
				u64 *enabled,
				u64 *running)
3759
{
3760
	u64 ctx_time;
3761

3762 3763
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3764 3765 3766 3767
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3788
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3789 3790 3791
{
}

3792 3793 3794 3795 3796
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3797
void perf_event_update_userpage(struct perf_event *event)
3798
{
3799
	struct perf_event_mmap_page *userpg;
3800
	struct ring_buffer *rb;
3801
	u64 enabled, running, now;
3802 3803

	rcu_read_lock();
3804 3805 3806 3807
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3808 3809 3810 3811 3812 3813 3814 3815 3816
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3817
	calc_timer_values(event, &now, &enabled, &running);
3818

3819
	userpg = rb->user_page;
3820 3821 3822 3823 3824
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3825
	++userpg->lock;
3826
	barrier();
3827
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3828
	userpg->offset = perf_event_count(event);
3829
	if (userpg->index)
3830
		userpg->offset -= local64_read(&event->hw.prev_count);
3831

3832
	userpg->time_enabled = enabled +
3833
			atomic64_read(&event->child_total_time_enabled);
3834

3835
	userpg->time_running = running +
3836
			atomic64_read(&event->child_total_time_running);
3837

3838
	arch_perf_update_userpage(userpg, now);
3839

3840
	barrier();
3841
	++userpg->lock;
3842
	preempt_enable();
3843
unlock:
3844
	rcu_read_unlock();
3845 3846
}

3847 3848 3849
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3850
	struct ring_buffer *rb;
3851 3852 3853 3854 3855 3856 3857 3858 3859
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3860 3861
	rb = rcu_dereference(event->rb);
	if (!rb)
3862 3863 3864 3865 3866
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3867
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3882 3883 3884
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
3885
	struct ring_buffer *old_rb = NULL;
3886 3887
	unsigned long flags;

3888 3889 3890 3891 3892 3893
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
3894

3895 3896 3897
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
3898

3899 3900 3901 3902
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
3903

3904 3905 3906 3907
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
3908

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
3926 3927 3928 3929 3930 3931 3932 3933
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3934 3935 3936 3937
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3938 3939 3940
	rcu_read_unlock();
}

3941
static void rb_free_rcu(struct rcu_head *rcu_head)
3942
{
3943
	struct ring_buffer *rb;
3944

3945 3946
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3947 3948
}

3949
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3950
{
3951
	struct ring_buffer *rb;
3952

3953
	rcu_read_lock();
3954 3955 3956 3957
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3958 3959 3960
	}
	rcu_read_unlock();

3961
	return rb;
3962 3963
}

3964
static void ring_buffer_put(struct ring_buffer *rb)
3965
{
3966
	if (!atomic_dec_and_test(&rb->refcount))
3967
		return;
3968

3969
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3970

3971
	call_rcu(&rb->rcu_head, rb_free_rcu);
3972 3973 3974 3975
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3976
	struct perf_event *event = vma->vm_file->private_data;
3977

3978
	atomic_inc(&event->mmap_count);
3979
	atomic_inc(&event->rb->mmap_count);
3980 3981
}

3982 3983 3984 3985 3986 3987 3988 3989
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3990 3991
static void perf_mmap_close(struct vm_area_struct *vma)
{
3992
	struct perf_event *event = vma->vm_file->private_data;
3993

3994
	struct ring_buffer *rb = ring_buffer_get(event);
3995 3996 3997
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3998

3999 4000 4001
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4002
		goto out_put;
4003

4004
	ring_buffer_attach(event, NULL);
4005 4006 4007
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4008 4009
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4010

4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4027

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4039 4040 4041
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4042
		mutex_unlock(&event->mmap_mutex);
4043
		put_event(event);
4044

4045 4046 4047 4048 4049
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4050
	}
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4066
out_put:
4067
	ring_buffer_put(rb); /* could be last */
4068 4069
}

4070
static const struct vm_operations_struct perf_mmap_vmops = {
4071 4072 4073 4074
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4075 4076 4077 4078
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4079
	struct perf_event *event = file->private_data;
4080
	unsigned long user_locked, user_lock_limit;
4081
	struct user_struct *user = current_user();
4082
	unsigned long locked, lock_limit;
4083
	struct ring_buffer *rb;
4084 4085
	unsigned long vma_size;
	unsigned long nr_pages;
4086
	long user_extra, extra;
4087
	int ret = 0, flags = 0;
4088

4089 4090 4091
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4092
	 * same rb.
4093 4094 4095 4096
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4097
	if (!(vma->vm_flags & VM_SHARED))
4098
		return -EINVAL;
4099 4100 4101 4102

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4103
	/*
4104
	 * If we have rb pages ensure they're a power-of-two number, so we
4105 4106 4107
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4108 4109
		return -EINVAL;

4110
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4111 4112
		return -EINVAL;

4113 4114
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4115

4116
	WARN_ON_ONCE(event->ctx->parent_ctx);
4117
again:
4118
	mutex_lock(&event->mmap_mutex);
4119
	if (event->rb) {
4120
		if (event->rb->nr_pages != nr_pages) {
4121
			ret = -EINVAL;
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4135 4136 4137
		goto unlock;
	}

4138
	user_extra = nr_pages + 1;
4139
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4140 4141 4142 4143 4144 4145

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4146
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4147

4148 4149 4150
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4151

4152
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4153
	lock_limit >>= PAGE_SHIFT;
4154
	locked = vma->vm_mm->pinned_vm + extra;
4155

4156 4157
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4158 4159 4160
		ret = -EPERM;
		goto unlock;
	}
4161

4162
	WARN_ON(event->rb);
4163

4164
	if (vma->vm_flags & VM_WRITE)
4165
		flags |= RING_BUFFER_WRITABLE;
4166

4167 4168 4169 4170
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4171
	if (!rb) {
4172
		ret = -ENOMEM;
4173
		goto unlock;
4174
	}
P
Peter Zijlstra 已提交
4175

4176
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4177 4178
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4179

4180
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4181 4182
	vma->vm_mm->pinned_vm += extra;

4183
	ring_buffer_attach(event, rb);
4184

4185
	perf_event_init_userpage(event);
4186 4187
	perf_event_update_userpage(event);

4188
unlock:
4189 4190
	if (!ret)
		atomic_inc(&event->mmap_count);
4191
	mutex_unlock(&event->mmap_mutex);
4192

4193 4194 4195 4196
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4197
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4198
	vma->vm_ops = &perf_mmap_vmops;
4199 4200

	return ret;
4201 4202
}

P
Peter Zijlstra 已提交
4203 4204
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4205
	struct inode *inode = file_inode(filp);
4206
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4207 4208 4209
	int retval;

	mutex_lock(&inode->i_mutex);
4210
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4211 4212 4213 4214 4215 4216 4217 4218
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4219
static const struct file_operations perf_fops = {
4220
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4221 4222 4223
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4224 4225
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4226
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4227
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4228 4229
};

4230
/*
4231
 * Perf event wakeup
4232 4233 4234 4235 4236
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4237
void perf_event_wakeup(struct perf_event *event)
4238
{
4239
	ring_buffer_wakeup(event);
4240

4241 4242 4243
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4244
	}
4245 4246
}

4247
static void perf_pending_event(struct irq_work *entry)
4248
{
4249 4250
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4251

4252 4253 4254
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4255 4256
	}

4257 4258 4259
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4260 4261 4262
	}
}

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4410 4411 4412
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4428
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4440 4441 4442
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4467 4468 4469

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4470 4471
}

4472 4473 4474
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4475 4476 4477 4478 4479
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4480
static void perf_output_read_one(struct perf_output_handle *handle,
4481 4482
				 struct perf_event *event,
				 u64 enabled, u64 running)
4483
{
4484
	u64 read_format = event->attr.read_format;
4485 4486 4487
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4488
	values[n++] = perf_event_count(event);
4489
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4490
		values[n++] = enabled +
4491
			atomic64_read(&event->child_total_time_enabled);
4492 4493
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4494
		values[n++] = running +
4495
			atomic64_read(&event->child_total_time_running);
4496 4497
	}
	if (read_format & PERF_FORMAT_ID)
4498
		values[n++] = primary_event_id(event);
4499

