core.c 249.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
T
Thomas Gleixner 已提交
49

50 51
#include "internal.h"

52 53
#include <asm/irq_regs.h>

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
69 70 71 72 73 74 75 76 77 78 79
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
100
task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 102
{
	struct remote_function_call data = {
103 104 105
		.p	= p,
		.func	= func,
		.info	= info,
106
		.ret	= -EAGAIN,
107
	};
108
	int ret;
109

110 111 112 113 114
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
115

116
	return ret;
117 118 119 120 121 122 123 124 125 126 127
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
128
static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 130
{
	struct remote_function_call data = {
131 132 133 134
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
135 136 137 138 139 140 141
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

142 143 144 145 146 147 148 149
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
150
{
151 152 153 154 155 156 157 158 159 160 161 162 163
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

164 165 166 167
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
168
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
203
	struct perf_event_context *ctx = event->ctx;
204 205
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216
		if (ctx->task != current) {
217
			ret = -ESRCH;
218 219
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
246 247
{
	struct perf_event_context *ctx = event->ctx;
248
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 250 251 252 253
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
254

P
Peter Zijlstra 已提交
255 256 257 258 259 260 261 262
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
263 264

	if (!task) {
265
		cpu_function_call(event->cpu, event_function, &efs);
266 267 268
		return;
	}

269 270 271
	if (task == TASK_TOMBSTONE)
		return;

272
again:
273
	if (!task_function_call(task, event_function, &efs))
274 275 276
		return;

	raw_spin_lock_irq(&ctx->lock);
277 278 279 280 281
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
282 283 284
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
285
	}
286 287 288 289 290
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
291 292 293
	raw_spin_unlock_irq(&ctx->lock);
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
342 343
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
344 345
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
346

347 348 349 350 351 352 353
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

354 355 356
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
357
	EVENT_TIME = 0x4,
358 359 360
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
361 362 363 364
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
365 366 367 368 369 370 371

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
372
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
375

376 377 378
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
379
static atomic_t nr_freq_events __read_mostly;
380
static atomic_t nr_switch_events __read_mostly;
381

P
Peter Zijlstra 已提交
382 383 384 385
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

386
/*
387
 * perf event paranoia level:
388 389
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
390
 *   1 - disallow cpu events for unpriv
391
 *   2 - disallow kernel profiling for unpriv
392
 */
393
int sysctl_perf_event_paranoid __read_mostly = 2;
394

395 396
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 398

/*
399
 * max perf event sample rate
400
 */
401 402 403 404 405 406 407 408 409
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
410 411
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412

413
static void update_perf_cpu_limits(void)
414 415 416 417
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
418 419 420 421 422
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423
}
P
Peter Zijlstra 已提交
424

425 426
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
427 428 429 430
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
431
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
432 433 434 435

	if (ret || !write)
		return ret;

436 437 438 439 440 441 442
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
443
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

461 462
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
463 464 465 466 467 468
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
469 470 471

	return 0;
}
472

473 474 475 476 477 478 479
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
480
static DEFINE_PER_CPU(u64, running_sample_length);
481

482 483 484
static u64 __report_avg;
static u64 __report_allowed;

485
static void perf_duration_warn(struct irq_work *w)
486
{
487
	printk_ratelimited(KERN_INFO
488 489 490 491
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
492 493 494 495 496 497
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
498 499 500 501
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
502

503
	if (max_len == 0)
504 505
		return;

506 507 508 509 510
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
511 512

	/*
513 514
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 516
	 * from having to maintain a count.
	 */
517 518
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
519 520
		return;

521 522
	__report_avg = avg_len;
	__report_allowed = max_len;
523

524 525 526 527 528 529 530 531 532
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
533

534 535 536 537 538
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539

540
	if (!irq_work_queue(&perf_duration_work)) {
541
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542
			     "kernel.perf_event_max_sample_rate to %d\n",
543
			     __report_avg, __report_allowed,
544 545
			     sysctl_perf_event_sample_rate);
	}
546 547
}

548
static atomic64_t perf_event_id;
549

550 551 552 553
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
554 555 556 557 558
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
559

560
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
561

562
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
563
{
564
	return "pmu";
T
Thomas Gleixner 已提交
565 566
}

567 568 569 570 571
static inline u64 perf_clock(void)
{
	return local_clock();
}

572 573 574 575 576
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
577 578 579 580 581 582 583 584
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
601 602 603 604
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
605
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
644 645
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
646
	/*
647 648
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
649
	 */
650
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
651 652
		return;

653
	cgrp = perf_cgroup_from_task(current, event->ctx);
654 655 656 657 658
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
659 660 661
}

static inline void
662 663
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
664 665 666 667
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

668 669 670 671 672 673
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
674 675
		return;

676
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
677
	info = this_cpu_ptr(cgrp->info);
678
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
679 680 681 682 683 684 685 686 687 688 689
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
690
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 711
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
712 713 714 715 716 717 718 719 720

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
721 722
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
723 724 725 726 727 728 729 730 731 732 733

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
734
				WARN_ON_ONCE(cpuctx->cgrp);
735 736 737 738
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
739 740
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
741
				 */
742
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
743 744
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
745 746
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
747 748 749 750 751 752
		}
	}

	local_irq_restore(flags);
}

753 754
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
755
{
756 757 758
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

759
	rcu_read_lock();
760 761
	/*
	 * we come here when we know perf_cgroup_events > 0
762 763
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
764
	 */
765
	cgrp1 = perf_cgroup_from_task(task, NULL);
766
	cgrp2 = perf_cgroup_from_task(next, NULL);
767 768 769 770 771 772 773 774

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 776

	rcu_read_unlock();
S
Stephane Eranian 已提交
777 778
}

779 780
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
781
{
782 783 784
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

785
	rcu_read_lock();
786 787
	/*
	 * we come here when we know perf_cgroup_events > 0
788 789
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
790
	 */
791 792
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 794 795 796 797 798 799 800

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 802

	rcu_read_unlock();
S
Stephane Eranian 已提交
803 804 805 806 807 808 809 810
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
811 812
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
813

814
	if (!f.file)
S
Stephane Eranian 已提交
815 816
		return -EBADF;

A
Al Viro 已提交
817
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818
					 &perf_event_cgrp_subsys);
819 820 821 822
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
836
out:
837
	fdput(f);
S
Stephane Eranian 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
	cpuctx->cgrp = add ? event->cgrp : NULL;
}

S
Stephane Eranian 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

937 938
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
939 940 941
{
}

942 943
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
944 945 946 947 948 949 950 951 952 953 954
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
955 956
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
985 986 987 988 989 990 991

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
992 993
#endif

994 995 996 997 998 999 1000 1001
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
1002
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 1004 1005 1006 1007 1008 1009 1010 1011
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1012 1013
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1014
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1015 1016 1017
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018

P
Peter Zijlstra 已提交
1019
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 1021
}

1022
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023
{
1024
	struct hrtimer *timer = &cpuctx->hrtimer;
1025
	struct pmu *pmu = cpuctx->ctx.pmu;
1026
	u64 interval;
1027 1028 1029 1030 1031

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1032 1033 1034 1035
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1036 1037 1038
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039

1040
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041

P
Peter Zijlstra 已提交
1042 1043
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044
	timer->function = perf_mux_hrtimer_handler;
1045 1046
}

1047
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048
{
1049
	struct hrtimer *timer = &cpuctx->hrtimer;
1050
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1051
	unsigned long flags;
1052 1053 1054

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1055
		return 0;
1056

P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062 1063
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064

1065
	return 0;
1066 1067
}

P
Peter Zijlstra 已提交
1068
void perf_pmu_disable(struct pmu *pmu)
1069
{
P
Peter Zijlstra 已提交
1070 1071 1072
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1073 1074
}

P
Peter Zijlstra 已提交
1075
void perf_pmu_enable(struct pmu *pmu)
1076
{
P
Peter Zijlstra 已提交
1077 1078 1079
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1080 1081
}

1082
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 1084

/*
1085 1086 1087 1088
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1089
 */
1090
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091
{
1092
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093

1094
	WARN_ON(!irqs_disabled());
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1108 1109
}

1110
static void get_ctx(struct perf_event_context *ctx)
1111
{
1112
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1124
static void put_ctx(struct perf_event_context *ctx)
1125
{
1126 1127 1128
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1129
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130
			put_task_struct(ctx->task);
1131
		call_rcu(&ctx->rcu_head, free_ctx);
1132
	}
1133 1134
}

P
Peter Zijlstra 已提交
1135 1136 1137 1138 1139 1140 1141
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1142 1143 1144 1145
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1146 1147
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1188
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1189 1190 1191
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1192
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1193 1194 1195
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1196 1197
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1210
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1220 1221 1222 1223 1224 1225
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1226 1227 1228 1229 1230 1231 1232
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1233 1234 1235 1236 1237 1238 1239
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1240
{
1241 1242 1243 1244 1245
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1246
		ctx->parent_ctx = NULL;
1247
	ctx->generation++;
1248 1249

	return parent_ctx;
1250 1251
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1274
/*
1275
 * If we inherit events we want to return the parent event id
1276 1277
 * to userspace.
 */
1278
static u64 primary_event_id(struct perf_event *event)
1279
{
1280
	u64 id = event->id;
1281

1282 1283
	if (event->parent)
		id = event->parent->id;
1284 1285 1286 1287

	return id;
}

1288
/*
1289
 * Get the perf_event_context for a task and lock it.
1290
 *
1291 1292 1293
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1294
static struct perf_event_context *
P
Peter Zijlstra 已提交
1295
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296
{
1297
	struct perf_event_context *ctx;
1298

P
Peter Zijlstra 已提交
1299
retry:
1300 1301 1302
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303
	 * part of the read side critical section was irqs-enabled -- see
1304 1305 1306
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307
	 * side critical section has interrupts disabled.
1308
	 */
1309
	local_irq_save(*flags);
1310
	rcu_read_lock();
P
Peter Zijlstra 已提交
1311
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 1313 1314 1315
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1316
		 * perf_event_task_sched_out, though the
1317 1318 1319 1320 1321 1322
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1323
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1324
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325
			raw_spin_unlock(&ctx->lock);
1326
			rcu_read_unlock();
1327
			local_irq_restore(*flags);
1328 1329
			goto retry;
		}
1330

1331 1332
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1333
			raw_spin_unlock(&ctx->lock);
1334
			ctx = NULL;
P
Peter Zijlstra 已提交
1335 1336
		} else {
			WARN_ON_ONCE(ctx->task != task);
1337
		}
1338 1339
	}
	rcu_read_unlock();
1340 1341
	if (!ctx)
		local_irq_restore(*flags);
1342 1343 1344 1345 1346 1347 1348 1349
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1350 1351
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1352
{
1353
	struct perf_event_context *ctx;
1354 1355
	unsigned long flags;

P
Peter Zijlstra 已提交
1356
	ctx = perf_lock_task_context(task, ctxn, &flags);
1357 1358
	if (ctx) {
		++ctx->pin_count;
1359
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 1361 1362 1363
	}
	return ctx;
}

1364
static void perf_unpin_context(struct perf_event_context *ctx)
1365 1366 1367
{
	unsigned long flags;

1368
	raw_spin_lock_irqsave(&ctx->lock, flags);
1369
	--ctx->pin_count;
1370
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1384 1385 1386
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1387 1388 1389 1390

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1391 1392 1393
	return ctx ? ctx->time : 0;
}

1394 1395 1396 1397 1398 1399 1400 1401
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1402 1403
	lockdep_assert_held(&ctx->lock);

1404 1405 1406
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1407

S
Stephane Eranian 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1419
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1420 1421
	else if (ctx->is_active)
		run_end = ctx->time;
1422 1423 1424 1425
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1426 1427 1428 1429

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1430
		run_end = perf_event_time(event);
1431 1432

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1433

1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1448 1449 1450 1451 1452 1453 1454 1455 1456
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1457
/*
1458
 * Add a event from the lists for its context.
1459 1460
 * Must be called with ctx->mutex and ctx->lock held.
 */
1461
static void
1462
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463
{
1464

P
Peter Zijlstra 已提交
1465 1466
	lockdep_assert_held(&ctx->lock);

1467 1468
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1469 1470

	/*
1471 1472 1473
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1474
	 */
1475
	if (event->group_leader == event) {
1476 1477
		struct list_head *list;

1478 1479 1480
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1481 1482
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1483
	}
P
Peter Zijlstra 已提交
1484

1485
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1486

1487 1488 1489
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1490
		ctx->nr_stat++;
1491 1492

	ctx->generation++;
1493 1494
}

J
Jiri Olsa 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1504
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1520
		nr += nr_siblings;
1521 1522 1523 1524 1525 1526 1527
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1528
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1529 1530 1531 1532 1533 1534 1535
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1536 1537 1538 1539 1540 1541
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1542 1543 1544
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1545 1546 1547
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1548 1549 1550
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1551 1552 1553
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1554 1555 1556
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1568 1569 1570 1571 1572 1573
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1574 1575 1576 1577 1578 1579
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1580 1581 1582
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1583 1584 1585 1586 1587 1588 1589 1590 1591
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1592
	event->id_header_size = size;
1593 1594
}

P
Peter Zijlstra 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1616 1617
static void perf_group_attach(struct perf_event *event)
{
1618
	struct perf_event *group_leader = event->group_leader, *pos;
1619

P
Peter Zijlstra 已提交
1620 1621 1622 1623 1624 1625
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1626 1627 1628 1629 1630
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1631 1632
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1633 1634 1635 1636 1637 1638
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1639 1640 1641 1642 1643

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1644 1645
}

1646
/*
1647
 * Remove a event from the lists for its context.
1648
 * Must be called with ctx->mutex and ctx->lock held.
1649
 */
1650
static void
1651
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1652
{
P
Peter Zijlstra 已提交
1653 1654 1655
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1656 1657 1658 1659
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1660
		return;
1661 1662 1663

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1664
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1665

1666 1667
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1668
		ctx->nr_stat--;
1669

1670
	list_del_rcu(&event->event_entry);
1671

1672 1673
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1674

1675
	update_group_times(event);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1686 1687

	ctx->generation++;
1688 1689
}

1690
static void perf_group_detach(struct perf_event *event)
1691 1692
{
	struct perf_event *sibling, *tmp;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1709
		goto out;
1710 1711 1712 1713
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1714

1715
	/*
1716 1717
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1718
	 * to whatever list we are on.
1719
	 */
1720
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1721 1722
		if (list)
			list_move_tail(&sibling->group_entry, list);
1723
		sibling->group_leader = sibling;
1724 1725 1726

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1727 1728

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1729
	}
1730 1731 1732 1733 1734 1735

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1736 1737
}

1738 1739
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1740
	return event->state == PERF_EVENT_STATE_DEAD;
1741 1742
}

1743
static inline int __pmu_filter_match(struct perf_event *event)
1744 1745 1746 1747 1748
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1770 1771 1772
static inline int
event_filter_match(struct perf_event *event)
{
1773 1774
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1775 1776
}

1777 1778
static void
event_sched_out(struct perf_event *event,
1779
		  struct perf_cpu_context *cpuctx,
1780
		  struct perf_event_context *ctx)
1781
{
1782
	u64 tstamp = perf_event_time(event);
1783
	u64 delta;
P
Peter Zijlstra 已提交
1784 1785 1786 1787

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1788 1789 1790 1791 1792 1793
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1794 1795
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1796
		delta = tstamp - event->tstamp_stopped;
1797
		event->tstamp_running += delta;
1798
		event->tstamp_stopped = tstamp;
1799 1800
	}

1801
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1802
		return;
1803

1804 1805
	perf_pmu_disable(event->pmu);

1806 1807 1808
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1809 1810 1811 1812
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1813
	}
1814

1815
	if (!is_software_event(event))
1816
		cpuctx->active_oncpu--;
1817 1818
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1819 1820
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1821
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1822
		cpuctx->exclusive = 0;
1823 1824

	perf_pmu_enable(event->pmu);
1825 1826
}

1827
static void
1828
group_sched_out(struct perf_event *group_event,
1829
		struct perf_cpu_context *cpuctx,
1830
		struct perf_event_context *ctx)
1831
{
1832
	struct perf_event *event;
1833
	int state = group_event->state;
1834

