core.c 169.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
struct remote_function_call {
	struct task_struct *p;
	int (*func)(void *info);
	void *info;
	int ret;
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
		.p = p,
		.func = func,
		.info = info,
		.ret = -ESRCH, /* No such (running) process */
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
		.p = NULL,
		.func = func,
		.info = info,
		.ret = -ENXIO, /* No such CPU */
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
128
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
129 130
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148 149
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150 151

/*
152
 * max perf event sample rate
153
 */
P
Peter Zijlstra 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
172

173
static atomic64_t perf_event_id;
174

175 176 177 178
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
179 180 181 182 183
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
184

185
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
186

187
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
188
{
189
	return "pmu";
T
Thomas Gleixner 已提交
190 191
}

192 193 194 195 196
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
197 198 199 200 201 202 203 204
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

#ifdef CONFIG_CGROUP_PERF

205 206 207 208 209
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
277 278
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
279
	/*
280 281
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
282
	 */
283
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
284 285
		return;

286 287 288 289 290 291
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
292 293 294
}

static inline void
295 296
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
297 298 299 300
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

301 302 303 304 305 306
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
307 308 309 310
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
311
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {

		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		perf_pmu_disable(cpuctx->ctx.pmu);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
367
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
		}

		perf_pmu_enable(cpuctx->ctx.pmu);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
409 410 411 412
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
413 414 415 416

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

417 418 419
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
420 421 422 423 424 425 426 427 428
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
429
out:
S
Stephane Eranian 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
520 521
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
552
void perf_pmu_disable(struct pmu *pmu)
553
{
P
Peter Zijlstra 已提交
554 555 556
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
557 558
}

P
Peter Zijlstra 已提交
559
void perf_pmu_enable(struct pmu *pmu)
560
{
P
Peter Zijlstra 已提交
561 562 563
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
564 565
}

566 567 568 569 570 571 572
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
573
static void perf_pmu_rotate_start(struct pmu *pmu)
574
{
P
Peter Zijlstra 已提交
575
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
576
	struct list_head *head = &__get_cpu_var(rotation_list);
577

578
	WARN_ON(!irqs_disabled());
579

580 581
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
582 583
}

584
static void get_ctx(struct perf_event_context *ctx)
585
{
586
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
587 588
}

589 590
static void free_ctx(struct rcu_head *head)
{
591
	struct perf_event_context *ctx;
592

593
	ctx = container_of(head, struct perf_event_context, rcu_head);
594 595 596
	kfree(ctx);
}

597
static void put_ctx(struct perf_event_context *ctx)
598
{
599 600 601
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
602 603 604
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
605
	}
606 607
}

608
static void unclone_ctx(struct perf_event_context *ctx)
609 610 611 612 613 614 615
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

638
/*
639
 * If we inherit events we want to return the parent event id
640 641
 * to userspace.
 */
642
static u64 primary_event_id(struct perf_event *event)
643
{
644
	u64 id = event->id;
645

646 647
	if (event->parent)
		id = event->parent->id;
648 649 650 651

	return id;
}

652
/*
653
 * Get the perf_event_context for a task and lock it.
654 655 656
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
657
static struct perf_event_context *
P
Peter Zijlstra 已提交
658
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
659
{
660
	struct perf_event_context *ctx;
661 662

	rcu_read_lock();
P
Peter Zijlstra 已提交
663
retry:
P
Peter Zijlstra 已提交
664
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
665 666 667 668
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
669
		 * perf_event_task_sched_out, though the
670 671 672 673 674 675
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
676
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
677
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
678
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
679 680
			goto retry;
		}
681 682

		if (!atomic_inc_not_zero(&ctx->refcount)) {
683
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
684 685
			ctx = NULL;
		}
686 687 688 689 690 691 692 693 694 695
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
696 697
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
698
{
699
	struct perf_event_context *ctx;
700 701
	unsigned long flags;

P
Peter Zijlstra 已提交
702
	ctx = perf_lock_task_context(task, ctxn, &flags);
703 704
	if (ctx) {
		++ctx->pin_count;
705
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
706 707 708 709
	}
	return ctx;
}

710
static void perf_unpin_context(struct perf_event_context *ctx)
711 712 713
{
	unsigned long flags;

714
	raw_spin_lock_irqsave(&ctx->lock, flags);
715
	--ctx->pin_count;
716
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
717 718
}

719 720 721 722 723 724 725 726 727 728 729
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

730 731 732
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
733 734 735 736

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

737 738 739
	return ctx ? ctx->time : 0;
}

740 741 742 743 744 745 746 747 748 749 750
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
751 752 753 754 755 756 757 758 759 760 761
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
762
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
763 764
	else if (ctx->is_active)
		run_end = ctx->time;
765 766 767 768
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
769 770 771 772

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
773
		run_end = perf_event_time(event);
774 775

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
776

777 778
}

779 780 781 782 783 784 785 786 787 788 789 790
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

791 792 793 794 795 796 797 798 799
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

800
/*
801
 * Add a event from the lists for its context.
802 803
 * Must be called with ctx->mutex and ctx->lock held.
 */
804
static void
805
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
806
{
807 808
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
809 810

	/*
811 812 813
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
814
	 */
815
	if (event->group_leader == event) {
816 817
		struct list_head *list;

818 819 820
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

821 822
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
823
	}
P
Peter Zijlstra 已提交
824

825
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
826 827
		ctx->nr_cgroups++;

828
	list_add_rcu(&event->event_entry, &ctx->event_list);
829
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
830
		perf_pmu_rotate_start(ctx->pmu);
831 832
	ctx->nr_events++;
	if (event->attr.inherit_stat)
833
		ctx->nr_stat++;
834 835
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

908
	event->id_header_size = size;
909 910
}

911 912
static void perf_group_attach(struct perf_event *event)
{
913
	struct perf_event *group_leader = event->group_leader, *pos;
914

P
Peter Zijlstra 已提交
915 916 917 918 919 920
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

921 922 923 924 925 926 927 928 929 930 931
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
932 933 934 935 936

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
937 938
}

939
/*
940
 * Remove a event from the lists for its context.
941
 * Must be called with ctx->mutex and ctx->lock held.
942
 */
943
static void
944
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
945
{
946
	struct perf_cpu_context *cpuctx;
947 948 949 950
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
951
		return;
952 953 954

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

955
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
956
		ctx->nr_cgroups--;
957 958 959 960 961 962 963 964 965
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
966

967 968
	ctx->nr_events--;
	if (event->attr.inherit_stat)
969
		ctx->nr_stat--;
970

971
	list_del_rcu(&event->event_entry);
972

973 974
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
975

976
	update_group_times(event);
977 978 979 980 981 982 983 984 985 986

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
987 988
}

989
static void perf_group_detach(struct perf_event *event)
990 991
{
	struct perf_event *sibling, *tmp;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1008
		goto out;
1009 1010 1011 1012
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1013

1014
	/*
1015 1016
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1017
	 * to whatever list we are on.
1018
	 */
1019
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1020 1021
		if (list)
			list_move_tail(&sibling->group_entry, list);
1022
		sibling->group_leader = sibling;
1023 1024 1025

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1026
	}
1027 1028 1029 1030 1031 1032

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1033 1034
}

1035 1036 1037
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1038 1039
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1040 1041
}

1042 1043
static void
event_sched_out(struct perf_event *event,
1044
		  struct perf_cpu_context *cpuctx,
1045
		  struct perf_event_context *ctx)
1046
{
1047
	u64 tstamp = perf_event_time(event);
1048 1049 1050 1051 1052 1053 1054 1055 1056
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1057
		delta = tstamp - event->tstamp_stopped;
1058
		event->tstamp_running += delta;
1059
		event->tstamp_stopped = tstamp;
1060 1061
	}

1062
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1063
		return;
1064

1065 1066 1067 1068
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1069
	}
1070
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1071
	event->pmu->del(event, 0);
1072
	event->oncpu = -1;
1073

1074
	if (!is_software_event(event))
1075 1076
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1077
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1078 1079 1080
		cpuctx->exclusive = 0;
}

1081
static void
1082
group_sched_out(struct perf_event *group_event,
1083
		struct perf_cpu_context *cpuctx,
1084
		struct perf_event_context *ctx)
1085
{
1086
	struct perf_event *event;
1087
	int state = group_event->state;
1088

1089
	event_sched_out(group_event, cpuctx, ctx);
1090 1091 1092 1093

	/*
	 * Schedule out siblings (if any):
	 */
1094 1095
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1096

1097
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1098 1099 1100
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1101
/*
1102
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1103
 *
1104
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1105 1106
 * remove it from the context list.
 */
1107
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1108
{
1109 1110
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1111
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1112

1113
	raw_spin_lock(&ctx->lock);
1114 1115
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1116
	raw_spin_unlock(&ctx->lock);
1117 1118

	return 0;
T
Thomas Gleixner 已提交
1119 1120 1121 1122
}


/*
1123
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1124
 *
1125
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1126
 * call when the task is on a CPU.
1127
 *
1128 1129
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1130 1131
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1132
 * When called from perf_event_exit_task, it's OK because the
1133
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1134
 */
1135
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1136
{
1137
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1138 1139
	struct task_struct *task = ctx->task;

1140 1141
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1142 1143
	if (!task) {
		/*
1144
		 * Per cpu events are removed via an smp call and
1145
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1146
		 */
1147
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1148 1149 1150 1151
		return;
	}

retry:
1152 1153
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1154

1155
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1156
	/*
1157 1158
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1159
	 */
1160
	if (ctx->is_active) {
1161
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1162 1163 1164 1165
		goto retry;
	}

	/*
1166 1167
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1168
	 */
1169
	list_del_event(event, ctx);
1170
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1171 1172
}

1173
/*
1174
 * Cross CPU call to disable a performance event
1175
 */
1176
static int __perf_event_disable(void *info)
1177
{
1178 1179
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1180
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1181 1182

	/*
1183 1184
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1185 1186 1187
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1188
	 */
1189
	if (ctx->task && cpuctx->task_ctx != ctx)
1190
		return -EINVAL;
1191

1192
	raw_spin_lock(&ctx->lock);
1193 1194

	/*
1195
	 * If the event is on, turn it off.
1196 1197
	 * If it is in error state, leave it in error state.
	 */
1198
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1199
		update_context_time(ctx);
S
Stephane Eranian 已提交
1200
		update_cgrp_time_from_event(event);
1201 1202 1203
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1204
		else
1205 1206
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1207 1208
	}