4500
	__output_copy(handle, values, n * sizeof(u64));
4501 4502 4503
}

/*
4504
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4505 4506
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4507 4508
			    struct perf_event *event,
			    u64 enabled, u64 running)
4509
{
4510 4511
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4512 4513 4514 4515 4516 4517
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4518
		values[n++] = enabled;
4519 4520

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4521
		values[n++] = running;
4522

4523
	if (leader != event)
4524 4525
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4526
	values[n++] = perf_event_count(leader);
4527
	if (read_format & PERF_FORMAT_ID)
4528
		values[n++] = primary_event_id(leader);
4529

4530
	__output_copy(handle, values, n * sizeof(u64));
4531

4532
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4533 4534
		n = 0;

4535 4536
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4537 4538
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4539
		values[n++] = perf_event_count(sub);
4540
		if (read_format & PERF_FORMAT_ID)
4541
			values[n++] = primary_event_id(sub);
4542

4543
		__output_copy(handle, values, n * sizeof(u64));
4544 4545 4546
	}
}

4547 4548 4549
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4550
static void perf_output_read(struct perf_output_handle *handle,
4551
			     struct perf_event *event)
4552
{
4553
	u64 enabled = 0, running = 0, now;
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4565
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4566
		calc_timer_values(event, &now, &enabled, &running);
4567

4568
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4569
		perf_output_read_group(handle, event, enabled, running);
4570
	else
4571
		perf_output_read_one(handle, event, enabled, running);
4572 4573
}

4574 4575 4576
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4577
			struct perf_event *event)
4578 4579 4580 4581 4582
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4583 4584 4585
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4611
		perf_output_read(handle, event);
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4622
			__output_copy(handle, data->callchain, size);
4623 4624 4625 4626 4627 4628 4629 4630 4631
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4632 4633
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4645

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4680

4681
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4682 4683 4684
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4685
	}
A
Andi Kleen 已提交
4686 4687 4688

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4689 4690 4691

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4692

A
Andi Kleen 已提交
4693 4694 4695
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4709 4710 4711 4712
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4713
			 struct perf_event *event,
4714
			 struct pt_regs *regs)
4715
{
4716
	u64 sample_type = event->attr.sample_type;
4717

4718
	header->type = PERF_RECORD_SAMPLE;
4719
	header->size = sizeof(*header) + event->header_size;
4720 4721 4722

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4723

4724
	__perf_event_header__init_id(header, data, event);
4725

4726
	if (sample_type & PERF_SAMPLE_IP)
4727 4728
		data->ip = perf_instruction_pointer(regs);

4729
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4730
		int size = 1;
4731

4732
		data->callchain = perf_callchain(event, regs);
4733 4734 4735 4736 4737

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4738 4739
	}

4740
	if (sample_type & PERF_SAMPLE_RAW) {
4741 4742 4743 4744 4745 4746 4747 4748
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4749
		header->size += size;
4750
	}
4751 4752 4753 4754 4755 4756 4757 4758 4759

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4803
}
4804

4805
static void perf_event_output(struct perf_event *event,
4806 4807 4808 4809 4810
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4811

4812 4813 4814
	/* protect the callchain buffers */
	rcu_read_lock();

4815
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4816

4817
	if (perf_output_begin(&handle, event, header.size))
4818
		goto exit;
4819

4820
	perf_output_sample(&handle, &header, data, event);
4821

4822
	perf_output_end(&handle);
4823 4824 4825

exit:
	rcu_read_unlock();
4826 4827
}

4828
/*
4829
 * read event_id
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4840
perf_event_read_event(struct perf_event *event,
4841 4842 4843
			struct task_struct *task)
{
	struct perf_output_handle handle;
4844
	struct perf_sample_data sample;
4845
	struct perf_read_event read_event = {
4846
		.header = {
4847
			.type = PERF_RECORD_READ,
4848
			.misc = 0,
4849
			.size = sizeof(read_event) + event->read_size,
4850
		},
4851 4852
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4853
	};
4854
	int ret;
4855

4856
	perf_event_header__init_id(&read_event.header, &sample, event);
4857
	ret = perf_output_begin(&handle, event, read_event.header.size);
4858 4859 4860
	if (ret)
		return;

4861
	perf_output_put(&handle, read_event);
4862
	perf_output_read(&handle, event);
4863
	perf_event__output_id_sample(event, &handle, &sample);
4864

4865 4866 4867
	perf_output_end(&handle);
}

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4882
		output(event, data);
4883 4884 4885 4886
	}
}

static void
4887
perf_event_aux(perf_event_aux_output_cb output, void *data,
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4900
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4901 4902 4903 4904 4905 4906 4907
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4908
			perf_event_aux_ctx(ctx, output, data);
4909 4910 4911 4912 4913 4914
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4915
		perf_event_aux_ctx(task_ctx, output, data);
4916 4917 4918 4919 4920
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4921
/*
P
Peter Zijlstra 已提交
4922 4923
 * task tracking -- fork/exit
 *
4924
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4925 4926
 */

P
Peter Zijlstra 已提交
4927
struct perf_task_event {
4928
	struct task_struct		*task;
4929
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4930 4931 4932 4933 4934 4935

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4936 4937
		u32				tid;
		u32				ptid;
4938
		u64				time;
4939
	} event_id;
P
Peter Zijlstra 已提交
4940 4941
};

4942 4943
static int perf_event_task_match(struct perf_event *event)
{
4944 4945 4946
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4947 4948
}

4949
static void perf_event_task_output(struct perf_event *event,
4950
				   void *data)
P
Peter Zijlstra 已提交
4951
{
4952
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4953
	struct perf_output_handle handle;
4954
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4955
	struct task_struct *task = task_event->task;
4956
	int ret, size = task_event->event_id.header.size;
4957

4958 4959 4960
	if (!perf_event_task_match(event))
		return;

4961
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4962

4963
	ret = perf_output_begin(&handle, event,
4964
				task_event->event_id.header.size);
4965
	if (ret)
4966
		goto out;
P
Peter Zijlstra 已提交
4967

4968 4969
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4970

4971 4972
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4973

4974
	perf_output_put(&handle, task_event->event_id);
4975

4976 4977
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4978
	perf_output_end(&handle);
4979 4980
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4981 4982
}

4983 4984
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4985
			      int new)
P
Peter Zijlstra 已提交
4986
{
P
Peter Zijlstra 已提交
4987
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4988

4989 4990 4991
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4992 4993
		return;

P
Peter Zijlstra 已提交
4994
	task_event = (struct perf_task_event){
4995 4996
		.task	  = task,
		.task_ctx = task_ctx,
4997
		.event_id    = {
P
Peter Zijlstra 已提交
4998
			.header = {
4999
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5000
				.misc = 0,
5001
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5002
			},
5003 5004
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5005 5006
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5007
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5008 5009 5010
		},
	};

5011
	perf_event_aux(perf_event_task_output,
5012 5013
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5014 5015
}

5016
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5017
{
5018
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5019 5020
}

5021 5022 5023 5024 5025
/*
 * comm tracking
 */

struct perf_comm_event {
5026 5027
	struct task_struct	*task;
	char			*comm;
5028 5029 5030 5031 5032 5033 5034
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5035
	} event_id;
5036 5037
};

5038 5039 5040 5041 5042
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5043
static void perf_event_comm_output(struct perf_event *event,
5044
				   void *data)
5045
{
5046
	struct perf_comm_event *comm_event = data;
5047
	struct perf_output_handle handle;
5048
	struct perf_sample_data sample;
5049
	int size = comm_event->event_id.header.size;
5050 5051
	int ret;

5052 5053 5054
	if (!perf_event_comm_match(event))
		return;

5055 5056
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5057
				comm_event->event_id.header.size);
5058 5059

	if (ret)
5060
		goto out;
5061

5062 5063
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5064

5065
	perf_output_put(&handle, comm_event->event_id);
5066
	__output_copy(&handle, comm_event->comm,
5067
				   comm_event->comm_size);
5068 5069 5070

	perf_event__output_id_sample(event, &handle, &sample);

