core.c 219.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void event_function_call(struct perf_event *event,
				int (*active)(void *),
				void (*inactive)(void *),
				void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		cpu_function_call(event->cpu, active, data);
		return;
	}

again:
	if (!task_function_call(task, active, data))
		return;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	inactive(data);
	raw_spin_unlock_irq(&ctx->lock);
}

160 161 162 163 164 165 166
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
167 168
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
169 170
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
171

172 173 174 175 176 177 178
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

179 180 181 182 183 184
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
185 186 187 188
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
189
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
190
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
192

193 194 195
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
196
static atomic_t nr_freq_events __read_mostly;
197
static atomic_t nr_switch_events __read_mostly;
198

P
Peter Zijlstra 已提交
199 200 201 202
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

203
/*
204
 * perf event paranoia level:
205 206
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
207
 *   1 - disallow cpu events for unpriv
208
 *   2 - disallow kernel profiling for unpriv
209
 */
210
int sysctl_perf_event_paranoid __read_mostly = 1;
211

212 213
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214 215

/*
216
 * max perf event sample rate
217
 */
218 219 220 221 222 223 224 225 226
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
227 228
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229

230
static void update_perf_cpu_limits(void)
231 232 233 234
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
235
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
236
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237
}
P
Peter Zijlstra 已提交
238

239 240
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
241 242 243 244
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
245
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
246 247 248 249 250

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
269 270 271

	return 0;
}
272

273 274 275 276 277 278 279
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
280
static DEFINE_PER_CPU(u64, running_sample_length);
281

282
static void perf_duration_warn(struct irq_work *w)
283
{
284
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285
	u64 avg_local_sample_len;
286
	u64 local_samples_len;
287

288
	local_samples_len = __this_cpu_read(running_sample_length);
289 290 291 292 293
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
294
			avg_local_sample_len, allowed_ns >> 1,
295 296 297 298 299 300 301
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
302
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 304
	u64 avg_local_sample_len;
	u64 local_samples_len;
305

P
Peter Zijlstra 已提交
306
	if (allowed_ns == 0)
307 308 309
		return;

	/* decay the counter by 1 average sample */
310
	local_samples_len = __this_cpu_read(running_sample_length);
311 312
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
313
	__this_cpu_write(running_sample_length, local_samples_len);
314 315 316 317 318 319 320 321

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
322
	if (avg_local_sample_len <= allowed_ns)
323 324 325 326 327 328 329 330 331 332
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
333

334 335 336 337 338 339
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
340 341
}

342
static atomic64_t perf_event_id;
343

344 345 346 347
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
348 349 350 351 352
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
353

354
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
355

356
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
357
{
358
	return "pmu";
T
Thomas Gleixner 已提交
359 360
}

361 362 363 364 365
static inline u64 perf_clock(void)
{
	return local_clock();
}

366 367 368 369 370
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
371 372 373 374 375 376
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
393 394 395 396 397 398 399 400
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
417 418 419 420
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
421
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
460 461
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
462
	/*
463 464
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
465
	 */
466
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
467 468
		return;

469
	cgrp = perf_cgroup_from_task(current, event->ctx);
470 471 472 473 474
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
475 476 477
}

static inline void
478 479
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
480 481 482 483
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

484 485 486 487 488 489
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
490 491
		return;

492
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
493
	info = this_cpu_ptr(cgrp->info);
494
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
495 496 497 498 499 500 501 502 503 504 505
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
506
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 527
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
528 529 530 531 532 533 534 535 536

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
537 538
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
539 540 541 542 543 544 545 546 547 548 549

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
550
				WARN_ON_ONCE(cpuctx->cgrp);
551 552 553 554
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
555 556
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
557
				 */
558
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
559 560
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
561 562
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
563 564 565 566 567 568
		}
	}

	local_irq_restore(flags);
}

569 570
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
571
{
572 573 574
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

575
	rcu_read_lock();
576 577
	/*
	 * we come here when we know perf_cgroup_events > 0
578 579
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
580
	 */
581
	cgrp1 = perf_cgroup_from_task(task, NULL);
582 583 584 585 586 587

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
588
		cgrp2 = perf_cgroup_from_task(next, NULL);
589 590 591 592 593 594 595 596

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
597 598

	rcu_read_unlock();
S
Stephane Eranian 已提交
599 600
}

601 602
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
603
{
604 605 606
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

607
	rcu_read_lock();
608 609
	/*
	 * we come here when we know perf_cgroup_events > 0
610 611
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
612
	 */
613
	cgrp1 = perf_cgroup_from_task(task, NULL);
614 615

	/* prev can never be NULL */
616
	cgrp2 = perf_cgroup_from_task(prev, NULL);
617 618 619 620 621 622 623 624

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
625 626

	rcu_read_unlock();
S
Stephane Eranian 已提交
627 628 629 630 631 632 633 634
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
635 636
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
637

638
	if (!f.file)
S
Stephane Eranian 已提交
639 640
		return -EBADF;

A
Al Viro 已提交
641
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
642
					 &perf_event_cgrp_subsys);
643 644 645 646
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
660
out:
661
	fdput(f);
S
Stephane Eranian 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

735 736
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
737 738 739
{
}

740 741
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
742 743 744 745 746 747 748 749 750 751 752
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
753 754
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

785 786 787 788 789 790 791 792
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
793
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
794 795 796 797 798 799 800 801 802
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
803 804
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
805
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
806 807 808
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
809

P
Peter Zijlstra 已提交
810
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
811 812
}

813
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
814
{
815
	struct hrtimer *timer = &cpuctx->hrtimer;
816
	struct pmu *pmu = cpuctx->ctx.pmu;
817
	u64 interval;
818 819 820 821 822

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

823 824 825 826
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
827 828 829
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
830

831
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
832

P
Peter Zijlstra 已提交
833 834
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
835
	timer->function = perf_mux_hrtimer_handler;
836 837
}

838
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
839
{
840
	struct hrtimer *timer = &cpuctx->hrtimer;
841
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
842
	unsigned long flags;
843 844 845

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
846
		return 0;
847

P
Peter Zijlstra 已提交
848 849 850 851 852 853 854
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
855

856
	return 0;
857 858
}

P
Peter Zijlstra 已提交
859
void perf_pmu_disable(struct pmu *pmu)
860
{
P
Peter Zijlstra 已提交
861 862 863
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
864 865
}

P
Peter Zijlstra 已提交
866
void perf_pmu_enable(struct pmu *pmu)
867
{
P
Peter Zijlstra 已提交
868 869 870
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
871 872
}

873
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
874 875

/*
876 877 878 879
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
880
 */
881
static void perf_event_ctx_activate(struct perf_event_context *ctx)
882
{
883
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
884

885
	WARN_ON(!irqs_disabled());
886

887 888 889 890 891 892 893 894 895 896 897 898
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
899 900
}

901
static void get_ctx(struct perf_event_context *ctx)
902
{
903
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
904 905
}

906 907 908 909 910 911 912 913 914
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

915
static void put_ctx(struct perf_event_context *ctx)
916
{
917 918 919
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
920 921
		if (ctx->task)
			put_task_struct(ctx->task);
922
		call_rcu(&ctx->rcu_head, free_ctx);
923
	}
924 925
}

P
Peter Zijlstra 已提交
926 927 928 929 930 931 932
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
987 988
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
989 990 991 992 993 994 995 996 997 998 999 1000
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1001
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015 1016
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1017 1018 1019 1020 1021 1022 1023
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1024 1025 1026 1027 1028 1029 1030
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1031
{
1032 1033 1034 1035 1036
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1037
		ctx->parent_ctx = NULL;
1038
	ctx->generation++;
1039 1040

	return parent_ctx;
1041 1042
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1065
/*
1066
 * If we inherit events we want to return the parent event id
1067 1068
 * to userspace.
 */
1069
static u64 primary_event_id(struct perf_event *event)
1070
{
1071
	u64 id = event->id;
1072

1073 1074
	if (event->parent)
		id = event->parent->id;
1075 1076 1077 1078

	return id;
}

1079
/*
1080
 * Get the perf_event_context for a task and lock it.
1081 1082 1083
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1084
static struct perf_event_context *
P
Peter Zijlstra 已提交
1085
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1086
{
1087
	struct perf_event_context *ctx;
1088

P
Peter Zijlstra 已提交
1089
retry:
1090 1091 1092
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1093
	 * part of the read side critical section was irqs-enabled -- see
1094 1095 1096
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1097
	 * side critical section has interrupts disabled.
1098
	 */
1099
	local_irq_save(*flags);
1100
	rcu_read_lock();
P
Peter Zijlstra 已提交
1101
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1102 1103 1104 1105
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1106
		 * perf_event_task_sched_out, though the
1107 1108 1109 1110 1111 1112
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1113
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1114
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1115
			raw_spin_unlock(&ctx->lock);
1116
			rcu_read_unlock();
1117
			local_irq_restore(*flags);
1118 1119
			goto retry;
		}
1120 1121

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1122
			raw_spin_unlock(&ctx->lock);
1123 1124
			ctx = NULL;
		}
1125 1126
	}
	rcu_read_unlock();
1127 1128
	if (!ctx)
		local_irq_restore(*flags);
1129 1130 1131 1132 1133 1134 1135 1136
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1137 1138
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1139
{
1140
	struct perf_event_context *ctx;
1141 1142
	unsigned long flags;

P
Peter Zijlstra 已提交
1143
	ctx = perf_lock_task_context(task, ctxn, &flags);
1144 1145
	if (ctx) {
		++ctx->pin_count;
1146
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1147 1148 1149 1150
	}
	return ctx;
}

1151
static void perf_unpin_context(struct perf_event_context *ctx)
1152 1153 1154
{
	unsigned long flags;

1155
	raw_spin_lock_irqsave(&ctx->lock, flags);
1156
	--ctx->pin_count;
1157
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1158 1159
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1171 1172 1173
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1174 1175 1176 1177

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1178 1179 1180
	return ctx ? ctx->time : 0;
}

1181 1182
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1183
 * The caller of this function needs to hold the ctx->lock.
1184 1185 1186 1187 1188 1189 1190 1191 1192
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1204
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1205 1206
	else if (ctx->is_active)
		run_end = ctx->time;
1207 1208 1209 1210
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1211 1212 1213 1214

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1215
		run_end = perf_event_time(event);
1216 1217

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1218

1219 1220
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1233 1234 1235 1236 1237 1238 1239 1240 1241
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1242
/*
1243
 * Add a event from the lists for its context.
1244 1245
 * Must be called with ctx->mutex and ctx->lock held.
 */
1246
static void
1247
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1248
{
P
Peter Zijlstra 已提交
1249 1250
	lockdep_assert_held(&ctx->lock);

1251 1252
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1253 1254

	/*
1255 1256 1257
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1258
	 */
1259
	if (event->group_leader == event) {
1260 1261
		struct list_head *list;

1262 1263 1264
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1265 1266
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1267
	}
P
Peter Zijlstra 已提交
1268

1269
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1270 1271
		ctx->nr_cgroups++;

1272 1273 1274
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1275
		ctx->nr_stat++;
1276 1277

	ctx->generation++;
1278 1279
}

J
Jiri Olsa 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1289
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1305
		nr += nr_siblings;
1306 1307 1308 1309 1310 1311 1312
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1313
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1314 1315 1316 1317 1318 1319 1320
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1321 1322 1323 1324 1325 1326
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1327 1328 1329
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1330 1331 1332
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1333 1334 1335
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1336 1337 1338
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1339 1340 1341
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1353 1354 1355 1356 1357 1358
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1359 1360 1361 1362 1363 1364
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1365 1366 1367
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1368 1369 1370 1371 1372 1373 1374 1375 1376
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1377
	event->id_header_size = size;
1378 1379
}

P
Peter Zijlstra 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1401 1402
static void perf_group_attach(struct perf_event *event)
{
1403
	struct perf_event *group_leader = event->group_leader, *pos;
1404

P
Peter Zijlstra 已提交
1405 1406 1407 1408 1409 1410
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1411 1412 1413 1414 1415
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1416 1417
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1418 1419 1420 1421 1422 1423
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1424 1425 1426 1427 1428

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1429 1430
}

1431
/*
1432
 * Remove a event from the lists for its context.
1433
 * Must be called with ctx->mutex and ctx->lock held.
1434
 */
1435
static void
1436
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1437
{
1438
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1439 1440 1441 1442

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1443 1444 1445 1446
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1447
		return;
1448 1449 1450

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1451
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1452
		ctx->nr_cgroups--;
1453 1454 1455 1456 1457 1458 1459 1460 1461
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1462

1463 1464
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1465
		ctx->nr_stat--;
1466

1467
	list_del_rcu(&event->event_entry);
1468

1469 1470
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1471

1472
	update_group_times(event);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1483 1484

	ctx->generation++;
1485 1486
}

1487
static void perf_group_detach(struct perf_event *event)
1488 1489
{
	struct perf_event *sibling, *tmp;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1506
		goto out;
1507 1508 1509 1510
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1511

1512
	/*
1513 1514
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1515
	 * to whatever list we are on.
1516
	 */
1517
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1518 1519
		if (list)
			list_move_tail(&sibling->group_entry, list);
1520
		sibling->group_leader = sibling;
1521 1522 1523

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1524 1525

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1526
	}
1527 1528 1529 1530 1531 1532

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1533 1534
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1574 1575 1576 1577 1578 1579
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1580 1581 1582
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1583
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1584
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1585 1586
}

1587 1588
static void
event_sched_out(struct perf_event *event,
1589
		  struct perf_cpu_context *cpuctx,
1590
		  struct perf_event_context *ctx)
1591
{
1592
	u64 tstamp = perf_event_time(event);
1593
	u64 delta;
P
Peter Zijlstra 已提交
1594 1595 1596 1597

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1598 1599 1600 1601 1602 1603 1604 1605
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1606
		delta = tstamp - event->tstamp_stopped;
1607
		event->tstamp_running += delta;
1608
		event->tstamp_stopped = tstamp;
1609 1610
	}

1611
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1612
		return;
1613

1614 1615
	perf_pmu_disable(event->pmu);

1616 1617 1618 1619
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1620
	}
1621
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1622
	event->pmu->del(event, 0);
1623
	event->oncpu = -1;
1624

1625
	if (!is_software_event(event))
1626
		cpuctx->active_oncpu--;
1627 1628
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1629 1630
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1631
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1632
		cpuctx->exclusive = 0;
1633

1634 1635 1636
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1637
	perf_pmu_enable(event->pmu);
1638 1639
}

1640
static void
1641
group_sched_out(struct perf_event *group_event,
1642
		struct perf_cpu_context *cpuctx,
1643
		struct perf_event_context *ctx)
1644
{
1645
	struct perf_event *event;
1646
	int state = group_event->state;
1647

1648
	event_sched_out(group_event, cpuctx, ctx);
1649 1650 1651 1652

	/*
	 * Schedule out siblings (if any):
	 */
1653 1654
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1655

1656
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1657 1658 1659
		cpuctx->exclusive = 0;
}