1835
	event_sched_out(group_event, cpuctx, ctx);
1836 1837 1838 1839

	/*
	 * Schedule out siblings (if any):
	 */
1840 1841
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1842

1843
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1844 1845 1846
		cpuctx->exclusive = 0;
}

1847
#define DETACH_GROUP	0x01UL
1848

T
Thomas Gleixner 已提交
1849
/*
1850
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1851
 *
1852
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1853 1854
 * remove it from the context list.
 */
1855 1856 1857 1858 1859
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1860
{
1861
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1862

1863
	event_sched_out(event, cpuctx, ctx);
1864
	if (flags & DETACH_GROUP)
1865
		perf_group_detach(event);
1866
	list_del_event(event, ctx);
1867 1868

	if (!ctx->nr_events && ctx->is_active) {
1869
		ctx->is_active = 0;
1870 1871 1872 1873
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1874
	}
T
Thomas Gleixner 已提交
1875 1876 1877
}

/*
1878
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1879
 *
1880 1881
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1882 1883
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1884
 * When called from perf_event_exit_task, it's OK because the
1885
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1886
 */
1887
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1888
{
1889
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1890

1891
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1892 1893
}

1894
/*
1895
 * Cross CPU call to disable a performance event
1896
 */
1897 1898 1899 1900
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1901
{
1902 1903
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1904

1905 1906 1907 1908 1909 1910 1911 1912
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1913 1914
}

1915
/*
1916
 * Disable a event.
1917
 *
1918 1919
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1920
 * remains valid.  This condition is satisifed when called through
1921 1922
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1923 1924
 * goes to exit will block in perf_event_exit_event().
 *
1925
 * When called from perf_pending_event it's OK because event->ctx
1926
 * is the current context on this CPU and preemption is disabled,
1927
 * hence we can't get into perf_event_task_sched_out for this context.
1928
 */
P
Peter Zijlstra 已提交
1929
static void _perf_event_disable(struct perf_event *event)
1930
{
1931
	struct perf_event_context *ctx = event->ctx;
1932

1933
	raw_spin_lock_irq(&ctx->lock);
1934
	if (event->state <= PERF_EVENT_STATE_OFF) {
1935
		raw_spin_unlock_irq(&ctx->lock);
1936
		return;
1937
	}
1938
	raw_spin_unlock_irq(&ctx->lock);
1939

1940 1941 1942 1943 1944 1945
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1946
}
P
Peter Zijlstra 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1960
EXPORT_SYMBOL_GPL(perf_event_disable);
1961

S
Stephane Eranian 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1997 1998 1999
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2000
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2001

2002
static int
2003
event_sched_in(struct perf_event *event,
2004
		 struct perf_cpu_context *cpuctx,
2005
		 struct perf_event_context *ctx)
2006
{
2007
	u64 tstamp = perf_event_time(event);
2008
	int ret = 0;
2009

2010 2011
	lockdep_assert_held(&ctx->lock);

2012
	if (event->state <= PERF_EVENT_STATE_OFF)
2013 2014
		return 0;

2015 2016 2017 2018 2019 2020 2021
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2033 2034 2035 2036 2037
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2038 2039
	perf_pmu_disable(event->pmu);

2040 2041
	perf_set_shadow_time(event, ctx, tstamp);

2042 2043
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2044
	if (event->pmu->add(event, PERF_EF_START)) {
2045 2046
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2047 2048
		ret = -EAGAIN;
		goto out;
2049 2050
	}

2051 2052
	event->tstamp_running += tstamp - event->tstamp_stopped;

2053
	if (!is_software_event(event))
2054
		cpuctx->active_oncpu++;
2055 2056
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2057 2058
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2059

2060
	if (event->attr.exclusive)
2061 2062
		cpuctx->exclusive = 1;

2063 2064 2065 2066
out:
	perf_pmu_enable(event->pmu);

	return ret;
2067 2068
}

2069
static int
2070
group_sched_in(struct perf_event *group_event,
2071
	       struct perf_cpu_context *cpuctx,
2072
	       struct perf_event_context *ctx)
2073
{
2074
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2075
	struct pmu *pmu = ctx->pmu;
2076 2077
	u64 now = ctx->time;
	bool simulate = false;
2078

2079
	if (group_event->state == PERF_EVENT_STATE_OFF)
2080 2081
		return 0;

2082
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2083

2084
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2085
		pmu->cancel_txn(pmu);
2086
		perf_mux_hrtimer_restart(cpuctx);
2087
		return -EAGAIN;
2088
	}
2089 2090 2091 2092

	/*
	 * Schedule in siblings as one group (if any):
	 */
2093
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2094
		if (event_sched_in(event, cpuctx, ctx)) {
2095
			partial_group = event;
2096 2097 2098 2099
			goto group_error;
		}
	}

2100
	if (!pmu->commit_txn(pmu))
2101
		return 0;
2102

2103 2104 2105 2106
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2117
	 */
2118 2119
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2120 2121 2122 2123 2124 2125 2126 2127
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2128
	}
2129
	event_sched_out(group_event, cpuctx, ctx);
2130

P
Peter Zijlstra 已提交
2131
	pmu->cancel_txn(pmu);
2132

2133
	perf_mux_hrtimer_restart(cpuctx);
2134

2135 2136 2137
	return -EAGAIN;
}

2138
/*
2139
 * Work out whether we can put this event group on the CPU now.
2140
 */
2141
static int group_can_go_on(struct perf_event *event,
2142 2143 2144 2145
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2146
	 * Groups consisting entirely of software events can always go on.
2147
	 */
2148
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2149 2150 2151
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2152
	 * events can go on.
2153 2154 2155 2156 2157
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2158
	 * events on the CPU, it can't go on.
2159
	 */
2160
	if (event->attr.exclusive && cpuctx->active_oncpu)
2161 2162 2163 2164 2165 2166 2167 2168
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2169 2170
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2171
{
2172 2173
	u64 tstamp = perf_event_time(event);

2174
	list_add_event(event, ctx);
2175
	perf_group_attach(event);
2176 2177 2178
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2179 2180
}

2181 2182 2183
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2184 2185 2186 2187 2188
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2189

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2214 2215
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2216
{
2217 2218 2219 2220 2221 2222
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2223 2224
}

T
Thomas Gleixner 已提交
2225
/*
2226
 * Cross CPU call to install and enable a performance event
2227
 *
2228 2229
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2230
 */
2231
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2232
{
2233 2234
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2235
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2236
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2237 2238
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2239

2240
	raw_spin_lock(&cpuctx->ctx.lock);
2241
	if (ctx->task) {
2242 2243
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2244 2245 2246 2247

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2248
			goto unlock;
2249
		}
2250

2251
		/*
2252 2253 2254
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2255
		 */
2256 2257 2258 2259 2260
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2261 2262
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2263
	}
2264

2265 2266 2267 2268 2269 2270 2271 2272
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2273
unlock:
2274
	perf_ctx_unlock(cpuctx, task_ctx);
2275

2276
	return ret;
T
Thomas Gleixner 已提交
2277 2278 2279
}

/*
2280 2281 2282
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2283 2284
 */
static void
2285 2286
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2287 2288
			int cpu)
{
2289
	struct task_struct *task = READ_ONCE(ctx->task);
2290

2291 2292
	lockdep_assert_held(&ctx->mutex);

2293 2294
	if (event->cpu != -1)
		event->cpu = cpu;
2295

2296 2297 2298 2299 2300 2301
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2313 2314 2315 2316
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2317
again:
2318
	/*
2319 2320
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2321
	 */
2322 2323 2324 2325 2326
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2327
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2328 2329 2330 2331 2332
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2333 2334 2335
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2336 2337
	raw_spin_unlock_irq(&ctx->lock);
	/*
2338 2339
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2340
	 */
2341
	goto again;
T
Thomas Gleixner 已提交
2342 2343
}

2344
/*
2345
 * Put a event into inactive state and update time fields.
2346 2347 2348 2349 2350 2351
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2352
static void __perf_event_mark_enabled(struct perf_event *event)
2353
{
2354
	struct perf_event *sub;
2355
	u64 tstamp = perf_event_time(event);
2356

2357
	event->state = PERF_EVENT_STATE_INACTIVE;
2358
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2359
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2360 2361
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2362
	}
2363 2364
}

2365
/*
2366
 * Cross CPU call to enable a performance event
2367
 */
2368 2369 2370 2371
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2372
{
2373
	struct perf_event *leader = event->group_leader;
2374
	struct perf_event_context *task_ctx;
2375

P
Peter Zijlstra 已提交
2376 2377
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2378
		return;
2379

2380 2381 2382
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2383
	__perf_event_mark_enabled(event);
2384

2385 2386 2387
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2388
	if (!event_filter_match(event)) {
2389
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2390
			perf_cgroup_defer_enabled(event);
2391
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2392
		return;
S
Stephane Eranian 已提交
2393
	}
2394

2395
	/*
2396
	 * If the event is in a group and isn't the group leader,
2397
	 * then don't put it on unless the group is on.
2398
	 */
2399 2400
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2401
		return;
2402
	}
2403

2404 2405 2406
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2407

2408
	ctx_resched(cpuctx, task_ctx);
2409 2410
}

2411
/*
2412
 * Enable a event.
2413
 *
2414 2415
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2416
 * remains valid.  This condition is satisfied when called through
2417 2418
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2419
 */
P
Peter Zijlstra 已提交
2420
static void _perf_event_enable(struct perf_event *event)
2421
{
2422
	struct perf_event_context *ctx = event->ctx;
2423

2424
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2425 2426
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2427
		raw_spin_unlock_irq(&ctx->lock);
2428 2429 2430 2431
		return;
	}

	/*
2432
	 * If the event is in error state, clear that first.
2433 2434 2435 2436
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2437
	 */
2438 2439
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2440
	raw_spin_unlock_irq(&ctx->lock);
2441

2442
	event_function_call(event, __perf_event_enable, NULL);
2443
}
P
Peter Zijlstra 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2456
EXPORT_SYMBOL_GPL(perf_event_enable);
2457

2458 2459 2460 2461 2462
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2463 2464
static int __perf_event_stop(void *info)
{
2465 2466
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2467

2468
	/* if it's already INACTIVE, do nothing */
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
		event->pmu->start(event, PERF_EF_START);

2496 2497 2498
	return 0;
}

2499
static int perf_event_stop(struct perf_event *event, int restart)
2500 2501 2502
{
	struct stop_event_data sd = {
		.event		= event,
2503
		.restart	= restart,
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2564
static int _perf_event_refresh(struct perf_event *event, int refresh)
2565
{
2566
	/*
2567
	 * not supported on inherited events
2568
	 */
2569
	if (event->attr.inherit || !is_sampling_event(event))
2570 2571
		return -EINVAL;

2572
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2573
	_perf_event_enable(event);
2574 2575

	return 0;
2576
}
P
Peter Zijlstra 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2592
EXPORT_SYMBOL_GPL(perf_event_refresh);
2593

2594 2595 2596
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2597
{
2598
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2599
	struct perf_event *event;
2600

P
Peter Zijlstra 已提交
2601
	lockdep_assert_held(&ctx->lock);
2602

2603 2604 2605 2606 2607 2608 2609
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2610
		return;
2611 2612
	}

2613
	ctx->is_active &= ~event_type;
2614 2615 2616
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2617 2618 2619 2620 2621
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2622

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2633 2634 2635 2636 2637 2638
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2639 2640
	is_active ^= ctx->is_active; /* changed bits */

2641
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2642
		return;
2643

P
Peter Zijlstra 已提交
2644
	perf_pmu_disable(ctx->pmu);
2645
	if (is_active & EVENT_PINNED) {
2646 2647
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2648
	}
2649

2650
	if (is_active & EVENT_FLEXIBLE) {
2651
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2652
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2653
	}
P
Peter Zijlstra 已提交
2654
	perf_pmu_enable(ctx->pmu);
2655 2656
}

2657
/*
2658 2659 2660 2661 2662 2663
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2664
 */
2665 2666
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2667
{
2668 2669 2670
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2693 2694
}

2695 2696
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2697 2698 2699
{
	u64 value;

2700
	if (!event->attr.inherit_stat)
2701 2702 2703
		return;

	/*
2704
	 * Update the event value, we cannot use perf_event_read()
2705 2706
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2707
	 * we know the event must be on the current CPU, therefore we
2708 2709
	 * don't need to use it.
	 */
2710 2711
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2712 2713
		event->pmu->read(event);
		/* fall-through */
2714

2715 2716
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2717 2718 2719 2720 2721 2722 2723
		break;

	default:
		break;
	}

	/*
2724
	 * In order to keep per-task stats reliable we need to flip the event
2725 2726
	 * values when we flip the contexts.
	 */
2727 2728 2729
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2730

2731 2732
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2733

2734
	/*
2735
	 * Since we swizzled the values, update the user visible data too.
2736
	 */
2737 2738
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2739 2740
}

2741 2742
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2743
{
2744
	struct perf_event *event, *next_event;
2745 2746 2747 2748

	if (!ctx->nr_stat)
		return;

2749 2750
	update_context_time(ctx);

2751 2752
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2753

2754 2755
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2756

2757 2758
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2759

2760
		__perf_event_sync_stat(event, next_event);
2761

2762 2763
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2764 2765 2766
	}
}

2767 2768
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2769
{
P
Peter Zijlstra 已提交
2770
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2771
	struct perf_event_context *next_ctx;
2772
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2773
	struct perf_cpu_context *cpuctx;
2774
	int do_switch = 1;
T
Thomas Gleixner 已提交
2775

P
Peter Zijlstra 已提交
2776 2777
	if (likely(!ctx))
		return;
2778

P
Peter Zijlstra 已提交
2779 2780
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2781 2782
		return;

2783
	rcu_read_lock();
P
Peter Zijlstra 已提交
2784
	next_ctx = next->perf_event_ctxp[ctxn];
2785 2786 2787 2788 2789 2790 2791
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2792
	if (!parent && !next_parent)
2793 2794 2795
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2796 2797 2798 2799 2800 2801 2802 2803 2804
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2805 2806
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2807
		if (context_equiv(ctx, next_ctx)) {
2808 2809
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2810 2811 2812

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2823
			do_switch = 0;
2824

2825
			perf_event_sync_stat(ctx, next_ctx);
2826
		}
2827 2828
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2829
	}
2830
unlock:
2831
	rcu_read_unlock();
2832

2833
	if (do_switch) {
2834
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2835
		task_ctx_sched_out(cpuctx, ctx);
2836
		raw_spin_unlock(&ctx->lock);
2837
	}
T
Thomas Gleixner 已提交
2838 2839
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2890 2891 2892
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2907 2908
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2909 2910 2911
{
	int ctxn;

2912 2913 2914
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2915 2916 2917
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2918 2919
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2920 2921 2922 2923 2924 2925

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2926
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2927
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2928 2929
}

2930 2931 2932 2933 2934 2935 2936
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2937 2938
}

2939
static void
2940
ctx_pinned_sched_in(struct perf_event_context *ctx,
2941
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2942
{
2943
	struct perf_event *event;
T
Thomas Gleixner 已提交
2944

2945 2946
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2947
			continue;
2948
		if (!event_filter_match(event))
2949 2950
			continue;

S
Stephane Eranian 已提交
2951 2952 2953 2954
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2955
		if (group_can_go_on(event, cpuctx, 1))
2956
			group_sched_in(event, cpuctx, ctx);
2957 2958 2959 2960 2961

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2962 2963 2964
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2965
		}
2966
	}
2967 2968 2969 2970
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2971
		      struct perf_cpu_context *cpuctx)
2972 2973 2974
{
	struct perf_event *event;
	int can_add_hw = 1;
2975

2976 2977 2978
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2979
			continue;
2980 2981
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2982
		 * of events:
2983
		 */
2984
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2985 2986
			continue;

S
Stephane Eranian 已提交
2987 2988 2989 2990
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2991
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2992
			if (group_sched_in(event, cpuctx, ctx))
2993
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2994
		}
T
Thomas Gleixner 已提交
2995
	}
2996 2997 2998 2999 3000
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3001 3002
	     enum event_type_t event_type,
	     struct task_struct *task)
3003
{
3004
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3005 3006 3007
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3008