5071
	perf_output_end(&handle);
5072 5073
out:
	comm_event->event_id.header.size = size;
5074 5075
}

5076
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5077
{
5078
	char comm[TASK_COMM_LEN];
5079 5080
	unsigned int size;

5081
	memset(comm, 0, sizeof(comm));
5082
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5083
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5084 5085 5086 5087

	comm_event->comm = comm;
	comm_event->comm_size = size;

5088
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5089

5090
	perf_event_aux(perf_event_comm_output,
5091 5092
		       comm_event,
		       NULL);
5093 5094
}

5095
void perf_event_comm(struct task_struct *task, bool exec)
5096
{
5097 5098
	struct perf_comm_event comm_event;

5099
	if (!atomic_read(&nr_comm_events))
5100
		return;
5101

5102
	comm_event = (struct perf_comm_event){
5103
		.task	= task,
5104 5105
		/* .comm      */
		/* .comm_size */
5106
		.event_id  = {
5107
			.header = {
5108
				.type = PERF_RECORD_COMM,
5109
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5110 5111 5112 5113
				/* .size */
			},
			/* .pid */
			/* .tid */
5114 5115 5116
		},
	};

5117
	perf_event_comm_event(&comm_event);
5118 5119
}

5120 5121 5122 5123 5124
/*
 * mmap tracking
 */

struct perf_mmap_event {
5125 5126 5127 5128
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5129 5130 5131
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5132
	u32			prot, flags;
5133 5134 5135 5136 5137 5138 5139 5140 5141

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5142
	} event_id;
5143 5144
};

5145 5146 5147 5148 5149 5150 5151 5152
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5153
	       (executable && (event->attr.mmap || event->attr.mmap2));
5154 5155
}

5156
static void perf_event_mmap_output(struct perf_event *event,
5157
				   void *data)
5158
{
5159
	struct perf_mmap_event *mmap_event = data;
5160
	struct perf_output_handle handle;
5161
	struct perf_sample_data sample;
5162
	int size = mmap_event->event_id.header.size;
5163
	int ret;
5164

5165 5166 5167
	if (!perf_event_mmap_match(event, data))
		return;

5168 5169 5170 5171 5172
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5173
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5174 5175
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5176 5177
	}

5178 5179
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5180
				mmap_event->event_id.header.size);
5181
	if (ret)
5182
		goto out;
5183

5184 5185
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5186

5187
	perf_output_put(&handle, mmap_event->event_id);
5188 5189 5190 5191 5192 5193

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5194 5195
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5196 5197
	}

5198
	__output_copy(&handle, mmap_event->file_name,
5199
				   mmap_event->file_size);
5200 5201 5202

	perf_event__output_id_sample(event, &handle, &sample);

5203
	perf_output_end(&handle);
5204 5205
out:
	mmap_event->event_id.header.size = size;
5206 5207
}

5208
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5209
{
5210 5211
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5212 5213
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5214
	u32 prot = 0, flags = 0;
5215 5216 5217
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5218
	char *name;
5219

5220
	if (file) {
5221 5222
		struct inode *inode;
		dev_t dev;
5223

5224
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5225
		if (!buf) {
5226 5227
			name = "//enomem";
			goto cpy_name;
5228
		}
5229
		/*
5230
		 * d_path() works from the end of the rb backwards, so we
5231 5232 5233
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5234
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5235
		if (IS_ERR(name)) {
5236 5237
			name = "//toolong";
			goto cpy_name;
5238
		}
5239 5240 5241 5242 5243 5244
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5267
		goto got_name;
5268
	} else {
5269 5270 5271 5272 5273 5274
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5275
		name = (char *)arch_vma_name(vma);
5276 5277
		if (name)
			goto cpy_name;
5278

5279
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5280
				vma->vm_end >= vma->vm_mm->brk) {
5281 5282
			name = "[heap]";
			goto cpy_name;
5283 5284
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5285
				vma->vm_end >= vma->vm_mm->start_stack) {
5286 5287
			name = "[stack]";
			goto cpy_name;
5288 5289
		}

5290 5291
		name = "//anon";
		goto cpy_name;
5292 5293
	}

5294 5295 5296
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5297
got_name:
5298 5299 5300 5301 5302 5303 5304 5305
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5306 5307 5308

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5309 5310 5311 5312
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5313 5314
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5315

5316 5317 5318
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5319
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5320

5321
	perf_event_aux(perf_event_mmap_output,
5322 5323
		       mmap_event,
		       NULL);
5324

5325 5326 5327
	kfree(buf);
}

5328
void perf_event_mmap(struct vm_area_struct *vma)
5329
{
5330 5331
	struct perf_mmap_event mmap_event;

5332
	if (!atomic_read(&nr_mmap_events))
5333 5334 5335
		return;

	mmap_event = (struct perf_mmap_event){
5336
		.vma	= vma,
5337 5338
		/* .file_name */
		/* .file_size */
5339
		.event_id  = {
5340
			.header = {
5341
				.type = PERF_RECORD_MMAP,
5342
				.misc = PERF_RECORD_MISC_USER,
5343 5344 5345 5346
				/* .size */
			},
			/* .pid */
			/* .tid */
5347 5348
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5349
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5350
		},
5351 5352 5353 5354
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5355 5356
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5357 5358
	};

5359
	perf_event_mmap_event(&mmap_event);
5360 5361
}

5362 5363 5364 5365
/*
 * IRQ throttle logging
 */

5366
static void perf_log_throttle(struct perf_event *event, int enable)
5367 5368
{
	struct perf_output_handle handle;
5369
	struct perf_sample_data sample;
5370 5371 5372 5373 5374
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5375
		u64				id;
5376
		u64				stream_id;
5377 5378
	} throttle_event = {
		.header = {
5379
			.type = PERF_RECORD_THROTTLE,
5380 5381 5382
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5383
		.time		= perf_clock(),
5384 5385
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5386 5387
	};

5388
	if (enable)
5389
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5390

5391 5392 5393
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5394
				throttle_event.header.size);
5395 5396 5397 5398
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5399
	perf_event__output_id_sample(event, &handle, &sample);
5400 5401 5402
	perf_output_end(&handle);
}

5403
/*
5404
 * Generic event overflow handling, sampling.
5405 5406
 */

5407
static int __perf_event_overflow(struct perf_event *event,
5408 5409
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5410
{
5411 5412
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5413
	u64 seq;
5414 5415
	int ret = 0;

5416 5417 5418 5419 5420 5421 5422
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5423 5424 5425 5426 5427 5428 5429 5430 5431
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5432 5433
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5434
			tick_nohz_full_kick();
5435 5436
			ret = 1;
		}
5437
	}
5438

5439
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5440
		u64 now = perf_clock();
5441
		s64 delta = now - hwc->freq_time_stamp;
5442

5443
		hwc->freq_time_stamp = now;
5444

5445
		if (delta > 0 && delta < 2*TICK_NSEC)
5446
			perf_adjust_period(event, delta, hwc->last_period, true);
5447 5448
	}

5449 5450
	/*
	 * XXX event_limit might not quite work as expected on inherited
5451
	 * events
5452 5453
	 */

5454 5455
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5456
		ret = 1;
5457
		event->pending_kill = POLL_HUP;
5458 5459
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5460 5461
	}

5462
	if (event->overflow_handler)
5463
		event->overflow_handler(event, data, regs);
5464
	else
5465
		perf_event_output(event, data, regs);
5466

P
Peter Zijlstra 已提交
5467
	if (event->fasync && event->pending_kill) {
5468 5469
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5470 5471
	}

5472
	return ret;
5473 5474
}

5475
int perf_event_overflow(struct perf_event *event,
5476 5477
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5478
{
5479
	return __perf_event_overflow(event, 1, data, regs);
5480 5481
}

5482
/*
5483
 * Generic software event infrastructure
5484 5485
 */

5486 5487 5488 5489 5490 5491 5492
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5493 5494 5495

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5496 5497 5498 5499
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5500
/*
5501 5502
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5503 5504 5505 5506
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5507
u64 perf_swevent_set_period(struct perf_event *event)
5508
{
5509
	struct hw_perf_event *hwc = &event->hw;
5510 5511 5512 5513 5514
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5515 5516

again:
5517
	old = val = local64_read(&hwc->period_left);
5518 5519
	if (val < 0)
		return 0;
5520