1660 1661 1662 1663 1664
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
static void ___perf_remove_from_context(void *info)
{
	struct remove_event *re = info;
	struct perf_event *event = re->event;
	struct perf_event_context *ctx = event->ctx;

	if (re->detach_group)
		perf_group_detach(event);
	list_del_event(event, ctx);
}

T
Thomas Gleixner 已提交
1676
/*
1677
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1678
 *
1679
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1680 1681
 * remove it from the context list.
 */
1682
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1683
{
1684 1685
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1686
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1687
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1688

1689
	raw_spin_lock(&ctx->lock);
1690
	event_sched_out(event, cpuctx, ctx);
1691 1692
	if (re->detach_group)
		perf_group_detach(event);
1693
	list_del_event(event, ctx);
1694 1695 1696 1697
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1698
	raw_spin_unlock(&ctx->lock);
1699 1700

	return 0;
T
Thomas Gleixner 已提交
1701 1702 1703
}

/*
1704
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1705
 *
1706
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1707
 * call when the task is on a CPU.
1708
 *
1709 1710
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1711 1712
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1713
 * When called from perf_event_exit_task, it's OK because the
1714
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1715
 */
1716
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1717
{
1718
	struct perf_event_context *ctx = event->ctx;
1719 1720 1721 1722
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1723

1724 1725
	lockdep_assert_held(&ctx->mutex);

1726 1727
	event_function_call(event, __perf_remove_from_context,
			    ___perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1728 1729
}

1730
/*
1731
 * Cross CPU call to disable a performance event
1732
 */
1733
int __perf_event_disable(void *info)
1734
{
1735 1736
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1737
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1738 1739

	/*
1740 1741
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1742 1743 1744
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1745
	 */
1746
	if (ctx->task && cpuctx->task_ctx != ctx)
1747
		return -EINVAL;
1748

1749
	raw_spin_lock(&ctx->lock);
1750 1751

	/*
1752
	 * If the event is on, turn it off.
1753 1754
	 * If it is in error state, leave it in error state.
	 */
1755
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1756
		update_context_time(ctx);
S
Stephane Eranian 已提交
1757
		update_cgrp_time_from_event(event);
1758 1759 1760
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1761
		else
1762 1763
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1764 1765
	}

1766
	raw_spin_unlock(&ctx->lock);
1767 1768

	return 0;
1769 1770
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
void ___perf_event_disable(void *info)
{
	struct perf_event *event = info;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
	}
}

1785
/*
1786
 * Disable a event.
1787
 *
1788 1789
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1790
 * remains valid.  This condition is satisifed when called through
1791 1792 1793 1794
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1795
 * is the current context on this CPU and preemption is disabled,
1796
 * hence we can't get into perf_event_task_sched_out for this context.
1797
 */
P
Peter Zijlstra 已提交
1798
static void _perf_event_disable(struct perf_event *event)
1799
{
1800
	struct perf_event_context *ctx = event->ctx;
1801

1802
	raw_spin_lock_irq(&ctx->lock);
1803
	if (event->state <= PERF_EVENT_STATE_OFF) {
1804
		raw_spin_unlock_irq(&ctx->lock);
1805
		return;
1806
	}
1807
	raw_spin_unlock_irq(&ctx->lock);
1808 1809 1810

	event_function_call(event, __perf_event_disable,
			    ___perf_event_disable, event);
1811
}
P
Peter Zijlstra 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1825
EXPORT_SYMBOL_GPL(perf_event_disable);
1826

S
Stephane Eranian 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1862 1863 1864
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1865
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1866

1867
static int
1868
event_sched_in(struct perf_event *event,
1869
		 struct perf_cpu_context *cpuctx,
1870
		 struct perf_event_context *ctx)
1871
{
1872
	u64 tstamp = perf_event_time(event);
1873
	int ret = 0;
1874

1875 1876
	lockdep_assert_held(&ctx->lock);

1877
	if (event->state <= PERF_EVENT_STATE_OFF)
1878 1879
		return 0;

1880
	event->state = PERF_EVENT_STATE_ACTIVE;
1881
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1893 1894 1895 1896 1897
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1898 1899
	perf_pmu_disable(event->pmu);

1900 1901
	perf_set_shadow_time(event, ctx, tstamp);

1902 1903
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1904
	if (event->pmu->add(event, PERF_EF_START)) {
1905 1906
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1907 1908
		ret = -EAGAIN;
		goto out;
1909 1910
	}

1911 1912
	event->tstamp_running += tstamp - event->tstamp_stopped;

1913
	if (!is_software_event(event))
1914
		cpuctx->active_oncpu++;
1915 1916
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1917 1918
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1919

1920
	if (event->attr.exclusive)
1921 1922
		cpuctx->exclusive = 1;

1923 1924 1925
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1926 1927 1928 1929
out:
	perf_pmu_enable(event->pmu);

	return ret;
1930 1931
}

1932
static int
1933
group_sched_in(struct perf_event *group_event,
1934
	       struct perf_cpu_context *cpuctx,
1935
	       struct perf_event_context *ctx)
1936
{
1937
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1938
	struct pmu *pmu = ctx->pmu;
1939 1940
	u64 now = ctx->time;
	bool simulate = false;
1941

1942
	if (group_event->state == PERF_EVENT_STATE_OFF)
1943 1944
		return 0;

1945
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1946

1947
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1948
		pmu->cancel_txn(pmu);
1949
		perf_mux_hrtimer_restart(cpuctx);
1950
		return -EAGAIN;
1951
	}
1952 1953 1954 1955

	/*
	 * Schedule in siblings as one group (if any):
	 */
1956
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1957
		if (event_sched_in(event, cpuctx, ctx)) {
1958
			partial_group = event;
1959 1960 1961 1962
			goto group_error;
		}
	}

1963
	if (!pmu->commit_txn(pmu))
1964
		return 0;
1965

1966 1967 1968 1969
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1980
	 */
1981 1982
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1983 1984 1985 1986 1987 1988 1989 1990
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1991
	}
1992
	event_sched_out(group_event, cpuctx, ctx);
1993

P
Peter Zijlstra 已提交
1994
	pmu->cancel_txn(pmu);
1995

1996
	perf_mux_hrtimer_restart(cpuctx);
1997

1998 1999 2000
	return -EAGAIN;
}

2001
/*
2002
 * Work out whether we can put this event group on the CPU now.
2003
 */
2004
static int group_can_go_on(struct perf_event *event,
2005 2006 2007 2008
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2009
	 * Groups consisting entirely of software events can always go on.
2010
	 */
2011
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2012 2013 2014
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2015
	 * events can go on.
2016 2017 2018 2019 2020
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2021
	 * events on the CPU, it can't go on.
2022
	 */
2023
	if (event->attr.exclusive && cpuctx->active_oncpu)
2024 2025 2026 2027 2028 2029 2030 2031
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2032 2033
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2034
{
2035 2036
	u64 tstamp = perf_event_time(event);

2037
	list_add_event(event, ctx);
2038
	perf_group_attach(event);
2039 2040 2041
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2042 2043
}

2044 2045 2046 2047 2048 2049
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static void ___perf_install_in_context(void *info)
{
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;

	/*
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
	 */
	add_event_to_ctx(event, ctx);
}

T
Thomas Gleixner 已提交
2075
/*
2076
 * Cross CPU call to install and enable a performance event
2077 2078
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2079
 */
2080
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2081
{
2082 2083
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2084
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2085 2086 2087
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2088
	perf_ctx_lock(cpuctx, task_ctx);
2089
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2090 2091

	/*
2092
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2093
	 */
2094
	if (task_ctx)
2095
		task_ctx_sched_out(task_ctx);
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2110 2111
		task = task_ctx->task;
	}
2112

2113
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2114

2115
	update_context_time(ctx);
S
Stephane Eranian 已提交
2116 2117 2118 2119 2120 2121
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2122

2123
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2124

2125
	/*
2126
	 * Schedule everything back in
2127
	 */
2128
	perf_event_sched_in(cpuctx, task_ctx, task);
2129 2130 2131

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2132 2133

	return 0;
T
Thomas Gleixner 已提交
2134 2135 2136
}

/*
2137
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2138
 *
2139 2140
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2141
 *
2142
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2143 2144 2145 2146
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2147 2148
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2149 2150
			int cpu)
{
2151 2152
	lockdep_assert_held(&ctx->mutex);

2153
	event->ctx = ctx;
2154 2155
	if (event->cpu != -1)
		event->cpu = cpu;
2156

2157 2158
	event_function_call(event, __perf_install_in_context,
			    ___perf_install_in_context, event);
T
Thomas Gleixner 已提交
2159 2160
}

2161
/*
2162
 * Put a event into inactive state and update time fields.
2163 2164 2165 2166 2167 2168
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2169
static void __perf_event_mark_enabled(struct perf_event *event)
2170
{
2171
	struct perf_event *sub;
2172
	u64 tstamp = perf_event_time(event);
2173

2174
	event->state = PERF_EVENT_STATE_INACTIVE;
2175
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2176
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2177 2178
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2179
	}
2180 2181
}

2182
/*
2183
 * Cross CPU call to enable a performance event
2184
 */
2185
static int __perf_event_enable(void *info)
2186
{
2187 2188 2189
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2190
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2191
	int err;
2192

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2203
		return -EINVAL;
2204

2205
	raw_spin_lock(&ctx->lock);
2206
	update_context_time(ctx);
2207

2208
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2209
		goto unlock;
S
Stephane Eranian 已提交
2210 2211 2212 2213

	/*
	 * set current task's cgroup time reference point
	 */
2214
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2215

2216
	__perf_event_mark_enabled(event);
2217

S
Stephane Eranian 已提交
2218 2219 2220
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2221
		goto unlock;
S
Stephane Eranian 已提交
2222
	}
2223

2224
	/*
2225
	 * If the event is in a group and isn't the group leader,
2226
	 * then don't put it on unless the group is on.
2227
	 */
2228
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2229
		goto unlock;
2230

2231
	if (!group_can_go_on(event, cpuctx, 1)) {
2232
		err = -EEXIST;
2233
	} else {
2234
		if (event == leader)
2235
			err = group_sched_in(event, cpuctx, ctx);
2236
		else
2237
			err = event_sched_in(event, cpuctx, ctx);
2238
	}
2239 2240 2241

	if (err) {
		/*
2242
		 * If this event can't go on and it's part of a
2243 2244
		 * group, then the whole group has to come off.
		 */
2245
		if (leader != event) {
2246
			group_sched_out(leader, cpuctx, ctx);
2247
			perf_mux_hrtimer_restart(cpuctx);
2248
		}
2249
		if (leader->attr.pinned) {
2250
			update_group_times(leader);
2251
			leader->state = PERF_EVENT_STATE_ERROR;
2252
		}
2253 2254
	}

P
Peter Zijlstra 已提交
2255
unlock:
2256
	raw_spin_unlock(&ctx->lock);
2257 2258

	return 0;
2259 2260
}

2261 2262 2263 2264 2265
void ___perf_event_enable(void *info)
{
	__perf_event_mark_enabled((struct perf_event *)info);
}

2266
/*
2267
 * Enable a event.
2268
 *
2269 2270
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2271
 * remains valid.  This condition is satisfied when called through
2272 2273
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2274
 */
P
Peter Zijlstra 已提交
2275
static void _perf_event_enable(struct perf_event *event)
2276
{
2277
	struct perf_event_context *ctx = event->ctx;
2278

2279 2280 2281
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2282 2283 2284 2285
		return;
	}

	/*
2286
	 * If the event is in error state, clear that first.
2287 2288 2289 2290
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2291
	 */
2292 2293
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2294
	raw_spin_unlock_irq(&ctx->lock);
2295

2296 2297
	event_function_call(event, __perf_event_enable,
			    ___perf_event_enable, event);
2298
}
P
Peter Zijlstra 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2311
EXPORT_SYMBOL_GPL(perf_event_enable);
2312

P
Peter Zijlstra 已提交
2313
static int _perf_event_refresh(struct perf_event *event, int refresh)
2314
{
2315
	/*
2316
	 * not supported on inherited events
2317
	 */
2318
	if (event->attr.inherit || !is_sampling_event(event))
2319 2320
		return -EINVAL;

2321
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2322
	_perf_event_enable(event);
2323 2324

	return 0;
2325
}
P
Peter Zijlstra 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2341
EXPORT_SYMBOL_GPL(perf_event_refresh);
2342

2343 2344 2345
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2346
{
2347
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2348 2349 2350
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2351

2352
	ctx->is_active &= ~event_type;
2353
	if (likely(!ctx->nr_events))
2354 2355
		return;

2356
	update_context_time(ctx);
S
Stephane Eranian 已提交
2357
	update_cgrp_time_from_cpuctx(cpuctx);
2358
	if (!ctx->nr_active)
2359
		return;
2360

P
Peter Zijlstra 已提交
2361
	perf_pmu_disable(ctx->pmu);
2362
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2363 2364
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2365
	}
2366

2367
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2368
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2369
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2370
	}
P
Peter Zijlstra 已提交
2371
	perf_pmu_enable(ctx->pmu);
2372 2373
}

2374
/*
2375 2376 2377 2378 2379 2380
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2381
 */
2382 2383
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2384
{
2385 2386 2387
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2410 2411
}

2412 2413
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2414 2415 2416
{
	u64 value;

2417
	if (!event->attr.inherit_stat)
2418 2419 2420
		return;

	/*
2421
	 * Update the event value, we cannot use perf_event_read()
2422 2423
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2424
	 * we know the event must be on the current CPU, therefore we
2425 2426
	 * don't need to use it.
	 */
2427 2428
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2429 2430
		event->pmu->read(event);
		/* fall-through */
2431

2432 2433
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2434 2435 2436 2437 2438 2439 2440
		break;

	default:
		break;
	}

	/*
2441
	 * In order to keep per-task stats reliable we need to flip the event
2442 2443
	 * values when we flip the contexts.
	 */
2444 2445 2446
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2447

2448 2449
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2450

2451
	/*
2452
	 * Since we swizzled the values, update the user visible data too.
2453
	 */
2454 2455
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2456 2457
}

2458 2459
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2460
{
2461
	struct perf_event *event, *next_event;
2462 2463 2464 2465

	if (!ctx->nr_stat)
		return;

2466 2467
	update_context_time(ctx);

2468 2469
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2470

2471 2472
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2473

2474 2475
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2476

2477
		__perf_event_sync_stat(event, next_event);
2478

2479 2480
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2481 2482 2483
	}
}

2484 2485
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2486
{
P
Peter Zijlstra 已提交
2487
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2488
	struct perf_event_context *next_ctx;
2489
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2490
	struct perf_cpu_context *cpuctx;
2491
	int do_switch = 1;
T
Thomas Gleixner 已提交
2492

P
Peter Zijlstra 已提交
2493 2494
	if (likely(!ctx))
		return;
2495

P
Peter Zijlstra 已提交
2496 2497
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2498 2499
		return;

2500
	rcu_read_lock();
P
Peter Zijlstra 已提交
2501
	next_ctx = next->perf_event_ctxp[ctxn];
2502 2503 2504 2505 2506 2507 2508
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2509
	if (!parent && !next_parent)
2510 2511 2512
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2513 2514 2515 2516 2517 2518 2519 2520 2521
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2522 2523
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2524
		if (context_equiv(ctx, next_ctx)) {
2525 2526
			/*
			 * XXX do we need a memory barrier of sorts
2527
			 * wrt to rcu_dereference() of perf_event_ctxp
2528
			 */
P
Peter Zijlstra 已提交
2529 2530
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2531 2532
			ctx->task = next;
			next_ctx->task = task;
2533 2534 2535