1209
	raw_spin_unlock(&ctx->lock);
1210 1211

	return 0;
1212 1213 1214
}

/*
1215
 * Disable a event.
1216
 *
1217 1218
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1219
 * remains valid.  This condition is satisifed when called through
1220 1221 1222 1223
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1224
 * is the current context on this CPU and preemption is disabled,
1225
 * hence we can't get into perf_event_task_sched_out for this context.
1226
 */
1227
void perf_event_disable(struct perf_event *event)
1228
{
1229
	struct perf_event_context *ctx = event->ctx;
1230 1231 1232 1233
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1234
		 * Disable the event on the cpu that it's on
1235
		 */
1236
		cpu_function_call(event->cpu, __perf_event_disable, event);
1237 1238 1239
		return;
	}

P
Peter Zijlstra 已提交
1240
retry:
1241 1242
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1243

1244
	raw_spin_lock_irq(&ctx->lock);
1245
	/*
1246
	 * If the event is still active, we need to retry the cross-call.
1247
	 */
1248
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1249
		raw_spin_unlock_irq(&ctx->lock);
1250 1251 1252 1253 1254
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1255 1256 1257 1258 1259 1260 1261
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1262 1263 1264
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1265
	}
1266
	raw_spin_unlock_irq(&ctx->lock);
1267 1268
}

S
Stephane Eranian 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1304 1305 1306 1307
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1308
static int
1309
event_sched_in(struct perf_event *event,
1310
		 struct perf_cpu_context *cpuctx,
1311
		 struct perf_event_context *ctx)
1312
{
1313 1314
	u64 tstamp = perf_event_time(event);

1315
	if (event->state <= PERF_EVENT_STATE_OFF)
1316 1317
		return 0;

1318
	event->state = PERF_EVENT_STATE_ACTIVE;
1319
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1331 1332 1333 1334 1335
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1336
	if (event->pmu->add(event, PERF_EF_START)) {
1337 1338
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1339 1340 1341
		return -EAGAIN;
	}

1342
	event->tstamp_running += tstamp - event->tstamp_stopped;
1343

S
Stephane Eranian 已提交
1344
	perf_set_shadow_time(event, ctx, tstamp);
1345

1346
	if (!is_software_event(event))
1347
		cpuctx->active_oncpu++;
1348 1349
	ctx->nr_active++;

1350
	if (event->attr.exclusive)
1351 1352
		cpuctx->exclusive = 1;

1353 1354 1355
	return 0;
}

1356
static int
1357
group_sched_in(struct perf_event *group_event,
1358
	       struct perf_cpu_context *cpuctx,
1359
	       struct perf_event_context *ctx)
1360
{
1361
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1362
	struct pmu *pmu = group_event->pmu;
1363 1364
	u64 now = ctx->time;
	bool simulate = false;
1365

1366
	if (group_event->state == PERF_EVENT_STATE_OFF)
1367 1368
		return 0;

P
Peter Zijlstra 已提交
1369
	pmu->start_txn(pmu);
1370

1371
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1372
		pmu->cancel_txn(pmu);
1373
		return -EAGAIN;
1374
	}
1375 1376 1377 1378

	/*
	 * Schedule in siblings as one group (if any):
	 */
1379
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1380
		if (event_sched_in(event, cpuctx, ctx)) {
1381
			partial_group = event;
1382 1383 1384 1385
			goto group_error;
		}
	}

1386
	if (!pmu->commit_txn(pmu))
1387
		return 0;
1388

1389 1390 1391 1392
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1403
	 */
1404 1405
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1406 1407 1408 1409 1410 1411 1412 1413
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1414
	}
1415
	event_sched_out(group_event, cpuctx, ctx);
1416

P
Peter Zijlstra 已提交
1417
	pmu->cancel_txn(pmu);
1418

1419 1420 1421
	return -EAGAIN;
}

1422
/*
1423
 * Work out whether we can put this event group on the CPU now.
1424
 */
1425
static int group_can_go_on(struct perf_event *event,
1426 1427 1428 1429
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1430
	 * Groups consisting entirely of software events can always go on.
1431
	 */
1432
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1433 1434 1435
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1436
	 * events can go on.
1437 1438 1439 1440 1441
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1442
	 * events on the CPU, it can't go on.
1443
	 */
1444
	if (event->attr.exclusive && cpuctx->active_oncpu)
1445 1446 1447 1448 1449 1450 1451 1452
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1453 1454
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1455
{
1456 1457
	u64 tstamp = perf_event_time(event);

1458
	list_add_event(event, ctx);
1459
	perf_group_attach(event);
1460 1461 1462
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1463 1464
}

S
Stephane Eranian 已提交
1465 1466
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *tsk);
1467

T
Thomas Gleixner 已提交
1468
/*
1469
 * Cross CPU call to install and enable a performance event
1470 1471
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1472
 */
1473
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1474
{
1475 1476 1477
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1478
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1479
	int err;
T
Thomas Gleixner 已提交
1480 1481

	/*
1482 1483 1484
	 * In case we're installing a new context to an already running task,
	 * could also happen before perf_event_task_sched_in() on architectures
	 * which do context switches with IRQs enabled.
T
Thomas Gleixner 已提交
1485
	 */
1486
	if (ctx->task && !cpuctx->task_ctx)
S
Stephane Eranian 已提交
1487
		perf_event_context_sched_in(ctx, ctx->task);
T
Thomas Gleixner 已提交
1488

1489
	raw_spin_lock(&ctx->lock);
1490
	ctx->is_active = 1;
1491
	update_context_time(ctx);
S
Stephane Eranian 已提交
1492 1493 1494 1495 1496 1497
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1498

1499
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1500

1501
	if (!event_filter_match(event))
1502 1503
		goto unlock;

1504
	/*
1505
	 * Don't put the event on if it is disabled or if
1506 1507
	 * it is in a group and the group isn't on.
	 */
1508 1509
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1510 1511
		goto unlock;

1512
	/*
1513 1514 1515
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
1516
	 */
1517
	if (!group_can_go_on(event, cpuctx, 1))
1518 1519
		err = -EEXIST;
	else
1520
		err = event_sched_in(event, cpuctx, ctx);
1521

1522 1523
	if (err) {
		/*
1524
		 * This event couldn't go on.  If it is in a group
1525
		 * then we have to pull the whole group off.
1526
		 * If the event group is pinned then put it in error state.
1527
		 */
1528
		if (leader != event)
1529
			group_sched_out(leader, cpuctx, ctx);
1530
		if (leader->attr.pinned) {
1531
			update_group_times(leader);
1532
			leader->state = PERF_EVENT_STATE_ERROR;
1533
		}
1534
	}
T
Thomas Gleixner 已提交
1535

P
Peter Zijlstra 已提交
1536
unlock:
1537
	raw_spin_unlock(&ctx->lock);
1538 1539

	return 0;
T
Thomas Gleixner 已提交
1540 1541 1542
}

/*
1543
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1544
 *
1545 1546
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1547
 *
1548
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1549 1550 1551 1552
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1553 1554
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1555 1556 1557 1558
			int cpu)
{
	struct task_struct *task = ctx->task;

1559 1560
	lockdep_assert_held(&ctx->mutex);

1561 1562
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1563 1564
	if (!task) {
		/*
1565
		 * Per cpu events are installed via an smp call and
1566
		 * the install is always successful.
T
Thomas Gleixner 已提交
1567
		 */
1568
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1569 1570 1571 1572
		return;
	}

retry:
1573 1574
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1575

1576
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1577
	/*
1578 1579
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1580
	 */
1581
	if (ctx->is_active) {
1582
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1583 1584 1585 1586
		goto retry;
	}

	/*
1587 1588
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1589
	 */
1590
	add_event_to_ctx(event, ctx);
1591
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1592 1593
}

1594
/*
1595
 * Put a event into inactive state and update time fields.
1596 1597 1598 1599 1600 1601
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1602 1603
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1604
{
1605
	struct perf_event *sub;
1606
	u64 tstamp = perf_event_time(event);
1607

1608
	event->state = PERF_EVENT_STATE_INACTIVE;
1609
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1610
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1611 1612
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1613
	}
1614 1615
}

1616
/*
1617
 * Cross CPU call to enable a performance event
1618
 */
1619
static int __perf_event_enable(void *info)
1620
{
1621 1622 1623
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1624
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1625
	int err;
1626

1627 1628
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1629

1630
	raw_spin_lock(&ctx->lock);
1631
	update_context_time(ctx);
1632

1633
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1634
		goto unlock;
S
Stephane Eranian 已提交
1635 1636 1637 1638

	/*
	 * set current task's cgroup time reference point
	 */
1639
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1640

1641
	__perf_event_mark_enabled(event, ctx);
1642

S
Stephane Eranian 已提交
1643 1644 1645
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1646
		goto unlock;
S
Stephane Eranian 已提交
1647
	}
1648

1649
	/*
1650
	 * If the event is in a group and isn't the group leader,
1651
	 * then don't put it on unless the group is on.
1652
	 */
1653
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1654
		goto unlock;
1655

1656
	if (!group_can_go_on(event, cpuctx, 1)) {
1657
		err = -EEXIST;
1658
	} else {
1659
		if (event == leader)
1660
			err = group_sched_in(event, cpuctx, ctx);
1661
		else
1662
			err = event_sched_in(event, cpuctx, ctx);
1663
	}
1664 1665 1666

	if (err) {
		/*
1667
		 * If this event can't go on and it's part of a
1668 1669
		 * group, then the whole group has to come off.
		 */
1670
		if (leader != event)
1671
			group_sched_out(leader, cpuctx, ctx);
1672
		if (leader->attr.pinned) {
1673
			update_group_times(leader);
1674
			leader->state = PERF_EVENT_STATE_ERROR;
1675
		}
1676 1677
	}

P
Peter Zijlstra 已提交
1678
unlock:
1679
	raw_spin_unlock(&ctx->lock);
1680 1681

	return 0;
1682 1683 1684
}

/*
1685
 * Enable a event.
1686
 *
1687 1688
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1689
 * remains valid.  This condition is satisfied when called through
1690 1691
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1692
 */
1693
void perf_event_enable(struct perf_event *event)
1694
{
1695
	struct perf_event_context *ctx = event->ctx;
1696 1697 1698 1699
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1700
		 * Enable the event on the cpu that it's on
1701
		 */
1702
		cpu_function_call(event->cpu, __perf_event_enable, event);
1703 1704 1705
		return;
	}

1706
	raw_spin_lock_irq(&ctx->lock);
1707
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1708 1709 1710
		goto out;

	/*
1711 1712
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1713 1714 1715 1716
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1717 1718
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1719

P
Peter Zijlstra 已提交
1720
retry:
1721 1722 1723 1724 1725
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1726
	raw_spin_unlock_irq(&ctx->lock);
1727 1728 1729