5521 5522 5523
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5524
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5525
		goto again;
5526

5527
	return nr;
5528 5529
}

5530
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5531
				    struct perf_sample_data *data,
5532
				    struct pt_regs *regs)
5533
{
5534
	struct hw_perf_event *hwc = &event->hw;
5535
	int throttle = 0;
5536

5537 5538
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5539

5540 5541
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5542

5543
	for (; overflow; overflow--) {
5544
		if (__perf_event_overflow(event, throttle,
5545
					    data, regs)) {
5546 5547 5548 5549 5550 5551
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5552
		throttle = 1;
5553
	}
5554 5555
}

P
Peter Zijlstra 已提交
5556
static void perf_swevent_event(struct perf_event *event, u64 nr,
5557
			       struct perf_sample_data *data,
5558
			       struct pt_regs *regs)
5559
{
5560
	struct hw_perf_event *hwc = &event->hw;
5561

5562
	local64_add(nr, &event->count);
5563

5564 5565 5566
	if (!regs)
		return;

5567
	if (!is_sampling_event(event))
5568
		return;
5569

5570 5571 5572 5573 5574 5575
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5576
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5577
		return perf_swevent_overflow(event, 1, data, regs);
5578

5579
	if (local64_add_negative(nr, &hwc->period_left))
5580
		return;
5581

5582
	perf_swevent_overflow(event, 0, data, regs);
5583 5584
}

5585 5586 5587
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5588
	if (event->hw.state & PERF_HES_STOPPED)
5589
		return 1;
P
Peter Zijlstra 已提交
5590

5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5602
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5603
				enum perf_type_id type,
L
Li Zefan 已提交
5604 5605 5606
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5607
{
5608
	if (event->attr.type != type)
5609
		return 0;
5610

5611
	if (event->attr.config != event_id)
5612 5613
		return 0;

5614 5615
	if (perf_exclude_event(event, regs))
		return 0;
5616 5617 5618 5619

	return 1;
}

5620 5621 5622 5623 5624 5625 5626
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5627 5628
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5629
{
5630 5631 5632 5633
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5634

5635 5636
/* For the read side: events when they trigger */
static inline struct hlist_head *
5637
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5638 5639
{
	struct swevent_hlist *hlist;
5640

5641
	hlist = rcu_dereference(swhash->swevent_hlist);
5642 5643 5644
	if (!hlist)
		return NULL;

5645 5646 5647 5648 5649
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5650
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5661
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5662 5663 5664 5665 5666
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5667 5668 5669
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5670
				    u64 nr,
5671 5672
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5673
{
5674
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5675
	struct perf_event *event;
5676
	struct hlist_head *head;
5677

5678
	rcu_read_lock();
5679
	head = find_swevent_head_rcu(swhash, type, event_id);
5680 5681 5682
	if (!head)
		goto end;

5683
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5684
		if (perf_swevent_match(event, type, event_id, data, regs))
5685
			perf_swevent_event(event, nr, data, regs);
5686
	}
5687 5688
end:
	rcu_read_unlock();
5689 5690
}

5691
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5692
{
5693
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5694

5695
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5696
}
I
Ingo Molnar 已提交
5697
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5698

5699
inline void perf_swevent_put_recursion_context(int rctx)
5700
{
5701
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5702

5703
	put_recursion_context(swhash->recursion, rctx);
5704
}
5705

5706
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5707
{
5708
	struct perf_sample_data data;
5709 5710
	int rctx;

5711
	preempt_disable_notrace();
5712 5713 5714
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5715

5716
	perf_sample_data_init(&data, addr, 0);
5717

5718
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5719 5720

	perf_swevent_put_recursion_context(rctx);
5721
	preempt_enable_notrace();
5722 5723
}

5724
static void perf_swevent_read(struct perf_event *event)
5725 5726 5727
{
}

P
Peter Zijlstra 已提交
5728
static int perf_swevent_add(struct perf_event *event, int flags)
5729
{
5730
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5731
	struct hw_perf_event *hwc = &event->hw;
5732 5733
	struct hlist_head *head;

5734
	if (is_sampling_event(event)) {
5735
		hwc->last_period = hwc->sample_period;
5736
		perf_swevent_set_period(event);
5737
	}
5738

P
Peter Zijlstra 已提交
5739 5740
	hwc->state = !(flags & PERF_EF_START);

5741
	head = find_swevent_head(swhash, event);
5742 5743 5744 5745 5746 5747
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
5748
		return -EINVAL;
5749
	}
5750 5751 5752

	hlist_add_head_rcu(&event->hlist_entry, head);

5753 5754 5755
	return 0;
}

P
Peter Zijlstra 已提交
5756
static void perf_swevent_del(struct perf_event *event, int flags)
5757
{
5758
	hlist_del_rcu(&event->hlist_entry);
5759 5760
}

P
Peter Zijlstra 已提交
5761
static void perf_swevent_start(struct perf_event *event, int flags)
5762
{
P
Peter Zijlstra 已提交
5763
	event->hw.state = 0;
5764
}
I
Ingo Molnar 已提交
5765

P
Peter Zijlstra 已提交
5766
static void perf_swevent_stop(struct perf_event *event, int flags)
5767
{
P
Peter Zijlstra 已提交
5768
	event->hw.state = PERF_HES_STOPPED;
5769 5770
}

5771 5772
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5773
swevent_hlist_deref(struct swevent_htable *swhash)
5774
{
5775 5776
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5777 5778
}

5779
static void swevent_hlist_release(struct swevent_htable *swhash)
5780
{
5781
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5782

5783
	if (!hlist)
5784 5785
		return;

5786
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5787
	kfree_rcu(hlist, rcu_head);
5788 5789 5790 5791
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5792
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5793

5794
	mutex_lock(&swhash->hlist_mutex);
5795

5796 5797
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5798

5799
	mutex_unlock(&swhash->hlist_mutex);
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5812
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5813 5814
	int err = 0;

5815
	mutex_lock(&swhash->hlist_mutex);
5816

5817
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5818 5819 5820 5821 5822 5823 5824
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5825
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5826
	}
5827
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5828
exit:
5829
	mutex_unlock(&swhash->hlist_mutex);
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5850
fail:
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5861
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5862

5863 5864 5865
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5866

5867 5868
	WARN_ON(event->parent);

5869
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5870 5871 5872 5873 5874
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5875
	u64 event_id = event->attr.config;
5876 5877 5878 5879

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5880 5881 5882 5883 5884 5885
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5886 5887 5888 5889 5890 5891 5892 5893 5894
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5895
	if (event_id >= PERF_COUNT_SW_MAX)
5896 5897 5898 5899 5900 5901 5902 5903 5904
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5905
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5906 5907 5908 5909 5910 5911
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5912 5913 5914 5915 5916
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5917
static struct pmu perf_swevent = {
5918
	.task_ctx_nr	= perf_sw_context,
5919

5920
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5921 5922 5923 5924
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5925
	.read		= perf_swevent_read,
5926 5927

	.event_idx	= perf_swevent_event_idx,
5928 5929
};

5930 5931
#ifdef CONFIG_EVENT_TRACING

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5946 5947
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5948 5949 5950 5951
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5952 5953 5954 5955 5956 5957 5958 5959 5960
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5961 5962
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5963 5964
{
	struct perf_sample_data data;
5965 5966
	struct perf_event *event;

5967 5968 5969 5970 5971
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5972
	perf_sample_data_init(&data, addr, 0);
5973 5974
	data.raw = &raw;

5975
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5976
		if (perf_tp_event_match(event, &data, regs))
5977
			perf_swevent_event(event, count, &data, regs);
5978
	}
5979

5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6005
	perf_swevent_put_recursion_context(rctx);
6006 6007 6008
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6009
static void tp_perf_event_destroy(struct perf_event *event)
6010
{
6011
	perf_trace_destroy(event);
6012 6013
}

6014
static int perf_tp_event_init(struct perf_event *event)
6015
{
6016 6017
	int err;