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2536
			do_switch = 0;
2537

2538
			perf_event_sync_stat(ctx, next_ctx);
2539
		}
2540 2541
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2542
	}
2543
unlock:
2544
	rcu_read_unlock();
2545

2546
	if (do_switch) {
2547
		raw_spin_lock(&ctx->lock);
2548
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2549
		cpuctx->task_ctx = NULL;
2550
		raw_spin_unlock(&ctx->lock);
2551
	}
T
Thomas Gleixner 已提交
2552 2553
}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2604 2605 2606
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2621 2622
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2623 2624 2625
{
	int ctxn;

2626 2627 2628
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2629 2630 2631
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2632 2633
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2634 2635 2636 2637 2638 2639

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2640
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2641
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2642 2643
}

2644
static void task_ctx_sched_out(struct perf_event_context *ctx)
2645
{
P
Peter Zijlstra 已提交
2646
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2647

2648 2649
	if (!cpuctx->task_ctx)
		return;
2650 2651 2652 2653

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2654
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2655 2656 2657
	cpuctx->task_ctx = NULL;
}

2658 2659 2660 2661 2662 2663 2664
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2665 2666
}

2667
static void
2668
ctx_pinned_sched_in(struct perf_event_context *ctx,
2669
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2670
{
2671
	struct perf_event *event;
T
Thomas Gleixner 已提交
2672

2673 2674
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2675
			continue;
2676
		if (!event_filter_match(event))
2677 2678
			continue;

S
Stephane Eranian 已提交
2679 2680 2681 2682
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2683
		if (group_can_go_on(event, cpuctx, 1))
2684
			group_sched_in(event, cpuctx, ctx);
2685 2686 2687 2688 2689

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2690 2691 2692
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2693
		}
2694
	}
2695 2696 2697 2698
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2699
		      struct perf_cpu_context *cpuctx)
2700 2701 2702
{
	struct perf_event *event;
	int can_add_hw = 1;
2703

2704 2705 2706
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2707
			continue;
2708 2709
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2710
		 * of events:
2711
		 */
2712
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2713 2714
			continue;

S
Stephane Eranian 已提交
2715 2716 2717 2718
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2719
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2720
			if (group_sched_in(event, cpuctx, ctx))
2721
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2722
		}
T
Thomas Gleixner 已提交
2723
	}
2724 2725 2726 2727 2728
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2729 2730
	     enum event_type_t event_type,
	     struct task_struct *task)
2731
{
2732
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2733 2734 2735
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2736

2737
	ctx->is_active |= event_type;
2738
	if (likely(!ctx->nr_events))
2739
		return;
2740

S
Stephane Eranian 已提交
2741 2742
	now = perf_clock();
	ctx->timestamp = now;
2743
	perf_cgroup_set_timestamp(task, ctx);
2744 2745 2746 2747
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2748
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2749
		ctx_pinned_sched_in(ctx, cpuctx);
2750 2751

	/* Then walk through the lower prio flexible groups */
2752
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2753
		ctx_flexible_sched_in(ctx, cpuctx);
2754 2755
}

2756
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2757 2758
			     enum event_type_t event_type,
			     struct task_struct *task)
2759 2760 2761
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2762
	ctx_sched_in(ctx, cpuctx, event_type, task);
2763 2764
}

S
Stephane Eranian 已提交
2765 2766
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2767
{
P
Peter Zijlstra 已提交
2768
	struct perf_cpu_context *cpuctx;
2769

P
Peter Zijlstra 已提交
2770
	cpuctx = __get_cpu_context(ctx);
2771 2772 2773
	if (cpuctx->task_ctx == ctx)
		return;

2774
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2775
	perf_pmu_disable(ctx->pmu);
2776 2777 2778 2779 2780 2781 2782
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2783 2784
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2785

2786 2787
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2788 2789
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2790 2791
}

P
Peter Zijlstra 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2803 2804
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2805 2806 2807 2808
{
	struct perf_event_context *ctx;
	int ctxn;

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2819 2820 2821 2822 2823
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2824
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2825
	}
2826

2827 2828 2829
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2830 2831
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2832 2833
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2861
#define REDUCE_FLS(a, b)		\
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2901 2902 2903
	if (!divisor)
		return dividend;

2904 2905 2906
	return div64_u64(dividend, divisor);
}

2907 2908 2909
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2910
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2911
{
2912
	struct hw_perf_event *hwc = &event->hw;
2913
	s64 period, sample_period;
2914 2915
	s64 delta;

2916
	period = perf_calculate_period(event, nsec, count);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2927

2928
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2929 2930 2931
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2932
		local64_set(&hwc->period_left, 0);
2933 2934 2935

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2936
	}
2937 2938
}

2939 2940 2941 2942 2943 2944 2945
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2946
{
2947 2948
	struct perf_event *event;
	struct hw_perf_event *hwc;
2949
	u64 now, period = TICK_NSEC;
2950
	s64 delta;
2951

2952 2953 2954 2955 2956 2957
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2958 2959
		return;

2960
	raw_spin_lock(&ctx->lock);
2961
	perf_pmu_disable(ctx->pmu);
2962

2963
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2964
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2965 2966
			continue;

2967
		if (!event_filter_match(event))
2968 2969
			continue;

2970 2971
		perf_pmu_disable(event->pmu);

2972
		hwc = &event->hw;
2973

2974
		if (hwc->interrupts == MAX_INTERRUPTS) {
2975
			hwc->interrupts = 0;
2976
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2977
			event->pmu->start(event, 0);
2978 2979
		}

2980
		if (!event->attr.freq || !event->attr.sample_freq)
2981
			goto next;
2982

2983 2984 2985 2986 2987
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2988
		now = local64_read(&event->count);
2989 2990
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2991

2992 2993 2994
		/*
		 * restart the event
		 * reload only if value has changed
2995 2996 2997
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2998
		 */
2999
		if (delta > 0)
3000
			perf_adjust_period(event, period, delta, false);
3001 3002

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3003 3004
	next:
		perf_pmu_enable(event->pmu);
3005
	}
3006

3007
	perf_pmu_enable(ctx->pmu);
3008
	raw_spin_unlock(&ctx->lock);
3009 3010
}

3011
/*
3012
 * Round-robin a context's events:
3013
 */
3014
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3015
{
3016 3017 3018 3019 3020 3021
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3022 3023
}

3024
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3025
{
P
Peter Zijlstra 已提交
3026
	struct perf_event_context *ctx = NULL;
3027
	int rotate = 0;
3028

3029 3030 3031 3032
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3033

P
Peter Zijlstra 已提交
3034
	ctx = cpuctx->task_ctx;
3035 3036 3037 3038
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3039

3040
	if (!rotate)
3041 3042
		goto done;

3043
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3044
	perf_pmu_disable(cpuctx->ctx.pmu);
3045

3046 3047 3048
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3049

3050 3051 3052
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3053

3054
	perf_event_sched_in(cpuctx, ctx, current);
3055

3056 3057
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3058
done:
3059 3060

	return rotate;
3061 3062
}

3063 3064 3065
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3066
	if (atomic_read(&nr_freq_events) ||
3067
	    __this_cpu_read(perf_throttled_count))
3068
		return false;
3069 3070
	else
		return true;
3071 3072 3073
}
#endif

3074 3075
void perf_event_task_tick(void)
{
3076 3077
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3078
	int throttled;
3079

3080 3081
	WARN_ON(!irqs_disabled());

3082 3083 3084
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3085
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3086
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3087 3088
}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3099
	__perf_event_mark_enabled(event);
3100 3101 3102 3103

	return 1;
}

3104
/*
3105
 * Enable all of a task's events that have been marked enable-on-exec.
3106 3107
 * This expects task == current.
 */
3108
static void perf_event_enable_on_exec(int ctxn)
3109
{
3110
	struct perf_event_context *ctx, *clone_ctx = NULL;
3111
	struct perf_event *event;
3112 3113
	unsigned long flags;
	int enabled = 0;
3114
	int ret;
3115 3116

	local_irq_save(flags);
3117
	ctx = current->perf_event_ctxp[ctxn];
3118
	if (!ctx || !ctx->nr_events)
3119 3120
		goto out;

3121 3122 3123 3124 3125 3126 3127
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3128
	perf_cgroup_sched_out(current, NULL);
3129

3130
	raw_spin_lock(&ctx->lock);
3131
	task_ctx_sched_out(ctx);
3132

3133
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3134 3135 3136
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3137 3138 3139
	}

	/*
3140
	 * Unclone this context if we enabled any event.
3141
	 */
3142
	if (enabled)
3143
		clone_ctx = unclone_ctx(ctx);
3144

3145
	raw_spin_unlock(&ctx->lock);
3146

3147 3148 3149
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3150
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3151
out:
3152
	local_irq_restore(flags);
3153 3154 3155

	if (clone_ctx)
		put_ctx(clone_ctx);
3156 3157
}

3158 3159 3160 3161 3162
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3163 3164
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3165 3166 3167
	rcu_read_unlock();
}

3168 3169 3170
struct perf_read_data {
	struct perf_event *event;
	bool group;
3171
	int ret;
3172 3173
};

T
Thomas Gleixner 已提交
3174
/*
3175
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3176
 */
3177
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3178
{
3179 3180
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3181
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3182
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3183
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3184

3185 3186 3187 3188
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3189 3190
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3191 3192 3193 3194
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3195
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3196
	if (ctx->is_active) {
3197
		update_context_time(ctx);
S
Stephane Eranian 已提交
3198 3199
		update_cgrp_time_from_event(event);
	}
3200

3201
	update_event_times(event);
3202 3203
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3204

3205 3206 3207
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3208
		goto unlock;
3209 3210 3211 3212 3213
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3214 3215 3216

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3217 3218 3219 3220 3221
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3222
			sub->pmu->read(sub);
3223
		}
3224
	}
3225 3226

	data->ret = pmu->commit_txn(pmu);
3227 3228

unlock:
3229
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3230 3231
}

P
Peter Zijlstra 已提交
3232 3233
static inline u64 perf_event_count(struct perf_event *event)
{
3234 3235 3236 3237
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3238 3239
}

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3293
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3294
{
3295 3296
	int ret = 0;

T
Thomas Gleixner 已提交
3297
	/*
3298 3299
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3300
	 */
3301
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3302 3303 3304
		struct perf_read_data data = {
			.event = event,
			.group = group,
3305
			.ret = 0,
3306
		};
3307
		smp_call_function_single(event->oncpu,
3308
					 __perf_event_read, &data, 1);
3309
		ret = data.ret;
3310
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3311 3312 3313
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3314
		raw_spin_lock_irqsave(&ctx->lock, flags);
3315 3316 3317 3318 3319
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3320
		if (ctx->is_active) {
3321
			update_context_time(ctx);
S
Stephane Eranian 已提交
3322 3323
			update_cgrp_time_from_event(event);
		}
3324 3325 3326 3327
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3328
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3329
	}
3330 3331

	return ret;
T
Thomas Gleixner 已提交
3332 3333
}

3334
/*
3335
 * Initialize the perf_event context in a task_struct:
3336
 */
3337
static void __perf_event_init_context(struct perf_event_context *ctx)
3338
{
3339
	raw_spin_lock_init(&ctx->lock);
3340
	mutex_init(&ctx->mutex);
3341
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3342 3343
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3344 3345
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3346
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3362
	}
3363 3364 3365
	ctx->pmu = pmu;

	return ctx;
3366 3367
}

3368 3369 3370 3371 3372
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3373 3374

	rcu_read_lock();
3375
	if (!vpid)
T
Thomas Gleixner 已提交
3376 3377
		task = current;
	else
3378
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3379 3380 3381 3382 3383 3384 3385 3386
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3387 3388 3389 3390
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3391 3392 3393 3394 3395 3396 3397
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3398 3399 3400
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3401
static struct perf_event_context *
3402 3403
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3404
{
3405
	struct perf_event_context *ctx, *clone_ctx = NULL;
3406
	struct perf_cpu_context *cpuctx;
3407
	void *task_ctx_data = NULL;
3408
	unsigned long flags;
P
Peter Zijlstra 已提交
3409
	int ctxn, err;
3410
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3411

3412
	if (!task) {
3413
		/* Must be root to operate on a CPU event: */
3414
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3415 3416 3417
			return ERR_PTR(-EACCES);

		/*
3418
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3419 3420 3421
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3422
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3423 3424
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3425
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3426
		ctx = &cpuctx->ctx;
3427
		get_ctx(ctx);
3428
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3429 3430 3431 3432

		return ctx;
	}

P
Peter Zijlstra 已提交
3433 3434 3435 3436 3437
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3438 3439 3440 3441 3442 3443 3444 3445
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3446
retry:
P
Peter Zijlstra 已提交
3447
	ctx = perf_lock_task_context(task, ctxn, &flags);
3448
	if (ctx) {
3449
		clone_ctx = unclone_ctx(ctx);
3450
		++ctx->pin_count;
3451 3452 3453 3454 3455

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3456
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3457 3458 3459

		if (clone_ctx)
			put_ctx(clone_ctx);
3460
	} else {
3461
		ctx = alloc_perf_context(pmu, task);
3462 3463 3464
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3465

3466 3467 3468 3469 3470
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3481
		else {
3482
			get_ctx(ctx);
3483
			++ctx->pin_count;
3484
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3485
		}
3486 3487 3488
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3489
			put_ctx(ctx);
3490 3491 3492 3493

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3494 3495 3496
		}
	}

3497
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3498
	return ctx;
3499

P
Peter Zijlstra 已提交
3500
errout:
3501
	kfree(task_ctx_data);
3502
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3503 3504
}

L
Li Zefan 已提交
3505
static void perf_event_free_filter(struct perf_event *event);
3506
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3507

3508
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3509
{
3510
	struct perf_event *event;
P
Peter Zijlstra 已提交
3511

3512 3513 3514
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3515
	perf_event_free_filter(event);
3516
	kfree(event);
P
Peter Zijlstra 已提交
3517 3518
}

3519 3520
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3521

3522
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3523
{
3524 3525 3526 3527 3528 3529
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3544 3545
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3546 3547 3548 3549
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3550 3551 3552 3553 3554 3555 3556
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3557

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3643 3644
static void __free_event(struct perf_event *event)
{
3645
	if (!event->parent) {
3646 3647
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3648
	}
3649

3650 3651
	perf_event_free_bpf_prog(event);

3652 3653 3654 3655 3656 3657
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3658 3659
	if (event->pmu) {
		exclusive_event_destroy(event);
3660
		module_put(event->pmu->module);
3661
	}
3662

3663 3664
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3665 3666

static void _free_event(struct perf_event *event)
3667
{
3668
	irq_work_sync(&event->pending);
3669

3670
	unaccount_event(event);
3671

3672
	if (event->rb) {
3673 3674 3675 3676 3677 3678 3679
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3680
		ring_buffer_attach(event, NULL);
3681
		mutex_unlock(&event->mmap_mutex);
3682 3683
	}