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1730

1731
	raw_spin_lock_irq(&ctx->lock);
1732 1733

	/*
1734
	 * If the context is active and the event is still off,
1735 1736
	 * we need to retry the cross-call.
	 */
1737 1738 1739 1740 1741 1742
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1743
		goto retry;
1744
	}
1745

P
Peter Zijlstra 已提交
1746
out:
1747
	raw_spin_unlock_irq(&ctx->lock);
1748 1749
}

1750
static int perf_event_refresh(struct perf_event *event, int refresh)
1751
{
1752
	/*
1753
	 * not supported on inherited events
1754
	 */
1755
	if (event->attr.inherit || !is_sampling_event(event))
1756 1757
		return -EINVAL;

1758 1759
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1760 1761

	return 0;
1762 1763
}

1764 1765 1766
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1767
{
1768
	struct perf_event *event;
1769

1770
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1771
	perf_pmu_disable(ctx->pmu);
1772
	ctx->is_active = 0;
1773
	if (likely(!ctx->nr_events))
1774
		goto out;
1775
	update_context_time(ctx);
S
Stephane Eranian 已提交
1776
	update_cgrp_time_from_cpuctx(cpuctx);
1777

1778
	if (!ctx->nr_active)
1779
		goto out;
1780

P
Peter Zijlstra 已提交
1781
	if (event_type & EVENT_PINNED) {
1782 1783
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1784
	}
1785

P
Peter Zijlstra 已提交
1786
	if (event_type & EVENT_FLEXIBLE) {
1787
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1788
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1789 1790
	}
out:
P
Peter Zijlstra 已提交
1791
	perf_pmu_enable(ctx->pmu);
1792
	raw_spin_unlock(&ctx->lock);
1793 1794
}

1795 1796 1797
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1798 1799 1800 1801
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1802
 * in them directly with an fd; we can only enable/disable all
1803
 * events via prctl, or enable/disable all events in a family
1804 1805
 * via ioctl, which will have the same effect on both contexts.
 */
1806 1807
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1808 1809
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1810
		&& ctx1->parent_gen == ctx2->parent_gen
1811
		&& !ctx1->pin_count && !ctx2->pin_count;
1812 1813
}

1814 1815
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1816 1817 1818
{
	u64 value;

1819
	if (!event->attr.inherit_stat)
1820 1821 1822
		return;

	/*
1823
	 * Update the event value, we cannot use perf_event_read()
1824 1825
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1826
	 * we know the event must be on the current CPU, therefore we
1827 1828
	 * don't need to use it.
	 */
1829 1830
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1831 1832
		event->pmu->read(event);
		/* fall-through */
1833

1834 1835
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1836 1837 1838 1839 1840 1841 1842
		break;

	default:
		break;
	}

	/*
1843
	 * In order to keep per-task stats reliable we need to flip the event
1844 1845
	 * values when we flip the contexts.
	 */
1846 1847 1848
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1849

1850 1851
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1852

1853
	/*
1854
	 * Since we swizzled the values, update the user visible data too.
1855
	 */
1856 1857
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1858 1859 1860 1861 1862
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1863 1864
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1865
{
1866
	struct perf_event *event, *next_event;
1867 1868 1869 1870

	if (!ctx->nr_stat)
		return;

1871 1872
	update_context_time(ctx);

1873 1874
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1875

1876 1877
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1878

1879 1880
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1881

1882
		__perf_event_sync_stat(event, next_event);
1883

1884 1885
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1886 1887 1888
	}
}

1889 1890
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1891
{
P
Peter Zijlstra 已提交
1892
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1893 1894
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1895
	struct perf_cpu_context *cpuctx;
1896
	int do_switch = 1;
T
Thomas Gleixner 已提交
1897

P
Peter Zijlstra 已提交
1898 1899
	if (likely(!ctx))
		return;
1900

P
Peter Zijlstra 已提交
1901 1902
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1903 1904
		return;

1905 1906
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1907
	next_ctx = next->perf_event_ctxp[ctxn];
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1919 1920
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1921
		if (context_equiv(ctx, next_ctx)) {
1922 1923
			/*
			 * XXX do we need a memory barrier of sorts
1924
			 * wrt to rcu_dereference() of perf_event_ctxp
1925
			 */
P
Peter Zijlstra 已提交
1926 1927
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1928 1929 1930
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1931

1932
			perf_event_sync_stat(ctx, next_ctx);
1933
		}
1934 1935
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1936
	}
1937
	rcu_read_unlock();
1938

1939
	if (do_switch) {
1940
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1941 1942
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1943 1944
}

P
Peter Zijlstra 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1959 1960
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1961 1962 1963 1964 1965
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1966 1967 1968 1969 1970 1971 1972 1973

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1974 1975
}

1976 1977
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1978
{
P
Peter Zijlstra 已提交
1979
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1980

1981 1982
	if (!cpuctx->task_ctx)
		return;
1983 1984 1985 1986

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1987
	ctx_sched_out(ctx, cpuctx, event_type);
1988 1989 1990
	cpuctx->task_ctx = NULL;
}

1991 1992 1993 1994 1995 1996 1997
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1998 1999
}

2000
static void
2001
ctx_pinned_sched_in(struct perf_event_context *ctx,
2002
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2003
{
2004
	struct perf_event *event;
T
Thomas Gleixner 已提交
2005

2006 2007
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2008
			continue;
2009
		if (!event_filter_match(event))
2010 2011
			continue;

S
Stephane Eranian 已提交
2012 2013 2014 2015
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2016
		if (group_can_go_on(event, cpuctx, 1))
2017
			group_sched_in(event, cpuctx, ctx);
2018 2019 2020 2021 2022

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2023 2024 2025
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2026
		}
2027
	}
2028 2029 2030 2031
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2032
		      struct perf_cpu_context *cpuctx)
2033 2034 2035
{
	struct perf_event *event;
	int can_add_hw = 1;
2036

2037 2038 2039
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2040
			continue;
2041 2042
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2043
		 * of events:
2044
		 */
2045
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2046 2047
			continue;

S
Stephane Eranian 已提交
2048 2049 2050 2051
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2052
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2053
			if (group_sched_in(event, cpuctx, ctx))
2054
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2055
		}
T
Thomas Gleixner 已提交
2056
	}
2057 2058 2059 2060 2061
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2062 2063
	     enum event_type_t event_type,
	     struct task_struct *task)
2064
{
S
Stephane Eranian 已提交
2065 2066
	u64 now;

2067 2068 2069 2070 2071
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

S
Stephane Eranian 已提交
2072 2073
	now = perf_clock();
	ctx->timestamp = now;
2074
	perf_cgroup_set_timestamp(task, ctx);
2075 2076 2077 2078 2079
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
2080
		ctx_pinned_sched_in(ctx, cpuctx);
2081 2082 2083

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
2084
		ctx_flexible_sched_in(ctx, cpuctx);
2085

P
Peter Zijlstra 已提交
2086
out:
2087
	raw_spin_unlock(&ctx->lock);
2088 2089
}

2090
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2091 2092
			     enum event_type_t event_type,
			     struct task_struct *task)
2093 2094 2095
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2096
	ctx_sched_in(ctx, cpuctx, event_type, task);
2097 2098
}

P
Peter Zijlstra 已提交
2099
static void task_ctx_sched_in(struct perf_event_context *ctx,
2100 2101
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
2102
	struct perf_cpu_context *cpuctx;
2103

2104
	cpuctx = __get_cpu_context(ctx);
2105 2106
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
2107

S
Stephane Eranian 已提交
2108
	ctx_sched_in(ctx, cpuctx, event_type, NULL);
2109 2110
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
2111

S
Stephane Eranian 已提交
2112 2113
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2114
{
P
Peter Zijlstra 已提交
2115
	struct perf_cpu_context *cpuctx;
2116

P
Peter Zijlstra 已提交
2117
	cpuctx = __get_cpu_context(ctx);
2118 2119 2120
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
2121
	perf_pmu_disable(ctx->pmu);
2122 2123 2124 2125 2126 2127 2128
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

S
Stephane Eranian 已提交
2129 2130 2131
	ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2132 2133

	cpuctx->task_ctx = ctx;
2134

2135 2136 2137 2138
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2139
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
2140
	perf_pmu_enable(ctx->pmu);
2141 2142
}

P
Peter Zijlstra 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2154
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2164
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2165
	}
S
Stephane Eranian 已提交
2166 2167 2168 2169 2170 2171 2172
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2173 2174
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2202
#define REDUCE_FLS(a, b)		\
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2242 2243 2244
	if (!divisor)
		return dividend;

2245 2246 2247 2248
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2249
{
2250
	struct hw_perf_event *hwc = &event->hw;
2251
	s64 period, sample_period;
2252 2253
	s64 delta;

2254
	period = perf_calculate_period(event, nsec, count);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2265

2266
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2267
		event->pmu->stop(event, PERF_EF_UPDATE);
2268
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2269
		event->pmu->start(event, PERF_EF_RELOAD);
2270
	}
2271 2272
}

2273
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2274
{
2275 2276
	struct perf_event *event;
	struct hw_perf_event *hwc;
2277 2278
	u64 interrupts, now;
	s64 delta;
2279

2280
	raw_spin_lock(&ctx->lock);
2281
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2282
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2283 2284
			continue;

2285
		if (!event_filter_match(event))
2286 2287
			continue;

2288
		hwc = &event->hw;
2289 2290 2291

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2292

2293
		/*
2294
		 * unthrottle events on the tick
2295
		 */
2296
		if (interrupts == MAX_INTERRUPTS) {
2297
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2298
			event->pmu->start(event, 0);
2299 2300
		}

2301
		if (!event->attr.freq || !event->attr.sample_freq)
2302 2303
			continue;

2304
		event->pmu->read(event);
2305
		now = local64_read(&event->count);
2306 2307
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2308

2309
		if (delta > 0)
2310
			perf_adjust_period(event, period, delta);
2311
	}
2312
	raw_spin_unlock(&ctx->lock);
2313 2314
}

2315
/*
2316
 * Round-robin a context's events:
2317
 */
2318
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2319
{
2320
	raw_spin_lock(&ctx->lock);
2321

2322 2323 2324 2325 2326 2327
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2328

2329
	raw_spin_unlock(&ctx->lock);
2330 2331
}

2332
/*
2333 2334 2335
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2336
 */
2337
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2338
{
2339
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2340
	struct perf_event_context *ctx = NULL;
2341
	int rotate = 0, remove = 1;
2342

2343
	if (cpuctx->ctx.nr_events) {
2344
		remove = 0;
2345 2346 2347
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2348

P
Peter Zijlstra 已提交
2349
	ctx = cpuctx->task_ctx;
2350
	if (ctx && ctx->nr_events) {
2351
		remove = 0;
2352 2353 2354
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2355