6018 6019 6020
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6021 6022 6023 6024 6025 6026
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6027 6028
	err = perf_trace_init(event);
	if (err)
6029
		return err;
6030

6031
	event->destroy = tp_perf_event_destroy;
6032

6033 6034 6035 6036
	return 0;
}

static struct pmu perf_tracepoint = {
6037 6038
	.task_ctx_nr	= perf_sw_context,

6039
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6040 6041 6042 6043
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6044
	.read		= perf_swevent_read,
6045 6046

	.event_idx	= perf_swevent_event_idx,
6047 6048 6049 6050
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6051
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6052
}
L
Li Zefan 已提交
6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6077
#else
L
Li Zefan 已提交
6078

6079
static inline void perf_tp_register(void)
6080 6081
{
}
L
Li Zefan 已提交
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6092
#endif /* CONFIG_EVENT_TRACING */
6093

6094
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6095
void perf_bp_event(struct perf_event *bp, void *data)
6096
{
6097 6098 6099
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6100
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6101

P
Peter Zijlstra 已提交
6102
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6103
		perf_swevent_event(bp, 1, &sample, regs);
6104 6105 6106
}
#endif

6107 6108 6109
/*
 * hrtimer based swevent callback
 */
6110

6111
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6112
{
6113 6114 6115 6116 6117
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6118

6119
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6120 6121 6122 6123

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6124
	event->pmu->read(event);
6125

6126
	perf_sample_data_init(&data, 0, event->hw.last_period);
6127 6128 6129
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6130
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6131
			if (__perf_event_overflow(event, 1, &data, regs))
6132 6133
				ret = HRTIMER_NORESTART;
	}
6134

6135 6136
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6137

6138
	return ret;
6139 6140
}

6141
static void perf_swevent_start_hrtimer(struct perf_event *event)
6142
{
6143
	struct hw_perf_event *hwc = &event->hw;
6144 6145 6146 6147
	s64 period;

	if (!is_sampling_event(event))
		return;
6148

6149 6150 6151 6152
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6153

6154 6155 6156 6157 6158
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6159
				ns_to_ktime(period), 0,
6160
				HRTIMER_MODE_REL_PINNED, 0);
6161
}
6162 6163

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6164
{
6165 6166
	struct hw_perf_event *hwc = &event->hw;

6167
	if (is_sampling_event(event)) {
6168
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6169
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6170 6171 6172

		hrtimer_cancel(&hwc->hrtimer);
	}
6173 6174
}

P
Peter Zijlstra 已提交
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6195
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6196 6197 6198 6199
		event->attr.freq = 0;
	}
}

6200 6201 6202 6203 6204
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6205
{
6206 6207 6208
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6209
	now = local_clock();
6210 6211
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6212 6213
}

P
Peter Zijlstra 已提交
6214
static void cpu_clock_event_start(struct perf_event *event, int flags)
6215
{
P
Peter Zijlstra 已提交
6216
	local64_set(&event->hw.prev_count, local_clock());
6217 6218 6219
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6220
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6221
{
6222 6223 6224
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6225

P
Peter Zijlstra 已提交
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6239 6240 6241 6242
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6243

6244 6245 6246 6247 6248 6249 6250 6251
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6252 6253 6254 6255 6256 6257
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6258 6259
	perf_swevent_init_hrtimer(event);

6260
	return 0;
6261 6262
}

6263
static struct pmu perf_cpu_clock = {
6264 6265
	.task_ctx_nr	= perf_sw_context,

6266
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6267 6268 6269 6270
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6271
	.read		= cpu_clock_event_read,
6272 6273

	.event_idx	= perf_swevent_event_idx,
6274 6275 6276 6277 6278 6279 6280
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6281
{
6282 6283
	u64 prev;
	s64 delta;
6284

6285 6286 6287 6288
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6289

P
Peter Zijlstra 已提交
6290
static void task_clock_event_start(struct perf_event *event, int flags)
6291
{
P
Peter Zijlstra 已提交
6292
	local64_set(&event->hw.prev_count, event->ctx->time);
6293 6294 6295
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6296
static void task_clock_event_stop(struct perf_event *event, int flags)
6297 6298 6299
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6300 6301 6302 6303 6304 6305
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6306

P
Peter Zijlstra 已提交
6307 6308 6309 6310 6311 6312
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6313 6314 6315 6316
}

static void task_clock_event_read(struct perf_event *event)
{
6317 6318 6319
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6320 6321 6322 6323 6324

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6325
{
6326 6327 6328 6329 6330 6331
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6332 6333 6334 6335 6336 6337
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6338 6339
	perf_swevent_init_hrtimer(event);

6340
	return 0;
L
Li Zefan 已提交
6341 6342
}

6343
static struct pmu perf_task_clock = {
6344 6345
	.task_ctx_nr	= perf_sw_context,

6346
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6347 6348 6349 6350
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6351
	.read		= task_clock_event_read,
6352 6353

	.event_idx	= perf_swevent_event_idx,
6354
};
L
Li Zefan 已提交
6355

P
Peter Zijlstra 已提交
6356
static void perf_pmu_nop_void(struct pmu *pmu)
6357 6358
{
}
L
Li Zefan 已提交
6359

P
Peter Zijlstra 已提交
6360
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6361
{
P
Peter Zijlstra 已提交
6362
	return 0;
L
Li Zefan 已提交
6363 6364
}

P
Peter Zijlstra 已提交
6365
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6366
{
P
Peter Zijlstra 已提交
6367
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6368 6369
}

P
Peter Zijlstra 已提交
6370 6371 6372 6373 6374
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6375

P
Peter Zijlstra 已提交
6376
static void perf_pmu_cancel_txn(struct pmu *pmu)
6377
{
P
Peter Zijlstra 已提交
6378
	perf_pmu_enable(pmu);
6379 6380
}

6381 6382 6383 6384 6385
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6386 6387 6388 6389
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6390
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6391
{
P
Peter Zijlstra 已提交
6392
	struct pmu *pmu;
6393

P
Peter Zijlstra 已提交
6394 6395
	if (ctxn < 0)
		return NULL;
6396

P
Peter Zijlstra 已提交
6397 6398 6399 6400
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6401

P
Peter Zijlstra 已提交
6402
	return NULL;
6403 6404
}

6405
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6406
{
6407 6408 6409 6410 6411 6412 6413
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6414 6415
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6416 6417 6418 6419 6420 6421
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6422

P
Peter Zijlstra 已提交
6423
	mutex_lock(&pmus_lock);
6424
	/*
P
Peter Zijlstra 已提交
6425
	 * Like a real lame refcount.
6426
	 */
6427 6428 6429
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6430
			goto out;
6431
		}
P
Peter Zijlstra 已提交
6432
	}
6433

6434
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6435 6436
out:
	mutex_unlock(&pmus_lock);
6437
}
P
Peter Zijlstra 已提交
6438
static struct idr pmu_idr;
6439

P
Peter Zijlstra 已提交
6440 6441 6442 6443 6444 6445 6446
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6447
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6448

6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6492
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6493

6494 6495 6496 6497
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6498
};
6499
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6500 6501 6502 6503

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6504
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6520
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6541
static struct lock_class_key cpuctx_mutex;
6542
static struct lock_class_key cpuctx_lock;
6543

6544
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6545
{
P
Peter Zijlstra 已提交
6546
	int cpu, ret;
6547

6548
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6549 6550 6551 6552
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6553

P
Peter Zijlstra 已提交
6554 6555 6556 6557 6558 6559
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6560 6561 6562
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6563 6564 6565 6566 6567
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6568 6569 6570 6571 6572 6573
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6574
skip_type:
P
Peter Zijlstra 已提交
6575 6576 6577
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6578

W
Wei Yongjun 已提交
6579
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6580 6581
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6582
		goto free_dev;
6583

P
Peter Zijlstra 已提交
6584 6585 6586 6587
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6588
		__perf_event_init_context(&cpuctx->ctx);
6589
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6590
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6591
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6592
		cpuctx->ctx.pmu = pmu;
6593 6594 6595

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6596
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6597
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6598
	}
6599

P
Peter Zijlstra 已提交
6600
got_cpu_context:
P
Peter Zijlstra 已提交
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6615
		}
6616
	}
6617