S
Stephane Eranian 已提交
3684 3685 3686
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3687
	__free_event(event);
3688 3689
}

P
Peter Zijlstra 已提交
3690 3691 3692 3693 3694
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3695
{
P
Peter Zijlstra 已提交
3696 3697 3698 3699 3700 3701
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3702

P
Peter Zijlstra 已提交
3703
	_free_event(event);
T
Thomas Gleixner 已提交
3704 3705
}

3706
/*
3707
 * Remove user event from the owner task.
3708
 */
3709
static void perf_remove_from_owner(struct perf_event *event)
3710
{
P
Peter Zijlstra 已提交
3711
	struct task_struct *owner;
3712

P
Peter Zijlstra 已提交
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3754 3755 3756 3757
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3758
	struct perf_event_context *ctx;
3759 3760 3761 3762 3763 3764

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3765

P
Peter Zijlstra 已提交
3766 3767 3768 3769 3770 3771 3772
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3773
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3774 3775 3776 3777
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3778 3779
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3780
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3781
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3782 3783

	_free_event(event);
3784 3785
}

P
Peter Zijlstra 已提交
3786 3787 3788 3789 3790 3791 3792
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3793 3794 3795
/*
 * Called when the last reference to the file is gone.
 */
3796 3797 3798 3799
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3800 3801
}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3838
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3839
{
3840
	struct perf_event *child;
3841 3842
	u64 total = 0;

3843 3844 3845
	*enabled = 0;
	*running = 0;

3846
	mutex_lock(&event->child_mutex);
3847

3848
	(void)perf_event_read(event, false);
3849 3850
	total += perf_event_count(event);

3851 3852 3853 3854 3855 3856
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3857
		(void)perf_event_read(child, false);
3858
		total += perf_event_count(child);
3859 3860 3861
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3862
	mutex_unlock(&event->child_mutex);
3863 3864 3865

	return total;
}
3866
EXPORT_SYMBOL_GPL(perf_event_read_value);
3867

3868
static int __perf_read_group_add(struct perf_event *leader,
3869
					u64 read_format, u64 *values)
3870
{
3871 3872
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3873
	int ret;
P
Peter Zijlstra 已提交
3874

3875 3876 3877
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3878

3879 3880 3881 3882 3883 3884 3885 3886 3887
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3888

3889 3890 3891 3892 3893 3894 3895 3896 3897
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3898 3899
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3900

3901 3902 3903 3904 3905
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3906 3907

	return 0;
3908
}
3909

3910 3911 3912 3913 3914
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3915
	int ret;
3916
	u64 *values;
3917

3918
	lockdep_assert_held(&ctx->mutex);
3919

3920 3921 3922
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3923

3924 3925 3926 3927 3928 3929 3930
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3941

3942
	mutex_unlock(&leader->child_mutex);
3943

3944
	ret = event->read_size;
3945 3946
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3947
	goto out;
3948

3949 3950 3951
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3952
	kfree(values);
3953
	return ret;
3954 3955
}

3956
static int perf_read_one(struct perf_event *event,
3957 3958
				 u64 read_format, char __user *buf)
{
3959
	u64 enabled, running;
3960 3961 3962
	u64 values[4];
	int n = 0;

3963 3964 3965 3966 3967
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3968
	if (read_format & PERF_FORMAT_ID)
3969
		values[n++] = primary_event_id(event);
3970 3971 3972 3973 3974 3975 3976

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3990
/*
3991
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3992 3993
 */
static ssize_t
3994
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3995
{
3996
	u64 read_format = event->attr.read_format;
3997
	int ret;
T
Thomas Gleixner 已提交
3998

3999
	/*
4000
	 * Return end-of-file for a read on a event that is in
4001 4002 4003
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4004
	if (event->state == PERF_EVENT_STATE_ERROR)
4005 4006
		return 0;

4007
	if (count < event->read_size)
4008 4009
		return -ENOSPC;

4010
	WARN_ON_ONCE(event->ctx->parent_ctx);
4011
	if (read_format & PERF_FORMAT_GROUP)
4012
		ret = perf_read_group(event, read_format, buf);
4013
	else
4014
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4015

4016
	return ret;
T
Thomas Gleixner 已提交
4017 4018 4019 4020 4021
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4022
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4023 4024
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4025

P
Peter Zijlstra 已提交
4026
	ctx = perf_event_ctx_lock(event);
4027
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4028 4029 4030
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4031 4032 4033 4034
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4035
	struct perf_event *event = file->private_data;
4036
	struct ring_buffer *rb;
4037
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4038

4039
	poll_wait(file, &event->waitq, wait);
4040

4041
	if (is_event_hup(event))
4042
		return events;
P
Peter Zijlstra 已提交
4043

4044
	/*
4045 4046
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4047 4048
	 */
	mutex_lock(&event->mmap_mutex);
4049 4050
	rb = event->rb;
	if (rb)
4051
		events = atomic_xchg(&rb->poll, 0);
4052
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4053 4054 4055
	return events;
}

P
Peter Zijlstra 已提交
4056
static void _perf_event_reset(struct perf_event *event)
4057
{
4058
	(void)perf_event_read(event, false);
4059
	local64_set(&event->count, 0);
4060
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4061 4062
}

4063
/*
4064 4065 4066 4067
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4068
 */
4069 4070
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4071
{
4072
	struct perf_event *child;
P
Peter Zijlstra 已提交
4073

4074
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4075

4076 4077 4078
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4079
		func(child);
4080
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4081 4082
}

4083 4084
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4085
{
4086 4087
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4088

P
Peter Zijlstra 已提交
4089 4090
	lockdep_assert_held(&ctx->mutex);

4091
	event = event->group_leader;
4092

4093 4094
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4095
		perf_event_for_each_child(sibling, func);
4096 4097
}

4098 4099
struct period_event {
	struct perf_event *event;
4100
	u64 value;
4101
};
4102

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
static void ___perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	u64 value = pe->value;

	if (event->attr.freq) {
		event->attr.sample_freq = value;
	} else {
		event->attr.sample_period = value;
		event->hw.sample_period = value;
	}

	local64_set(&event->hw.period_left, 0);
}

4119 4120 4121 4122 4123 4124 4125
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4126

4127
	raw_spin_lock(&ctx->lock);
4128 4129
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4130
	} else {
4131 4132
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4133
	}
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4147
	raw_spin_unlock(&ctx->lock);
4148

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	pe.value = value;

4171 4172
	event_function_call(event, __perf_event_period,
			    ___perf_event_period, &pe);
4173

4174
	return 0;
4175 4176
}

4177 4178
static const struct file_operations perf_fops;

4179
static inline int perf_fget_light(int fd, struct fd *p)
4180
{
4181 4182 4183
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4184

4185 4186 4187
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4188
	}
4189 4190
	*p = f;
	return 0;
4191 4192 4193 4194
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4195
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4196
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4197

P
Peter Zijlstra 已提交
4198
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4199
{
4200
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4201
	u32 flags = arg;
4202 4203

	switch (cmd) {
4204
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4205
		func = _perf_event_enable;
4206
		break;
4207
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4208
		func = _perf_event_disable;
4209
		break;
4210
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4211
		func = _perf_event_reset;
4212
		break;
P
Peter Zijlstra 已提交
4213

4214
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4215
		return _perf_event_refresh(event, arg);
4216

4217 4218
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4219

4220 4221 4222 4223 4224 4225 4226 4227 4228
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4229
	case PERF_EVENT_IOC_SET_OUTPUT:
4230 4231 4232
	{
		int ret;
		if (arg != -1) {
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4243 4244 4245
		}
		return ret;
	}
4246

L
Li Zefan 已提交
4247 4248 4249
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4250 4251 4252
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4253
	default:
P
Peter Zijlstra 已提交
4254
		return -ENOTTY;
4255
	}
P
Peter Zijlstra 已提交
4256 4257

	if (flags & PERF_IOC_FLAG_GROUP)
4258
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4259
	else
4260
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4261 4262

	return 0;
4263 4264
}

P
Peter Zijlstra 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4298
int perf_event_task_enable(void)
4299
{
P
Peter Zijlstra 已提交
4300
	struct perf_event_context *ctx;
4301
	struct perf_event *event;
4302

4303
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4304 4305 4306 4307 4308
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4309
	mutex_unlock(&current->perf_event_mutex);
4310 4311 4312 4313

	return 0;
}

4314
int perf_event_task_disable(void)
4315
{
P
Peter Zijlstra 已提交
4316
	struct perf_event_context *ctx;
4317
	struct perf_event *event;
4318

4319
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4320 4321 4322 4323 4324
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4325
	mutex_unlock(&current->perf_event_mutex);
4326 4327 4328 4329

	return 0;
}

4330
static int perf_event_index(struct perf_event *event)
4331
{
P
Peter Zijlstra 已提交
4332 4333 4334
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4335
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4336 4337
		return 0;

4338
	return event->pmu->event_idx(event);
4339 4340
}

4341
static void calc_timer_values(struct perf_event *event,
4342
				u64 *now,
4343 4344
				u64 *enabled,
				u64 *running)
4345
{
4346
	u64 ctx_time;
4347

4348 4349
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4350 4351 4352 4353
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4369 4370
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4371 4372 4373 4374 4375

unlock:
	rcu_read_unlock();
}

4376 4377
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4378 4379 4380
{
}

4381 4382 4383 4384 4385
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4386
void perf_event_update_userpage(struct perf_event *event)
4387
{
4388
	struct perf_event_mmap_page *userpg;
4389
	struct ring_buffer *rb;
4390
	u64 enabled, running, now;
4391 4392

	rcu_read_lock();
4393 4394 4395 4396
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4397 4398 4399 4400 4401 4402 4403 4404 4405
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4406
	calc_timer_values(event, &now, &enabled, &running);
4407

4408
	userpg = rb->user_page;
4409 4410 4411 4412 4413
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4414
	++userpg->lock;
4415
	barrier();
4416
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4417
	userpg->offset = perf_event_count(event);
4418
	if (userpg->index)
4419
		userpg->offset -= local64_read(&event->hw.prev_count);
4420

4421
	userpg->time_enabled = enabled +
4422
			atomic64_read(&event->child_total_time_enabled);
4423

4424
	userpg->time_running = running +
4425
			atomic64_read(&event->child_total_time_running);
4426

4427
	arch_perf_update_userpage(event, userpg, now);
4428

4429
	barrier();
4430
	++userpg->lock;
4431
	preempt_enable();
4432
unlock:
4433
	rcu_read_unlock();
4434 4435
}

4436 4437 4438
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4439
	struct ring_buffer *rb;
4440 4441 4442 4443 4444 4445 4446 4447 4448
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4449 4450
	rb = rcu_dereference(event->rb);
	if (!rb)
4451 4452 4453 4454 4455
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4456
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4471 4472 4473
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4474
	struct ring_buffer *old_rb = NULL;
4475 4476
	unsigned long flags;

4477 4478 4479 4480 4481 4482
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4483

4484 4485 4486 4487
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4488

4489 4490
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4491
	}
4492

4493
	if (rb) {
4494 4495 4496 4497 4498
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4515 4516 4517 4518 4519 4520 4521 4522
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4523 4524 4525 4526
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4527 4528 4529
	rcu_read_unlock();
}

4530
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4531
{
4532
	struct ring_buffer *rb;
4533

4534
	rcu_read_lock();
4535 4536 4537 4538
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4539 4540 4541
	}
	rcu_read_unlock();

4542
	return rb;
4543 4544
}

4545
void ring_buffer_put(struct ring_buffer *rb)
4546
{
4547
	if (!atomic_dec_and_test(&rb->refcount))
4548
		return;
4549

4550
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4551

4552
	call_rcu(&rb->rcu_head, rb_free_rcu);
4553 4554 4555 4556
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4557
	struct perf_event *event = vma->vm_file->private_data;
4558

4559
	atomic_inc(&event->mmap_count);
4560
	atomic_inc(&event->rb->mmap_count);
4561

4562 4563 4564
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4565 4566
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4567 4568
}

4569 4570 4571 4572 4573 4574 4575 4576
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4577 4578
static void perf_mmap_close(struct vm_area_struct *vma)
{
4579
	struct perf_event *event = vma->vm_file->private_data;
4580

4581
	struct ring_buffer *rb = ring_buffer_get(event);
4582 4583 4584
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4585

4586 4587 4588
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4603 4604 4605
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4606
		goto out_put;
4607

4608
	ring_buffer_attach(event, NULL);
4609 4610 4611
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4612 4613
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4614

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4631

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4643 4644 4645
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4646
		mutex_unlock(&event->mmap_mutex);
4647
		put_event(event);
4648

4649 4650 4651 4652 4653
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4654
	}
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4670
out_put:
4671
	ring_buffer_put(rb); /* could be last */
4672 4673
}

4674
static const struct vm_operations_struct perf_mmap_vmops = {
4675
	.open		= perf_mmap_open,
4676
	.close		= perf_mmap_close, /* non mergable */
4677 4678
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4679 4680 4681 4682
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4683
	struct perf_event *event = file->private_data;
4684
	unsigned long user_locked, user_lock_limit;
4685
	struct user_struct *user = current_user();
4686
	unsigned long locked, lock_limit;
4687
	struct ring_buffer *rb = NULL;
4688 4689
	unsigned long vma_size;
	unsigned long nr_pages;
4690
	long user_extra = 0, extra = 0;
4691
	int ret = 0, flags = 0;
4692

4693 4694 4695
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4696
	 * same rb.
4697 4698 4699 4700
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4701
	if (!(vma->vm_flags & VM_SHARED))
4702
		return -EINVAL;
4703 4704

	vma_size = vma->vm_end - vma->vm_start;
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4765

4766
	/*
4767
	 * If we have rb pages ensure they're a power-of-two number, so we
4768 4769
	 * can do bitmasks instead of modulo.
	 */
4770
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4771 4772
		return -EINVAL;

4773
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4774 4775
		return -EINVAL;

4776
	WARN_ON_ONCE(event->ctx->parent_ctx);
4777
again:
4778
	mutex_lock(&event->mmap_mutex);
4779
	if (event->rb) {
4780
		if (event->rb->nr_pages != nr_pages) {
4781
			ret = -EINVAL;
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4795 4796 4797
		goto unlock;
	}

4798
	user_extra = nr_pages + 1;
4799 4800

accounting:
4801
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4802 4803 4804 4805 4806 4807

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4808
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4809

4810 4811
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4812

4813
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4814
	lock_limit >>= PAGE_SHIFT;
4815
	locked = vma->vm_mm->pinned_vm + extra;
4816

4817 4818
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4819 4820 4821
		ret = -EPERM;
		goto unlock;
	}
4822

4823
	WARN_ON(!rb && event->rb);
4824

4825
	if (vma->vm_flags & VM_WRITE)
4826
		flags |= RING_BUFFER_WRITABLE;
4827

4828
	if (!rb) {
4829 4830 4831
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4832

4833 4834 4835 4836
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4837

4838 4839 4840
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4841

4842
		ring_buffer_attach(event, rb);
4843

4844 4845 4846
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4847 4848
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4849 4850 4851
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4852