3009
	if (likely(!ctx->nr_events))
3010
		return;
3011

3012
	ctx->is_active |= (event_type | EVENT_TIME);
3013 3014 3015 3016 3017 3018 3019
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3020 3021 3022 3023 3024 3025 3026 3027 3028
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3029 3030 3031 3032
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3033
	if (is_active & EVENT_PINNED)
3034
		ctx_pinned_sched_in(ctx, cpuctx);
3035 3036

	/* Then walk through the lower prio flexible groups */
3037
	if (is_active & EVENT_FLEXIBLE)
3038
		ctx_flexible_sched_in(ctx, cpuctx);
3039 3040
}

3041
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3042 3043
			     enum event_type_t event_type,
			     struct task_struct *task)
3044 3045 3046
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3047
	ctx_sched_in(ctx, cpuctx, event_type, task);
3048 3049
}

S
Stephane Eranian 已提交
3050 3051
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3052
{
P
Peter Zijlstra 已提交
3053
	struct perf_cpu_context *cpuctx;
3054

P
Peter Zijlstra 已提交
3055
	cpuctx = __get_cpu_context(ctx);
3056 3057 3058
	if (cpuctx->task_ctx == ctx)
		return;

3059
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3060
	perf_pmu_disable(ctx->pmu);
3061 3062 3063 3064 3065 3066
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3067
	perf_event_sched_in(cpuctx, ctx, task);
3068 3069
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3070 3071
}

P
Peter Zijlstra 已提交
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3083 3084
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3085 3086 3087 3088
{
	struct perf_event_context *ctx;
	int ctxn;

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3099 3100 3101 3102 3103
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3104
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3105
	}
3106

3107 3108 3109
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3110 3111
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3112 3113
}

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3141
#define REDUCE_FLS(a, b)		\
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3181 3182 3183
	if (!divisor)
		return dividend;

3184 3185 3186
	return div64_u64(dividend, divisor);
}

3187 3188 3189
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3190
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3191
{
3192
	struct hw_perf_event *hwc = &event->hw;
3193
	s64 period, sample_period;
3194 3195
	s64 delta;

3196
	period = perf_calculate_period(event, nsec, count);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3207

3208
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3209 3210 3211
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3212
		local64_set(&hwc->period_left, 0);
3213 3214 3215

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3216
	}
3217 3218
}

3219 3220 3221 3222 3223 3224 3225
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3226
{
3227 3228
	struct perf_event *event;
	struct hw_perf_event *hwc;
3229
	u64 now, period = TICK_NSEC;
3230
	s64 delta;
3231

3232 3233 3234 3235 3236 3237
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3238 3239
		return;

3240
	raw_spin_lock(&ctx->lock);
3241
	perf_pmu_disable(ctx->pmu);
3242

3243
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3244
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3245 3246
			continue;

3247
		if (!event_filter_match(event))
3248 3249
			continue;

3250 3251
		perf_pmu_disable(event->pmu);

3252
		hwc = &event->hw;
3253

3254
		if (hwc->interrupts == MAX_INTERRUPTS) {
3255
			hwc->interrupts = 0;
3256
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3257
			event->pmu->start(event, 0);
3258 3259
		}

3260
		if (!event->attr.freq || !event->attr.sample_freq)
3261
			goto next;
3262

3263 3264 3265 3266 3267
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3268
		now = local64_read(&event->count);
3269 3270
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3271

3272 3273 3274
		/*
		 * restart the event
		 * reload only if value has changed
3275 3276 3277
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3278
		 */
3279
		if (delta > 0)
3280
			perf_adjust_period(event, period, delta, false);
3281 3282

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3283 3284
	next:
		perf_pmu_enable(event->pmu);
3285
	}
3286

3287
	perf_pmu_enable(ctx->pmu);
3288
	raw_spin_unlock(&ctx->lock);
3289 3290
}

3291
/*
3292
 * Round-robin a context's events:
3293
 */
3294
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3295
{
3296 3297 3298 3299 3300 3301
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3302 3303
}

3304
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3305
{
P
Peter Zijlstra 已提交
3306
	struct perf_event_context *ctx = NULL;
3307
	int rotate = 0;
3308

3309 3310 3311 3312
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3313

P
Peter Zijlstra 已提交
3314
	ctx = cpuctx->task_ctx;
3315 3316 3317 3318
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3319

3320
	if (!rotate)
3321 3322
		goto done;

3323
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3324
	perf_pmu_disable(cpuctx->ctx.pmu);
3325

3326 3327 3328
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3329

3330 3331 3332
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3333

3334
	perf_event_sched_in(cpuctx, ctx, current);
3335

3336 3337
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3338
done:
3339 3340

	return rotate;
3341 3342 3343 3344
}

void perf_event_task_tick(void)
{
3345 3346
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3347
	int throttled;
3348

3349 3350
	WARN_ON(!irqs_disabled());

3351 3352
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3353
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3354

3355
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3356
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3357 3358
}

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3369
	__perf_event_mark_enabled(event);
3370 3371 3372 3373

	return 1;
}

3374
/*
3375
 * Enable all of a task's events that have been marked enable-on-exec.
3376 3377
 * This expects task == current.
 */
3378
static void perf_event_enable_on_exec(int ctxn)
3379
{
3380
	struct perf_event_context *ctx, *clone_ctx = NULL;
3381
	struct perf_cpu_context *cpuctx;
3382
	struct perf_event *event;
3383 3384 3385 3386
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3387
	ctx = current->perf_event_ctxp[ctxn];
3388
	if (!ctx || !ctx->nr_events)
3389 3390
		goto out;

3391 3392
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3393
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3394 3395
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3396 3397

	/*
3398
	 * Unclone and reschedule this context if we enabled any event.
3399
	 */
3400
	if (enabled) {
3401
		clone_ctx = unclone_ctx(ctx);
3402 3403 3404
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3405

P
Peter Zijlstra 已提交
3406
out:
3407
	local_irq_restore(flags);
3408 3409 3410

	if (clone_ctx)
		put_ctx(clone_ctx);
3411 3412
}

3413 3414 3415
struct perf_read_data {
	struct perf_event *event;
	bool group;
3416
	int ret;
3417 3418
};

T
Thomas Gleixner 已提交
3419
/*
3420
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3421
 */
3422
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3423
{
3424 3425
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3426
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3427
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3428
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3429

3430 3431 3432 3433
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3434 3435
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3436 3437 3438 3439
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3440
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3441
	if (ctx->is_active) {
3442
		update_context_time(ctx);
S
Stephane Eranian 已提交
3443 3444
		update_cgrp_time_from_event(event);
	}
3445

3446
	update_event_times(event);
3447 3448
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3449

3450 3451 3452
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3453
		goto unlock;
3454 3455 3456 3457 3458
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3459 3460 3461

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3462 3463 3464 3465 3466
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3467
			sub->pmu->read(sub);
3468
		}
3469
	}
3470 3471

	data->ret = pmu->commit_txn(pmu);
3472 3473

unlock:
3474
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3475 3476
}

P
Peter Zijlstra 已提交
3477 3478
static inline u64 perf_event_count(struct perf_event *event)
{
3479 3480 3481 3482
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3483 3484
}

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3538
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3539
{
3540 3541
	int ret = 0;

T
Thomas Gleixner 已提交
3542
	/*
3543 3544
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3545
	 */
3546
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3547 3548 3549
		struct perf_read_data data = {
			.event = event,
			.group = group,
3550
			.ret = 0,
3551
		};
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
		 * If event->oncpu isn't a valid CPU it means the event got
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
		(void)smp_call_function_single(event->oncpu, __perf_event_read, &data, 1);
		ret = data.ret;
3564
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3565 3566 3567
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3568
		raw_spin_lock_irqsave(&ctx->lock, flags);
3569 3570 3571 3572 3573
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3574
		if (ctx->is_active) {
3575
			update_context_time(ctx);
S
Stephane Eranian 已提交
3576 3577
			update_cgrp_time_from_event(event);
		}
3578 3579 3580 3581
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3582
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3583
	}
3584 3585

	return ret;
T
Thomas Gleixner 已提交
3586 3587
}

3588
/*
3589
 * Initialize the perf_event context in a task_struct:
3590
 */
3591
static void __perf_event_init_context(struct perf_event_context *ctx)
3592
{
3593
	raw_spin_lock_init(&ctx->lock);
3594
	mutex_init(&ctx->mutex);
3595
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3596 3597
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3598 3599
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3615
	}
3616 3617 3618
	ctx->pmu = pmu;

	return ctx;
3619 3620
}

3621 3622 3623 3624
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3625 3626

	rcu_read_lock();
3627
	if (!vpid)
T
Thomas Gleixner 已提交
3628 3629
		task = current;
	else
3630
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3631 3632 3633 3634 3635 3636 3637
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3638 3639 3640
	return task;
}

3641 3642 3643
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3644
static struct perf_event_context *
3645 3646
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3647
{
3648
	struct perf_event_context *ctx, *clone_ctx = NULL;
3649
	struct perf_cpu_context *cpuctx;
3650
	void *task_ctx_data = NULL;
3651
	unsigned long flags;
P
Peter Zijlstra 已提交
3652
	int ctxn, err;
3653
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3654

3655
	if (!task) {
3656
		/* Must be root to operate on a CPU event: */
3657
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3658 3659 3660
			return ERR_PTR(-EACCES);

		/*
3661
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3662 3663 3664
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3665
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3666 3667
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3668
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3669
		ctx = &cpuctx->ctx;
3670
		get_ctx(ctx);
3671
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3672 3673 3674 3675

		return ctx;
	}

P
Peter Zijlstra 已提交
3676 3677 3678 3679 3680
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3681 3682 3683 3684 3685 3686 3687 3688
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3689
retry:
P
Peter Zijlstra 已提交
3690
	ctx = perf_lock_task_context(task, ctxn, &flags);
3691
	if (ctx) {
3692
		clone_ctx = unclone_ctx(ctx);
3693
		++ctx->pin_count;
3694 3695 3696 3697 3698

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3699
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3700 3701 3702

		if (clone_ctx)
			put_ctx(clone_ctx);
3703
	} else {
3704
		ctx = alloc_perf_context(pmu, task);
3705 3706 3707
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3708

3709 3710 3711 3712 3713
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3724
		else {
3725
			get_ctx(ctx);
3726
			++ctx->pin_count;
3727
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3728
		}
3729 3730 3731
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3732
			put_ctx(ctx);
3733 3734 3735 3736

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3737 3738 3739
		}
	}

3740
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3741
	return ctx;
3742

P
Peter Zijlstra 已提交
3743
errout:
3744
	kfree(task_ctx_data);
3745
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3746 3747
}

L
Li Zefan 已提交
3748
static void perf_event_free_filter(struct perf_event *event);
3749
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3750

3751
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3752
{
3753
	struct perf_event *event;
P
Peter Zijlstra 已提交
3754

3755 3756 3757
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3758
	perf_event_free_filter(event);
3759
	kfree(event);
P
Peter Zijlstra 已提交
3760 3761
}

3762 3763
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3764

3765 3766 3767 3768 3769 3770 3771 3772 3773
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3774
static bool is_sb_event(struct perf_event *event)
3775
{
3776 3777
	struct perf_event_attr *attr = &event->attr;

3778
	if (event->parent)
3779
		return false;
3780 3781

	if (event->attach_state & PERF_ATTACH_TASK)
3782
		return false;
3783

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3796 3797
}

3798
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3799
{
3800 3801 3802 3803 3804 3805
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3806

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3829 3830
static void unaccount_event(struct perf_event *event)
{
3831 3832
	bool dec = false;

3833 3834 3835 3836
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3837
		dec = true;
3838 3839 3840 3841 3842 3843
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3844
	if (event->attr.freq)
3845
		unaccount_freq_event();
3846
	if (event->attr.context_switch) {
3847
		dec = true;
3848 3849
		atomic_dec(&nr_switch_events);
	}
3850
	if (is_cgroup_event(event))
3851
		dec = true;
3852
	if (has_branch_stack(event))
3853 3854
		dec = true;

3855 3856 3857 3858
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3859 3860

	unaccount_event_cpu(event, event->cpu);
3861 3862

	unaccount_pmu_sb_event(event);
3863
}
3864

3865 3866 3867 3868 3869 3870 3871 3872
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3883
 * _free_event()), the latter -- before the first perf_install_in_context().
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3958 3959 3960
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
3961
static void _free_event(struct perf_event *event)
3962
{
3963
	irq_work_sync(&event->pending);
3964

3965
	unaccount_event(event);
3966

3967
	if (event->rb) {
3968 3969 3970 3971 3972 3973 3974
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3975
		ring_buffer_attach(event, NULL);
3976
		mutex_unlock(&event->mmap_mutex);
3977 3978
	}

S
Stephane Eranian 已提交
3979 3980 3981
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3982 3983 3984 3985 3986 3987
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
3988 3989
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
3990 3991 3992 3993 3994 3995 3996

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3997 3998
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
3999 4000

	call_rcu(&event->rcu_head, free_event_rcu);
4001 4002
}

P
Peter Zijlstra 已提交
4003 4004 4005 4006 4007
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4008
{
P
Peter Zijlstra 已提交
4009 4010 4011 4012 4013 4014
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4015

P
Peter Zijlstra 已提交
4016
	_free_event(event);
T
Thomas Gleixner 已提交
4017 4018
}

4019
/*
4020
 * Remove user event from the owner task.
4021
 */
4022
static void perf_remove_from_owner(struct perf_event *event)
4023
{
P
Peter Zijlstra 已提交
4024
	struct task_struct *owner;
4025

P
Peter Zijlstra 已提交
4026 4027
	rcu_read_lock();
	/*
4028 4029 4030
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4031 4032
	 * owner->perf_event_mutex.
	 */
4033
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4055 4056 4057 4058 4059 4060
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4061
		if (event->owner) {
P
Peter Zijlstra 已提交
4062
			list_del_init(&event->owner_entry);
4063 4064
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4065 4066 4067
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4068 4069 4070 4071 4072 4073 4074
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4085
	struct perf_event_context *ctx = event->ctx;
4086 4087
	struct perf_event *child, *tmp;

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4098 4099
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4100

4101
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4102
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4103
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4104

P
Peter Zijlstra 已提交
4105
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4106
	/*
P
Peter Zijlstra 已提交
4107 4108
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
4109
	 *
P
Peter Zijlstra 已提交
4110 4111 4112
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4113
	 *
4114 4115
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4116
	 */
P
Peter Zijlstra 已提交
4117 4118 4119 4120
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4121

4122 4123 4124
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4125

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4175 4176
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4177 4178 4179 4180
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4181 4182 4183
/*
 * Called when the last reference to the file is gone.
 */
4184 4185
static int perf_release(struct inode *inode, struct file *file)
{
4186
	perf_event_release_kernel(file->private_data);
4187
	return 0;
4188 4189
}

4190
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4191
{
4192
	struct perf_event *child;
4193 4194
	u64 total = 0;

4195 4196 4197
	*enabled = 0;
	*running = 0;

4198
	mutex_lock(&event->child_mutex);
4199

4200
	(void)perf_event_read(event, false);
4201 4202
	total += perf_event_count(event);

4203 4204 4205 4206 4207 4208
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4209
		(void)perf_event_read(child, false);
4210
		total += perf_event_count(child);
4211 4212 4213
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4214
	mutex_unlock(&event->child_mutex);
4215 4216 4217

	return total;
}
4218
EXPORT_SYMBOL_GPL(perf_event_read_value);
4219

4220
static int __perf_read_group_add(struct perf_event *leader,
4221
					u64 read_format, u64 *values)
4222
{
4223 4224
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4225
	int ret;
P
Peter Zijlstra 已提交
4226

4227 4228 4229
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4230

4231 4232 4233 4234 4235 4236 4237 4238 4239
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4240

4241 4242 4243 4244 4245 4246 4247 4248 4249
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4250 4251
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4252