P
Peter Zijlstra 已提交
2356
	perf_pmu_disable(cpuctx->ctx.pmu);
2357
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2358
	if (ctx)
2359
		perf_ctx_adjust_freq(ctx, interval);
2360

2361
	if (!rotate)
2362
		goto done;
2363

2364
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2365
	if (ctx)
2366
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2367

2368
	rotate_ctx(&cpuctx->ctx);
2369 2370
	if (ctx)
		rotate_ctx(ctx);
2371

S
Stephane Eranian 已提交
2372
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2373
	if (ctx)
P
Peter Zijlstra 已提交
2374
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2375 2376

done:
2377 2378 2379
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2380
	perf_pmu_enable(cpuctx->ctx.pmu);
2381 2382 2383 2384 2385 2386
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2387

2388 2389 2390 2391 2392 2393 2394
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2395 2396
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2412
/*
2413
 * Enable all of a task's events that have been marked enable-on-exec.
2414 2415
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2416
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2417
{
2418
	struct perf_event *event;
2419 2420
	unsigned long flags;
	int enabled = 0;
2421
	int ret;
2422 2423

	local_irq_save(flags);
2424
	if (!ctx || !ctx->nr_events)
2425 2426
		goto out;

2427 2428 2429 2430 2431 2432 2433 2434
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
P
Peter Zijlstra 已提交
2435
	task_ctx_sched_out(ctx, EVENT_ALL);
2436

2437
	raw_spin_lock(&ctx->lock);
2438

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2449 2450 2451
	}

	/*
2452
	 * Unclone this context if we enabled any event.
2453
	 */
2454 2455
	if (enabled)
		unclone_ctx(ctx);
2456

2457
	raw_spin_unlock(&ctx->lock);
2458

2459 2460 2461
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2462
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2463
out:
2464 2465 2466
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2467
/*
2468
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2469
 */
2470
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2471
{
2472 2473
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2474
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2475

2476 2477 2478 2479
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2480 2481
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2482 2483 2484 2485
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2486
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2487
	if (ctx->is_active) {
2488
		update_context_time(ctx);
S
Stephane Eranian 已提交
2489 2490
		update_cgrp_time_from_event(event);
	}
2491
	update_event_times(event);
2492 2493
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2494
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2495 2496
}

P
Peter Zijlstra 已提交
2497 2498
static inline u64 perf_event_count(struct perf_event *event)
{
2499
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2500 2501
}

2502
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2503 2504
{
	/*
2505 2506
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2507
	 */
2508 2509 2510 2511
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2512 2513 2514
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2515
		raw_spin_lock_irqsave(&ctx->lock, flags);
2516 2517 2518 2519 2520
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2521
		if (ctx->is_active) {
2522
			update_context_time(ctx);
S
Stephane Eranian 已提交
2523 2524
			update_cgrp_time_from_event(event);
		}
2525
		update_event_times(event);
2526
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2527 2528
	}

P
Peter Zijlstra 已提交
2529
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2530 2531
}

2532
/*
2533
 * Callchain support
2534
 */
2535 2536 2537 2538 2539 2540

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2541
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2542 2543 2544 2545 2546 2547 2548
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2549 2550 2551
{
}

2552 2553
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2554
{
2555
}
T
Thomas Gleixner 已提交
2556

2557 2558 2559 2560
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2561

2562
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2563

2564 2565
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2566

2567 2568
	kfree(entries);
}
T
Thomas Gleixner 已提交
2569

2570 2571 2572
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2573

2574 2575 2576 2577
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2578

2579 2580 2581 2582 2583
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2584

2585
	/*
2586 2587 2588
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2589
	 */
2590
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2591

2592 2593 2594
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2595

2596
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2597

2598 2599 2600 2601 2602
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2603 2604
	}

2605
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2606

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2741
/*
2742
 * Initialize the perf_event context in a task_struct:
2743
 */
2744
static void __perf_event_init_context(struct perf_event_context *ctx)
2745
{
2746
	raw_spin_lock_init(&ctx->lock);
2747
	mutex_init(&ctx->mutex);
2748 2749
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2750 2751
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2767
	}
2768 2769 2770
	ctx->pmu = pmu;

	return ctx;
2771 2772
}

2773 2774 2775 2776 2777
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2778 2779

	rcu_read_lock();
2780
	if (!vpid)
T
Thomas Gleixner 已提交
2781 2782
		task = current;
	else
2783
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2784 2785 2786 2787 2788 2789 2790 2791
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2792 2793 2794 2795
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2796 2797 2798 2799 2800 2801 2802
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2803 2804 2805
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2806
static struct perf_event_context *
M
Matt Helsley 已提交
2807
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2808
{
2809
	struct perf_event_context *ctx;
2810
	struct perf_cpu_context *cpuctx;
2811
	unsigned long flags;
P
Peter Zijlstra 已提交
2812
	int ctxn, err;
T
Thomas Gleixner 已提交
2813

2814
	if (!task) {
2815
		/* Must be root to operate on a CPU event: */
2816
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2817 2818 2819
			return ERR_PTR(-EACCES);

		/*
2820
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2821 2822 2823
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2824
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2825 2826
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2827
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2828
		ctx = &cpuctx->ctx;
2829
		get_ctx(ctx);
2830
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2831 2832 2833 2834

		return ctx;
	}

P
Peter Zijlstra 已提交
2835 2836 2837 2838 2839
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2840
retry:
P
Peter Zijlstra 已提交
2841
	ctx = perf_lock_task_context(task, ctxn, &flags);
2842
	if (ctx) {
2843
		unclone_ctx(ctx);
2844
		++ctx->pin_count;
2845
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2846 2847
	}

2848
	if (!ctx) {
2849
		ctx = alloc_perf_context(pmu, task);
2850 2851 2852
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2853

2854
		get_ctx(ctx);
2855

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2866 2867
		else {
			++ctx->pin_count;
2868
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2869
		}
2870 2871 2872
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2873
			put_task_struct(task);
2874
			kfree(ctx);
2875 2876 2877 2878

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2879 2880 2881
		}
	}

T
Thomas Gleixner 已提交
2882
	return ctx;
2883

P
Peter Zijlstra 已提交
2884
errout:
2885
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2886 2887
}

L
Li Zefan 已提交
2888 2889
static void perf_event_free_filter(struct perf_event *event);

2890
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2891
{
2892
	struct perf_event *event;
P
Peter Zijlstra 已提交
2893

2894 2895 2896
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2897
	perf_event_free_filter(event);
2898
	kfree(event);
P
Peter Zijlstra 已提交
2899 2900
}

2901
static void perf_buffer_put(struct perf_buffer *buffer);
2902

2903
static void free_event(struct perf_event *event)
2904
{
2905
	irq_work_sync(&event->pending);
2906

2907
	if (!event->parent) {
2908
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2909
			jump_label_dec(&perf_sched_events);
2910
		if (event->attr.mmap || event->attr.mmap_data)
2911 2912 2913 2914 2915
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2916 2917
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2918 2919 2920 2921
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2922
	}
2923

2924 2925 2926
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2927 2928
	}

S
Stephane Eranian 已提交
2929 2930 2931
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2932 2933
	if (event->destroy)
		event->destroy(event);
2934

P
Peter Zijlstra 已提交
2935 2936 2937
	if (event->ctx)
		put_ctx(event->ctx);

2938
	call_rcu(&event->rcu_head, free_event_rcu);
2939 2940
}

2941
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2942
{
2943
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2944

2945 2946 2947 2948 2949 2950
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2951
	WARN_ON_ONCE(ctx->parent_ctx);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2965
	raw_spin_lock_irq(&ctx->lock);
2966
	perf_group_detach(event);
2967 2968
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2969
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2970

2971
	free_event(event);
T
Thomas Gleixner 已提交
2972 2973 2974

	return 0;
}
2975
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2976

2977 2978 2979 2980
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2981
{
2982
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2983
	struct task_struct *owner;
2984

2985
	file->private_data = NULL;
2986

P
Peter Zijlstra 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3020
	return perf_event_release_kernel(event);
3021 3022
}

3023
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3024
{
3025
	struct perf_event *child;
3026 3027
	u64 total = 0;

3028 3029 3030
	*enabled = 0;
	*running = 0;

3031
	mutex_lock(&event->child_mutex);
3032
	total += perf_event_read(event);
3033 3034 3035 3036 3037 3038
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3039
		total += perf_event_read(child);
3040 3041 3042
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3043
	mutex_unlock(&event->child_mutex);
3044 3045 3046

	return total;
}
3047
EXPORT_SYMBOL_GPL(perf_event_read_value);
3048

3049
static int perf_event_read_group(struct perf_event *event,
3050 3051
				   u64 read_format, char __user *buf)
{
3052
	struct perf_event *leader = event->group_leader, *sub;
3053 3054
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3055
	u64 values[5];
3056
	u64 count, enabled, running;
3057

3058
	mutex_lock(&ctx->mutex);
3059
	count = perf_event_read_value(leader, &enabled, &running);
3060 3061

	values[n++] = 1 + leader->nr_siblings;
3062 3063 3064 3065
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3066 3067 3068
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3069 3070 3071 3072

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3073
		goto unlock;
3074

3075
	ret = size;
3076

3077
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3078
		n = 0;
3079

3080
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3081 3082 3083 3084 3085
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3086
		if (copy_to_user(buf + ret, values, size)) {
3087 3088 3089
			ret = -EFAULT;
			goto unlock;
		}
3090 3091

		ret += size;
3092
	}
3093 3094
unlock:
	mutex_unlock(&ctx->mutex);
3095

3096
	return ret;
3097 3098
}

3099
static int perf_event_read_one(struct perf_event *event,
3100 3101
				 u64 read_format, char __user *buf)
{
3102
	u64 enabled, running;
3103 3104 3105
	u64 values[4];
	int n = 0;

3106 3107 3108 3109 3110
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3111
	if (read_format & PERF_FORMAT_ID)
3112
		values[n++] = primary_event_id(event);
3113 3114 3115 3116 3117 3118 3119

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3120
/*
3121
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3122 3123
 */
static ssize_t
3124
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3125
{
3126
	u64 read_format = event->attr.read_format;
3127
	int ret;
T
Thomas Gleixner 已提交
3128

3129
	/*
3130
	 * Return end-of-file for a read on a event that is in
3131 3132 3133
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3134
	if (event->state == PERF_EVENT_STATE_ERROR)
3135 3136
		return 0;

3137
	if (count < event->read_size)
3138 3139
		return -ENOSPC;