4853
unlock:
4854 4855 4856 4857
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4858
		atomic_inc(&event->mmap_count);
4859 4860 4861 4862
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4863
	mutex_unlock(&event->mmap_mutex);
4864

4865 4866 4867 4868
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4869
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4870
	vma->vm_ops = &perf_mmap_vmops;
4871

4872 4873 4874
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4875
	return ret;
4876 4877
}

P
Peter Zijlstra 已提交
4878 4879
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4880
	struct inode *inode = file_inode(filp);
4881
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4882 4883 4884
	int retval;

	mutex_lock(&inode->i_mutex);
4885
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4886 4887 4888 4889 4890 4891 4892 4893
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4894
static const struct file_operations perf_fops = {
4895
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4896 4897 4898
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4899
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4900
	.compat_ioctl		= perf_compat_ioctl,
4901
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4902
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4903 4904
};

4905
/*
4906
 * Perf event wakeup
4907 4908 4909 4910 4911
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4912 4913 4914 4915 4916 4917 4918 4919
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4920
void perf_event_wakeup(struct perf_event *event)
4921
{
4922
	ring_buffer_wakeup(event);
4923

4924
	if (event->pending_kill) {
4925
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4926
		event->pending_kill = 0;
4927
	}
4928 4929
}

4930
static void perf_pending_event(struct irq_work *entry)
4931
{
4932 4933
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4934 4935 4936 4937 4938 4939 4940
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4941

4942 4943 4944
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4945 4946
	}

4947 4948 4949
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4950
	}
4951 4952 4953

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4954 4955
}

4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4992
static void perf_sample_regs_user(struct perf_regs *regs_user,
4993 4994
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4995
{
4996 4997
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4998
		regs_user->regs = regs;
4999 5000
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5001 5002 5003
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5004 5005 5006
	}
}

5007 5008 5009 5010 5011 5012 5013 5014
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5110 5111 5112
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5126
		data->time = perf_event_clock(event);
5127

5128
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5140 5141 5142
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5167 5168 5169

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5170 5171
}

5172 5173 5174
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5175 5176 5177 5178 5179
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5180
static void perf_output_read_one(struct perf_output_handle *handle,
5181 5182
				 struct perf_event *event,
				 u64 enabled, u64 running)
5183
{
5184
	u64 read_format = event->attr.read_format;
5185 5186 5187
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5188
	values[n++] = perf_event_count(event);
5189
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5190
		values[n++] = enabled +
5191
			atomic64_read(&event->child_total_time_enabled);
5192 5193
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5194
		values[n++] = running +
5195
			atomic64_read(&event->child_total_time_running);
5196 5197
	}
	if (read_format & PERF_FORMAT_ID)
5198
		values[n++] = primary_event_id(event);
5199

5200
	__output_copy(handle, values, n * sizeof(u64));
5201 5202 5203
}

/*
5204
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5205 5206
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5207 5208
			    struct perf_event *event,
			    u64 enabled, u64 running)
5209
{
5210 5211
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5212 5213 5214 5215 5216 5217
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5218
		values[n++] = enabled;
5219 5220

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5221
		values[n++] = running;
5222

5223
	if (leader != event)
5224 5225
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5226
	values[n++] = perf_event_count(leader);
5227
	if (read_format & PERF_FORMAT_ID)
5228
		values[n++] = primary_event_id(leader);
5229

5230
	__output_copy(handle, values, n * sizeof(u64));
5231

5232
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5233 5234
		n = 0;

5235 5236
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5237 5238
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5239
		values[n++] = perf_event_count(sub);
5240
		if (read_format & PERF_FORMAT_ID)
5241
			values[n++] = primary_event_id(sub);
5242

5243
		__output_copy(handle, values, n * sizeof(u64));
5244 5245 5246
	}
}

5247 5248 5249
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5250
static void perf_output_read(struct perf_output_handle *handle,
5251
			     struct perf_event *event)
5252
{
5253
	u64 enabled = 0, running = 0, now;
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5265
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5266
		calc_timer_values(event, &now, &enabled, &running);
5267

5268
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5269
		perf_output_read_group(handle, event, enabled, running);
5270
	else
5271
		perf_output_read_one(handle, event, enabled, running);
5272 5273
}

5274 5275 5276
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5277
			struct perf_event *event)
5278 5279 5280 5281 5282
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5283 5284 5285
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5311
		perf_output_read(handle, event);
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5322
			__output_copy(handle, data->callchain, size);
5323 5324 5325 5326 5327 5328 5329 5330
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5331 5332 5333 5334 5335 5336 5337 5338 5339
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5351

5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5386

5387
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5388 5389 5390
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5391
	}
A
Andi Kleen 已提交
5392 5393 5394

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5395 5396 5397

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5398

A
Andi Kleen 已提交
5399 5400 5401
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5432 5433 5434 5435
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5436
			 struct perf_event *event,
5437
			 struct pt_regs *regs)
5438
{
5439
	u64 sample_type = event->attr.sample_type;
5440

5441
	header->type = PERF_RECORD_SAMPLE;
5442
	header->size = sizeof(*header) + event->header_size;
5443 5444 5445

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5446

5447
	__perf_event_header__init_id(header, data, event);
5448

5449
	if (sample_type & PERF_SAMPLE_IP)
5450 5451
		data->ip = perf_instruction_pointer(regs);

5452
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5453
		int size = 1;
5454

5455
		data->callchain = perf_callchain(event, regs);
5456 5457 5458 5459 5460

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5461 5462
	}

5463
	if (sample_type & PERF_SAMPLE_RAW) {
5464 5465 5466 5467 5468 5469 5470
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5471
		header->size += round_up(size, sizeof(u64));
5472
	}
5473 5474 5475 5476 5477 5478 5479 5480 5481

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5482

5483
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5484 5485
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5486

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5510
						     data->regs_user.regs);
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5538
}
5539

5540 5541 5542
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5543 5544 5545
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5546

5547 5548 5549
	/* protect the callchain buffers */
	rcu_read_lock();

5550
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5551

5552
	if (perf_output_begin(&handle, event, header.size))
5553
		goto exit;
5554

5555
	perf_output_sample(&handle, &header, data, event);
5556

5557
	perf_output_end(&handle);
5558 5559 5560

exit:
	rcu_read_unlock();
5561 5562
}

5563
/*
5564
 * read event_id
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5575
perf_event_read_event(struct perf_event *event,
5576 5577 5578
			struct task_struct *task)
{
	struct perf_output_handle handle;
5579
	struct perf_sample_data sample;
5580
	struct perf_read_event read_event = {
5581
		.header = {
5582
			.type = PERF_RECORD_READ,
5583
			.misc = 0,
5584
			.size = sizeof(read_event) + event->read_size,
5585
		},
5586 5587
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5588
	};
5589
	int ret;
5590

5591
	perf_event_header__init_id(&read_event.header, &sample, event);
5592
	ret = perf_output_begin(&handle, event, read_event.header.size);
5593 5594 5595
	if (ret)
		return;

5596
	perf_output_put(&handle, read_event);
5597
	perf_output_read(&handle, event);
5598
	perf_event__output_id_sample(event, &handle, &sample);
5599

5600 5601 5602
	perf_output_end(&handle);
}

5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5617
		output(event, data);
5618 5619 5620
	}
}

J
Jiri Olsa 已提交
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5632
static void
5633
perf_event_aux(perf_event_aux_output_cb output, void *data,
5634 5635 5636 5637 5638 5639 5640
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5652 5653 5654 5655 5656
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5657
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5658 5659 5660 5661 5662
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5663
			perf_event_aux_ctx(ctx, output, data);
5664 5665 5666 5667 5668 5669
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5670
/*
P
Peter Zijlstra 已提交
5671 5672
 * task tracking -- fork/exit
 *
5673
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5674 5675
 */

P
Peter Zijlstra 已提交
5676
struct perf_task_event {
5677
	struct task_struct		*task;
5678
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5679 5680 5681 5682 5683 5684

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5685 5686
		u32				tid;
		u32				ptid;
5687
		u64				time;
5688
	} event_id;
P
Peter Zijlstra 已提交
5689 5690
};

5691 5692
static int perf_event_task_match(struct perf_event *event)
{
5693 5694 5695
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5696 5697
}

5698
static void perf_event_task_output(struct perf_event *event,
5699
				   void *data)
P
Peter Zijlstra 已提交
5700
{
5701
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5702
	struct perf_output_handle handle;
5703
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5704
	struct task_struct *task = task_event->task;
5705
	int ret, size = task_event->event_id.header.size;
5706

5707 5708 5709
	if (!perf_event_task_match(event))
		return;

5710
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5711

5712
	ret = perf_output_begin(&handle, event,
5713
				task_event->event_id.header.size);
5714
	if (ret)
5715
		goto out;
P
Peter Zijlstra 已提交
5716

5717 5718
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5719

5720 5721
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5722

5723 5724
	task_event->event_id.time = perf_event_clock(event);

5725
	perf_output_put(&handle, task_event->event_id);
5726

5727 5728
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5729
	perf_output_end(&handle);
5730 5731
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5732 5733
}

5734 5735
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5736
			      int new)
P
Peter Zijlstra 已提交
5737
{
P
Peter Zijlstra 已提交
5738
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5739

5740 5741 5742
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5743 5744
		return;

P
Peter Zijlstra 已提交
5745
	task_event = (struct perf_task_event){
5746 5747
		.task	  = task,
		.task_ctx = task_ctx,
5748
		.event_id    = {
P
Peter Zijlstra 已提交
5749
			.header = {
5750
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5751
				.misc = 0,
5752
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5753
			},
5754 5755
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5756 5757
			/* .tid  */
			/* .ptid */
5758
			/* .time */
P
Peter Zijlstra 已提交
5759 5760 5761
		},
	};

5762
	perf_event_aux(perf_event_task_output,
5763 5764
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5765 5766
}

5767
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5768
{
5769
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5770 5771
}

5772 5773 5774 5775 5776
/*
 * comm tracking
 */

struct perf_comm_event {
5777 5778
	struct task_struct	*task;
	char			*comm;
5779 5780 5781 5782 5783 5784 5785
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5786
	} event_id;
5787 5788
};

5789 5790 5791 5792 5793
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5794
static void perf_event_comm_output(struct perf_event *event,
5795
				   void *data)
5796
{
5797
	struct perf_comm_event *comm_event = data;
5798
	struct perf_output_handle handle;
5799
	struct perf_sample_data sample;
5800
	int size = comm_event->event_id.header.size;
5801 5802
	int ret;

5803 5804 5805
	if (!perf_event_comm_match(event))
		return;

5806 5807
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5808
				comm_event->event_id.header.size);
5809 5810

	if (ret)
5811
		goto out;
5812

5813 5814
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5815

5816
	perf_output_put(&handle, comm_event->event_id);
5817
	__output_copy(&handle, comm_event->comm,
5818
				   comm_event->comm_size);
5819 5820 5821

	perf_event__output_id_sample(event, &handle, &sample);

5822
	perf_output_end(&handle);
5823 5824
out:
	comm_event->event_id.header.size = size;
5825 5826
}

5827
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5828
{
5829
	char comm[TASK_COMM_LEN];
5830 5831
	unsigned int size;

5832
	memset(comm, 0, sizeof(comm));
5833
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5834
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5835 5836 5837 5838

	comm_event->comm = comm;
	comm_event->comm_size = size;

5839
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5840

5841
	perf_event_aux(perf_event_comm_output,
5842 5843
		       comm_event,
		       NULL);
5844 5845
}

5846
void perf_event_comm(struct task_struct *task, bool exec)
5847
{
5848 5849
	struct perf_comm_event comm_event;

5850
	if (!atomic_read(&nr_comm_events))
5851
		return;
5852

5853
	comm_event = (struct perf_comm_event){
5854
		.task	= task,
5855 5856
		/* .comm      */
		/* .comm_size */
5857
		.event_id  = {
5858
			.header = {
5859
				.type = PERF_RECORD_COMM,
5860
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5861 5862 5863 5864
				/* .size */
			},
			/* .pid */
			/* .tid */
5865 5866 5867
		},
	};

5868
	perf_event_comm_event(&comm_event);
5869 5870
}

5871 5872 5873 5874 5875
/*
 * mmap tracking
 */

struct perf_mmap_event {
5876 5877 5878 5879
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5880 5881 5882
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5883
	u32			prot, flags;
5884 5885 5886 5887 5888 5889 5890 5891 5892

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5893
	} event_id;
5894 5895
};

5896 5897 5898 5899 5900 5901 5902 5903
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5904
	       (executable && (event->attr.mmap || event->attr.mmap2));
5905 5906
}

5907
static void perf_event_mmap_output(struct perf_event *event,
5908
				   void *data)
5909
{
5910
	struct perf_mmap_event *mmap_event = data;
5911
	struct perf_output_handle handle;
5912
	struct perf_sample_data sample;
5913
	int size = mmap_event->event_id.header.size;
5914
	int ret;
5915

5916 5917 5918
	if (!perf_event_mmap_match(event, data))
		return;

5919 5920 5921 5922 5923
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5924
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5925 5926
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5927 5928
	}

5929 5930
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5931
				mmap_event->event_id.header.size);
5932
	if (ret)
5933
		goto out;
5934

5935 5936
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5937

5938
	perf_output_put(&handle, mmap_event->event_id);
5939 5940 5941 5942 5943 5944

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5945 5946
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5947 5948
	}

5949
	__output_copy(&handle, mmap_event->file_name,
5950
				   mmap_event->file_size);
5951 5952 5953

	perf_event__output_id_sample(event, &handle, &sample);

5954
	perf_output_end(&handle);
5955 5956
out:
	mmap_event->event_id.header.size = size;
5957 5958
}

5959
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5960
{
5961 5962
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5963 5964
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5965
	u32 prot = 0, flags = 0;
5966 5967 5968
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5969
	char *name;
5970

5971
	if (file) {
5972 5973
		struct inode *inode;
		dev_t dev;
5974

5975
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5976
		if (!buf) {
5977 5978
			name = "//enomem";
			goto cpy_name;
5979
		}
5980
		/*
5981
		 * d_path() works from the end of the rb backwards, so we
5982 5983 5984
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5985
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5986
		if (IS_ERR(name)) {
5987 5988
			name = "//toolong";
			goto cpy_name;
5989
		}
5990 5991 5992 5993 5994 5995
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6018
		goto got_name;
6019
	} else {
6020 6021 6022 6023 6024 6025
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6026
		name = (char *)arch_vma_name(vma);
6027 6028
		if (name)
			goto cpy_name;
6029

6030
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6031
				vma->vm_end >= vma->vm_mm->brk) {
6032 6033
			name = "[heap]";
			goto cpy_name;
6034 6035
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6036
				vma->vm_end >= vma->vm_mm->start_stack) {
6037 6038
			name = "[stack]";
			goto cpy_name;
6039 6040
		}

6041 6042
		name = "//anon";
		goto cpy_name;
6043 6044
	}

6045 6046 6047
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6048
got_name:
6049 6050 6051 6052 6053 6054 6055 6056
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6057 6058 6059

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6060 6061 6062 6063
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6064 6065
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6066

6067 6068 6069
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6070
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6071