P
Peter Zijlstra 已提交
6618 6619 6620 6621 6622
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6623 6624 6625
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6626
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6627 6628
	ret = 0;
unlock:
6629 6630
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6631
	return ret;
P
Peter Zijlstra 已提交
6632

P
Peter Zijlstra 已提交
6633 6634 6635 6636
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6637 6638 6639 6640
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6641 6642 6643
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6644
}
6645
EXPORT_SYMBOL_GPL(perf_pmu_register);
6646

6647
void perf_pmu_unregister(struct pmu *pmu)
6648
{
6649 6650 6651
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6652

6653
	/*
P
Peter Zijlstra 已提交
6654 6655
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6656
	 */
6657
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6658
	synchronize_rcu();
6659

P
Peter Zijlstra 已提交
6660
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6661 6662
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6663 6664
	device_del(pmu->dev);
	put_device(pmu->dev);
6665
	free_pmu_context(pmu);
6666
}
6667
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6668

6669 6670 6671 6672
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6673
	int ret;
6674 6675

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6676 6677 6678 6679

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6680
	if (pmu) {
6681 6682 6683 6684
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6685
		event->pmu = pmu;
6686 6687 6688
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6689
		goto unlock;
6690
	}
P
Peter Zijlstra 已提交
6691

6692
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6693 6694 6695 6696
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6697
		event->pmu = pmu;
6698
		ret = pmu->event_init(event);
6699
		if (!ret)
P
Peter Zijlstra 已提交
6700
			goto unlock;
6701

6702 6703
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6704
			goto unlock;
6705
		}
6706
	}
P
Peter Zijlstra 已提交
6707 6708
	pmu = ERR_PTR(-ENOENT);
unlock:
6709
	srcu_read_unlock(&pmus_srcu, idx);
6710

6711
	return pmu;
6712 6713
}

6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6727 6728
static void account_event(struct perf_event *event)
{
6729 6730 6731
	if (event->parent)
		return;

6732 6733 6734 6735 6736 6737 6738 6739
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6740 6741 6742 6743
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6744
	if (has_branch_stack(event))
6745
		static_key_slow_inc(&perf_sched_events.key);
6746
	if (is_cgroup_event(event))
6747
		static_key_slow_inc(&perf_sched_events.key);
6748 6749

	account_event_cpu(event, event->cpu);
6750 6751
}

T
Thomas Gleixner 已提交
6752
/*
6753
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6754
 */
6755
static struct perf_event *
6756
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6757 6758 6759
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6760 6761
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6762
{
P
Peter Zijlstra 已提交
6763
	struct pmu *pmu;
6764 6765
	struct perf_event *event;
	struct hw_perf_event *hwc;
6766
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6767

6768 6769 6770 6771 6772
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6773
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6774
	if (!event)
6775
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6776

6777
	/*
6778
	 * Single events are their own group leaders, with an
6779 6780 6781
	 * empty sibling list:
	 */
	if (!group_leader)
6782
		group_leader = event;
6783

6784 6785
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6786

6787 6788 6789
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6790
	INIT_LIST_HEAD(&event->rb_entry);
6791
	INIT_LIST_HEAD(&event->active_entry);
6792 6793
	INIT_HLIST_NODE(&event->hlist_entry);

6794

6795
	init_waitqueue_head(&event->waitq);
6796
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6797

6798
	mutex_init(&event->mmap_mutex);
6799

6800
	atomic_long_set(&event->refcount, 1);
6801 6802 6803 6804 6805
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6806

6807
	event->parent		= parent_event;
6808

6809
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6810
	event->id		= atomic64_inc_return(&perf_event_id);
6811

6812
	event->state		= PERF_EVENT_STATE_INACTIVE;
6813

6814 6815
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6816 6817 6818

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6819 6820 6821 6822
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6823
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6824 6825 6826 6827
			event->hw.bp_target = task;
#endif
	}

6828
	if (!overflow_handler && parent_event) {
6829
		overflow_handler = parent_event->overflow_handler;
6830 6831
		context = parent_event->overflow_handler_context;
	}
6832

6833
	event->overflow_handler	= overflow_handler;
6834
	event->overflow_handler_context = context;
6835

J
Jiri Olsa 已提交
6836
	perf_event__state_init(event);
6837

6838
	pmu = NULL;
6839

6840
	hwc = &event->hw;
6841
	hwc->sample_period = attr->sample_period;
6842
	if (attr->freq && attr->sample_freq)
6843
		hwc->sample_period = 1;
6844
	hwc->last_period = hwc->sample_period;
6845

6846
	local64_set(&hwc->period_left, hwc->sample_period);
6847

6848
	/*
6849
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6850
	 */
6851
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6852
		goto err_ns;
6853

6854
	pmu = perf_init_event(event);
6855
	if (!pmu)
6856 6857
		goto err_ns;
	else if (IS_ERR(pmu)) {
6858
		err = PTR_ERR(pmu);
6859
		goto err_ns;
I
Ingo Molnar 已提交
6860
	}
6861

6862
	if (!event->parent) {
6863 6864
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6865 6866
			if (err)
				goto err_pmu;
6867
		}
6868
	}
6869

6870
	return event;
6871 6872 6873 6874

err_pmu:
	if (event->destroy)
		event->destroy(event);
6875
	module_put(pmu->module);
6876 6877 6878 6879 6880 6881
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6882 6883
}

6884 6885
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6886 6887
{
	u32 size;
6888
	int ret;
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6913 6914 6915
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6916 6917
	 */
	if (size > sizeof(*attr)) {
6918 6919 6920
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6921

6922 6923
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6924

6925
		for (; addr < end; addr++) {
6926 6927 6928 6929 6930 6931
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6932
		size = sizeof(*attr);
6933 6934 6935 6936 6937 6938
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6939
	if (attr->__reserved_1)
6940 6941 6942 6943 6944 6945 6946 6947
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6976 6977
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6978 6979
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6980
	}
6981

6982
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6983
		ret = perf_reg_validate(attr->sample_regs_user);
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7002

7003 7004 7005 7006 7007 7008 7009 7010 7011
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7012 7013
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7014
{
7015
	struct ring_buffer *rb = NULL;
7016 7017
	int ret = -EINVAL;

7018
	if (!output_event)
7019 7020
		goto set;

7021 7022
	/* don't allow circular references */
	if (event == output_event)
7023 7024
		goto out;

7025 7026 7027 7028 7029 7030 7031
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7032
	 * If its not a per-cpu rb, it must be the same task.
7033 7034 7035 7036
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7037
set:
7038
	mutex_lock(&event->mmap_mutex);
7039 7040 7041
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7042

7043
	if (output_event) {
7044 7045 7046
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7047
			goto unlock;
7048 7049
	}

7050
	ring_buffer_attach(event, rb);
7051

7052
	ret = 0;
7053 7054 7055
unlock:
	mutex_unlock(&event->mmap_mutex);

7056 7057 7058 7059
out:
	return ret;
}

T
Thomas Gleixner 已提交
7060
/**
7061
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7062
 *
7063
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7064
 * @pid:		target pid
I
Ingo Molnar 已提交
7065
 * @cpu:		target cpu
7066
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7067
 */
7068 7069
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7070
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7071
{
7072 7073
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7074 7075 7076
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7077
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7078
	struct task_struct *task = NULL;
7079
	struct pmu *pmu;
7080
	int event_fd;
7081
	int move_group = 0;
7082
	int err;
7083
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7084

7085
	/* for future expandability... */
S
Stephane Eranian 已提交
7086
	if (flags & ~PERF_FLAG_ALL)
7087 7088
		return -EINVAL;

7089 7090 7091
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7092

7093 7094 7095 7096 7097
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7098
	if (attr.freq) {
7099
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7100
			return -EINVAL;
7101 7102 7103
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7104 7105
	}

S
Stephane Eranian 已提交
7106 7107 7108 7109 7110 7111 7112 7113 7114
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7115 7116 7117 7118
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7119 7120 7121
	if (event_fd < 0)
		return event_fd;