4253 4254 4255 4256 4257
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4258 4259

	return 0;
4260
}
4261

4262 4263 4264 4265 4266
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4267
	int ret;
4268
	u64 *values;
4269

4270
	lockdep_assert_held(&ctx->mutex);
4271

4272 4273 4274
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4275

4276 4277 4278 4279 4280 4281 4282
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4283

4284 4285 4286 4287 4288 4289 4290 4291 4292
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4293

4294
	mutex_unlock(&leader->child_mutex);
4295

4296
	ret = event->read_size;
4297 4298
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4299
	goto out;
4300

4301 4302 4303
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4304
	kfree(values);
4305
	return ret;
4306 4307
}

4308
static int perf_read_one(struct perf_event *event,
4309 4310
				 u64 read_format, char __user *buf)
{
4311
	u64 enabled, running;
4312 4313 4314
	u64 values[4];
	int n = 0;

4315 4316 4317 4318 4319
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4320
	if (read_format & PERF_FORMAT_ID)
4321
		values[n++] = primary_event_id(event);
4322 4323 4324 4325 4326 4327 4328

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4329 4330 4331 4332
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4333
	if (event->state > PERF_EVENT_STATE_EXIT)
4334 4335 4336 4337 4338 4339 4340 4341
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4342
/*
4343
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4344 4345
 */
static ssize_t
4346
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4347
{
4348
	u64 read_format = event->attr.read_format;
4349
	int ret;
T
Thomas Gleixner 已提交
4350

4351
	/*
4352
	 * Return end-of-file for a read on a event that is in
4353 4354 4355
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4356
	if (event->state == PERF_EVENT_STATE_ERROR)
4357 4358
		return 0;

4359
	if (count < event->read_size)
4360 4361
		return -ENOSPC;

4362
	WARN_ON_ONCE(event->ctx->parent_ctx);
4363
	if (read_format & PERF_FORMAT_GROUP)
4364
		ret = perf_read_group(event, read_format, buf);
4365
	else
4366
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4367

4368
	return ret;
T
Thomas Gleixner 已提交
4369 4370 4371 4372 4373
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4374
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4375 4376
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4377

P
Peter Zijlstra 已提交
4378
	ctx = perf_event_ctx_lock(event);
4379
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4380 4381 4382
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4383 4384 4385 4386
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4387
	struct perf_event *event = file->private_data;
4388
	struct ring_buffer *rb;
4389
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4390

4391
	poll_wait(file, &event->waitq, wait);
4392

4393
	if (is_event_hup(event))
4394
		return events;
P
Peter Zijlstra 已提交
4395

4396
	/*
4397 4398
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4399 4400
	 */
	mutex_lock(&event->mmap_mutex);
4401 4402
	rb = event->rb;
	if (rb)
4403
		events = atomic_xchg(&rb->poll, 0);
4404
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4405 4406 4407
	return events;
}

P
Peter Zijlstra 已提交
4408
static void _perf_event_reset(struct perf_event *event)
4409
{
4410
	(void)perf_event_read(event, false);
4411
	local64_set(&event->count, 0);
4412
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4413 4414
}

4415
/*
4416 4417
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4418
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4419
 * task existence requirements of perf_event_enable/disable.
4420
 */
4421 4422
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4423
{
4424
	struct perf_event *child;
P
Peter Zijlstra 已提交
4425

4426
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4427

4428 4429 4430
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4431
		func(child);
4432
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4433 4434
}

4435 4436
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4437
{
4438 4439
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4440

P
Peter Zijlstra 已提交
4441 4442
	lockdep_assert_held(&ctx->mutex);

4443
	event = event->group_leader;
4444

4445 4446
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4447
		perf_event_for_each_child(sibling, func);
4448 4449
}

4450 4451 4452 4453
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4454
{
4455
	u64 value = *((u64 *)info);
4456
	bool active;
4457

4458 4459
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4460
	} else {
4461 4462
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4463
	}
4464 4465 4466 4467

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4468 4469 4470 4471 4472 4473 4474 4475
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4476 4477 4478 4479 4480 4481 4482 4483 4484
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4503
	event_function_call(event, __perf_event_period, &value);
4504

4505
	return 0;
4506 4507
}

4508 4509
static const struct file_operations perf_fops;

4510
static inline int perf_fget_light(int fd, struct fd *p)
4511
{
4512 4513 4514
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4515

4516 4517 4518
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4519
	}
4520 4521
	*p = f;
	return 0;
4522 4523 4524 4525
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4526
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4527
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4528

P
Peter Zijlstra 已提交
4529
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4530
{
4531
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4532
	u32 flags = arg;
4533 4534

	switch (cmd) {
4535
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4536
		func = _perf_event_enable;
4537
		break;
4538
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4539
		func = _perf_event_disable;
4540
		break;
4541
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4542
		func = _perf_event_reset;
4543
		break;
P
Peter Zijlstra 已提交
4544

4545
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4546
		return _perf_event_refresh(event, arg);
4547

4548 4549
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4550

4551 4552 4553 4554 4555 4556 4557 4558 4559
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4560
	case PERF_EVENT_IOC_SET_OUTPUT:
4561 4562 4563
	{
		int ret;
		if (arg != -1) {
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4574 4575 4576
		}
		return ret;
	}
4577

L
Li Zefan 已提交
4578 4579 4580
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4581 4582 4583
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4597
	default:
P
Peter Zijlstra 已提交
4598
		return -ENOTTY;
4599
	}
P
Peter Zijlstra 已提交
4600 4601

	if (flags & PERF_IOC_FLAG_GROUP)
4602
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4603
	else
4604
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4605 4606

	return 0;
4607 4608
}

P
Peter Zijlstra 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4642
int perf_event_task_enable(void)
4643
{
P
Peter Zijlstra 已提交
4644
	struct perf_event_context *ctx;
4645
	struct perf_event *event;
4646

4647
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4648 4649 4650 4651 4652
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4653
	mutex_unlock(&current->perf_event_mutex);
4654 4655 4656 4657

	return 0;
}

4658
int perf_event_task_disable(void)
4659
{
P
Peter Zijlstra 已提交
4660
	struct perf_event_context *ctx;
4661
	struct perf_event *event;
4662

4663
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4664 4665 4666 4667 4668
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4669
	mutex_unlock(&current->perf_event_mutex);
4670 4671 4672 4673

	return 0;
}

4674
static int perf_event_index(struct perf_event *event)
4675
{
P
Peter Zijlstra 已提交
4676 4677 4678
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4679
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4680 4681
		return 0;

4682
	return event->pmu->event_idx(event);
4683 4684
}

4685
static void calc_timer_values(struct perf_event *event,
4686
				u64 *now,
4687 4688
				u64 *enabled,
				u64 *running)
4689
{
4690
	u64 ctx_time;
4691

4692 4693
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4694 4695 4696 4697
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4713 4714
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4715 4716 4717 4718 4719

unlock:
	rcu_read_unlock();
}

4720 4721
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4722 4723 4724
{
}

4725 4726 4727 4728 4729
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4730
void perf_event_update_userpage(struct perf_event *event)
4731
{
4732
	struct perf_event_mmap_page *userpg;
4733
	struct ring_buffer *rb;
4734
	u64 enabled, running, now;
4735 4736

	rcu_read_lock();
4737 4738 4739 4740
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4741 4742 4743 4744 4745 4746 4747 4748 4749
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4750
	calc_timer_values(event, &now, &enabled, &running);
4751

4752
	userpg = rb->user_page;
4753 4754 4755 4756 4757
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4758
	++userpg->lock;
4759
	barrier();
4760
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4761
	userpg->offset = perf_event_count(event);
4762
	if (userpg->index)
4763
		userpg->offset -= local64_read(&event->hw.prev_count);
4764

4765
	userpg->time_enabled = enabled +
4766
			atomic64_read(&event->child_total_time_enabled);
4767

4768
	userpg->time_running = running +
4769
			atomic64_read(&event->child_total_time_running);
4770

4771
	arch_perf_update_userpage(event, userpg, now);
4772

4773
	barrier();
4774
	++userpg->lock;
4775
	preempt_enable();
4776
unlock:
4777
	rcu_read_unlock();
4778 4779
}

4780 4781 4782
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4783
	struct ring_buffer *rb;
4784 4785 4786 4787 4788 4789 4790 4791 4792
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4793 4794
	rb = rcu_dereference(event->rb);
	if (!rb)
4795 4796 4797 4798 4799
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4800
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4815 4816 4817
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4818
	struct ring_buffer *old_rb = NULL;
4819 4820
	unsigned long flags;

4821 4822 4823 4824 4825 4826
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4827

4828 4829 4830 4831
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4832

4833 4834
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4835
	}
4836

4837
	if (rb) {
4838 4839 4840 4841 4842
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4843 4844 4845 4846 4847
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4872 4873 4874 4875 4876 4877 4878 4879
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4880 4881 4882 4883
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4884 4885 4886
	rcu_read_unlock();
}

4887
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4888
{
4889
	struct ring_buffer *rb;
4890

4891
	rcu_read_lock();
4892 4893 4894 4895
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4896 4897 4898
	}
	rcu_read_unlock();

4899
	return rb;
4900 4901
}

4902
void ring_buffer_put(struct ring_buffer *rb)
4903
{
4904
	if (!atomic_dec_and_test(&rb->refcount))
4905
		return;
4906

4907
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4908

4909
	call_rcu(&rb->rcu_head, rb_free_rcu);
4910 4911 4912 4913
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4914
	struct perf_event *event = vma->vm_file->private_data;
4915

4916
	atomic_inc(&event->mmap_count);
4917
	atomic_inc(&event->rb->mmap_count);
4918

4919 4920 4921
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4922 4923
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4924 4925
}

4926 4927
static void perf_pmu_output_stop(struct perf_event *event);

4928 4929 4930 4931 4932 4933 4934 4935
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4936 4937
static void perf_mmap_close(struct vm_area_struct *vma)
{
4938
	struct perf_event *event = vma->vm_file->private_data;
4939

4940
	struct ring_buffer *rb = ring_buffer_get(event);
4941 4942 4943
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4944

4945 4946 4947
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4948 4949 4950 4951 4952 4953 4954
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4955 4956 4957 4958 4959 4960 4961 4962 4963
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
4964 4965 4966
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

4967
		/* this has to be the last one */
4968
		rb_free_aux(rb);
4969 4970
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

4971 4972 4973
		mutex_unlock(&event->mmap_mutex);
	}

4974 4975 4976
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4977
		goto out_put;
4978

4979
	ring_buffer_attach(event, NULL);
4980 4981 4982
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4983 4984
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4985

4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5002

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5014 5015 5016
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5017
		mutex_unlock(&event->mmap_mutex);
5018
		put_event(event);
5019

5020 5021 5022 5023 5024
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5025
	}
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5041
out_put:
5042
	ring_buffer_put(rb); /* could be last */
5043 5044
}

5045
static const struct vm_operations_struct perf_mmap_vmops = {
5046
	.open		= perf_mmap_open,
5047
	.close		= perf_mmap_close, /* non mergable */
5048 5049
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5050 5051 5052 5053
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5054
	struct perf_event *event = file->private_data;
5055
	unsigned long user_locked, user_lock_limit;
5056
	struct user_struct *user = current_user();
5057
	unsigned long locked, lock_limit;
5058
	struct ring_buffer *rb = NULL;
5059 5060
	unsigned long vma_size;
	unsigned long nr_pages;
5061
	long user_extra = 0, extra = 0;
5062
	int ret = 0, flags = 0;
5063

5064 5065 5066
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5067
	 * same rb.
5068 5069 5070 5071
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5072
	if (!(vma->vm_flags & VM_SHARED))
5073
		return -EINVAL;
5074 5075

	vma_size = vma->vm_end - vma->vm_start;
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5136

5137
	/*
5138
	 * If we have rb pages ensure they're a power-of-two number, so we
5139 5140
	 * can do bitmasks instead of modulo.
	 */
5141
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5142 5143
		return -EINVAL;

5144
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5145 5146
		return -EINVAL;

5147
	WARN_ON_ONCE(event->ctx->parent_ctx);
5148
again:
5149
	mutex_lock(&event->mmap_mutex);
5150
	if (event->rb) {
5151
		if (event->rb->nr_pages != nr_pages) {
5152
			ret = -EINVAL;
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5166 5167 5168
		goto unlock;
	}

5169
	user_extra = nr_pages + 1;
5170 5171

accounting:
5172
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5173 5174 5175 5176 5177 5178

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5179
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5180

5181 5182
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5183

5184
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5185
	lock_limit >>= PAGE_SHIFT;
5186
	locked = vma->vm_mm->pinned_vm + extra;
5187

5188 5189
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5190 5191 5192
		ret = -EPERM;
		goto unlock;
	}
5193

5194
	WARN_ON(!rb && event->rb);
5195

5196
	if (vma->vm_flags & VM_WRITE)
5197
		flags |= RING_BUFFER_WRITABLE;
5198

5199
	if (!rb) {
5200 5201 5202
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5203

5204 5205 5206 5207
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5208

5209 5210 5211
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5212

5213
		ring_buffer_attach(event, rb);
5214

5215 5216 5217
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5218 5219
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5220 5221 5222
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5223

5224
unlock:
5225 5226 5227 5228
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5229
		atomic_inc(&event->mmap_count);
5230 5231 5232 5233
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5234
	mutex_unlock(&event->mmap_mutex);
5235

5236 5237 5238 5239
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5240
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5241
	vma->vm_ops = &perf_mmap_vmops;
5242

5243 5244 5245
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5246
	return ret;
5247 5248
}

P
Peter Zijlstra 已提交
5249 5250
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5251
	struct inode *inode = file_inode(filp);
5252
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5253 5254
	int retval;

A
Al Viro 已提交
5255
	inode_lock(inode);
5256
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5257
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5258 5259 5260 5261 5262 5263 5264

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5265
static const struct file_operations perf_fops = {
5266
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5267 5268 5269
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5270
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5271
	.compat_ioctl		= perf_compat_ioctl,
5272
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5273
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5274 5275
};

5276
/*
5277
 * Perf event wakeup
5278 5279 5280 5281 5282
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5283 5284 5285 5286 5287 5288 5289 5290
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5291
void perf_event_wakeup(struct perf_event *event)
5292
{
5293
	ring_buffer_wakeup(event);
5294

5295
	if (event->pending_kill) {
5296
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5297
		event->pending_kill = 0;
5298
	}
5299 5300
}

5301
static void perf_pending_event(struct irq_work *entry)
5302
{
5303 5304
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5305 5306 5307 5308 5309 5310 5311
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5312

5313 5314
	if (event->pending_disable) {
		event->pending_disable = 0;
5315
		perf_event_disable_local(event);
5316 5317
	}

5318 5319 5320
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5321
	}
5322 5323 5324

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5325 5326
}

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5363
static void perf_sample_regs_user(struct perf_regs *regs_user,
5364 5365
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5366
{
5367 5368
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5369
		regs_user->regs = regs;
5370 5371
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5372 5373 5374
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5375 5376 5377
	}
}

5378 5379 5380 5381 5382 5383 5384 5385
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5481 5482 5483
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5497
		data->time = perf_event_clock(event);
5498

5499
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5511 5512 5513
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5538 5539 5540

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5541 5542
}

5543 5544 5545
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5546 5547 5548 5549 5550
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5551
static void perf_output_read_one(struct perf_output_handle *handle,
5552 5553
				 struct perf_event *event,
				 u64 enabled, u64 running)
5554
{
5555
	u64 read_format = event->attr.read_format;
5556 5557 5558
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5559
	values[n++] = perf_event_count(event);
5560
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5561
		values[n++] = enabled +
5562
			atomic64_read(&event->child_total_time_enabled);
5563 5564
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5565
		values[n++] = running +
5566
			atomic64_read(&event->child_total_time_running);
5567 5568
	}
	if (read_format & PERF_FORMAT_ID)
5569
		values[n++] = primary_event_id(event);
5570

5571
	__output_copy(handle, values, n * sizeof(u64));
5572 5573 5574
}

/*
5575
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5576 5577
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5578 5579
			    struct perf_event *event,
			    u64 enabled, u64 running)
5580
{
5581 5582
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5583 5584 5585 5586 5587 5588
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5589
		values[n++] = enabled;
5590 5591