6072
	perf_event_aux(perf_event_mmap_output,
6073 6074
		       mmap_event,
		       NULL);
6075

6076 6077 6078
	kfree(buf);
}

6079
void perf_event_mmap(struct vm_area_struct *vma)
6080
{
6081 6082
	struct perf_mmap_event mmap_event;

6083
	if (!atomic_read(&nr_mmap_events))
6084 6085 6086
		return;

	mmap_event = (struct perf_mmap_event){
6087
		.vma	= vma,
6088 6089
		/* .file_name */
		/* .file_size */
6090
		.event_id  = {
6091
			.header = {
6092
				.type = PERF_RECORD_MMAP,
6093
				.misc = PERF_RECORD_MISC_USER,
6094 6095 6096 6097
				/* .size */
			},
			/* .pid */
			/* .tid */
6098 6099
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6100
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6101
		},
6102 6103 6104 6105
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6106 6107
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6108 6109
	};

6110
	perf_event_mmap_event(&mmap_event);
6111 6112
}

A
Alexander Shishkin 已提交
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6265 6266 6267 6268
/*
 * IRQ throttle logging
 */

6269
static void perf_log_throttle(struct perf_event *event, int enable)
6270 6271
{
	struct perf_output_handle handle;
6272
	struct perf_sample_data sample;
6273 6274 6275 6276 6277
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6278
		u64				id;
6279
		u64				stream_id;
6280 6281
	} throttle_event = {
		.header = {
6282
			.type = PERF_RECORD_THROTTLE,
6283 6284 6285
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6286
		.time		= perf_event_clock(event),
6287 6288
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6289 6290
	};

6291
	if (enable)
6292
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6293

6294 6295 6296
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6297
				throttle_event.header.size);
6298 6299 6300 6301
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6302
	perf_event__output_id_sample(event, &handle, &sample);
6303 6304 6305
	perf_output_end(&handle);
}

6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6342
/*
6343
 * Generic event overflow handling, sampling.
6344 6345
 */

6346
static int __perf_event_overflow(struct perf_event *event,
6347 6348
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6349
{
6350 6351
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6352
	u64 seq;
6353 6354
	int ret = 0;

6355 6356 6357 6358 6359 6360 6361
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6362 6363 6364 6365 6366 6367 6368 6369 6370
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6371 6372
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6373
			tick_nohz_full_kick();
6374 6375
			ret = 1;
		}
6376
	}
6377

6378
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6379
		u64 now = perf_clock();
6380
		s64 delta = now - hwc->freq_time_stamp;
6381

6382
		hwc->freq_time_stamp = now;
6383

6384
		if (delta > 0 && delta < 2*TICK_NSEC)
6385
			perf_adjust_period(event, delta, hwc->last_period, true);
6386 6387
	}

6388 6389
	/*
	 * XXX event_limit might not quite work as expected on inherited
6390
	 * events
6391 6392
	 */

6393 6394
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6395
		ret = 1;
6396
		event->pending_kill = POLL_HUP;
6397 6398
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6399 6400
	}

6401
	if (event->overflow_handler)
6402
		event->overflow_handler(event, data, regs);
6403
	else
6404
		perf_event_output(event, data, regs);
6405

6406
	if (*perf_event_fasync(event) && event->pending_kill) {
6407 6408
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6409 6410
	}

6411
	return ret;
6412 6413
}

6414
int perf_event_overflow(struct perf_event *event,
6415 6416
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6417
{
6418
	return __perf_event_overflow(event, 1, data, regs);
6419 6420
}

6421
/*
6422
 * Generic software event infrastructure
6423 6424
 */

6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6436
/*
6437 6438
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6439 6440 6441 6442
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6443
u64 perf_swevent_set_period(struct perf_event *event)
6444
{
6445
	struct hw_perf_event *hwc = &event->hw;
6446 6447 6448 6449 6450
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6451 6452

again:
6453
	old = val = local64_read(&hwc->period_left);
6454 6455
	if (val < 0)
		return 0;
6456

6457 6458 6459
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6460
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6461
		goto again;
6462

6463
	return nr;
6464 6465
}

6466
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6467
				    struct perf_sample_data *data,
6468
				    struct pt_regs *regs)
6469
{
6470
	struct hw_perf_event *hwc = &event->hw;
6471
	int throttle = 0;
6472

6473 6474
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6475

6476 6477
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6478

6479
	for (; overflow; overflow--) {
6480
		if (__perf_event_overflow(event, throttle,
6481
					    data, regs)) {
6482 6483 6484 6485 6486 6487
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6488
		throttle = 1;
6489
	}
6490 6491
}

P
Peter Zijlstra 已提交
6492
static void perf_swevent_event(struct perf_event *event, u64 nr,
6493
			       struct perf_sample_data *data,
6494
			       struct pt_regs *regs)
6495
{
6496
	struct hw_perf_event *hwc = &event->hw;
6497

6498
	local64_add(nr, &event->count);
6499

6500 6501 6502
	if (!regs)
		return;

6503
	if (!is_sampling_event(event))
6504
		return;
6505

6506 6507 6508 6509 6510 6511
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6512
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6513
		return perf_swevent_overflow(event, 1, data, regs);
6514

6515
	if (local64_add_negative(nr, &hwc->period_left))
6516
		return;
6517

6518
	perf_swevent_overflow(event, 0, data, regs);
6519 6520
}

6521 6522 6523
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6524
	if (event->hw.state & PERF_HES_STOPPED)
6525
		return 1;
P
Peter Zijlstra 已提交
6526

6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6538
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6539
				enum perf_type_id type,
L
Li Zefan 已提交
6540 6541 6542
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6543
{
6544
	if (event->attr.type != type)
6545
		return 0;
6546

6547
	if (event->attr.config != event_id)
6548 6549
		return 0;

6550 6551
	if (perf_exclude_event(event, regs))
		return 0;
6552 6553 6554 6555

	return 1;
}

6556 6557 6558 6559 6560 6561 6562
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6563 6564
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6565
{
6566 6567 6568 6569
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6570

6571 6572
/* For the read side: events when they trigger */
static inline struct hlist_head *
6573
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6574 6575
{
	struct swevent_hlist *hlist;
6576

6577
	hlist = rcu_dereference(swhash->swevent_hlist);
6578 6579 6580
	if (!hlist)
		return NULL;

6581 6582 6583 6584 6585
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6586
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6597
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6598 6599 6600 6601 6602
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6603 6604 6605
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6606
				    u64 nr,
6607 6608
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6609
{
6610
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6611
	struct perf_event *event;
6612
	struct hlist_head *head;
6613

6614
	rcu_read_lock();
6615
	head = find_swevent_head_rcu(swhash, type, event_id);
6616 6617 6618
	if (!head)
		goto end;

6619
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6620
		if (perf_swevent_match(event, type, event_id, data, regs))
6621
			perf_swevent_event(event, nr, data, regs);
6622
	}
6623 6624
end:
	rcu_read_unlock();
6625 6626
}

6627 6628
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6629
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6630
{
6631
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6632

6633
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6634
}
I
Ingo Molnar 已提交
6635
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6636

6637
inline void perf_swevent_put_recursion_context(int rctx)
6638
{
6639
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6640

6641
	put_recursion_context(swhash->recursion, rctx);
6642
}
6643

6644
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6645
{
6646
	struct perf_sample_data data;
6647

6648
	if (WARN_ON_ONCE(!regs))
6649
		return;
6650

6651
	perf_sample_data_init(&data, addr, 0);
6652
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6665 6666

	perf_swevent_put_recursion_context(rctx);
6667
fail:
6668
	preempt_enable_notrace();
6669 6670
}

6671
static void perf_swevent_read(struct perf_event *event)
6672 6673 6674
{
}

P
Peter Zijlstra 已提交
6675
static int perf_swevent_add(struct perf_event *event, int flags)
6676
{
6677
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6678
	struct hw_perf_event *hwc = &event->hw;
6679 6680
	struct hlist_head *head;

6681
	if (is_sampling_event(event)) {
6682
		hwc->last_period = hwc->sample_period;
6683
		perf_swevent_set_period(event);
6684
	}
6685

P
Peter Zijlstra 已提交
6686 6687
	hwc->state = !(flags & PERF_EF_START);

6688
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6689
	if (WARN_ON_ONCE(!head))
6690 6691 6692
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6693
	perf_event_update_userpage(event);
6694

6695 6696 6697
	return 0;
}

P
Peter Zijlstra 已提交
6698
static void perf_swevent_del(struct perf_event *event, int flags)
6699
{
6700
	hlist_del_rcu(&event->hlist_entry);
6701 6702
}

P
Peter Zijlstra 已提交
6703
static void perf_swevent_start(struct perf_event *event, int flags)
6704
{
P
Peter Zijlstra 已提交
6705
	event->hw.state = 0;
6706
}
I
Ingo Molnar 已提交
6707

P
Peter Zijlstra 已提交
6708
static void perf_swevent_stop(struct perf_event *event, int flags)
6709
{
P
Peter Zijlstra 已提交
6710
	event->hw.state = PERF_HES_STOPPED;
6711 6712
}

6713 6714
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6715
swevent_hlist_deref(struct swevent_htable *swhash)
6716
{
6717 6718
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6719 6720
}

6721
static void swevent_hlist_release(struct swevent_htable *swhash)
6722
{
6723
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6724

6725
	if (!hlist)
6726 6727
		return;

6728
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6729
	kfree_rcu(hlist, rcu_head);
6730 6731 6732 6733
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6734
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6735

6736
	mutex_lock(&swhash->hlist_mutex);
6737

6738 6739
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6740

6741
	mutex_unlock(&swhash->hlist_mutex);
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6754
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6755 6756
	int err = 0;

6757 6758
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6759 6760 6761 6762 6763 6764 6765
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6766
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6767
	}
6768
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6769
exit:
6770
	mutex_unlock(&swhash->hlist_mutex);
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6791
fail:
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6802
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6803

6804 6805 6806
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6807

6808 6809
	WARN_ON(event->parent);

6810
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6811 6812 6813 6814 6815
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6816
	u64 event_id = event->attr.config;
6817 6818 6819 6820

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6821 6822 6823 6824 6825 6826
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6827 6828 6829 6830 6831 6832 6833 6834 6835
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6836
	if (event_id >= PERF_COUNT_SW_MAX)
6837 6838 6839 6840 6841 6842 6843 6844 6845
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6846
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6847 6848 6849 6850 6851 6852 6853
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6854
	.task_ctx_nr	= perf_sw_context,
6855

6856 6857
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6858
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6859 6860 6861 6862
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6863 6864 6865
	.read		= perf_swevent_read,
};

6866 6867
#ifdef CONFIG_EVENT_TRACING

6868 6869 6870 6871 6872
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6873 6874 6875 6876
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6877 6878 6879 6880 6881 6882 6883 6884 6885
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6886 6887
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6888 6889 6890 6891
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6892 6893 6894 6895 6896 6897 6898 6899 6900
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6901 6902
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6903 6904
{
	struct perf_sample_data data;
6905 6906
	struct perf_event *event;

6907 6908 6909 6910 6911
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6912
	perf_sample_data_init(&data, addr, 0);
6913 6914
	data.raw = &raw;

6915
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6916
		if (perf_tp_event_match(event, &data, regs))
6917
			perf_swevent_event(event, count, &data, regs);
6918
	}
6919

6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6945
	perf_swevent_put_recursion_context(rctx);
6946 6947 6948
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6949
static void tp_perf_event_destroy(struct perf_event *event)
6950
{
6951
	perf_trace_destroy(event);
6952 6953
}

6954
static int perf_tp_event_init(struct perf_event *event)
6955
{
6956 6957
	int err;

6958 6959 6960
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6961 6962 6963 6964 6965 6966
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6967 6968
	err = perf_trace_init(event);
	if (err)
6969
		return err;
6970

6971
	event->destroy = tp_perf_event_destroy;
6972

6973 6974 6975 6976
	return 0;
}

static struct pmu perf_tracepoint = {
6977 6978
	.task_ctx_nr	= perf_sw_context,

6979
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6980 6981 6982 6983
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6984 6985 6986 6987 6988
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6989
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6990
}
L
Li Zefan 已提交
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7025 7026
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7027 7028 7029 7030 7031 7032
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7033
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7058
#else
L
Li Zefan 已提交
7059

7060
static inline void perf_tp_register(void)
7061 7062
{
}
L
Li Zefan 已提交
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7073 7074 7075 7076 7077 7078 7079 7080
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7081
#endif /* CONFIG_EVENT_TRACING */
7082

7083
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7084
void perf_bp_event(struct perf_event *bp, void *data)
7085
{
7086 7087 7088
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7089
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7090

P
Peter Zijlstra 已提交
7091
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7092
		perf_swevent_event(bp, 1, &sample, regs);
7093 7094 7095
}
#endif

7096 7097 7098
/*
 * hrtimer based swevent callback
 */
7099

7100
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7101
{
7102 7103 7104 7105 7106
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7107

7108
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7109 7110 7111 7112

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7113
	event->pmu->read(event);
7114

7115
	perf_sample_data_init(&data, 0, event->hw.last_period);
7116 7117 7118
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7119
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7120
			if (__perf_event_overflow(event, 1, &data, regs))
7121 7122
				ret = HRTIMER_NORESTART;
	}
7123

7124 7125
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7126

7127
	return ret;
7128 7129
}

7130
static void perf_swevent_start_hrtimer(struct perf_event *event)
7131
{
7132
	struct hw_perf_event *hwc = &event->hw;
7133 7134 7135 7136
	s64 period;

	if (!is_sampling_event(event))
		return;
7137

7138 7139 7140 7141
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7142

7143 7144 7145 7146
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7147 7148
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7149
}
7150 7151

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7152
{
7153 7154
	struct hw_perf_event *hwc = &event->hw;

7155
	if (is_sampling_event(event)) {
7156
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7157
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7158 7159 7160

		hrtimer_cancel(&hwc->hrtimer);
	}
7161 7162
}

P
Peter Zijlstra 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7183
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7184 7185 7186 7187
		event->attr.freq = 0;
	}
}

7188 7189 7190 7191 7192
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7193
{
7194 7195 7196
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7197
	now = local_clock();
7198 7199
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7200 7201
}

P
Peter Zijlstra 已提交
7202
static void cpu_clock_event_start(struct perf_event *event, int flags)
7203
{
P
Peter Zijlstra 已提交
7204
	local64_set(&event->hw.prev_count, local_clock());
7205 7206 7207
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7208
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7209
{
7210 7211 7212
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7213

P
Peter Zijlstra 已提交
7214 7215 7216 7217
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7218
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7219 7220 7221 7222 7223 7224 7225 7226 7227

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7228 7229 7230 7231
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7232

7233 7234 7235 7236 7237 7238 7239 7240
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7241 7242 7243 7244 7245 7246
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7247 7248
	perf_swevent_init_hrtimer(event);

7249
	return 0;
7250 7251
}

7252
static struct pmu perf_cpu_clock = {
7253 7254
	.task_ctx_nr	= perf_sw_context,

7255 7256
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7257
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7258 7259 7260 7261
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7262 7263 7264 7265 7266 7267 7268 7269
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7270
{
7271 7272
	u64 prev;
	s64 delta;
7273