3140
	WARN_ON_ONCE(event->ctx->parent_ctx);
3141
	if (read_format & PERF_FORMAT_GROUP)
3142
		ret = perf_event_read_group(event, read_format, buf);
3143
	else
3144
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3145

3146
	return ret;
T
Thomas Gleixner 已提交
3147 3148 3149 3150 3151
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3152
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3153

3154
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3155 3156 3157 3158
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3159
	struct perf_event *event = file->private_data;
3160
	struct perf_buffer *buffer;
3161
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3162 3163

	rcu_read_lock();
3164 3165 3166
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3167
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3168

3169
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3170 3171 3172 3173

	return events;
}

3174
static void perf_event_reset(struct perf_event *event)
3175
{
3176
	(void)perf_event_read(event);
3177
	local64_set(&event->count, 0);
3178
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3179 3180
}

3181
/*
3182 3183 3184 3185
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3186
 */
3187 3188
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3189
{
3190
	struct perf_event *child;
P
Peter Zijlstra 已提交
3191

3192 3193 3194 3195
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3196
		func(child);
3197
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3198 3199
}

3200 3201
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3202
{
3203 3204
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3205

3206 3207
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3208
	event = event->group_leader;
3209

3210 3211 3212 3213
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3214
	mutex_unlock(&ctx->mutex);
3215 3216
}

3217
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3218
{
3219
	struct perf_event_context *ctx = event->ctx;
3220 3221 3222
	int ret = 0;
	u64 value;

3223
	if (!is_sampling_event(event))
3224 3225
		return -EINVAL;

3226
	if (copy_from_user(&value, arg, sizeof(value)))
3227 3228 3229 3230 3231
		return -EFAULT;

	if (!value)
		return -EINVAL;

3232
	raw_spin_lock_irq(&ctx->lock);
3233 3234
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3235 3236 3237 3238
			ret = -EINVAL;
			goto unlock;
		}

3239
		event->attr.sample_freq = value;
3240
	} else {
3241 3242
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3243 3244
	}
unlock:
3245
	raw_spin_unlock_irq(&ctx->lock);
3246 3247 3248 3249

	return ret;
}

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3271
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3272

3273 3274
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3275 3276
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3277
	u32 flags = arg;
3278 3279

	switch (cmd) {
3280 3281
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3282
		break;
3283 3284
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3285
		break;
3286 3287
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3288
		break;
P
Peter Zijlstra 已提交
3289

3290 3291
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3292

3293 3294
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3295

3296
	case PERF_EVENT_IOC_SET_OUTPUT:
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3314

L
Li Zefan 已提交
3315 3316 3317
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3318
	default:
P
Peter Zijlstra 已提交
3319
		return -ENOTTY;
3320
	}
P
Peter Zijlstra 已提交
3321 3322

	if (flags & PERF_IOC_FLAG_GROUP)
3323
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3324
	else
3325
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3326 3327

	return 0;
3328 3329
}

3330
int perf_event_task_enable(void)
3331
{
3332
	struct perf_event *event;
3333

3334 3335 3336 3337
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3338 3339 3340 3341

	return 0;
}

3342
int perf_event_task_disable(void)
3343
{
3344
	struct perf_event *event;
3345

3346 3347 3348 3349
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3350 3351 3352 3353

	return 0;
}

3354 3355
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3356 3357
#endif

3358
static int perf_event_index(struct perf_event *event)
3359
{
P
Peter Zijlstra 已提交
3360 3361 3362
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3363
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3364 3365
		return 0;

3366
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3367 3368
}

3369 3370 3371 3372 3373
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3374
void perf_event_update_userpage(struct perf_event *event)
3375
{
3376
	struct perf_event_mmap_page *userpg;
3377
	struct perf_buffer *buffer;
3378 3379

	rcu_read_lock();
3380 3381
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3382 3383
		goto unlock;

3384
	userpg = buffer->user_page;
3385

3386 3387 3388 3389 3390
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3391
	++userpg->lock;
3392
	barrier();
3393
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3394
	userpg->offset = perf_event_count(event);
3395
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3396
		userpg->offset -= local64_read(&event->hw.prev_count);
3397

3398 3399
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3400

3401 3402
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3403

3404
	barrier();
3405
	++userpg->lock;
3406
	preempt_enable();
3407
unlock:
3408
	rcu_read_unlock();
3409 3410
}

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3430
#ifndef CONFIG_PERF_USE_VMALLOC
3431

3432 3433 3434
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3435

3436
static struct page *
3437
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3438
{
3439
	if (pgoff > buffer->nr_pages)
3440
		return NULL;
3441

3442
	if (pgoff == 0)
3443
		return virt_to_page(buffer->user_page);
3444

3445
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3446 3447
}

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3461
static struct perf_buffer *
3462
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3463
{
3464
	struct perf_buffer *buffer;
3465 3466 3467
	unsigned long size;
	int i;

3468
	size = sizeof(struct perf_buffer);
3469 3470
	size += nr_pages * sizeof(void *);

3471 3472
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3473 3474
		goto fail;

3475
	buffer->user_page = perf_mmap_alloc_page(cpu);
3476
	if (!buffer->user_page)
3477 3478 3479
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3480
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3481
		if (!buffer->data_pages[i])
3482 3483 3484
			goto fail_data_pages;
	}

3485
	buffer->nr_pages = nr_pages;
3486

3487 3488
	perf_buffer_init(buffer, watermark, flags);

3489
	return buffer;
3490 3491 3492

fail_data_pages:
	for (i--; i >= 0; i--)
3493
		free_page((unsigned long)buffer->data_pages[i]);
3494

3495
	free_page((unsigned long)buffer->user_page);
3496 3497

fail_user_page:
3498
	kfree(buffer);
3499 3500

fail:
3501
	return NULL;
3502 3503
}

3504 3505
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3506
	struct page *page = virt_to_page((void *)addr);
3507 3508 3509 3510 3511

	page->mapping = NULL;
	__free_page(page);
}

3512
static void perf_buffer_free(struct perf_buffer *buffer)
3513 3514 3515
{
	int i;

3516 3517 3518 3519
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3520 3521
}

3522
static inline int page_order(struct perf_buffer *buffer)
3523 3524 3525 3526
{
	return 0;
}

3527 3528 3529 3530 3531 3532 3533 3534
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3535
static inline int page_order(struct perf_buffer *buffer)
3536
{
3537
	return buffer->page_order;
3538 3539
}

3540
static struct page *
3541
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3542
{
3543
	if (pgoff > (1UL << page_order(buffer)))
3544 3545
		return NULL;

3546
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3547 3548 3549 3550 3551 3552 3553 3554 3555
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3556
static void perf_buffer_free_work(struct work_struct *work)
3557
{
3558
	struct perf_buffer *buffer;
3559 3560 3561
	void *base;
	int i, nr;

3562 3563
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3564

3565
	base = buffer->user_page;
3566 3567 3568 3569
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3570
	kfree(buffer);
3571 3572
}

3573
static void perf_buffer_free(struct perf_buffer *buffer)
3574
{
3575
	schedule_work(&buffer->work);
3576 3577
}

3578
static struct perf_buffer *
3579
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3580
{
3581
	struct perf_buffer *buffer;
3582 3583 3584
	unsigned long size;
	void *all_buf;

3585
	size = sizeof(struct perf_buffer);
3586 3587
	size += sizeof(void *);

3588 3589
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3590 3591
		goto fail;

3592
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3593 3594 3595 3596 3597

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3598 3599 3600 3601
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3602

3603 3604
	perf_buffer_init(buffer, watermark, flags);

3605
	return buffer;
3606 3607

fail_all_buf:
3608
	kfree(buffer);
3609 3610 3611 3612 3613 3614 3615

fail:
	return NULL;
}

#endif

3616
static unsigned long perf_data_size(struct perf_buffer *buffer)
3617
{
3618
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3619 3620
}

3621 3622 3623
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3624
	struct perf_buffer *buffer;
3625 3626 3627 3628 3629 3630 3631 3632 3633
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3634 3635
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3636 3637 3638 3639 3640
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3641
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3656
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3657
{
3658
	struct perf_buffer *buffer;
3659

3660 3661
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3662 3663
}

3664
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3665
{
3666
	struct perf_buffer *buffer;
3667

3668
	rcu_read_lock();
3669 3670 3671 3672
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3673 3674 3675
	}
	rcu_read_unlock();

3676
	return buffer;
3677 3678
}

3679
static void perf_buffer_put(struct perf_buffer *buffer)
3680
{
3681
	if (!atomic_dec_and_test(&buffer->refcount))
3682
		return;
3683

3684
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3685 3686 3687 3688
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3689
	struct perf_event *event = vma->vm_file->private_data;
3690

3691
	atomic_inc(&event->mmap_count);
3692 3693 3694 3695
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3696
	struct perf_event *event = vma->vm_file->private_data;
3697

3698
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3699
		unsigned long size = perf_data_size(event->buffer);
3700
		struct user_struct *user = event->mmap_user;
3701
		struct perf_buffer *buffer = event->buffer;
3702

3703
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3704
		vma->vm_mm->locked_vm -= event->mmap_locked;
3705
		rcu_assign_pointer(event->buffer, NULL);
3706
		mutex_unlock(&event->mmap_mutex);
3707

3708
		perf_buffer_put(buffer);
3709
		free_uid(user);
3710
	}
3711 3712
}

3713
static const struct vm_operations_struct perf_mmap_vmops = {
3714 3715 3716 3717
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3718 3719 3720 3721
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3722
	struct perf_event *event = file->private_data;
3723
	unsigned long user_locked, user_lock_limit;
3724
	struct user_struct *user = current_user();
3725
	unsigned long locked, lock_limit;
3726
	struct perf_buffer *buffer;
3727 3728
	unsigned long vma_size;
	unsigned long nr_pages;
3729
	long user_extra, extra;
3730
	int ret = 0, flags = 0;
3731

3732 3733 3734 3735 3736 3737 3738 3739
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3740
	if (!(vma->vm_flags & VM_SHARED))
3741
		return -EINVAL;
3742 3743 3744 3745

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3746
	/*
3747
	 * If we have buffer pages ensure they're a power-of-two number, so we
3748 3749 3750
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3751 3752
		return -EINVAL;

3753
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3754 3755
		return -EINVAL;

3756 3757
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3758

3759 3760
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3761 3762 3763
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3764
		else
3765 3766 3767 3768
			ret = -EINVAL;
		goto unlock;
	}

3769
	user_extra = nr_pages + 1;
3770
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3771 3772 3773 3774 3775 3776

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3777
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3778

3779 3780 3781
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3782

3783
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3784
	lock_limit >>= PAGE_SHIFT;
3785
	locked = vma->vm_mm->locked_vm + extra;
3786