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5592
		values[n++] = running;
5593

5594
	if (leader != event)
5595 5596
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5597
	values[n++] = perf_event_count(leader);
5598
	if (read_format & PERF_FORMAT_ID)
5599
		values[n++] = primary_event_id(leader);
5600

5601
	__output_copy(handle, values, n * sizeof(u64));
5602

5603
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5604 5605
		n = 0;

5606 5607
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5608 5609
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5610
		values[n++] = perf_event_count(sub);
5611
		if (read_format & PERF_FORMAT_ID)
5612
			values[n++] = primary_event_id(sub);
5613

5614
		__output_copy(handle, values, n * sizeof(u64));
5615 5616 5617
	}
}

5618 5619 5620
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5621
static void perf_output_read(struct perf_output_handle *handle,
5622
			     struct perf_event *event)
5623
{
5624
	u64 enabled = 0, running = 0, now;
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5636
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5637
		calc_timer_values(event, &now, &enabled, &running);
5638

5639
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5640
		perf_output_read_group(handle, event, enabled, running);
5641
	else
5642
		perf_output_read_one(handle, event, enabled, running);
5643 5644
}

5645 5646 5647
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5648
			struct perf_event *event)
5649 5650 5651 5652 5653
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5654 5655 5656
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5682
		perf_output_read(handle, event);
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5693
			__output_copy(handle, data->callchain, size);
5694 5695 5696 5697 5698 5699 5700
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5732

5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5767

5768
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5769 5770 5771
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5772
	}
A
Andi Kleen 已提交
5773 5774 5775

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5776 5777 5778

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5779

A
Andi Kleen 已提交
5780 5781 5782
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5813 5814 5815 5816
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5817
			 struct perf_event *event,
5818
			 struct pt_regs *regs)
5819
{
5820
	u64 sample_type = event->attr.sample_type;
5821

5822
	header->type = PERF_RECORD_SAMPLE;
5823
	header->size = sizeof(*header) + event->header_size;
5824 5825 5826

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5827

5828
	__perf_event_header__init_id(header, data, event);
5829

5830
	if (sample_type & PERF_SAMPLE_IP)
5831 5832
		data->ip = perf_instruction_pointer(regs);

5833
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5834
		int size = 1;
5835

5836
		data->callchain = perf_callchain(event, regs);
5837 5838 5839 5840 5841

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5842 5843
	}

5844
	if (sample_type & PERF_SAMPLE_RAW) {
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
5865

5866
		header->size += size;
5867
	}
5868 5869 5870 5871 5872 5873 5874 5875 5876

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5877

5878
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5879 5880
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5881

5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5905
						     data->regs_user.regs);
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5933
}
5934

5935 5936 5937 5938 5939 5940 5941
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
5942 5943 5944
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5945

5946 5947 5948
	/* protect the callchain buffers */
	rcu_read_lock();

5949
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5950

5951
	if (output_begin(&handle, event, header.size))
5952
		goto exit;
5953

5954
	perf_output_sample(&handle, &header, data, event);
5955

5956
	perf_output_end(&handle);
5957 5958 5959

exit:
	rcu_read_unlock();
5960 5961
}

5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

5986
/*
5987
 * read event_id
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5998
perf_event_read_event(struct perf_event *event,
5999 6000 6001
			struct task_struct *task)
{
	struct perf_output_handle handle;
6002
	struct perf_sample_data sample;
6003
	struct perf_read_event read_event = {
6004
		.header = {
6005
			.type = PERF_RECORD_READ,
6006
			.misc = 0,
6007
			.size = sizeof(read_event) + event->read_size,
6008
		},
6009 6010
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6011
	};
6012
	int ret;
6013

6014
	perf_event_header__init_id(&read_event.header, &sample, event);
6015
	ret = perf_output_begin(&handle, event, read_event.header.size);
6016 6017 6018
	if (ret)
		return;

6019
	perf_output_put(&handle, read_event);
6020
	perf_output_read(&handle, event);
6021
	perf_event__output_id_sample(event, &handle, &sample);
6022

6023 6024 6025
	perf_output_end(&handle);
}

6026
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6027 6028

static void
6029 6030
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6031
		   void *data, bool all)
6032 6033 6034 6035
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6036 6037 6038 6039 6040 6041 6042
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6043
		output(event, data);
6044 6045 6046
	}
}

6047
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6048 6049 6050 6051 6052
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6053 6054 6055 6056 6057 6058 6059 6060
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6061 6062 6063 6064 6065 6066 6067 6068
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6069 6070 6071 6072 6073 6074
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6075
static void
6076
perf_iterate_sb(perf_iterate_f output, void *data,
6077 6078 6079 6080 6081
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6082 6083 6084
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6085
	/*
6086 6087
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6088 6089 6090
	 * context.
	 */
	if (task_ctx) {
6091 6092
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6093 6094
	}

6095
	perf_iterate_sb_cpu(output, data);
6096 6097

	for_each_task_context_nr(ctxn) {
6098 6099
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6100
			perf_iterate_ctx(ctx, output, data, false);
6101
	}
6102
done:
6103
	preempt_enable();
6104
	rcu_read_unlock();
6105 6106
}

6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6136
		perf_event_stop(event, 1);
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6152
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6153 6154 6155 6156 6157
				   true);
	}
	rcu_read_unlock();
}

6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6168 6169 6170
	struct stop_event_data sd = {
		.event	= event,
	};
6171 6172 6173 6174 6175 6176 6177 6178 6179

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6180 6181 6182 6183 6184 6185 6186
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6187 6188
	 */
	if (rcu_dereference(parent->rb) == rb)
6189
		ro->err = __perf_event_stop(&sd);
6190 6191 6192 6193 6194 6195
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6196
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6197 6198 6199 6200 6201
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6202
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6203
	if (cpuctx->task_ctx)
6204
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6205
				   &ro, false);
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6239 6240
}

P
Peter Zijlstra 已提交
6241
/*
P
Peter Zijlstra 已提交
6242 6243
 * task tracking -- fork/exit
 *
6244
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6245 6246
 */

P
Peter Zijlstra 已提交
6247
struct perf_task_event {
6248
	struct task_struct		*task;
6249
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6250 6251 6252 6253 6254 6255

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6256 6257
		u32				tid;
		u32				ptid;
6258
		u64				time;
6259
	} event_id;
P
Peter Zijlstra 已提交
6260 6261
};

6262 6263
static int perf_event_task_match(struct perf_event *event)
{
6264 6265 6266
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6267 6268
}

6269
static void perf_event_task_output(struct perf_event *event,
6270
				   void *data)
P
Peter Zijlstra 已提交
6271
{
6272
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6273
	struct perf_output_handle handle;
6274
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6275
	struct task_struct *task = task_event->task;
6276
	int ret, size = task_event->event_id.header.size;
6277

6278 6279 6280
	if (!perf_event_task_match(event))
		return;

6281
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6282

6283
	ret = perf_output_begin(&handle, event,
6284
				task_event->event_id.header.size);
6285
	if (ret)
6286
		goto out;
P
Peter Zijlstra 已提交
6287

6288 6289
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6290

6291 6292
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6293

6294 6295
	task_event->event_id.time = perf_event_clock(event);

6296
	perf_output_put(&handle, task_event->event_id);
6297

6298 6299
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6300
	perf_output_end(&handle);
6301 6302
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6303 6304
}

6305 6306
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6307
			      int new)
P
Peter Zijlstra 已提交
6308
{
P
Peter Zijlstra 已提交
6309
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6310

6311 6312 6313
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6314 6315
		return;

P
Peter Zijlstra 已提交
6316
	task_event = (struct perf_task_event){
6317 6318
		.task	  = task,
		.task_ctx = task_ctx,
6319
		.event_id    = {
P
Peter Zijlstra 已提交
6320
			.header = {
6321
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6322
				.misc = 0,
6323
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6324
			},
6325 6326
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6327 6328
			/* .tid  */
			/* .ptid */
6329
			/* .time */
P
Peter Zijlstra 已提交
6330 6331 6332
		},
	};

6333
	perf_iterate_sb(perf_event_task_output,
6334 6335
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6336 6337
}

6338
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6339
{
6340
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
6341 6342
}

6343 6344 6345 6346 6347
/*
 * comm tracking
 */

struct perf_comm_event {
6348 6349
	struct task_struct	*task;
	char			*comm;
6350 6351 6352 6353 6354 6355 6356
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6357
	} event_id;
6358 6359
};

6360 6361 6362 6363 6364
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6365
static void perf_event_comm_output(struct perf_event *event,
6366
				   void *data)
6367
{
6368
	struct perf_comm_event *comm_event = data;
6369
	struct perf_output_handle handle;
6370
	struct perf_sample_data sample;
6371
	int size = comm_event->event_id.header.size;
6372 6373
	int ret;

6374 6375 6376
	if (!perf_event_comm_match(event))
		return;

6377 6378
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6379
				comm_event->event_id.header.size);
6380 6381

	if (ret)
6382
		goto out;
6383

6384 6385
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6386

6387
	perf_output_put(&handle, comm_event->event_id);
6388
	__output_copy(&handle, comm_event->comm,
6389
				   comm_event->comm_size);
6390 6391 6392

	perf_event__output_id_sample(event, &handle, &sample);

6393
	perf_output_end(&handle);
6394 6395
out:
	comm_event->event_id.header.size = size;
6396 6397
}

6398
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6399
{
6400
	char comm[TASK_COMM_LEN];
6401 6402
	unsigned int size;

6403
	memset(comm, 0, sizeof(comm));
6404
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6405
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6406 6407 6408 6409

	comm_event->comm = comm;
	comm_event->comm_size = size;

6410
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6411

6412
	perf_iterate_sb(perf_event_comm_output,
6413 6414
		       comm_event,
		       NULL);
6415 6416
}

6417
void perf_event_comm(struct task_struct *task, bool exec)
6418
{
6419 6420
	struct perf_comm_event comm_event;

6421
	if (!atomic_read(&nr_comm_events))
6422
		return;
6423

6424
	comm_event = (struct perf_comm_event){
6425
		.task	= task,
6426 6427
		/* .comm      */
		/* .comm_size */
6428
		.event_id  = {
6429
			.header = {
6430
				.type = PERF_RECORD_COMM,
6431
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6432 6433 6434 6435
				/* .size */
			},
			/* .pid */
			/* .tid */
6436 6437 6438
		},
	};

6439
	perf_event_comm_event(&comm_event);
6440 6441
}

6442 6443 6444 6445 6446
/*
 * mmap tracking
 */

struct perf_mmap_event {
6447 6448 6449 6450
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6451 6452 6453
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6454
	u32			prot, flags;
6455 6456 6457 6458 6459 6460 6461 6462 6463

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6464
	} event_id;
6465 6466
};

6467 6468 6469 6470 6471 6472 6473 6474
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6475
	       (executable && (event->attr.mmap || event->attr.mmap2));
6476 6477
}

6478
static void perf_event_mmap_output(struct perf_event *event,
6479
				   void *data)
6480
{
6481
	struct perf_mmap_event *mmap_event = data;
6482
	struct perf_output_handle handle;
6483
	struct perf_sample_data sample;
6484
	int size = mmap_event->event_id.header.size;
6485
	int ret;
6486

6487 6488 6489
	if (!perf_event_mmap_match(event, data))
		return;

6490 6491 6492 6493 6494
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6495
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6496 6497
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6498 6499
	}

6500 6501
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6502
				mmap_event->event_id.header.size);
6503
	if (ret)
6504
		goto out;
6505

6506 6507
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6508

6509
	perf_output_put(&handle, mmap_event->event_id);
6510 6511 6512 6513 6514 6515

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6516 6517
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6518 6519
	}

6520
	__output_copy(&handle, mmap_event->file_name,
6521
				   mmap_event->file_size);
6522 6523 6524

	perf_event__output_id_sample(event, &handle, &sample);

6525
	perf_output_end(&handle);
6526 6527
out:
	mmap_event->event_id.header.size = size;
6528 6529
}

6530
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6531
{
6532 6533
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6534 6535
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6536
	u32 prot = 0, flags = 0;
6537 6538 6539
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6540
	char *name;
6541

6542
	if (file) {
6543 6544
		struct inode *inode;
		dev_t dev;
6545

6546
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6547
		if (!buf) {
6548 6549
			name = "//enomem";
			goto cpy_name;
6550
		}
6551
		/*
6552
		 * d_path() works from the end of the rb backwards, so we
6553 6554 6555
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6556
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6557
		if (IS_ERR(name)) {
6558 6559
			name = "//toolong";
			goto cpy_name;
6560
		}
6561 6562 6563 6564 6565 6566
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6589
		goto got_name;
6590
	} else {
6591 6592 6593 6594 6595 6596
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6597
		name = (char *)arch_vma_name(vma);
6598 6599
		if (name)
			goto cpy_name;
6600

6601
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6602
				vma->vm_end >= vma->vm_mm->brk) {
6603 6604
			name = "[heap]";
			goto cpy_name;
6605 6606
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6607
				vma->vm_end >= vma->vm_mm->start_stack) {
6608 6609
			name = "[stack]";
			goto cpy_name;
6610 6611
		}

6612 6613
		name = "//anon";
		goto cpy_name;
6614 6615
	}

6616 6617 6618
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6619
got_name:
6620 6621 6622 6623 6624 6625 6626 6627
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6628 6629 6630

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6631 6632 6633 6634
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6635 6636
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6637

6638 6639 6640
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6641
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6642

6643
	perf_iterate_sb(perf_event_mmap_output,
6644 6645
		       mmap_event,
		       NULL);
6646

6647 6648 6649
	kfree(buf);
}

6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
	if (filter->inode != file->f_inode)
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6700
		perf_event_stop(event, 1);
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

6711 6712 6713 6714 6715 6716 6717
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

6718 6719 6720 6721 6722 6723
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

6724
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6725 6726 6727 6728
	}
	rcu_read_unlock();
}

6729
void perf_event_mmap(struct vm_area_struct *vma)
6730
{
6731 6732
	struct perf_mmap_event mmap_event;

6733
	if (!atomic_read(&nr_mmap_events))
6734 6735 6736
		return;

	mmap_event = (struct perf_mmap_event){
6737
		.vma	= vma,
6738 6739
		/* .file_name */
		/* .file_size */
6740
		.event_id  = {
6741
			.header = {
6742
				.type = PERF_RECORD_MMAP,
6743
				.misc = PERF_RECORD_MISC_USER,
6744 6745 6746 6747
				/* .size */
			},
			/* .pid */
			/* .tid */
6748 6749
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6750
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6751
		},
6752 6753 6754 6755
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6756 6757
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6758 6759
	};

6760
	perf_addr_filters_adjust(vma);
6761
	perf_event_mmap_event(&mmap_event);
6762 6763
}

A
Alexander Shishkin 已提交
6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

6911
	perf_iterate_sb(perf_event_switch_output,
6912 6913 6914 6915
		       &switch_event,
		       NULL);
}

6916 6917 6918 6919
/*
 * IRQ throttle logging
 */

6920
static void perf_log_throttle(struct perf_event *event, int enable)
6921 6922
{
	struct perf_output_handle handle;
6923
	struct perf_sample_data sample;
6924 6925 6926 6927 6928
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6929
		u64				id;
6930
		u64				stream_id;
6931 6932
	} throttle_event = {
		.header = {
6933
			.type = PERF_RECORD_THROTTLE,
6934 6935 6936
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6937
		.time		= perf_event_clock(event),
6938 6939
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6940 6941
	};

6942
	if (enable)
6943
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6944

6945 6946 6947
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6948
				throttle_event.header.size);
6949 6950 6951 6952
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6953
	perf_event__output_id_sample(event, &handle, &sample);
6954 6955 6956
	perf_output_end(&handle);
}

6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6993
/*
6994
 * Generic event overflow handling, sampling.
6995 6996
 */

6997
static int __perf_event_overflow(struct perf_event *event,
6998 6999
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
7000
{
7001 7002
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
7003
	u64 seq;
7004 7005
	int ret = 0;