7274 7275 7276 7277
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7278

P
Peter Zijlstra 已提交
7279
static void task_clock_event_start(struct perf_event *event, int flags)
7280
{
P
Peter Zijlstra 已提交
7281
	local64_set(&event->hw.prev_count, event->ctx->time);
7282 7283 7284
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7285
static void task_clock_event_stop(struct perf_event *event, int flags)
7286 7287 7288
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7289 7290 7291 7292 7293 7294
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7295
	perf_event_update_userpage(event);
7296

P
Peter Zijlstra 已提交
7297 7298 7299 7300 7301 7302
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7303 7304 7305 7306
}

static void task_clock_event_read(struct perf_event *event)
{
7307 7308 7309
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7310 7311 7312 7313 7314

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7315
{
7316 7317 7318 7319 7320 7321
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7322 7323 7324 7325 7326 7327
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7328 7329
	perf_swevent_init_hrtimer(event);

7330
	return 0;
L
Li Zefan 已提交
7331 7332
}

7333
static struct pmu perf_task_clock = {
7334 7335
	.task_ctx_nr	= perf_sw_context,

7336 7337
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7338
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7339 7340 7341 7342
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7343 7344
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7345

P
Peter Zijlstra 已提交
7346
static void perf_pmu_nop_void(struct pmu *pmu)
7347 7348
{
}
L
Li Zefan 已提交
7349

7350 7351 7352 7353
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7354
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7355
{
P
Peter Zijlstra 已提交
7356
	return 0;
L
Li Zefan 已提交
7357 7358
}

7359
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7360 7361

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7362
{
7363 7364 7365 7366 7367
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7368
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7369 7370
}

P
Peter Zijlstra 已提交
7371 7372
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7373 7374 7375 7376 7377 7378 7379
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7380 7381 7382
	perf_pmu_enable(pmu);
	return 0;
}
7383

P
Peter Zijlstra 已提交
7384
static void perf_pmu_cancel_txn(struct pmu *pmu)
7385
{
7386 7387 7388 7389 7390 7391 7392
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7393
	perf_pmu_enable(pmu);
7394 7395
}

7396 7397
static int perf_event_idx_default(struct perf_event *event)
{
7398
	return 0;
7399 7400
}

P
Peter Zijlstra 已提交
7401 7402 7403 7404
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7405
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7406
{
P
Peter Zijlstra 已提交
7407
	struct pmu *pmu;
7408

P
Peter Zijlstra 已提交
7409 7410
	if (ctxn < 0)
		return NULL;
7411

P
Peter Zijlstra 已提交
7412 7413 7414 7415
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7416

P
Peter Zijlstra 已提交
7417
	return NULL;
7418 7419
}

7420
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7421
{
7422 7423 7424 7425 7426 7427 7428
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7429 7430
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7431 7432 7433 7434 7435 7436
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7437

P
Peter Zijlstra 已提交
7438
	mutex_lock(&pmus_lock);
7439
	/*
P
Peter Zijlstra 已提交
7440
	 * Like a real lame refcount.
7441
	 */
7442 7443 7444
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7445
			goto out;
7446
		}
P
Peter Zijlstra 已提交
7447
	}
7448

7449
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7450 7451
out:
	mutex_unlock(&pmus_lock);
7452
}
P
Peter Zijlstra 已提交
7453
static struct idr pmu_idr;
7454

P
Peter Zijlstra 已提交
7455 7456 7457 7458 7459 7460 7461
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7462
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7463

7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7474 7475
static DEFINE_MUTEX(mux_interval_mutex);

7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7495
	mutex_lock(&mux_interval_mutex);
7496 7497 7498
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7499 7500
	get_online_cpus();
	for_each_online_cpu(cpu) {
7501 7502 7503 7504
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7505 7506
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7507
	}
7508 7509
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7510 7511 7512

	return count;
}
7513
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7514

7515 7516 7517 7518
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7519
};
7520
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7521 7522 7523 7524

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7525
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7541
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7562
static struct lock_class_key cpuctx_mutex;
7563
static struct lock_class_key cpuctx_lock;
7564

7565
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7566
{
P
Peter Zijlstra 已提交
7567
	int cpu, ret;
7568

7569
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7570 7571 7572 7573
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7574

P
Peter Zijlstra 已提交
7575 7576 7577 7578 7579 7580
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7581 7582 7583
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7584 7585 7586 7587 7588
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7589 7590 7591 7592 7593 7594
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7595
skip_type:
P
Peter Zijlstra 已提交
7596 7597 7598
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7599

W
Wei Yongjun 已提交
7600
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7601 7602
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7603
		goto free_dev;
7604

P
Peter Zijlstra 已提交
7605 7606 7607 7608
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7609
		__perf_event_init_context(&cpuctx->ctx);
7610
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7611
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7612
		cpuctx->ctx.pmu = pmu;
7613

7614
		__perf_mux_hrtimer_init(cpuctx, cpu);
7615

7616
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7617
	}
7618

P
Peter Zijlstra 已提交
7619
got_cpu_context:
P
Peter Zijlstra 已提交
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7631
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7632 7633
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7634
		}
7635
	}
7636

P
Peter Zijlstra 已提交
7637 7638 7639 7640 7641
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7642 7643 7644
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7645
	list_add_rcu(&pmu->entry, &pmus);
7646
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7647 7648
	ret = 0;
unlock:
7649 7650
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7651
	return ret;
P
Peter Zijlstra 已提交
7652

P
Peter Zijlstra 已提交
7653 7654 7655 7656
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7657 7658 7659 7660
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7661 7662 7663
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7664
}
7665
EXPORT_SYMBOL_GPL(perf_pmu_register);
7666

7667
void perf_pmu_unregister(struct pmu *pmu)
7668
{
7669 7670 7671
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7672

7673
	/*
P
Peter Zijlstra 已提交
7674 7675
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7676
	 */
7677
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7678
	synchronize_rcu();
7679

P
Peter Zijlstra 已提交
7680
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7681 7682
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7683 7684
	device_del(pmu->dev);
	put_device(pmu->dev);
7685
	free_pmu_context(pmu);
7686
}
7687
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7688

7689 7690
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7691
	struct perf_event_context *ctx = NULL;
7692 7693 7694 7695
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7696 7697

	if (event->group_leader != event) {
7698 7699 7700 7701 7702 7703
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7704 7705 7706
		BUG_ON(!ctx);
	}

7707 7708
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7709 7710 7711 7712

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7713 7714 7715 7716 7717 7718
	if (ret)
		module_put(pmu->module);

	return ret;
}

7719
static struct pmu *perf_init_event(struct perf_event *event)
7720 7721 7722
{
	struct pmu *pmu = NULL;
	int idx;
7723
	int ret;
7724 7725

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7726 7727 7728 7729

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7730
	if (pmu) {
7731
		ret = perf_try_init_event(pmu, event);
7732 7733
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7734
		goto unlock;
7735
	}
P
Peter Zijlstra 已提交
7736

7737
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7738
		ret = perf_try_init_event(pmu, event);
7739
		if (!ret)
P
Peter Zijlstra 已提交
7740
			goto unlock;
7741

7742 7743
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7744
			goto unlock;
7745
		}
7746
	}
P
Peter Zijlstra 已提交
7747 7748
	pmu = ERR_PTR(-ENOENT);
unlock:
7749
	srcu_read_unlock(&pmus_srcu, idx);
7750

7751
	return pmu;
7752 7753
}

7754 7755 7756 7757 7758 7759 7760 7761 7762
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7763 7764
static void account_event(struct perf_event *event)
{
7765 7766 7767
	if (event->parent)
		return;

7768 7769 7770 7771 7772 7773 7774 7775
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7776 7777 7778 7779
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7780 7781 7782 7783
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7784
	if (has_branch_stack(event))
7785
		static_key_slow_inc(&perf_sched_events.key);
7786
	if (is_cgroup_event(event))
7787
		static_key_slow_inc(&perf_sched_events.key);
7788 7789

	account_event_cpu(event, event->cpu);
7790 7791
}

T
Thomas Gleixner 已提交
7792
/*
7793
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7794
 */
7795
static struct perf_event *
7796
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7797 7798 7799
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7800
		 perf_overflow_handler_t overflow_handler,
7801
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7802
{
P
Peter Zijlstra 已提交
7803
	struct pmu *pmu;
7804 7805
	struct perf_event *event;
	struct hw_perf_event *hwc;
7806
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7807

7808 7809 7810 7811 7812
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7813
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7814
	if (!event)
7815
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7816

7817
	/*
7818
	 * Single events are their own group leaders, with an
7819 7820 7821
	 * empty sibling list:
	 */
	if (!group_leader)
7822
		group_leader = event;
7823

7824 7825
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7826

7827 7828 7829
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7830
	INIT_LIST_HEAD(&event->rb_entry);
7831
	INIT_LIST_HEAD(&event->active_entry);
7832 7833
	INIT_HLIST_NODE(&event->hlist_entry);

7834

7835
	init_waitqueue_head(&event->waitq);
7836
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7837

7838
	mutex_init(&event->mmap_mutex);
7839

7840
	atomic_long_set(&event->refcount, 1);
7841 7842 7843 7844 7845
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7846

7847
	event->parent		= parent_event;
7848

7849
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7850
	event->id		= atomic64_inc_return(&perf_event_id);
7851

7852
	event->state		= PERF_EVENT_STATE_INACTIVE;
7853

7854 7855 7856
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7857 7858 7859
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7860
		 */
7861
		event->hw.target = task;
7862 7863
	}

7864 7865 7866 7867
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7868
	if (!overflow_handler && parent_event) {
7869
		overflow_handler = parent_event->overflow_handler;
7870 7871
		context = parent_event->overflow_handler_context;
	}
7872

7873
	event->overflow_handler	= overflow_handler;
7874
	event->overflow_handler_context = context;
7875

J
Jiri Olsa 已提交
7876
	perf_event__state_init(event);
7877

7878
	pmu = NULL;
7879

7880
	hwc = &event->hw;
7881
	hwc->sample_period = attr->sample_period;
7882
	if (attr->freq && attr->sample_freq)
7883
		hwc->sample_period = 1;
7884
	hwc->last_period = hwc->sample_period;
7885

7886
	local64_set(&hwc->period_left, hwc->sample_period);
7887

7888
	/*
7889
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7890
	 */
7891
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7892
		goto err_ns;
7893 7894 7895

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7896

7897 7898 7899 7900 7901 7902
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7903
	pmu = perf_init_event(event);
7904
	if (!pmu)
7905 7906
		goto err_ns;
	else if (IS_ERR(pmu)) {
7907
		err = PTR_ERR(pmu);
7908
		goto err_ns;
I
Ingo Molnar 已提交
7909
	}
7910

7911 7912 7913 7914
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7915
	if (!event->parent) {
7916 7917
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7918
			if (err)
7919
				goto err_per_task;
7920
		}
7921
	}
7922

7923
	return event;
7924

7925 7926 7927
err_per_task:
	exclusive_event_destroy(event);

7928 7929 7930
err_pmu:
	if (event->destroy)
		event->destroy(event);
7931
	module_put(pmu->module);
7932
err_ns:
7933 7934
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7935 7936 7937 7938 7939
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7940 7941
}

7942 7943
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7944 7945
{
	u32 size;
7946
	int ret;
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7971 7972 7973
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7974 7975
	 */
	if (size > sizeof(*attr)) {
7976 7977 7978
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7979

7980 7981
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7982

7983
		for (; addr < end; addr++) {
7984 7985 7986 7987 7988 7989
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7990
		size = sizeof(*attr);
7991 7992 7993 7994 7995 7996
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7997
	if (attr->__reserved_1)
7998 7999 8000 8001 8002 8003 8004 8005
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8034 8035
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8036 8037
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8038
	}
8039

8040
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8041
		ret = perf_reg_validate(attr->sample_regs_user);
8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8060

8061 8062
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8063 8064 8065 8066 8067 8068 8069 8070 8071
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8072 8073
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8074
{
8075
	struct ring_buffer *rb = NULL;
8076 8077
	int ret = -EINVAL;

8078
	if (!output_event)
8079 8080
		goto set;

8081 8082
	/* don't allow circular references */
	if (event == output_event)
8083 8084
		goto out;

8085 8086 8087 8088 8089 8090 8091
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8092
	 * If its not a per-cpu rb, it must be the same task.
8093 8094 8095 8096
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8097 8098 8099 8100 8101 8102
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8103 8104 8105 8106 8107 8108 8109
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8110
set:
8111
	mutex_lock(&event->mmap_mutex);
8112 8113 8114
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8115

8116
	if (output_event) {
8117 8118 8119
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8120
			goto unlock;
8121 8122
	}

8123
	ring_buffer_attach(event, rb);
8124

8125
	ret = 0;
8126 8127 8128
unlock:
	mutex_unlock(&event->mmap_mutex);

8129 8130 8131 8132
out:
	return ret;
}

P
Peter Zijlstra 已提交
8133 8134 8135 8136 8137 8138 8139 8140 8141
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8179
/**
8180
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8181
 *
8182
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8183
 * @pid:		target pid
I
Ingo Molnar 已提交
8184
 * @cpu:		target cpu
8185
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8186
 */
8187 8188
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8189
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8190
{
8191 8192
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8193
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8194
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8195
	struct file *event_file = NULL;
8196
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8197
	struct task_struct *task = NULL;
8198
	struct pmu *pmu;
8199
	int event_fd;
8200
	int move_group = 0;
8201
	int err;
8202
	int f_flags = O_RDWR;
8203
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8204

8205
	/* for future expandability... */
S
Stephane Eranian 已提交
8206
	if (flags & ~PERF_FLAG_ALL)
8207 8208
		return -EINVAL;

8209 8210 8211
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8212

8213 8214 8215 8216 8217
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8218
	if (attr.freq) {
8219
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8220
			return -EINVAL;
8221 8222 8223
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8224 8225
	}

S
Stephane Eranian 已提交
8226 8227 8228 8229 8230 8231 8232 8233 8234
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8235 8236 8237 8238
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8239 8240 8241
	if (event_fd < 0)
		return event_fd;

8242
	if (group_fd != -1) {
8243 8244
		err = perf_fget_light(group_fd, &group);
		if (err)
8245
			goto err_fd;
8246
		group_leader = group.file->private_data;
8247 8248 8249 8250 8251 8252
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8253
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8254 8255 8256 8257 8258 8259 8260
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8261 8262 8263 8264 8265 8266
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8267 8268
	get_online_cpus();

8269 8270 8271
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8272
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8273
				 NULL, NULL, cgroup_fd);
8274 8275
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8276
		goto err_cpus;
8277 8278
	}

8279 8280 8281 8282 8283 8284 8285
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8286 8287
	account_event(event);

8288 8289 8290 8291 8292
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8293

8294 8295 8296 8297 8298 8299
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8322 8323 8324 8325

	/*
	 * Get the target context (task or percpu):
	 */
8326
	ctx = find_get_context(pmu, task, event);
8327 8328
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8329
		goto err_alloc;
8330 8331
	}

8332 8333 8334 8335 8336
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8337 8338 8339 8340 8341
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8342
	/*
8343
	 * Look up the group leader (we will attach this event to it):
8344
	 */
8345
	if (group_leader) {
8346
		err = -EINVAL;
8347 8348