3787 3788
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3789 3790 3791
		ret = -EPERM;
		goto unlock;
	}
3792

3793
	WARN_ON(event->buffer);
3794

3795 3796 3797 3798 3799
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3800
	if (!buffer) {
3801
		ret = -ENOMEM;
3802
		goto unlock;
3803
	}
3804
	rcu_assign_pointer(event->buffer, buffer);
3805

3806 3807 3808 3809 3810
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3811
unlock:
3812 3813
	if (!ret)
		atomic_inc(&event->mmap_count);
3814
	mutex_unlock(&event->mmap_mutex);
3815 3816 3817

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3818 3819

	return ret;
3820 3821
}

P
Peter Zijlstra 已提交
3822 3823 3824
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3825
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3826 3827 3828
	int retval;

	mutex_lock(&inode->i_mutex);
3829
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3830 3831 3832 3833 3834 3835 3836 3837
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3838
static const struct file_operations perf_fops = {
3839
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3840 3841 3842
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3843 3844
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3845
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3846
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3847 3848
};

3849
/*
3850
 * Perf event wakeup
3851 3852 3853 3854 3855
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3856
void perf_event_wakeup(struct perf_event *event)
3857
{
3858
	wake_up_all(&event->waitq);
3859

3860 3861 3862
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3863
	}
3864 3865
}

3866
static void perf_pending_event(struct irq_work *entry)
3867
{
3868 3869
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3870

3871 3872 3873
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3874 3875
	}

3876 3877 3878
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3879 3880 3881
	}
}

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3903 3904 3905
/*
 * Output
 */
3906
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3907
			      unsigned long offset, unsigned long head)
3908 3909 3910
{
	unsigned long mask;

3911
	if (!buffer->writable)
3912 3913
		return true;

3914
	mask = perf_data_size(buffer) - 1;
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3925
static void perf_output_wakeup(struct perf_output_handle *handle)
3926
{
3927
	atomic_set(&handle->buffer->poll, POLL_IN);
3928

3929
	if (handle->nmi) {
3930
		handle->event->pending_wakeup = 1;
3931
		irq_work_queue(&handle->event->pending);
3932
	} else
3933
		perf_event_wakeup(handle->event);
3934 3935
}

3936
/*
3937
 * We need to ensure a later event_id doesn't publish a head when a former
3938
 * event isn't done writing. However since we need to deal with NMIs we
3939 3940 3941
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3942
 * event completes.
3943
 */
3944
static void perf_output_get_handle(struct perf_output_handle *handle)
3945
{
3946
	struct perf_buffer *buffer = handle->buffer;
3947

3948
	preempt_disable();
3949 3950
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3951 3952
}

3953
static void perf_output_put_handle(struct perf_output_handle *handle)
3954
{
3955
	struct perf_buffer *buffer = handle->buffer;
3956
	unsigned long head;
3957 3958

again:
3959
	head = local_read(&buffer->head);
3960 3961

	/*
3962
	 * IRQ/NMI can happen here, which means we can miss a head update.
3963 3964
	 */

3965
	if (!local_dec_and_test(&buffer->nest))
3966
		goto out;
3967 3968

	/*
3969
	 * Publish the known good head. Rely on the full barrier implied
3970
	 * by atomic_dec_and_test() order the buffer->head read and this
3971
	 * write.
3972
	 */
3973
	buffer->user_page->data_head = head;
3974

3975 3976
	/*
	 * Now check if we missed an update, rely on the (compiler)
3977
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3978
	 */
3979 3980
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3981 3982 3983
		goto again;
	}

3984
	if (handle->wakeup != local_read(&buffer->wakeup))
3985
		perf_output_wakeup(handle);
3986

P
Peter Zijlstra 已提交
3987
out:
3988
	preempt_enable();
3989 3990
}

3991
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3992
		      const void *buf, unsigned int len)
3993
{
3994
	do {
3995
		unsigned long size = min_t(unsigned long, handle->size, len);
3996 3997 3998 3999 4000

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
4001
		buf += size;
4002 4003
		handle->size -= size;
		if (!handle->size) {
4004
			struct perf_buffer *buffer = handle->buffer;
4005

4006
			handle->page++;
4007 4008 4009
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
4010 4011
		}
	} while (len);
4012 4013
}

4014 4015 4016
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4081
int perf_output_begin(struct perf_output_handle *handle,
4082
		      struct perf_event *event, unsigned int size,
4083
		      int nmi, int sample)
4084
{
4085
	struct perf_buffer *buffer;
4086
	unsigned long tail, offset, head;
4087
	int have_lost;
4088
	struct perf_sample_data sample_data;
4089 4090 4091 4092 4093
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4094

4095
	rcu_read_lock();
4096
	/*
4097
	 * For inherited events we send all the output towards the parent.
4098
	 */
4099 4100
	if (event->parent)
		event = event->parent;
4101

4102 4103
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4104 4105
		goto out;

4106
	handle->buffer	= buffer;
4107
	handle->event	= event;
4108 4109
	handle->nmi	= nmi;
	handle->sample	= sample;
4110

4111
	if (!buffer->nr_pages)
4112
		goto out;
4113

4114
	have_lost = local_read(&buffer->lost);
4115 4116 4117 4118 4119 4120
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4121

4122
	perf_output_get_handle(handle);
4123

4124
	do {
4125 4126 4127 4128 4129
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4130
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4131
		smp_rmb();
4132
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4133
		head += size;
4134
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4135
			goto fail;
4136
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4137

4138 4139
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4140

4141 4142 4143 4144
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4145
	handle->addr += handle->size;
4146
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4147

4148
	if (have_lost) {
4149
		lost_event.header.type = PERF_RECORD_LOST;
4150
		lost_event.header.misc = 0;
4151
		lost_event.id          = event->id;
4152
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4153 4154

		perf_output_put(handle, lost_event);
4155
		perf_event__output_id_sample(event, handle, &sample_data);
4156 4157
	}

4158
	return 0;
4159

4160
fail:
4161
	local_inc(&buffer->lost);
4162
	perf_output_put_handle(handle);
4163 4164
out:
	rcu_read_unlock();
4165

4166 4167
	return -ENOSPC;
}
4168

4169
void perf_output_end(struct perf_output_handle *handle)
4170
{
4171
	struct perf_event *event = handle->event;
4172
	struct perf_buffer *buffer = handle->buffer;
4173

4174
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4175

4176
	if (handle->sample && wakeup_events) {
4177
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4178
		if (events >= wakeup_events) {
4179 4180
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4181
		}
4182 4183
	}

4184
	perf_output_put_handle(handle);
4185
	rcu_read_unlock();
4186 4187
}

4188
static void perf_output_read_one(struct perf_output_handle *handle,
4189 4190
				 struct perf_event *event,
				 u64 enabled, u64 running)
4191
{
4192
	u64 read_format = event->attr.read_format;
4193 4194 4195
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4196
	values[n++] = perf_event_count(event);
4197
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4198
		values[n++] = enabled +
4199
			atomic64_read(&event->child_total_time_enabled);
4200 4201
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4202
		values[n++] = running +
4203
			atomic64_read(&event->child_total_time_running);
4204 4205
	}
	if (read_format & PERF_FORMAT_ID)
4206
		values[n++] = primary_event_id(event);
4207 4208 4209 4210 4211

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4212
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4213 4214
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4215 4216
			    struct perf_event *event,
			    u64 enabled, u64 running)
4217
{
4218 4219
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4220 4221 4222 4223 4224 4225
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4226
		values[n++] = enabled;
4227 4228

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4229
		values[n++] = running;
4230

4231
	if (leader != event)
4232 4233
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4234
	values[n++] = perf_event_count(leader);
4235
	if (read_format & PERF_FORMAT_ID)
4236
		values[n++] = primary_event_id(leader);
4237 4238 4239

	perf_output_copy(handle, values, n * sizeof(u64));

4240
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4241 4242
		n = 0;

4243
		if (sub != event)
4244 4245
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4246
		values[n++] = perf_event_count(sub);
4247
		if (read_format & PERF_FORMAT_ID)
4248
			values[n++] = primary_event_id(sub);
4249 4250 4251 4252 4253

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4254 4255 4256
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4257
static void perf_output_read(struct perf_output_handle *handle,
4258
			     struct perf_event *event)
4259
{
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4279
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4280
		perf_output_read_group(handle, event, enabled, running);
4281
	else
4282
		perf_output_read_one(handle, event, enabled, running);
4283 4284
}

4285 4286 4287
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4288
			struct perf_event *event)
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4319
		perf_output_read(handle, event);
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4357
			 struct perf_event *event,
4358
			 struct pt_regs *regs)
4359
{
4360
	u64 sample_type = event->attr.sample_type;
4361

4362
	header->type = PERF_RECORD_SAMPLE;
4363
	header->size = sizeof(*header) + event->header_size;
4364 4365 4366

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4367

4368
	__perf_event_header__init_id(header, data, event);
4369

4370
	if (sample_type & PERF_SAMPLE_IP)
4371 4372
		data->ip = perf_instruction_pointer(regs);

4373
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4374
		int size = 1;
4375

4376 4377 4378 4379 4380 4381
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4382 4383
	}

4384
	if (sample_type & PERF_SAMPLE_RAW) {
4385 4386 4387 4388 4389 4390 4391 4392
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4393
		header->size += size;
4394
	}
4395
}
4396

4397
static void perf_event_output(struct perf_event *event, int nmi,
4398 4399 4400 4401 4402
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4403

4404 4405 4406
	/* protect the callchain buffers */
	rcu_read_lock();

4407
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4408

4409
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4410
		goto exit;
4411

4412
	perf_output_sample(&handle, &header, data, event);
4413

4414
	perf_output_end(&handle);
4415 4416 4417

exit:
	rcu_read_unlock();
4418 4419
}

4420
/*
4421
 * read event_id
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4432
perf_event_read_event(struct perf_event *event,
4433 4434 4435
			struct task_struct *task)
{
	struct perf_output_handle handle;
4436
	struct perf_sample_data sample;
4437
	struct perf_read_event read_event = {
4438
		.header = {
4439
			.type = PERF_RECORD_READ,
4440
			.misc = 0,
4441
			.size = sizeof(read_event) + event->read_size,
4442
		},
4443 4444
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4445
	};
4446
	int ret;
4447

4448
	perf_event_header__init_id(&read_event.header, &sample, event);
4449
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4450 4451 4452
	if (ret)
		return;

4453
	perf_output_put(&handle, read_event);
4454
	perf_output_read(&handle, event);
4455
	perf_event__output_id_sample(event, &handle, &sample);
4456