7006 7007 7008 7009 7010 7011 7012
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

7013 7014 7015 7016 7017 7018 7019 7020 7021
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7022
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7023 7024
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7025 7026
			ret = 1;
		}
7027
	}
7028

7029
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7030
		u64 now = perf_clock();
7031
		s64 delta = now - hwc->freq_time_stamp;
7032

7033
		hwc->freq_time_stamp = now;
7034

7035
		if (delta > 0 && delta < 2*TICK_NSEC)
7036
			perf_adjust_period(event, delta, hwc->last_period, true);
7037 7038
	}

7039 7040
	/*
	 * XXX event_limit might not quite work as expected on inherited
7041
	 * events
7042 7043
	 */

7044 7045
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7046
		ret = 1;
7047
		event->pending_kill = POLL_HUP;
7048 7049
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
7050 7051
	}

7052
	event->overflow_handler(event, data, regs);
7053

7054
	if (*perf_event_fasync(event) && event->pending_kill) {
7055 7056
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7057 7058
	}

7059
	return ret;
7060 7061
}

7062
int perf_event_overflow(struct perf_event *event,
7063 7064
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7065
{
7066
	return __perf_event_overflow(event, 1, data, regs);
7067 7068
}

7069
/*
7070
 * Generic software event infrastructure
7071 7072
 */

7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7084
/*
7085 7086
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7087 7088 7089 7090
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7091
u64 perf_swevent_set_period(struct perf_event *event)
7092
{
7093
	struct hw_perf_event *hwc = &event->hw;
7094 7095 7096 7097 7098
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7099 7100

again:
7101
	old = val = local64_read(&hwc->period_left);
7102 7103
	if (val < 0)
		return 0;
7104

7105 7106 7107
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7108
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7109
		goto again;
7110

7111
	return nr;
7112 7113
}

7114
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7115
				    struct perf_sample_data *data,
7116
				    struct pt_regs *regs)
7117
{
7118
	struct hw_perf_event *hwc = &event->hw;
7119
	int throttle = 0;
7120

7121 7122
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7123

7124 7125
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7126

7127
	for (; overflow; overflow--) {
7128
		if (__perf_event_overflow(event, throttle,
7129
					    data, regs)) {
7130 7131 7132 7133 7134 7135
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7136
		throttle = 1;
7137
	}
7138 7139
}

P
Peter Zijlstra 已提交
7140
static void perf_swevent_event(struct perf_event *event, u64 nr,
7141
			       struct perf_sample_data *data,
7142
			       struct pt_regs *regs)
7143
{
7144
	struct hw_perf_event *hwc = &event->hw;
7145

7146
	local64_add(nr, &event->count);
7147

7148 7149 7150
	if (!regs)
		return;

7151
	if (!is_sampling_event(event))
7152
		return;
7153

7154 7155 7156 7157 7158 7159
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7160
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7161
		return perf_swevent_overflow(event, 1, data, regs);
7162

7163
	if (local64_add_negative(nr, &hwc->period_left))
7164
		return;
7165

7166
	perf_swevent_overflow(event, 0, data, regs);
7167 7168
}

7169 7170 7171
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7172
	if (event->hw.state & PERF_HES_STOPPED)
7173
		return 1;
P
Peter Zijlstra 已提交
7174

7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7186
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7187
				enum perf_type_id type,
L
Li Zefan 已提交
7188 7189 7190
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7191
{
7192
	if (event->attr.type != type)
7193
		return 0;
7194

7195
	if (event->attr.config != event_id)
7196 7197
		return 0;

7198 7199
	if (perf_exclude_event(event, regs))
		return 0;
7200 7201 7202 7203

	return 1;
}

7204 7205 7206 7207 7208 7209 7210
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7211 7212
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7213
{
7214 7215 7216 7217
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7218

7219 7220
/* For the read side: events when they trigger */
static inline struct hlist_head *
7221
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7222 7223
{
	struct swevent_hlist *hlist;
7224

7225
	hlist = rcu_dereference(swhash->swevent_hlist);
7226 7227 7228
	if (!hlist)
		return NULL;

7229 7230 7231 7232 7233
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7234
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7245
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7246 7247 7248 7249 7250
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7251 7252 7253
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7254
				    u64 nr,
7255 7256
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7257
{
7258
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7259
	struct perf_event *event;
7260
	struct hlist_head *head;
7261

7262
	rcu_read_lock();
7263
	head = find_swevent_head_rcu(swhash, type, event_id);
7264 7265 7266
	if (!head)
		goto end;

7267
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7268
		if (perf_swevent_match(event, type, event_id, data, regs))
7269
			perf_swevent_event(event, nr, data, regs);
7270
	}
7271 7272
end:
	rcu_read_unlock();
7273 7274
}

7275 7276
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7277
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7278
{
7279
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7280

7281
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7282
}
I
Ingo Molnar 已提交
7283
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7284

7285
void perf_swevent_put_recursion_context(int rctx)
7286
{
7287
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7288

7289
	put_recursion_context(swhash->recursion, rctx);
7290
}
7291

7292
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7293
{
7294
	struct perf_sample_data data;
7295

7296
	if (WARN_ON_ONCE(!regs))
7297
		return;
7298

7299
	perf_sample_data_init(&data, addr, 0);
7300
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7313 7314

	perf_swevent_put_recursion_context(rctx);
7315
fail:
7316
	preempt_enable_notrace();
7317 7318
}

7319
static void perf_swevent_read(struct perf_event *event)
7320 7321 7322
{
}

P
Peter Zijlstra 已提交
7323
static int perf_swevent_add(struct perf_event *event, int flags)
7324
{
7325
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7326
	struct hw_perf_event *hwc = &event->hw;
7327 7328
	struct hlist_head *head;

7329
	if (is_sampling_event(event)) {
7330
		hwc->last_period = hwc->sample_period;
7331
		perf_swevent_set_period(event);
7332
	}
7333

P
Peter Zijlstra 已提交
7334 7335
	hwc->state = !(flags & PERF_EF_START);

7336
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7337
	if (WARN_ON_ONCE(!head))
7338 7339 7340
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7341
	perf_event_update_userpage(event);
7342

7343 7344 7345
	return 0;
}

P
Peter Zijlstra 已提交
7346
static void perf_swevent_del(struct perf_event *event, int flags)
7347
{
7348
	hlist_del_rcu(&event->hlist_entry);
7349 7350
}

P
Peter Zijlstra 已提交
7351
static void perf_swevent_start(struct perf_event *event, int flags)
7352
{
P
Peter Zijlstra 已提交
7353
	event->hw.state = 0;
7354
}
I
Ingo Molnar 已提交
7355

P
Peter Zijlstra 已提交
7356
static void perf_swevent_stop(struct perf_event *event, int flags)
7357
{
P
Peter Zijlstra 已提交
7358
	event->hw.state = PERF_HES_STOPPED;
7359 7360
}

7361 7362
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7363
swevent_hlist_deref(struct swevent_htable *swhash)
7364
{
7365 7366
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7367 7368
}

7369
static void swevent_hlist_release(struct swevent_htable *swhash)
7370
{
7371
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7372

7373
	if (!hlist)
7374 7375
		return;

7376
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7377
	kfree_rcu(hlist, rcu_head);
7378 7379
}

7380
static void swevent_hlist_put_cpu(int cpu)
7381
{
7382
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7383

7384
	mutex_lock(&swhash->hlist_mutex);
7385

7386 7387
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7388

7389
	mutex_unlock(&swhash->hlist_mutex);
7390 7391
}

7392
static void swevent_hlist_put(void)
7393 7394 7395 7396
{
	int cpu;

	for_each_possible_cpu(cpu)
7397
		swevent_hlist_put_cpu(cpu);
7398 7399
}

7400
static int swevent_hlist_get_cpu(int cpu)
7401
{
7402
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7403 7404
	int err = 0;

7405 7406
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7407 7408 7409 7410 7411 7412 7413
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7414
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7415
	}
7416
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7417
exit:
7418
	mutex_unlock(&swhash->hlist_mutex);
7419 7420 7421 7422

	return err;
}

7423
static int swevent_hlist_get(void)
7424
{
7425
	int err, cpu, failed_cpu;
7426 7427 7428

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7429
		err = swevent_hlist_get_cpu(cpu);
7430 7431 7432 7433 7434 7435 7436 7437
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7438
fail:
7439 7440 7441
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7442
		swevent_hlist_put_cpu(cpu);
7443 7444 7445 7446 7447 7448
	}

	put_online_cpus();
	return err;
}

7449
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7450

7451 7452 7453
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7454

7455 7456
	WARN_ON(event->parent);

7457
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7458
	swevent_hlist_put();
7459 7460 7461 7462
}

static int perf_swevent_init(struct perf_event *event)
{
7463
	u64 event_id = event->attr.config;
7464 7465 7466 7467

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7468 7469 7470 7471 7472 7473
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7474 7475 7476 7477 7478 7479 7480 7481 7482
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7483
	if (event_id >= PERF_COUNT_SW_MAX)
7484 7485 7486 7487 7488
		return -ENOENT;

	if (!event->parent) {
		int err;

7489
		err = swevent_hlist_get();
7490 7491 7492
		if (err)
			return err;

7493
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7494 7495 7496 7497 7498 7499 7500
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7501
	.task_ctx_nr	= perf_sw_context,
7502

7503 7504
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7505
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7506 7507 7508 7509
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7510 7511 7512
	.read		= perf_swevent_read,
};

7513 7514
#ifdef CONFIG_EVENT_TRACING

7515 7516 7517
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7518
	void *record = data->raw->frag.data;
7519

7520 7521 7522 7523
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7524 7525 7526 7527 7528 7529 7530 7531 7532
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7533 7534
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7535 7536 7537 7538
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7539 7540 7541 7542 7543 7544 7545 7546
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7566
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7567 7568
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7569 7570
{
	struct perf_sample_data data;
7571 7572
	struct perf_event *event;

7573
	struct perf_raw_record raw = {
7574 7575 7576 7577
		.frag = {
			.size = entry_size,
			.data = record,
		},
7578 7579
	};

7580
	perf_sample_data_init(&data, 0, 0);
7581 7582
	data.raw = &raw;

7583 7584
	perf_trace_buf_update(record, event_type);

7585
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7586
		if (perf_tp_event_match(event, &data, regs))
7587
			perf_swevent_event(event, count, &data, regs);
7588
	}
7589

7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7615
	perf_swevent_put_recursion_context(rctx);
7616 7617 7618
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7619
static void tp_perf_event_destroy(struct perf_event *event)
7620
{
7621
	perf_trace_destroy(event);
7622 7623
}

7624
static int perf_tp_event_init(struct perf_event *event)
7625
{
7626 7627
	int err;

7628 7629 7630
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7631 7632 7633 7634 7635 7636
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7637 7638
	err = perf_trace_init(event);
	if (err)
7639
		return err;
7640

7641
	event->destroy = tp_perf_event_destroy;
7642

7643 7644 7645 7646
	return 0;
}

static struct pmu perf_tracepoint = {
7647 7648
	.task_ctx_nr	= perf_sw_context,

7649
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7650 7651 7652 7653
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7654 7655 7656 7657 7658
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7659
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7660
}
L
Li Zefan 已提交
7661 7662 7663 7664 7665 7666

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7667 7668
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
7669
	bool is_kprobe, is_tracepoint;
7670 7671 7672 7673 7674 7675 7676 7677
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7678 7679 7680 7681
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
7682 7683 7684 7685 7686 7687
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7688 7689
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7690 7691 7692 7693 7694
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

7695 7696 7697 7698 7699 7700 7701 7702
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
7718
		bpf_prog_put(prog);
7719 7720 7721
	}
}

7722
#else
L
Li Zefan 已提交
7723

7724
static inline void perf_tp_register(void)
7725 7726
{
}
L
Li Zefan 已提交
7727 7728 7729 7730 7731

static void perf_event_free_filter(struct perf_event *event)
{
}

7732 7733 7734 7735 7736 7737 7738 7739
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7740
#endif /* CONFIG_EVENT_TRACING */
7741

7742
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7743
void perf_bp_event(struct perf_event *bp, void *data)
7744
{
7745 7746 7747
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7748
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7749

P
Peter Zijlstra 已提交
7750
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7751
		perf_swevent_event(bp, 1, &sample, regs);
7752 7753 7754
}
#endif

7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

7870 7871 7872 7873 7874
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
7889
	perf_event_stop(event, 1);
7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8005 8006 8007 8008
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	/*
	 * For now, we only support filtering in per-task events; doing so
	 * for CPU-wide events requires additional context switching trickery,
	 * since same object code will be mapped at different virtual
	 * addresses in different processes.
	 */
	if (!event->ctx->task)
		return -EOPNOTSUPP;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
		return ret;

	ret = event->pmu->addr_filters_validate(&filters);
	if (ret) {
		free_filters_list(&filters);
		return ret;
	}

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

	return ret;
}

8117 8118 8119 8120 8121
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8122 8123 8124
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8125 8126 8127 8128 8129 8130 8131 8132 8133 8134
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8135 8136
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8137 8138 8139 8140 8141

	kfree(filter_str);
	return ret;
}

8142 8143 8144
/*
 * hrtimer based swevent callback
 */
8145

8146
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8147
{
8148 8149 8150 8151 8152
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8153

8154
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8155 8156 8157 8158

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8159
	event->pmu->read(event);
8160

8161
	perf_sample_data_init(&data, 0, event->hw.last_period);
8162 8163 8164
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8165
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8166
			if (__perf_event_overflow(event, 1, &data, regs))
8167 8168
				ret = HRTIMER_NORESTART;
	}
8169

8170 8171
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8172

8173
	return ret;
8174 8175
}

8176
static void perf_swevent_start_hrtimer(struct perf_event *event)
8177
{
8178
	struct hw_perf_event *hwc = &event->hw;
8179 8180 8181 8182
	s64 period;

	if (!is_sampling_event(event))
		return;
8183

8184 8185 8186 8187
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8188

8189 8190 8191 8192
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8193 8194
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8195
}
8196 8197

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8198
{
8199 8200
	struct hw_perf_event *hwc = &event->hw;

8201
	if (is_sampling_event(event)) {
8202
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8203
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8204 8205 8206

		hrtimer_cancel(&hwc->hrtimer);
	}
8207 8208
}

P
Peter Zijlstra 已提交
8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8229
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8230 8231 8232 8233
		event->attr.freq = 0;
	}
}

8234 8235 8236 8237 8238
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8239
{
8240 8241 8242
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8243
	now = local_clock();
8244 8245
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8246 8247
}

P
Peter Zijlstra 已提交
8248
static void cpu_clock_event_start(struct perf_event *event, int flags)
8249
{
P
Peter Zijlstra 已提交
8250
	local64_set(&event->hw.prev_count, local_clock());
8251 8252 8253
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8254
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8255
{
8256 8257 8258
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8259

P
Peter Zijlstra 已提交
8260 8261 8262 8263
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8264
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8265 8266 8267 8268 8269 8270 8271 8272 8273

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8274 8275 8276 8277
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8278

8279 8280 8281 8282 8283 8284 8285 8286
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8287 8288 8289 8290 8291 8292
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8293 8294
	perf_swevent_init_hrtimer(event);

8295
	return 0;
8296 8297
}

8298
static struct pmu perf_cpu_clock = {
8299 8300
	.task_ctx_nr	= perf_sw_context,

8301 8302
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8303
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8304 8305 8306 8307
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8308 8309 8310 8311 8312 8313 8314 8315
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8316
{
8317 8318
	u64 prev;
	s64 delta;
8319

8320 8321 8322 8323
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8324

P
Peter Zijlstra 已提交
8325
static void task_clock_event_start(struct perf_event *event, int flags)
8326
{
P
Peter Zijlstra 已提交
8327
	local64_set(&event->hw.prev_count, event->ctx->time);
8328 8329 8330
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8331
static void task_clock_event_stop(struct perf_event *event, int flags)
8332 8333 8334
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8335 8336 8337 8338 8339 8340
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8341
	perf_event_update_userpage(event);
8342