		/*
I
Ingo Molnar 已提交
8349 8350 8351 8352
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8353
			goto err_context;
8354 8355 8356 8357 8358

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8359 8360 8361
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8362
		 */
8363
		if (move_group) {
8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8377 8378 8379 8380 8381 8382
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8383 8384 8385
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8386
		if (attr.exclusive || attr.pinned)
8387
			goto err_context;
8388 8389 8390 8391 8392
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8393
			goto err_context;
8394
	}
T
Thomas Gleixner 已提交
8395

8396 8397
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8398 8399
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8400
		goto err_context;
8401
	}
8402

8403
	if (move_group) {
P
Peter Zijlstra 已提交
8404
		gctx = group_leader->ctx;
8405 8406 8407 8408 8409
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8410 8411 8412 8413 8414
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8415 8416 8417 8418 8419 8420 8421
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8422

8423 8424 8425
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8426

8427 8428 8429
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8430 8431 8432 8433
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8434
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8435

8436 8437
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8438
			perf_remove_from_context(sibling, false);
8439 8440 8441
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8442 8443 8444 8445
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8446
		synchronize_rcu();
P
Peter Zijlstra 已提交
8447

8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8458 8459
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8460
			perf_event__state_init(sibling);
8461
			perf_install_in_context(ctx, sibling, sibling->cpu);
8462 8463
			get_ctx(ctx);
		}
8464 8465 8466 8467 8468 8469 8470 8471 8472

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8473

8474 8475 8476 8477 8478 8479
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8480 8481
	}

8482 8483 8484 8485 8486 8487 8488 8489 8490
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8491
	perf_install_in_context(ctx, event, event->cpu);
8492
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8493

8494
	if (move_group)
P
Peter Zijlstra 已提交
8495
		mutex_unlock(&gctx->mutex);
8496
	mutex_unlock(&ctx->mutex);
8497

8498 8499
	put_online_cpus();

8500
	event->owner = current;
P
Peter Zijlstra 已提交
8501

8502 8503 8504
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8505

8506 8507 8508 8509 8510 8511
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8512
	fdput(group);
8513 8514
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8515

8516 8517 8518 8519 8520 8521
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8522
err_context:
8523
	perf_unpin_context(ctx);
8524
	put_ctx(ctx);
8525
err_alloc:
8526
	free_event(event);
8527
err_cpus:
8528
	put_online_cpus();
8529
err_task:
P
Peter Zijlstra 已提交
8530 8531
	if (task)
		put_task_struct(task);
8532
err_group_fd:
8533
	fdput(group);
8534 8535
err_fd:
	put_unused_fd(event_fd);
8536
	return err;
T
Thomas Gleixner 已提交
8537 8538
}

8539 8540 8541 8542 8543
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8544
 * @task: task to profile (NULL for percpu)
8545 8546 8547
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8548
				 struct task_struct *task,
8549 8550
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8551 8552
{
	struct perf_event_context *ctx;
8553
	struct perf_event *event;
8554
	int err;
8555

8556 8557 8558
	/*
	 * Get the target context (task or percpu):
	 */
8559

8560
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8561
				 overflow_handler, context, -1);
8562 8563 8564 8565
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8566

8567 8568 8569
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8570 8571
	account_event(event);

8572
	ctx = find_get_context(event->pmu, task, event);
8573 8574
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8575
		goto err_free;
8576
	}
8577 8578 8579

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8580 8581 8582 8583 8584 8585 8586 8587
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8588
	perf_install_in_context(ctx, event, cpu);
8589
	perf_unpin_context(ctx);
8590 8591 8592 8593
	mutex_unlock(&ctx->mutex);

	return event;

8594 8595 8596
err_free:
	free_event(event);
err:
8597
	return ERR_PTR(err);
8598
}
8599
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8600

8601 8602 8603 8604 8605 8606 8607 8608 8609 8610
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8611 8612 8613 8614 8615
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8616 8617
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8618
		perf_remove_from_context(event, false);
8619
		unaccount_event_cpu(event, src_cpu);
8620
		put_ctx(src_ctx);
8621
		list_add(&event->migrate_entry, &events);
8622 8623
	}

8624 8625 8626
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8627 8628
	synchronize_rcu();

8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8653 8654
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8655 8656
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8657
		account_event_cpu(event, dst_cpu);
8658 8659 8660 8661
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8662
	mutex_unlock(&src_ctx->mutex);
8663 8664 8665
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8666
static void sync_child_event(struct perf_event *child_event,
8667
			       struct task_struct *child)
8668
{
8669
	struct perf_event *parent_event = child_event->parent;
8670
	u64 child_val;
8671

8672 8673
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8674

P
Peter Zijlstra 已提交
8675
	child_val = perf_event_count(child_event);
8676 8677 8678 8679

	/*
	 * Add back the child's count to the parent's count:
	 */
8680
	atomic64_add(child_val, &parent_event->child_count);
8681 8682 8683 8684
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8685 8686

	/*
8687
	 * Remove this event from the parent's list
8688
	 */
8689 8690 8691 8692
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8693

8694 8695 8696 8697 8698 8699
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8700
	/*
8701
	 * Release the parent event, if this was the last
8702 8703
	 * reference to it.
	 */
8704
	put_event(parent_event);
8705 8706
}

8707
static void
8708 8709
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8710
			 struct task_struct *child)
8711
{
8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8725

8726
	/*
8727
	 * It can happen that the parent exits first, and has events
8728
	 * that are still around due to the child reference. These
8729
	 * events need to be zapped.
8730
	 */
8731
	if (child_event->parent) {
8732 8733
		sync_child_event(child_event, child);
		free_event(child_event);
8734 8735 8736
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8737
	}
8738 8739
}

P
Peter Zijlstra 已提交
8740
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8741
{
8742
	struct perf_event *child_event, *next;
8743
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8744
	unsigned long flags;
8745

J
Jiri Olsa 已提交
8746
	if (likely(!child->perf_event_ctxp[ctxn]))
8747 8748
		return;

8749
	local_irq_save(flags);
8750 8751 8752 8753 8754 8755
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8756
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8757 8758 8759

	/*
	 * Take the context lock here so that if find_get_context is
8760
	 * reading child->perf_event_ctxp, we wait until it has
8761 8762
	 * incremented the context's refcount before we do put_ctx below.
	 */
8763
	raw_spin_lock(&child_ctx->lock);
8764
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8765
	child->perf_event_ctxp[ctxn] = NULL;
8766

8767 8768 8769
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8770
	 * the events from it.
8771
	 */
8772
	clone_ctx = unclone_ctx(child_ctx);
8773
	update_context_time(child_ctx);
8774
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8775

8776 8777
	if (clone_ctx)
		put_ctx(clone_ctx);
8778

P
Peter Zijlstra 已提交
8779
	/*
8780 8781 8782
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8783
	 */
8784
	perf_event_task(child, child_ctx, 0);
8785

8786 8787 8788
	/*
	 * We can recurse on the same lock type through:
	 *
8789 8790
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8791 8792
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8793 8794 8795
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8796
	mutex_lock(&child_ctx->mutex);
8797

8798
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8799
		__perf_event_exit_task(child_event, child_ctx, child);
8800

8801 8802 8803
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8804 8805
}

P
Peter Zijlstra 已提交
8806 8807 8808 8809 8810
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8811
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8812 8813
	int ctxn;

P
Peter Zijlstra 已提交
8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8829 8830
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8831 8832 8833 8834 8835 8836 8837 8838

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8839 8840
}

8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8853
	put_event(parent);
8854

P
Peter Zijlstra 已提交
8855
	raw_spin_lock_irq(&ctx->lock);
8856
	perf_group_detach(event);
8857
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8858
	raw_spin_unlock_irq(&ctx->lock);
8859 8860 8861
	free_event(event);
}

8862
/*
P
Peter Zijlstra 已提交
8863
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8864
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8865 8866 8867
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8868
 */
8869
void perf_event_free_task(struct task_struct *task)
8870
{
P
Peter Zijlstra 已提交
8871
	struct perf_event_context *ctx;
8872
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8873
	int ctxn;
8874

P
Peter Zijlstra 已提交
8875 8876 8877 8878
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8879

P
Peter Zijlstra 已提交
8880
		mutex_lock(&ctx->mutex);
8881
again:
P
Peter Zijlstra 已提交
8882 8883 8884
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8885

P
Peter Zijlstra 已提交
8886 8887 8888
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8889

P
Peter Zijlstra 已提交
8890 8891 8892
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8893

P
Peter Zijlstra 已提交
8894
		mutex_unlock(&ctx->mutex);
8895

P
Peter Zijlstra 已提交
8896 8897
		put_ctx(ctx);
	}
8898 8899
}

8900 8901 8902 8903 8904 8905 8906 8907
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8944
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8945
	struct perf_event *child_event;
8946
	unsigned long flags;
P
Peter Zijlstra 已提交
8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8959
					   child,
P
Peter Zijlstra 已提交
8960
					   group_leader, parent_event,
8961
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8962 8963
	if (IS_ERR(child_event))
		return child_event;
8964

8965 8966
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8967 8968 8969 8970
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8971 8972 8973 8974 8975 8976 8977
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8978
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8995 8996
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8997

8998 8999 9000 9001
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9002
	perf_event__id_header_size(child_event);
9003

P
Peter Zijlstra 已提交
9004 9005 9006
	/*
	 * Link it up in the child's context:
	 */
9007
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9008
	add_event_to_ctx(child_event, child_ctx);
9009
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9043 9044 9045 9046 9047
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9048
		   struct task_struct *child, int ctxn,
9049 9050 9051
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9052
	struct perf_event_context *child_ctx;
9053 9054 9055 9056

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9057 9058
	}

9059
	child_ctx = child->perf_event_ctxp[ctxn];
9060 9061 9062 9063 9064 9065 9066
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9067

9068
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9069 9070
		if (!child_ctx)
			return -ENOMEM;
9071

P
Peter Zijlstra 已提交
9072
		child->perf_event_ctxp[ctxn] = child_ctx;
9073 9074 9075 9076 9077 9078 9079 9080 9081
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9082 9083
}

9084
/*
9085
 * Initialize the perf_event context in task_struct
9086
 */
9087
static int perf_event_init_context(struct task_struct *child, int ctxn)
9088
{
9089
	struct perf_event_context *child_ctx, *parent_ctx;
9090 9091
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9092
	struct task_struct *parent = current;
9093
	int inherited_all = 1;
9094
	unsigned long flags;
9095
	int ret = 0;
9096

P
Peter Zijlstra 已提交
9097
	if (likely(!parent->perf_event_ctxp[ctxn]))
9098 9099
		return 0;

9100
	/*
9101 9102
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9103
	 */
P
Peter Zijlstra 已提交
9104
	parent_ctx = perf_pin_task_context(parent, ctxn);
9105 9106
	if (!parent_ctx)
		return 0;
9107

9108 9109 9110 9111 9112 9113 9114
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9115 9116 9117 9118
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9119
	mutex_lock(&parent_ctx->mutex);
9120 9121 9122 9123 9124

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9125
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9126 9127
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9128 9129 9130
		if (ret)
			break;
	}
9131

9132 9133 9134 9135 9136 9137 9138 9139 9140
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9141
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9142 9143
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9144
		if (ret)
9145
			break;
9146 9147
	}

9148 9149 9150
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9151
	child_ctx = child->perf_event_ctxp[ctxn];
9152

9153
	if (child_ctx && inherited_all) {
9154 9155 9156
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9157 9158 9159
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9160
		 */
P
Peter Zijlstra 已提交
9161
		cloned_ctx = parent_ctx->parent_ctx;
9162 9163
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9164
			child_ctx->parent_gen = parent_ctx->parent_gen;
9165 9166 9167 9168 9169
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9170 9171
	}

P
Peter Zijlstra 已提交
9172
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9173
	mutex_unlock(&parent_ctx->mutex);
9174

9175
	perf_unpin_context(parent_ctx);
9176
	put_ctx(parent_ctx);
9177

9178
	return ret;
9179 9180
}

P
Peter Zijlstra 已提交
9181 9182 9183 9184 9185 9186 9187
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9188 9189 9190 9191
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9192 9193
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9194 9195
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9196
			return ret;
P
Peter Zijlstra 已提交
9197
		}
P
Peter Zijlstra 已提交
9198 9199 9200 9201 9202
	}

	return 0;
}

9203 9204
static void __init perf_event_init_all_cpus(void)
{
9205
	struct swevent_htable *swhash;
9206 9207 9208
	int cpu;

	for_each_possible_cpu(cpu) {
9209 9210
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9211
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9212 9213 9214
	}
}

9215
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9216
{
P
Peter Zijlstra 已提交
9217
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9218

9219
	mutex_lock(&swhash->hlist_mutex);
9220
	if (swhash->hlist_refcount > 0) {
9221 9222
		struct swevent_hlist *hlist;

9223 9224 9225
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9226
	}
9227
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9228 9229
}

9230
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9231
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9232
{
9233
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9234
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9235

P
Peter Zijlstra 已提交
9236
	rcu_read_lock();
9237 9238
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9239
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9240
}
P
Peter Zijlstra 已提交
9241 9242 9243 9244 9245 9246 9247 9248 9249

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9250
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9251 9252 9253 9254 9255 9256 9257 9258

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9259
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9260
{
P
Peter Zijlstra 已提交
9261
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9262 9263
}
#else
9264
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9265 9266
#endif

P
Peter Zijlstra 已提交
9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9287
static int
T
Thomas Gleixner 已提交
9288 9289 9290 9291
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9292
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9293 9294

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9295
	case CPU_DOWN_FAILED:
9296
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9297 9298
		break;

P
Peter Zijlstra 已提交
9299
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9300
	case CPU_DOWN_PREPARE:
9301
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9302 9303 9304 9305 9306 9307 9308 9309
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9310
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9311
{
9312 9313
	int ret;

P
Peter Zijlstra 已提交
9314 9315
	idr_init(&pmu_idr);

9316
	perf_event_init_all_cpus();
9317
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9318 9319 9320
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9321 9322
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9323
	register_reboot_notifier(&perf_reboot_notifier);
9324 9325 9326

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9327 9328 9329

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9330 9331 9332 9333 9334 9335 9336

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9337
}
P
Peter Zijlstra 已提交
9338

9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9378 9379

#ifdef CONFIG_CGROUP_PERF
9380 9381
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9382 9383 9384
{
	struct perf_cgroup *jc;

9385
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9398
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9399
{
9400 9401
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9402 9403 9404 9405 9406 9407 9408
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9409
	rcu_read_lock();
S
Stephane Eranian 已提交
9410
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9411
	rcu_read_unlock();
S
Stephane Eranian 已提交
9412 9413 9414
	return 0;
}

9415
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9416
{
9417
	struct task_struct *task;
9418
	struct cgroup_subsys_state *css;
9419

9420
	cgroup_taskset_for_each(task, css, tset)
9421
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9422 9423
}

9424
struct cgroup_subsys perf_event_cgrp_subsys = {
9425 9426
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9427
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9428 9429
};
#endif /* CONFIG_CGROUP_PERF */