4457 4458 4459
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4460
/*
P
Peter Zijlstra 已提交
4461 4462
 * task tracking -- fork/exit
 *
4463
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4464 4465
 */

P
Peter Zijlstra 已提交
4466
struct perf_task_event {
4467
	struct task_struct		*task;
4468
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4469 4470 4471 4472 4473 4474

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4475 4476
		u32				tid;
		u32				ptid;
4477
		u64				time;
4478
	} event_id;
P
Peter Zijlstra 已提交
4479 4480
};

4481
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4482
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4483 4484
{
	struct perf_output_handle handle;
4485
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4486
	struct task_struct *task = task_event->task;
4487
	int ret, size = task_event->event_id.header.size;
4488

4489
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4490

4491 4492
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4493
	if (ret)
4494
		goto out;
P
Peter Zijlstra 已提交
4495

4496 4497
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4498

4499 4500
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4501

4502
	perf_output_put(&handle, task_event->event_id);
4503

4504 4505
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4506
	perf_output_end(&handle);
4507 4508
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4509 4510
}

4511
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4512
{
P
Peter Zijlstra 已提交
4513
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4514 4515
		return 0;

4516
	if (!event_filter_match(event))
4517 4518
		return 0;

4519 4520
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4521 4522 4523 4524 4525
		return 1;

	return 0;
}

4526
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4527
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4528
{
4529
	struct perf_event *event;
P
Peter Zijlstra 已提交
4530

4531 4532 4533
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4534 4535 4536
	}
}

4537
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4538 4539
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4540
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4541
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4542
	int ctxn;
P
Peter Zijlstra 已提交
4543

4544
	rcu_read_lock();
P
Peter Zijlstra 已提交
4545
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4546
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4547 4548
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4549
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4550 4551 4552 4553 4554

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4555
				goto next;
P
Peter Zijlstra 已提交
4556 4557 4558 4559
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4560 4561
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4562
	}
P
Peter Zijlstra 已提交
4563 4564 4565
	rcu_read_unlock();
}

4566 4567
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4568
			      int new)
P
Peter Zijlstra 已提交
4569
{
P
Peter Zijlstra 已提交
4570
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4571

4572 4573 4574
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4575 4576
		return;

P
Peter Zijlstra 已提交
4577
	task_event = (struct perf_task_event){
4578 4579
		.task	  = task,
		.task_ctx = task_ctx,
4580
		.event_id    = {
P
Peter Zijlstra 已提交
4581
			.header = {
4582
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4583
				.misc = 0,
4584
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4585
			},
4586 4587
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4588 4589
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4590
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4591 4592 4593
		},
	};

4594
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4595 4596
}

4597
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4598
{
4599
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4600 4601
}

4602 4603 4604 4605 4606
/*
 * comm tracking
 */

struct perf_comm_event {
4607 4608
	struct task_struct	*task;
	char			*comm;
4609 4610 4611 4612 4613 4614 4615
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4616
	} event_id;
4617 4618
};

4619
static void perf_event_comm_output(struct perf_event *event,
4620 4621 4622
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4623
	struct perf_sample_data sample;
4624
	int size = comm_event->event_id.header.size;
4625 4626 4627 4628 4629
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4630 4631

	if (ret)
4632
		goto out;
4633

4634 4635
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4636

4637
	perf_output_put(&handle, comm_event->event_id);
4638 4639
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4640 4641 4642

	perf_event__output_id_sample(event, &handle, &sample);

4643
	perf_output_end(&handle);
4644 4645
out:
	comm_event->event_id.header.size = size;
4646 4647
}

4648
static int perf_event_comm_match(struct perf_event *event)
4649
{
P
Peter Zijlstra 已提交
4650
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4651 4652
		return 0;

4653
	if (!event_filter_match(event))
4654 4655
		return 0;

4656
	if (event->attr.comm)
4657 4658 4659 4660 4661
		return 1;

	return 0;
}

4662
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4663 4664
				  struct perf_comm_event *comm_event)
{
4665
	struct perf_event *event;
4666

4667 4668 4669
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4670 4671 4672
	}
}

4673
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4674 4675
{
	struct perf_cpu_context *cpuctx;
4676
	struct perf_event_context *ctx;
4677
	char comm[TASK_COMM_LEN];
4678
	unsigned int size;
P
Peter Zijlstra 已提交
4679
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4680
	int ctxn;
4681

4682
	memset(comm, 0, sizeof(comm));
4683
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4684
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4685 4686 4687 4688

	comm_event->comm = comm;
	comm_event->comm_size = size;

4689
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4690
	rcu_read_lock();
P
Peter Zijlstra 已提交
4691
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4692
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4693 4694
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4695
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4696 4697 4698

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4699
			goto next;
P
Peter Zijlstra 已提交
4700 4701 4702 4703

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4704 4705
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4706
	}
4707
	rcu_read_unlock();
4708 4709
}

4710
void perf_event_comm(struct task_struct *task)
4711
{
4712
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4713 4714
	struct perf_event_context *ctx;
	int ctxn;
4715

P
Peter Zijlstra 已提交
4716 4717 4718 4719
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4720

P
Peter Zijlstra 已提交
4721 4722
		perf_event_enable_on_exec(ctx);
	}
4723

4724
	if (!atomic_read(&nr_comm_events))
4725
		return;
4726

4727
	comm_event = (struct perf_comm_event){
4728
		.task	= task,
4729 4730
		/* .comm      */
		/* .comm_size */
4731
		.event_id  = {
4732
			.header = {
4733
				.type = PERF_RECORD_COMM,
4734 4735 4736 4737 4738
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4739 4740 4741
		},
	};

4742
	perf_event_comm_event(&comm_event);
4743 4744
}

4745 4746 4747 4748 4749
/*
 * mmap tracking
 */

struct perf_mmap_event {
4750 4751 4752 4753
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4754 4755 4756 4757 4758 4759 4760 4761 4762

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4763
	} event_id;
4764 4765
};

4766
static void perf_event_mmap_output(struct perf_event *event,
4767 4768 4769
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4770
	struct perf_sample_data sample;
4771
	int size = mmap_event->event_id.header.size;
4772
	int ret;
4773

4774 4775 4776
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4777
	if (ret)
4778
		goto out;
4779

4780 4781
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4782

4783
	perf_output_put(&handle, mmap_event->event_id);
4784 4785
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4786 4787 4788

	perf_event__output_id_sample(event, &handle, &sample);

4789
	perf_output_end(&handle);
4790 4791
out:
	mmap_event->event_id.header.size = size;
4792 4793
}

4794
static int perf_event_mmap_match(struct perf_event *event,
4795 4796
				   struct perf_mmap_event *mmap_event,
				   int executable)
4797
{
P
Peter Zijlstra 已提交
4798
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4799 4800
		return 0;

4801
	if (!event_filter_match(event))
4802 4803
		return 0;

4804 4805
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4806 4807 4808 4809 4810
		return 1;

	return 0;
}

4811
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4812 4813
				  struct perf_mmap_event *mmap_event,
				  int executable)
4814
{
4815
	struct perf_event *event;
4816

4817
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4818
		if (perf_event_mmap_match(event, mmap_event, executable))
4819
			perf_event_mmap_output(event, mmap_event);
4820 4821 4822
	}
}

4823
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4824 4825
{
	struct perf_cpu_context *cpuctx;
4826
	struct perf_event_context *ctx;
4827 4828
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4829 4830 4831
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4832
	const char *name;
P
Peter Zijlstra 已提交
4833
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4834
	int ctxn;
4835

4836 4837
	memset(tmp, 0, sizeof(tmp));

4838
	if (file) {
4839 4840 4841 4842 4843 4844
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4845 4846 4847 4848
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4849
		name = d_path(&file->f_path, buf, PATH_MAX);
4850 4851 4852 4853 4854
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4855 4856 4857
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4858
			goto got_name;
4859
		}
4860 4861 4862 4863

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4864 4865 4866 4867 4868 4869 4870 4871
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4872 4873
		}

4874 4875 4876 4877 4878
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4879
	size = ALIGN(strlen(name)+1, sizeof(u64));
4880 4881 4882 4883

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4884
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4885

4886
	rcu_read_lock();
P
Peter Zijlstra 已提交
4887
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4888
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4889 4890
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4891 4892
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4893 4894 4895

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4896
			goto next;
P
Peter Zijlstra 已提交
4897 4898 4899 4900 4901 4902

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4903 4904
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4905
	}
4906 4907
	rcu_read_unlock();

4908 4909 4910
	kfree(buf);
}

4911
void perf_event_mmap(struct vm_area_struct *vma)
4912
{
4913 4914
	struct perf_mmap_event mmap_event;

4915
	if (!atomic_read(&nr_mmap_events))
4916 4917 4918
		return;

	mmap_event = (struct perf_mmap_event){
4919
		.vma	= vma,
4920 4921
		/* .file_name */
		/* .file_size */
4922
		.event_id  = {
4923
			.header = {
4924
				.type = PERF_RECORD_MMAP,
4925
				.misc = PERF_RECORD_MISC_USER,
4926 4927 4928 4929
				/* .size */
			},
			/* .pid */
			/* .tid */
4930 4931
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4932
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4933 4934 4935
		},
	};

4936
	perf_event_mmap_event(&mmap_event);
4937 4938
}

4939 4940 4941 4942
/*
 * IRQ throttle logging
 */

4943
static void perf_log_throttle(struct perf_event *event, int enable)
4944 4945
{
	struct perf_output_handle handle;
4946
	struct perf_sample_data sample;
4947 4948 4949 4950 4951
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4952
		u64				id;
4953
		u64				stream_id;
4954 4955
	} throttle_event = {
		.header = {
4956
			.type = PERF_RECORD_THROTTLE,
4957 4958 4959
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4960
		.time		= perf_clock(),
4961 4962
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4963 4964
	};

4965
	if (enable)
4966
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4967

4968 4969 4970 4971
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4972 4973 4974 4975
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4976
	perf_event__output_id_sample(event, &handle, &sample);
4977 4978 4979
	perf_output_end(&handle);
}

4980
/*
4981
 * Generic event overflow handling, sampling.
4982 4983
 */

4984
static int __perf_event_overflow(struct perf_event *event, int nmi,
4985 4986
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4987
{
4988 4989
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4990 4991
	int ret = 0;

4992 4993 4994 4995 4996 4997 4998
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4999 5000 5001 5002
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5003 5004
			ret = 1;
		}
P
Peter Zijlstra 已提交
5005 5006
	} else
		hwc->interrupts++;
5007

5008
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5009
		u64 now = perf_clock();
5010
		s64 delta = now - hwc->freq_time_stamp;
5011