P
Peter Zijlstra 已提交
8343 8344 8345 8346 8347 8348
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8349 8350 8351 8352
}

static void task_clock_event_read(struct perf_event *event)
{
8353 8354 8355
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8356 8357 8358 8359 8360

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8361
{
8362 8363 8364 8365 8366 8367
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8368 8369 8370 8371 8372 8373
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8374 8375
	perf_swevent_init_hrtimer(event);

8376
	return 0;
L
Li Zefan 已提交
8377 8378
}

8379
static struct pmu perf_task_clock = {
8380 8381
	.task_ctx_nr	= perf_sw_context,

8382 8383
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8384
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8385 8386 8387 8388
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8389 8390
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8391

P
Peter Zijlstra 已提交
8392
static void perf_pmu_nop_void(struct pmu *pmu)
8393 8394
{
}
L
Li Zefan 已提交
8395

8396 8397 8398 8399
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8400
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8401
{
P
Peter Zijlstra 已提交
8402
	return 0;
L
Li Zefan 已提交
8403 8404
}

8405
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8406 8407

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8408
{
8409 8410 8411 8412 8413
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8414
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8415 8416
}

P
Peter Zijlstra 已提交
8417 8418
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8419 8420 8421 8422 8423 8424 8425
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8426 8427 8428
	perf_pmu_enable(pmu);
	return 0;
}
8429

P
Peter Zijlstra 已提交
8430
static void perf_pmu_cancel_txn(struct pmu *pmu)
8431
{
8432 8433 8434 8435 8436 8437 8438
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8439
	perf_pmu_enable(pmu);
8440 8441
}

8442 8443
static int perf_event_idx_default(struct perf_event *event)
{
8444
	return 0;
8445 8446
}

P
Peter Zijlstra 已提交
8447 8448 8449 8450
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8451
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8452
{
P
Peter Zijlstra 已提交
8453
	struct pmu *pmu;
8454

P
Peter Zijlstra 已提交
8455 8456
	if (ctxn < 0)
		return NULL;
8457

P
Peter Zijlstra 已提交
8458 8459 8460 8461
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8462

P
Peter Zijlstra 已提交
8463
	return NULL;
8464 8465
}

8466
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8467
{
8468 8469 8470 8471 8472 8473 8474
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

8475 8476
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
8477 8478 8479 8480 8481 8482
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
8483

P
Peter Zijlstra 已提交
8484
	mutex_lock(&pmus_lock);
8485
	/*
P
Peter Zijlstra 已提交
8486
	 * Like a real lame refcount.
8487
	 */
8488 8489 8490
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
8491
			goto out;
8492
		}
P
Peter Zijlstra 已提交
8493
	}
8494

8495
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8496 8497
out:
	mutex_unlock(&pmus_lock);
8498
}
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8513
static struct idr pmu_idr;
8514

P
Peter Zijlstra 已提交
8515 8516 8517 8518 8519 8520 8521
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8522
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8523

8524 8525 8526 8527 8528 8529 8530 8531 8532 8533
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8534 8535
static DEFINE_MUTEX(mux_interval_mutex);

8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8555
	mutex_lock(&mux_interval_mutex);
8556 8557 8558
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8559 8560
	get_online_cpus();
	for_each_online_cpu(cpu) {
8561 8562 8563 8564
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8565 8566
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8567
	}
8568 8569
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
8570 8571 8572

	return count;
}
8573
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8574

8575 8576 8577 8578
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8579
};
8580
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8581 8582 8583 8584

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8585
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8601
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8614 8615 8616 8617 8618 8619 8620
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8621 8622 8623
out:
	return ret;

8624 8625 8626
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8627 8628 8629 8630 8631
free_dev:
	put_device(pmu->dev);
	goto out;
}

8632
static struct lock_class_key cpuctx_mutex;
8633
static struct lock_class_key cpuctx_lock;
8634

8635
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8636
{
P
Peter Zijlstra 已提交
8637
	int cpu, ret;
8638

8639
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
8640 8641 8642 8643
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
8644

P
Peter Zijlstra 已提交
8645 8646 8647 8648 8649 8650
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
8651 8652 8653
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
8654 8655 8656 8657 8658
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
8659 8660 8661 8662 8663 8664
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
8665
skip_type:
8666 8667 8668
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

8669 8670 8671 8672 8673 8674 8675
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8676 8677 8678 8679 8680
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
8681 8682 8683
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
8684

W
Wei Yongjun 已提交
8685
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
8686 8687
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
8688
		goto free_dev;
8689

P
Peter Zijlstra 已提交
8690 8691 8692 8693
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8694
		__perf_event_init_context(&cpuctx->ctx);
8695
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8696
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
8697
		cpuctx->ctx.pmu = pmu;
8698

8699
		__perf_mux_hrtimer_init(cpuctx, cpu);
8700

8701
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
8702
	}
8703

P
Peter Zijlstra 已提交
8704
got_cpu_context:
P
Peter Zijlstra 已提交
8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
8716
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
8717 8718
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
8719
		}
8720
	}
8721

P
Peter Zijlstra 已提交
8722 8723 8724 8725 8726
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

8727 8728 8729
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

8730
	list_add_rcu(&pmu->entry, &pmus);
8731
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
8732 8733
	ret = 0;
unlock:
8734 8735
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
8736
	return ret;
P
Peter Zijlstra 已提交
8737

P
Peter Zijlstra 已提交
8738 8739 8740 8741
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
8742 8743 8744 8745
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
8746 8747 8748
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
8749
}
8750
EXPORT_SYMBOL_GPL(perf_pmu_register);
8751

8752
void perf_pmu_unregister(struct pmu *pmu)
8753
{
8754 8755 8756
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
8757

8758
	/*
P
Peter Zijlstra 已提交
8759 8760
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
8761
	 */
8762
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
8763
	synchronize_rcu();
8764

P
Peter Zijlstra 已提交
8765
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
8766 8767
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
8768 8769
	if (pmu->nr_addr_filters)
		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
P
Peter Zijlstra 已提交
8770 8771
	device_del(pmu->dev);
	put_device(pmu->dev);
8772
	free_pmu_context(pmu);
8773
}
8774
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8775

8776 8777
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
8778
	struct perf_event_context *ctx = NULL;
8779 8780 8781 8782
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
8783 8784

	if (event->group_leader != event) {
8785 8786 8787 8788 8789 8790
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
8791 8792 8793
		BUG_ON(!ctx);
	}

8794 8795
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
8796 8797 8798 8799

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

8800 8801 8802 8803 8804 8805
	if (ret)
		module_put(pmu->module);

	return ret;
}

8806
static struct pmu *perf_init_event(struct perf_event *event)
8807 8808 8809
{
	struct pmu *pmu = NULL;
	int idx;
8810
	int ret;
8811 8812

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
8813 8814 8815 8816

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
8817
	if (pmu) {
8818
		ret = perf_try_init_event(pmu, event);
8819 8820
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8821
		goto unlock;
8822
	}
P
Peter Zijlstra 已提交
8823

8824
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8825
		ret = perf_try_init_event(pmu, event);
8826
		if (!ret)
P
Peter Zijlstra 已提交
8827
			goto unlock;
8828

8829 8830
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8831
			goto unlock;
8832
		}
8833
	}
P
Peter Zijlstra 已提交
8834 8835
	pmu = ERR_PTR(-ENOENT);
unlock:
8836
	srcu_read_unlock(&pmus_srcu, idx);
8837

8838
	return pmu;
8839 8840
}

8841 8842 8843 8844 8845 8846 8847 8848 8849
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

8850 8851 8852 8853 8854 8855 8856
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
8857 8858
static void account_pmu_sb_event(struct perf_event *event)
{
8859
	if (is_sb_event(event))
8860 8861 8862
		attach_sb_event(event);
}

8863 8864 8865 8866 8867 8868 8869 8870 8871
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


8893 8894
static void account_event(struct perf_event *event)
{
8895 8896
	bool inc = false;

8897 8898 8899
	if (event->parent)
		return;

8900
	if (event->attach_state & PERF_ATTACH_TASK)
8901
		inc = true;
8902 8903 8904 8905 8906 8907
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
8908 8909
	if (event->attr.freq)
		account_freq_event();
8910 8911
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
8912
		inc = true;
8913
	}
8914
	if (has_branch_stack(event))
8915
		inc = true;
8916
	if (is_cgroup_event(event))
8917 8918
		inc = true;

8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
8941 8942

	account_event_cpu(event, event->cpu);
8943 8944

	account_pmu_sb_event(event);
8945 8946
}

T
Thomas Gleixner 已提交
8947
/*
8948
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
8949
 */
8950
static struct perf_event *
8951
perf_event_alloc(struct perf_event_attr *attr, int cpu,
8952 8953 8954
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
8955
		 perf_overflow_handler_t overflow_handler,
8956
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
8957
{
P
Peter Zijlstra 已提交
8958
	struct pmu *pmu;
8959 8960
	struct perf_event *event;
	struct hw_perf_event *hwc;
8961
	long err = -EINVAL;
T
Thomas Gleixner 已提交
8962

8963 8964 8965 8966 8967
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

8968
	event = kzalloc(sizeof(*event), GFP_KERNEL);
8969
	if (!event)
8970
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
8971

8972
	/*
8973
	 * Single events are their own group leaders, with an
8974 8975 8976
	 * empty sibling list:
	 */
	if (!group_leader)
8977
		group_leader = event;
8978

8979 8980
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
8981

8982 8983 8984
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
8985
	INIT_LIST_HEAD(&event->rb_entry);
8986
	INIT_LIST_HEAD(&event->active_entry);
8987
	INIT_LIST_HEAD(&event->addr_filters.list);
8988 8989
	INIT_HLIST_NODE(&event->hlist_entry);

8990

8991
	init_waitqueue_head(&event->waitq);
8992
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
8993

8994
	mutex_init(&event->mmap_mutex);
8995
	raw_spin_lock_init(&event->addr_filters.lock);
8996

8997
	atomic_long_set(&event->refcount, 1);
8998 8999 9000 9001 9002
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9003

9004
	event->parent		= parent_event;
9005

9006
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9007
	event->id		= atomic64_inc_return(&perf_event_id);
9008

9009
	event->state		= PERF_EVENT_STATE_INACTIVE;
9010

9011 9012 9013
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9014 9015 9016
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9017
		 */
9018
		event->hw.target = task;
9019 9020
	}

9021 9022 9023 9024
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9025
	if (!overflow_handler && parent_event) {
9026
		overflow_handler = parent_event->overflow_handler;
9027 9028
		context = parent_event->overflow_handler_context;
	}
9029

9030 9031 9032
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9033 9034 9035
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9036
	} else {
9037
		event->overflow_handler = perf_event_output_forward;
9038 9039
		event->overflow_handler_context = NULL;
	}
9040

J
Jiri Olsa 已提交
9041
	perf_event__state_init(event);
9042

9043
	pmu = NULL;
9044

9045
	hwc = &event->hw;
9046
	hwc->sample_period = attr->sample_period;
9047
	if (attr->freq && attr->sample_freq)
9048
		hwc->sample_period = 1;
9049
	hwc->last_period = hwc->sample_period;
9050

9051
	local64_set(&hwc->period_left, hwc->sample_period);
9052

9053
	/*
9054
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9055
	 */
9056
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9057
		goto err_ns;
9058 9059 9060

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9061

9062 9063 9064 9065 9066 9067
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9068
	pmu = perf_init_event(event);
9069
	if (!pmu)
9070 9071
		goto err_ns;
	else if (IS_ERR(pmu)) {
9072
		err = PTR_ERR(pmu);
9073
		goto err_ns;
I
Ingo Molnar 已提交
9074
	}
9075

9076 9077 9078 9079
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
		if (!event->addr_filters_offs)
			goto err_per_task;

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9091
	if (!event->parent) {
9092
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9093
			err = get_callchain_buffers(attr->sample_max_stack);
9094
			if (err)
9095
				goto err_addr_filters;
9096
		}
9097
	}
9098

9099 9100 9101
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9102
	return event;
9103

9104 9105 9106
err_addr_filters:
	kfree(event->addr_filters_offs);

9107 9108 9109
err_per_task:
	exclusive_event_destroy(event);

9110 9111 9112
err_pmu:
	if (event->destroy)
		event->destroy(event);
9113
	module_put(pmu->module);
9114
err_ns:
9115 9116
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9117 9118 9119 9120 9121
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9122 9123
}

9124 9125
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9126 9127
{
	u32 size;
9128
	int ret;
9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9153 9154 9155
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9156 9157
	 */
	if (size > sizeof(*attr)) {
9158 9159 9160
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9161

9162 9163
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9164

9165
		for (; addr < end; addr++) {
9166 9167 9168 9169 9170 9171
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9172
		size = sizeof(*attr);
9173 9174 9175 9176 9177 9178
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9179
	if (attr->__reserved_1)
9180 9181 9182 9183 9184 9185 9186 9187
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9216 9217
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9218 9219
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9220
	}
9221

9222
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9223
		ret = perf_reg_validate(attr->sample_regs_user);
9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9242

9243 9244
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9245 9246 9247 9248 9249 9250 9251 9252 9253
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9254 9255
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9256
{
9257
	struct ring_buffer *rb = NULL;
9258 9259
	int ret = -EINVAL;

9260
	if (!output_event)
9261 9262
		goto set;

9263 9264
	/* don't allow circular references */
	if (event == output_event)
9265 9266
		goto out;

9267 9268 9269 9270 9271 9272 9273
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9274
	 * If its not a per-cpu rb, it must be the same task.
9275 9276 9277 9278
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9279 9280 9281 9282 9283 9284
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9285 9286 9287 9288 9289 9290 9291
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9292 9293 9294 9295 9296 9297 9298
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9299
set:
9300
	mutex_lock(&event->mmap_mutex);
9301 9302 9303
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9304

9305
	if (output_event) {
9306 9307 9308
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9309
			goto unlock;
9310 9311
	}

9312
	ring_buffer_attach(event, rb);
9313

9314
	ret = 0;
9315 9316 9317
unlock:
	mutex_unlock(&event->mmap_mutex);

9318 9319 9320 9321
out:
	return ret;
}

P
Peter Zijlstra 已提交
9322 9323 9324 9325 9326 9327 9328 9329 9330
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
9368
/**
9369
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9370
 *
9371
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9372
 * @pid:		target pid
I
Ingo Molnar 已提交
9373
 * @cpu:		target cpu
9374
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9375
 */
9376 9377
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9378
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9379
{
9380 9381
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9382
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9383
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9384
	struct file *event_file = NULL;
9385
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9386
	struct task_struct *task = NULL;
9387
	struct pmu *pmu;
9388
	int event_fd;
9389
	int move_group = 0;
9390
	int err;
9391
	int f_flags = O_RDWR;
9392
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9393

9394
	/* for future expandability... */
S
Stephane Eranian 已提交
9395
	if (flags & ~PERF_FLAG_ALL)
9396 9397
		return -EINVAL;

9398 9399 9400
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9401

9402 9403 9404 9405 9406
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9407
	if (attr.freq) {
9408
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9409
			return -EINVAL;
9410 9411 9412
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9413 9414
	}

9415 9416 9417
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9418 9419 9420 9421 9422 9423 9424 9425 9426
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9427 9428 9429 9430
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9431 9432 9433
	if (event_fd < 0)
		return event_fd;

9434
	if (group_fd != -1) {
9435 9436
		err = perf_fget_light(group_fd, &group);
		if (err)
9437
			goto err_fd;
9438
		group_leader = group.file->private_data;
9439 9440 9441 9442 9443 9444
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9445
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9446 9447 9448 9449 9450 9451 9452
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9453 9454 9455 9456 9457 9458
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9459 9460
	get_online_cpus();

9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9479 9480 9481
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9482
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9483
				 NULL, NULL, cgroup_fd);
9484 9485
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9486
		goto err_cred;
9487 9488
	}

9489 9490
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9491
			err = -EOPNOTSUPP;
9492 9493 9494 9495
			goto err_alloc;
		}
	}

9496 9497 9498 9499 9500
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9501

9502 9503 9504 9505 9506 9507
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9530 9531 9532 9533

	/*
	 * Get the target context (task or percpu):
	 */
9534
	ctx = find_get_context(pmu, task, event);
9535 9536
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9537
		goto err_alloc;
9538 9539
	}