7122
	if (group_fd != -1) {
7123 7124
		err = perf_fget_light(group_fd, &group);
		if (err)
7125
			goto err_fd;
7126
		group_leader = group.file->private_data;
7127 7128 7129 7130 7131 7132
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7133
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7134 7135 7136 7137 7138 7139 7140
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7141 7142 7143 7144 7145 7146
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7147 7148
	get_online_cpus();

7149 7150
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7151 7152
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7153
		goto err_cpus;
7154 7155
	}

S
Stephane Eranian 已提交
7156 7157
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7158 7159
		if (err) {
			__free_event(event);
7160
			goto err_cpus;
7161
		}
S
Stephane Eranian 已提交
7162 7163
	}

7164 7165 7166 7167 7168 7169 7170
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7171 7172
	account_event(event);

7173 7174 7175 7176 7177
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7201 7202 7203 7204

	/*
	 * Get the target context (task or percpu):
	 */
7205
	ctx = find_get_context(pmu, task, event->cpu);
7206 7207
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7208
		goto err_alloc;
7209 7210
	}

7211 7212 7213 7214 7215
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7216
	/*
7217
	 * Look up the group leader (we will attach this event to it):
7218
	 */
7219
	if (group_leader) {
7220
		err = -EINVAL;
7221 7222

		/*
I
Ingo Molnar 已提交
7223 7224 7225 7226
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7227
			goto err_context;
I
Ingo Molnar 已提交
7228 7229 7230
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7231
		 */
7232 7233 7234 7235 7236 7237 7238 7239
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7240 7241 7242
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7243
		if (attr.exclusive || attr.pinned)
7244
			goto err_context;
7245 7246 7247 7248 7249
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7250
			goto err_context;
7251
	}
T
Thomas Gleixner 已提交
7252

7253 7254
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7255 7256
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7257
		goto err_context;
7258
	}
7259

7260 7261 7262 7263
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7264
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7265 7266 7267 7268 7269 7270 7271

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7272 7273
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7274
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7275
			perf_event__state_init(sibling);
7276 7277 7278 7279
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7280
	}
7281

7282
	WARN_ON_ONCE(ctx->parent_ctx);
7283
	mutex_lock(&ctx->mutex);
7284 7285

	if (move_group) {
7286
		synchronize_rcu();
7287
		perf_install_in_context(ctx, group_leader, event->cpu);
7288 7289 7290
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7291
			perf_install_in_context(ctx, sibling, event->cpu);
7292 7293 7294 7295
			get_ctx(ctx);
		}
	}

7296
	perf_install_in_context(ctx, event, event->cpu);
7297
	perf_unpin_context(ctx);
7298
	mutex_unlock(&ctx->mutex);
7299

7300 7301
	put_online_cpus();

7302
	event->owner = current;
P
Peter Zijlstra 已提交
7303

7304 7305 7306
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7307

7308 7309 7310 7311
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7312
	perf_event__id_header_size(event);
7313

7314 7315 7316 7317 7318 7319
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7320
	fdput(group);
7321 7322
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7323

7324
err_context:
7325
	perf_unpin_context(ctx);
7326
	put_ctx(ctx);
7327
err_alloc:
7328
	free_event(event);
7329
err_cpus:
7330
	put_online_cpus();
7331
err_task:
P
Peter Zijlstra 已提交
7332 7333
	if (task)
		put_task_struct(task);
7334
err_group_fd:
7335
	fdput(group);
7336 7337
err_fd:
	put_unused_fd(event_fd);
7338
	return err;
T
Thomas Gleixner 已提交
7339 7340
}

7341 7342 7343 7344 7345
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7346
 * @task: task to profile (NULL for percpu)
7347 7348 7349
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7350
				 struct task_struct *task,
7351 7352
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7353 7354
{
	struct perf_event_context *ctx;
7355
	struct perf_event *event;
7356
	int err;
7357

7358 7359 7360
	/*
	 * Get the target context (task or percpu):
	 */
7361

7362 7363
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7364 7365 7366 7367
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7368

7369 7370
	account_event(event);

M
Matt Helsley 已提交
7371
	ctx = find_get_context(event->pmu, task, cpu);
7372 7373
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7374
		goto err_free;
7375
	}
7376 7377 7378 7379

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7380
	perf_unpin_context(ctx);
7381 7382 7383 7384
	mutex_unlock(&ctx->mutex);

	return event;

7385 7386 7387
err_free:
	free_event(event);
err:
7388
	return ERR_PTR(err);
7389
}
7390
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7391

7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7405
		perf_remove_from_context(event, false);
7406
		unaccount_event_cpu(event, src_cpu);
7407
		put_ctx(src_ctx);
7408
		list_add(&event->migrate_entry, &events);
7409 7410 7411 7412 7413 7414
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7415 7416
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7417 7418
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7419
		account_event_cpu(event, dst_cpu);
7420 7421 7422 7423 7424 7425 7426
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7427
static void sync_child_event(struct perf_event *child_event,
7428
			       struct task_struct *child)
7429
{
7430
	struct perf_event *parent_event = child_event->parent;
7431
	u64 child_val;
7432

7433 7434
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7435

P
Peter Zijlstra 已提交
7436
	child_val = perf_event_count(child_event);
7437 7438 7439 7440

	/*
	 * Add back the child's count to the parent's count:
	 */
7441
	atomic64_add(child_val, &parent_event->child_count);
7442 7443 7444 7445
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7446 7447

	/*
7448
	 * Remove this event from the parent's list
7449
	 */
7450 7451 7452 7453
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7454 7455

	/*
7456
	 * Release the parent event, if this was the last
7457 7458
	 * reference to it.
	 */
7459
	put_event(parent_event);
7460 7461
}

7462
static void
7463 7464
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7465
			 struct task_struct *child)
7466
{
7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7480

7481
	/*
7482
	 * It can happen that the parent exits first, and has events
7483
	 * that are still around due to the child reference. These
7484
	 * events need to be zapped.
7485
	 */
7486
	if (child_event->parent) {
7487 7488
		sync_child_event(child_event, child);
		free_event(child_event);
7489
	}
7490 7491
}

P
Peter Zijlstra 已提交
7492
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7493
{
7494
	struct perf_event *child_event, *next;
7495
	struct perf_event_context *child_ctx, *parent_ctx;
7496
	unsigned long flags;
7497

P
Peter Zijlstra 已提交
7498
	if (likely(!child->perf_event_ctxp[ctxn])) {
7499
		perf_event_task(child, NULL, 0);
7500
		return;
P
Peter Zijlstra 已提交
7501
	}
7502

7503
	local_irq_save(flags);
7504 7505 7506 7507 7508 7509
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7510
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7511 7512 7513

	/*
	 * Take the context lock here so that if find_get_context is
7514
	 * reading child->perf_event_ctxp, we wait until it has
7515 7516
	 * incremented the context's refcount before we do put_ctx below.
	 */
7517
	raw_spin_lock(&child_ctx->lock);
7518
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7519
	child->perf_event_ctxp[ctxn] = NULL;
7520 7521 7522 7523 7524 7525 7526 7527 7528

	/*
	 * In order to avoid freeing: child_ctx->parent_ctx->task
	 * under perf_event_context::lock, grab another reference.
	 */
	parent_ctx = child_ctx->parent_ctx;
	if (parent_ctx)
		get_ctx(parent_ctx);

7529 7530 7531
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7532
	 * the events from it.
7533 7534
	 */
	unclone_ctx(child_ctx);
7535
	update_context_time(child_ctx);
7536
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7537

7538 7539 7540 7541 7542 7543 7544
	/*
	 * Now that we no longer hold perf_event_context::lock, drop
	 * our extra child_ctx->parent_ctx reference.
	 */
	if (parent_ctx)
		put_ctx(parent_ctx);

P
Peter Zijlstra 已提交
7545
	/*
7546 7547 7548
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7549
	 */
7550
	perf_event_task(child, child_ctx, 0);
7551

7552 7553 7554
	/*
	 * We can recurse on the same lock type through:
	 *
7555 7556
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7557 7558
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7559 7560 7561
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7562
	mutex_lock(&child_ctx->mutex);
7563

7564
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7565
		__perf_event_exit_task(child_event, child_ctx, child);
7566