9540 9541 9542 9543 9544
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9545
	/*
9546
	 * Look up the group leader (we will attach this event to it):
9547
	 */
9548
	if (group_leader) {
9549
		err = -EINVAL;
9550 9551

		/*
I
Ingo Molnar 已提交
9552 9553 9554 9555
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9556
			goto err_context;
9557 9558 9559 9560 9561

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9562 9563 9564
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9565
		 */
9566
		if (move_group) {
9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
9580 9581 9582 9583 9584 9585
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

9586 9587 9588
		/*
		 * Only a group leader can be exclusive or pinned
		 */
9589
		if (attr.exclusive || attr.pinned)
9590
			goto err_context;
9591 9592 9593 9594 9595
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
9596
			goto err_context;
9597
	}
T
Thomas Gleixner 已提交
9598

9599 9600
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
9601 9602
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
9603
		event_file = NULL;
9604
		goto err_context;
9605
	}
9606

9607
	if (move_group) {
P
Peter Zijlstra 已提交
9608
		gctx = group_leader->ctx;
9609
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9610 9611 9612 9613
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
9614 9615 9616 9617
	} else {
		mutex_lock(&ctx->mutex);
	}

9618 9619 9620 9621 9622
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
9623 9624 9625 9626 9627
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

9628 9629 9630 9631 9632 9633 9634
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
9635

9636 9637 9638
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
9639

9640 9641
	WARN_ON_ONCE(ctx->parent_ctx);

9642 9643 9644 9645 9646
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

9647
	if (move_group) {
P
Peter Zijlstra 已提交
9648 9649 9650 9651
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
9652
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
9653

9654 9655
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9656
			perf_remove_from_context(sibling, 0);
9657 9658 9659
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
9660 9661 9662 9663
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
9664
		synchronize_rcu();
P
Peter Zijlstra 已提交
9665

9666 9667 9668 9669 9670 9671 9672 9673 9674 9675
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
9676 9677
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9678
			perf_event__state_init(sibling);
9679
			perf_install_in_context(ctx, sibling, sibling->cpu);
9680 9681
			get_ctx(ctx);
		}
9682 9683 9684 9685 9686 9687 9688 9689 9690

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
9691

9692 9693 9694 9695 9696 9697
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
9698 9699
	}

9700 9701 9702 9703 9704 9705 9706 9707 9708
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
9709 9710
	event->owner = current;

9711
	perf_install_in_context(ctx, event, event->cpu);
9712
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
9713

9714
	if (move_group)
P
Peter Zijlstra 已提交
9715
		mutex_unlock(&gctx->mutex);
9716
	mutex_unlock(&ctx->mutex);
9717

9718 9719 9720 9721 9722
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

9723 9724
	put_online_cpus();

9725 9726 9727
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
9728

9729 9730 9731 9732 9733 9734
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
9735
	fdput(group);
9736 9737
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
9738

9739 9740 9741 9742 9743 9744
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
9745
err_context:
9746
	perf_unpin_context(ctx);
9747
	put_ctx(ctx);
9748
err_alloc:
P
Peter Zijlstra 已提交
9749 9750 9751 9752 9753 9754
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
9755 9756 9757
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
9758
err_cpus:
9759
	put_online_cpus();
9760
err_task:
P
Peter Zijlstra 已提交
9761 9762
	if (task)
		put_task_struct(task);
9763
err_group_fd:
9764
	fdput(group);
9765 9766
err_fd:
	put_unused_fd(event_fd);
9767
	return err;
T
Thomas Gleixner 已提交
9768 9769
}

9770 9771 9772 9773 9774
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
9775
 * @task: task to profile (NULL for percpu)
9776 9777 9778
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
9779
				 struct task_struct *task,
9780 9781
				 perf_overflow_handler_t overflow_handler,
				 void *context)
9782 9783
{
	struct perf_event_context *ctx;
9784
	struct perf_event *event;
9785
	int err;
9786

9787 9788 9789
	/*
	 * Get the target context (task or percpu):
	 */
9790

9791
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9792
				 overflow_handler, context, -1);
9793 9794 9795 9796
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
9797

9798
	/* Mark owner so we could distinguish it from user events. */
9799
	event->owner = TASK_TOMBSTONE;
9800

9801
	ctx = find_get_context(event->pmu, task, event);
9802 9803
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9804
		goto err_free;
9805
	}
9806 9807 9808

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
9809 9810 9811 9812 9813
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

9814 9815
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
9816
		goto err_unlock;
9817 9818
	}

9819
	perf_install_in_context(ctx, event, cpu);
9820
	perf_unpin_context(ctx);
9821 9822 9823 9824
	mutex_unlock(&ctx->mutex);

	return event;

9825 9826 9827 9828
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
9829 9830 9831
err_free:
	free_event(event);
err:
9832
	return ERR_PTR(err);
9833
}
9834
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9835

9836 9837 9838 9839 9840 9841 9842 9843 9844 9845
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
9846 9847 9848 9849 9850
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9851 9852
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
9853
		perf_remove_from_context(event, 0);
9854
		unaccount_event_cpu(event, src_cpu);
9855
		put_ctx(src_ctx);
9856
		list_add(&event->migrate_entry, &events);
9857 9858
	}

9859 9860 9861
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
9862 9863
	synchronize_rcu();

9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
9888 9889
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
9890 9891
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
9892
		account_event_cpu(event, dst_cpu);
9893 9894 9895 9896
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
9897
	mutex_unlock(&src_ctx->mutex);
9898 9899 9900
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

9901
static void sync_child_event(struct perf_event *child_event,
9902
			       struct task_struct *child)
9903
{
9904
	struct perf_event *parent_event = child_event->parent;
9905
	u64 child_val;
9906

9907 9908
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
9909

P
Peter Zijlstra 已提交
9910
	child_val = perf_event_count(child_event);
9911 9912 9913 9914

	/*
	 * Add back the child's count to the parent's count:
	 */
9915
	atomic64_add(child_val, &parent_event->child_count);
9916 9917 9918 9919
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
9920 9921
}

9922
static void
9923 9924 9925
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
9926
{
9927 9928
	struct perf_event *parent_event = child_event->parent;

9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
9941 9942 9943
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

9944
	if (parent_event)
9945 9946
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
9947
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9948
	raw_spin_unlock_irq(&child_ctx->lock);
9949

9950
	/*
9951
	 * Parent events are governed by their filedesc, retain them.
9952
	 */
9953
	if (!parent_event) {
9954
		perf_event_wakeup(child_event);
9955
		return;
9956
	}
9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
9977 9978
}

P
Peter Zijlstra 已提交
9979
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9980
{
9981
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9982 9983 9984
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
9985

9986
	child_ctx = perf_pin_task_context(child, ctxn);
9987
	if (!child_ctx)
9988 9989
		return;

9990
	/*
9991 9992 9993 9994 9995 9996 9997 9998
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
9999
	 */
10000
	mutex_lock(&child_ctx->mutex);
10001 10002

	/*
10003 10004 10005
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10006
	 */
10007
	raw_spin_lock_irq(&child_ctx->lock);
10008
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10009

10010
	/*
10011 10012
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10013
	 */
10014 10015 10016 10017
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10018

10019
	clone_ctx = unclone_ctx(child_ctx);
10020
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10021

10022 10023
	if (clone_ctx)
		put_ctx(clone_ctx);
10024

P
Peter Zijlstra 已提交
10025
	/*
10026 10027 10028
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10029
	 */
10030
	perf_event_task(child, child_ctx, 0);
10031

10032
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10033
		perf_event_exit_event(child_event, child_ctx, child);
10034

10035 10036 10037
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10038 10039
}

P
Peter Zijlstra 已提交
10040 10041
/*
 * When a child task exits, feed back event values to parent events.
10042 10043 10044
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10045 10046 10047
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10048
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10049 10050
	int ctxn;

P
Peter Zijlstra 已提交
10051 10052 10053 10054 10055 10056 10057 10058 10059 10060
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10061
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10062 10063 10064
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10065 10066
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10067 10068 10069 10070 10071 10072 10073 10074

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10075 10076
}

10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10089
	put_event(parent);
10090

P
Peter Zijlstra 已提交
10091
	raw_spin_lock_irq(&ctx->lock);
10092
	perf_group_detach(event);
10093
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10094
	raw_spin_unlock_irq(&ctx->lock);
10095 10096 10097
	free_event(event);
}

10098
/*
P
Peter Zijlstra 已提交
10099
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10100
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10101 10102 10103
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10104
 */
10105
void perf_event_free_task(struct task_struct *task)
10106
{
P
Peter Zijlstra 已提交
10107
	struct perf_event_context *ctx;
10108
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10109
	int ctxn;
10110

P
Peter Zijlstra 已提交
10111 10112 10113 10114
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10115

P
Peter Zijlstra 已提交
10116
		mutex_lock(&ctx->mutex);
10117
again:
P
Peter Zijlstra 已提交
10118 10119 10120
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
10121

P
Peter Zijlstra 已提交
10122 10123 10124
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
10125

P
Peter Zijlstra 已提交
10126 10127 10128
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
10129

P
Peter Zijlstra 已提交
10130
		mutex_unlock(&ctx->mutex);
10131

P
Peter Zijlstra 已提交
10132 10133
		put_ctx(ctx);
	}
10134 10135
}

10136 10137 10138 10139 10140 10141 10142 10143
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10144
struct file *perf_event_get(unsigned int fd)
10145
{
10146
	struct file *file;
10147

10148 10149 10150
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10151

10152 10153 10154 10155
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10156

10157
	return file;
10158 10159 10160 10161 10162 10163 10164 10165 10166 10167
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10179
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10180
	struct perf_event *child_event;
10181
	unsigned long flags;
P
Peter Zijlstra 已提交
10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10194
					   child,
P
Peter Zijlstra 已提交
10195
					   group_leader, parent_event,
10196
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10197 10198
	if (IS_ERR(child_event))
		return child_event;
10199

10200 10201 10202 10203 10204 10205 10206
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10207 10208
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10209
		mutex_unlock(&parent_event->child_mutex);
10210 10211 10212 10213
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10214 10215 10216 10217 10218 10219 10220
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10221
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10238 10239
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10240

10241 10242 10243 10244
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10245
	perf_event__id_header_size(child_event);
10246

P
Peter Zijlstra 已提交
10247 10248 10249
	/*
	 * Link it up in the child's context:
	 */
10250
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10251
	add_event_to_ctx(child_event, child_ctx);
10252
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10284 10285 10286 10287 10288
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10289
		   struct task_struct *child, int ctxn,
10290 10291 10292
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10293
	struct perf_event_context *child_ctx;
10294 10295 10296 10297

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10298 10299
	}

10300
	child_ctx = child->perf_event_ctxp[ctxn];
10301 10302 10303 10304 10305 10306 10307
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10308

10309
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10310 10311
		if (!child_ctx)
			return -ENOMEM;
10312

P
Peter Zijlstra 已提交
10313
		child->perf_event_ctxp[ctxn] = child_ctx;
10314 10315 10316 10317 10318 10319 10320 10321 10322
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10323 10324
}

10325
/*
10326
 * Initialize the perf_event context in task_struct
10327
 */
10328
static int perf_event_init_context(struct task_struct *child, int ctxn)
10329
{
10330
	struct perf_event_context *child_ctx, *parent_ctx;
10331 10332
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10333
	struct task_struct *parent = current;
10334
	int inherited_all = 1;
10335
	unsigned long flags;
10336
	int ret = 0;
10337

P
Peter Zijlstra 已提交
10338
	if (likely(!parent->perf_event_ctxp[ctxn]))
10339 10340
		return 0;

10341
	/*
10342 10343
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10344
	 */
P
Peter Zijlstra 已提交
10345
	parent_ctx = perf_pin_task_context(parent, ctxn);
10346 10347
	if (!parent_ctx)
		return 0;
10348

10349 10350 10351 10352 10353 10354 10355
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10356 10357 10358 10359
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10360
	mutex_lock(&parent_ctx->mutex);
10361 10362 10363 10364 10365

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10366
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10367 10368
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10369 10370 10371
		if (ret)
			break;
	}
10372

10373 10374 10375 10376 10377 10378 10379 10380 10381
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10382
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10383 10384
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10385
		if (ret)
10386
			break;
10387 10388
	}

10389 10390 10391
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10392
	child_ctx = child->perf_event_ctxp[ctxn];
10393

10394
	if (child_ctx && inherited_all) {
10395 10396 10397
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10398 10399 10400
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10401
		 */
P
Peter Zijlstra 已提交
10402
		cloned_ctx = parent_ctx->parent_ctx;
10403 10404
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10405
			child_ctx->parent_gen = parent_ctx->parent_gen;
10406 10407 10408 10409 10410
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10411 10412
	}

P
Peter Zijlstra 已提交
10413
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10414
	mutex_unlock(&parent_ctx->mutex);
10415

10416
	perf_unpin_context(parent_ctx);
10417
	put_ctx(parent_ctx);
10418

10419
	return ret;
10420 10421
}

P
Peter Zijlstra 已提交
10422 10423 10424 10425 10426 10427 10428
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10429 10430 10431 10432
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10433 10434
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10435 10436
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10437
			return ret;
P
Peter Zijlstra 已提交
10438
		}
P
Peter Zijlstra 已提交
10439 10440 10441 10442 10443
	}

	return 0;
}

10444 10445
static void __init perf_event_init_all_cpus(void)
{
10446
	struct swevent_htable *swhash;
10447 10448 10449
	int cpu;

	for_each_possible_cpu(cpu) {
10450 10451
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10452
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10453 10454 10455

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10456 10457 10458
	}
}

10459
int perf_event_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10460
{
P
Peter Zijlstra 已提交
10461
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10462

10463
	mutex_lock(&swhash->hlist_mutex);
10464
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10465 10466
		struct swevent_hlist *hlist;

10467 10468 10469
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10470
	}
10471
	mutex_unlock(&swhash->hlist_mutex);
10472
	return 0;
T
Thomas Gleixner 已提交
10473 10474
}

10475
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10476
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10477
{
P
Peter Zijlstra 已提交
10478
	struct perf_event_context *ctx = __info;
10479 10480
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10481

10482 10483
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10484
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10485
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10486
}
P
Peter Zijlstra 已提交
10487 10488 10489 10490 10491 10492 10493 10494 10495

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
10496
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
10497 10498 10499 10500 10501 10502 10503

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}
10504 10505 10506 10507 10508
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
10509

10510
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10511
{
P
Peter Zijlstra 已提交
10512
	perf_event_exit_cpu_context(cpu);
10513
	return 0;
T
Thomas Gleixner 已提交
10514 10515
}

P
Peter Zijlstra 已提交
10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

10536
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
10537
{
10538 10539
	int ret;

P
Peter Zijlstra 已提交
10540 10541
	idr_init(&pmu_idr);

10542
	perf_event_init_all_cpus();
10543
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
10544 10545 10546
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
10547
	perf_tp_register();
10548
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
10549
	register_reboot_notifier(&perf_reboot_notifier);
10550 10551 10552

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10553

10554 10555 10556 10557 10558 10559
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
10560
}
P
Peter Zijlstra 已提交
10561

10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
10573
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10574

P
Peter Zijlstra 已提交
10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
10602 10603

#ifdef CONFIG_CGROUP_PERF
10604 10605
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
10606 10607 10608
{
	struct perf_cgroup *jc;

10609
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

10622
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
10623
{
10624 10625
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
10626 10627 10628 10629 10630 10631 10632
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
10633
	rcu_read_lock();
S
Stephane Eranian 已提交
10634
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10635
	rcu_read_unlock();
S
Stephane Eranian 已提交
10636 10637 10638
	return 0;
}

10639
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
10640
{
10641
	struct task_struct *task;
10642
	struct cgroup_subsys_state *css;
10643

10644
	cgroup_taskset_for_each(task, css, tset)
10645
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
10646 10647
}

10648
struct cgroup_subsys perf_event_cgrp_subsys = {
10649 10650
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
10651
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
10652 10653
};
#endif /* CONFIG_CGROUP_PERF */