7567 7568 7569
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7570 7571
}

P
Peter Zijlstra 已提交
7572 7573 7574 7575 7576
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7577
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7578 7579
	int ctxn;

P
Peter Zijlstra 已提交
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7595 7596 7597 7598
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7611
	put_event(parent);
7612

7613
	perf_group_detach(event);
7614 7615 7616 7617
	list_del_event(event, ctx);
	free_event(event);
}

7618 7619
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7620
 * perf_event_init_task below, used by fork() in case of fail.
7621
 */
7622
void perf_event_free_task(struct task_struct *task)
7623
{
P
Peter Zijlstra 已提交
7624
	struct perf_event_context *ctx;
7625
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7626
	int ctxn;
7627

P
Peter Zijlstra 已提交
7628 7629 7630 7631
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7632

P
Peter Zijlstra 已提交
7633
		mutex_lock(&ctx->mutex);
7634
again:
P
Peter Zijlstra 已提交
7635 7636 7637
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7638

P
Peter Zijlstra 已提交
7639 7640 7641
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7642

P
Peter Zijlstra 已提交
7643 7644 7645
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7646

P
Peter Zijlstra 已提交
7647
		mutex_unlock(&ctx->mutex);
7648

P
Peter Zijlstra 已提交
7649 7650
		put_ctx(ctx);
	}
7651 7652
}

7653 7654 7655 7656 7657 7658 7659 7660
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7673
	unsigned long flags;
P
Peter Zijlstra 已提交
7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7686
					   child,
P
Peter Zijlstra 已提交
7687
					   group_leader, parent_event,
7688
				           NULL, NULL);
P
Peter Zijlstra 已提交
7689 7690
	if (IS_ERR(child_event))
		return child_event;
7691 7692 7693 7694 7695 7696

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7721 7722
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7723

7724 7725 7726 7727
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7728
	perf_event__id_header_size(child_event);
7729

P
Peter Zijlstra 已提交
7730 7731 7732
	/*
	 * Link it up in the child's context:
	 */
7733
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7734
	add_event_to_ctx(child_event, child_ctx);
7735
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7769 7770 7771 7772 7773
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7774
		   struct task_struct *child, int ctxn,
7775 7776 7777
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7778
	struct perf_event_context *child_ctx;
7779 7780 7781 7782

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7783 7784
	}

7785
	child_ctx = child->perf_event_ctxp[ctxn];
7786 7787 7788 7789 7790 7791 7792
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7793

7794
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7795 7796
		if (!child_ctx)
			return -ENOMEM;
7797

P
Peter Zijlstra 已提交
7798
		child->perf_event_ctxp[ctxn] = child_ctx;
7799 7800 7801 7802 7803 7804 7805 7806 7807
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7808 7809
}

7810
/*
7811
 * Initialize the perf_event context in task_struct
7812
 */
7813
static int perf_event_init_context(struct task_struct *child, int ctxn)
7814
{
7815
	struct perf_event_context *child_ctx, *parent_ctx;
7816 7817
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7818
	struct task_struct *parent = current;
7819
	int inherited_all = 1;
7820
	unsigned long flags;
7821
	int ret = 0;
7822

P
Peter Zijlstra 已提交
7823
	if (likely(!parent->perf_event_ctxp[ctxn]))
7824 7825
		return 0;

7826
	/*
7827 7828
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7829
	 */
P
Peter Zijlstra 已提交
7830
	parent_ctx = perf_pin_task_context(parent, ctxn);
7831 7832
	if (!parent_ctx)
		return 0;
7833

7834 7835 7836 7837 7838 7839 7840
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7841 7842 7843 7844
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7845
	mutex_lock(&parent_ctx->mutex);
7846 7847 7848 7849 7850

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7851
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7852 7853
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7854 7855 7856
		if (ret)
			break;
	}
7857

7858 7859 7860 7861 7862 7863 7864 7865 7866
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7867
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7868 7869
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7870
		if (ret)
7871
			break;
7872 7873
	}

7874 7875 7876
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7877
	child_ctx = child->perf_event_ctxp[ctxn];
7878

7879
	if (child_ctx && inherited_all) {
7880 7881 7882
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7883 7884 7885
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7886
		 */
P
Peter Zijlstra 已提交
7887
		cloned_ctx = parent_ctx->parent_ctx;
7888 7889
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7890
			child_ctx->parent_gen = parent_ctx->parent_gen;
7891 7892 7893 7894 7895
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7896 7897
	}

P
Peter Zijlstra 已提交
7898
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7899
	mutex_unlock(&parent_ctx->mutex);
7900

7901
	perf_unpin_context(parent_ctx);
7902
	put_ctx(parent_ctx);
7903

7904
	return ret;
7905 7906
}

P
Peter Zijlstra 已提交
7907 7908 7909 7910 7911 7912 7913
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7914 7915 7916 7917
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7918 7919 7920 7921 7922 7923 7924 7925 7926
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7927 7928
static void __init perf_event_init_all_cpus(void)
{
7929
	struct swevent_htable *swhash;
7930 7931 7932
	int cpu;

	for_each_possible_cpu(cpu) {
7933 7934
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7935
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7936 7937 7938
	}
}

7939
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7940
{
P
Peter Zijlstra 已提交
7941
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7942

7943
	mutex_lock(&swhash->hlist_mutex);
7944
	swhash->online = true;
7945
	if (swhash->hlist_refcount > 0) {
7946 7947
		struct swevent_hlist *hlist;

7948 7949 7950
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7951
	}
7952
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7953 7954
}

P
Peter Zijlstra 已提交
7955
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7956
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7957
{
7958 7959 7960 7961 7962 7963 7964
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7965
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7966
{
7967
	struct remove_event re = { .detach_group = false };
P
Peter Zijlstra 已提交
7968
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
7969

P
Peter Zijlstra 已提交
7970
	perf_pmu_rotate_stop(ctx->pmu);
7971

P
Peter Zijlstra 已提交
7972
	rcu_read_lock();
7973 7974
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
7975
	rcu_read_unlock();
T
Thomas Gleixner 已提交
7976
}
P
Peter Zijlstra 已提交
7977 7978 7979 7980 7981 7982 7983 7984 7985

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7986
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7987 7988 7989 7990 7991 7992 7993 7994

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7995
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7996
{
7997
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7998

P
Peter Zijlstra 已提交
7999 8000
	perf_event_exit_cpu_context(cpu);

8001
	mutex_lock(&swhash->hlist_mutex);
8002
	swhash->online = false;
8003 8004
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8005 8006
}
#else
8007
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8008 8009
#endif

P
Peter Zijlstra 已提交
8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8030
static int
T
Thomas Gleixner 已提交
8031 8032 8033 8034
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8035
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8036 8037

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8038
	case CPU_DOWN_FAILED:
8039
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8040 8041
		break;

P
Peter Zijlstra 已提交
8042
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8043
	case CPU_DOWN_PREPARE:
8044
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8045 8046 8047 8048 8049 8050 8051 8052
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8053
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8054
{
8055 8056
	int ret;

P
Peter Zijlstra 已提交
8057 8058
	idr_init(&pmu_idr);

8059
	perf_event_init_all_cpus();
8060
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8061 8062 8063
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8064 8065
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8066
	register_reboot_notifier(&perf_reboot_notifier);
8067 8068 8069

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8070 8071 8072

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8073 8074 8075 8076 8077 8078 8079

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8080
}
P
Peter Zijlstra 已提交
8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8109 8110

#ifdef CONFIG_CGROUP_PERF
8111 8112
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8113 8114 8115
{
	struct perf_cgroup *jc;

8116
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8129
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8130
{
8131 8132
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8144 8145
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8146
{
8147 8148
	struct task_struct *task;

8149
	cgroup_taskset_for_each(task, tset)
8150
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8151 8152
}

8153 8154
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8155
			     struct task_struct *task)
S
Stephane Eranian 已提交
8156 8157 8158 8159 8160 8161 8162 8163 8164
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8165
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8166 8167
}

8168
struct cgroup_subsys perf_event_cgrp_subsys = {
8169 8170
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8171
	.exit		= perf_cgroup_exit,
8172
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8173 8174
};
#endif /* CONFIG_CGROUP_PERF */