5012
		hwc->freq_time_stamp = now;
5013

5014 5015
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
5016 5017
	}

5018 5019
	/*
	 * XXX event_limit might not quite work as expected on inherited
5020
	 * events
5021 5022
	 */

5023 5024
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5025
		ret = 1;
5026
		event->pending_kill = POLL_HUP;
5027
		if (nmi) {
5028
			event->pending_disable = 1;
5029
			irq_work_queue(&event->pending);
5030
		} else
5031
			perf_event_disable(event);
5032 5033
	}

5034 5035 5036 5037 5038
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

5039
	return ret;
5040 5041
}

5042
int perf_event_overflow(struct perf_event *event, int nmi,
5043 5044
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5045
{
5046
	return __perf_event_overflow(event, nmi, 1, data, regs);
5047 5048
}

5049
/*
5050
 * Generic software event infrastructure
5051 5052
 */

5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5064
/*
5065 5066
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5067 5068 5069 5070
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5071
static u64 perf_swevent_set_period(struct perf_event *event)
5072
{
5073
	struct hw_perf_event *hwc = &event->hw;
5074 5075 5076 5077 5078
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5079 5080

again:
5081
	old = val = local64_read(&hwc->period_left);
5082 5083
	if (val < 0)
		return 0;
5084

5085 5086 5087
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5088
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5089
		goto again;
5090

5091
	return nr;
5092 5093
}

5094
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5095 5096
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5097
{
5098
	struct hw_perf_event *hwc = &event->hw;
5099
	int throttle = 0;
5100

5101
	data->period = event->hw.last_period;
5102 5103
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5104

5105 5106
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5107

5108
	for (; overflow; overflow--) {
5109
		if (__perf_event_overflow(event, nmi, throttle,
5110
					    data, regs)) {
5111 5112 5113 5114 5115 5116
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5117
		throttle = 1;
5118
	}
5119 5120
}

P
Peter Zijlstra 已提交
5121
static void perf_swevent_event(struct perf_event *event, u64 nr,
5122 5123
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5124
{
5125
	struct hw_perf_event *hwc = &event->hw;
5126

5127
	local64_add(nr, &event->count);
5128

5129 5130 5131
	if (!regs)
		return;

5132
	if (!is_sampling_event(event))
5133
		return;
5134

5135 5136 5137
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5138
	if (local64_add_negative(nr, &hwc->period_left))
5139
		return;
5140

5141
	perf_swevent_overflow(event, 0, nmi, data, regs);
5142 5143
}

5144 5145 5146
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5147
	if (event->hw.state & PERF_HES_STOPPED)
5148
		return 1;
P
Peter Zijlstra 已提交
5149

5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5161
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5162
				enum perf_type_id type,
L
Li Zefan 已提交
5163 5164 5165
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5166
{
5167
	if (event->attr.type != type)
5168
		return 0;
5169

5170
	if (event->attr.config != event_id)
5171 5172
		return 0;

5173 5174
	if (perf_exclude_event(event, regs))
		return 0;
5175 5176 5177 5178

	return 1;
}

5179 5180 5181 5182 5183 5184 5185
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5186 5187
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5188
{
5189 5190 5191 5192
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5193

5194 5195
/* For the read side: events when they trigger */
static inline struct hlist_head *
5196
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5197 5198
{
	struct swevent_hlist *hlist;
5199

5200
	hlist = rcu_dereference(swhash->swevent_hlist);
5201 5202 5203
	if (!hlist)
		return NULL;

5204 5205 5206 5207 5208
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5209
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5220
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5221 5222 5223 5224 5225
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5226 5227 5228 5229 5230 5231
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5232
{
5233
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5234
	struct perf_event *event;
5235 5236
	struct hlist_node *node;
	struct hlist_head *head;
5237

5238
	rcu_read_lock();
5239
	head = find_swevent_head_rcu(swhash, type, event_id);
5240 5241 5242 5243
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5244
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5245
			perf_swevent_event(event, nr, nmi, data, regs);
5246
	}
5247 5248
end:
	rcu_read_unlock();
5249 5250
}

5251
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5252
{
5253
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5254

5255
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5256
}
I
Ingo Molnar 已提交
5257
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5258

5259
inline void perf_swevent_put_recursion_context(int rctx)
5260
{
5261
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5262

5263
	put_recursion_context(swhash->recursion, rctx);
5264
}
5265

5266
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5267
			    struct pt_regs *regs, u64 addr)
5268
{
5269
	struct perf_sample_data data;
5270 5271
	int rctx;

5272
	preempt_disable_notrace();
5273 5274 5275
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5276

5277
	perf_sample_data_init(&data, addr);
5278

5279
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5280 5281

	perf_swevent_put_recursion_context(rctx);
5282
	preempt_enable_notrace();
5283 5284
}

5285
static void perf_swevent_read(struct perf_event *event)
5286 5287 5288
{
}

P
Peter Zijlstra 已提交
5289
static int perf_swevent_add(struct perf_event *event, int flags)
5290
{
5291
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5292
	struct hw_perf_event *hwc = &event->hw;
5293 5294
	struct hlist_head *head;

5295
	if (is_sampling_event(event)) {
5296
		hwc->last_period = hwc->sample_period;
5297
		perf_swevent_set_period(event);
5298
	}
5299

P
Peter Zijlstra 已提交
5300 5301
	hwc->state = !(flags & PERF_EF_START);

5302
	head = find_swevent_head(swhash, event);
5303 5304 5305 5306 5307
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5308 5309 5310
	return 0;
}

P
Peter Zijlstra 已提交
5311
static void perf_swevent_del(struct perf_event *event, int flags)
5312
{
5313
	hlist_del_rcu(&event->hlist_entry);
5314 5315
}

P
Peter Zijlstra 已提交
5316
static void perf_swevent_start(struct perf_event *event, int flags)
5317
{
P
Peter Zijlstra 已提交
5318
	event->hw.state = 0;
5319
}
I
Ingo Molnar 已提交
5320

P
Peter Zijlstra 已提交
5321
static void perf_swevent_stop(struct perf_event *event, int flags)
5322
{
P
Peter Zijlstra 已提交
5323
	event->hw.state = PERF_HES_STOPPED;
5324 5325
}

5326 5327
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5328
swevent_hlist_deref(struct swevent_htable *swhash)
5329
{
5330 5331
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5332 5333
}

5334 5335 5336 5337 5338 5339 5340 5341
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

5342
static void swevent_hlist_release(struct swevent_htable *swhash)
5343
{
5344
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5345

5346
	if (!hlist)
5347 5348
		return;

5349
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5350 5351 5352 5353 5354
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5355
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5356

5357
	mutex_lock(&swhash->hlist_mutex);
5358

5359 5360
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5361

5362
	mutex_unlock(&swhash->hlist_mutex);
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5380
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5381 5382
	int err = 0;

5383
	mutex_lock(&swhash->hlist_mutex);
5384

5385
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5386 5387 5388 5389 5390 5391 5392
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5393
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5394
	}
5395
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5396
exit:
5397
	mutex_unlock(&swhash->hlist_mutex);
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5421
fail:
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5432
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5433

5434 5435 5436
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5437

5438 5439
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5440
	jump_label_dec(&perf_swevent_enabled[event_id]);
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5460
	if (event_id >= PERF_COUNT_SW_MAX)
5461 5462 5463 5464 5465 5466 5467 5468 5469
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5470
		jump_label_inc(&perf_swevent_enabled[event_id]);
5471 5472 5473 5474 5475 5476 5477
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5478
	.task_ctx_nr	= perf_sw_context,
5479

5480
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5481 5482 5483 5484
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5485 5486 5487
	.read		= perf_swevent_read,
};

5488 5489
#ifdef CONFIG_EVENT_TRACING

5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5504 5505
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5506 5507 5508 5509
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5510 5511 5512 5513 5514 5515 5516 5517 5518
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5519
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5520 5521
{
	struct perf_sample_data data;
5522 5523 5524
	struct perf_event *event;
	struct hlist_node *node;

5525 5526 5527 5528 5529 5530 5531 5532
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5533 5534
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5535
			perf_swevent_event(event, count, 1, &data, regs);
5536
	}
5537 5538

	perf_swevent_put_recursion_context(rctx);
5539 5540 5541
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5542
static void tp_perf_event_destroy(struct perf_event *event)
5543
{
5544
	perf_trace_destroy(event);
5545 5546
}

5547
static int perf_tp_event_init(struct perf_event *event)
5548
{
5549 5550
	int err;

5551 5552 5553
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5554 5555
	err = perf_trace_init(event);
	if (err)
5556
		return err;
5557

5558
	event->destroy = tp_perf_event_destroy;
5559

5560 5561 5562 5563
	return 0;
}

static struct pmu perf_tracepoint = {
5564 5565
	.task_ctx_nr	= perf_sw_context,

5566
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5567 5568 5569 5570
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5571 5572 5573 5574 5575
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5576
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5577
}
L
Li Zefan 已提交
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5602
#else
L
Li Zefan 已提交
5603

5604
static inline void perf_tp_register(void)
5605 5606
{
}
L
Li Zefan 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5617
#endif /* CONFIG_EVENT_TRACING */
5618

5619
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5620
void perf_bp_event(struct perf_event *bp, void *data)
5621
{
5622 5623 5624
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5625
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5626

P
Peter Zijlstra 已提交
5627 5628
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5629 5630 5631
}
#endif

5632 5633 5634
/*
 * hrtimer based swevent callback
 */
5635

5636
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5637
{
5638 5639 5640 5641 5642
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5643

5644
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5645 5646 5647 5648

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5649
	event->pmu->read(event);
5650

5651 5652 5653 5654 5655 5656 5657 5658 5659
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5660

5661 5662
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5663

5664
	return ret;
5665 5666
}

5667
static void perf_swevent_start_hrtimer(struct perf_event *event)
5668
{
5669
	struct hw_perf_event *hwc = &event->hw;
5670 5671 5672 5673
	s64 period;

	if (!is_sampling_event(event))
		return;
5674

5675 5676 5677 5678
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5679

5680 5681 5682 5683 5684
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5685
				ns_to_ktime(period), 0,
5686
				HRTIMER_MODE_REL_PINNED, 0);
5687
}
5688 5689

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5690
{
5691 5692
	struct hw_perf_event *hwc = &event->hw;

5693
	if (is_sampling_event(event)) {
5694
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5695
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5696 5697 5698

		hrtimer_cancel(&hwc->hrtimer);
	}
5699 5700
}

P
Peter Zijlstra 已提交
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5725 5726 5727 5728 5729
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5730
{
5731 5732 5733
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5734
	now = local_clock();
5735 5736
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5737 5738
}

P
Peter Zijlstra 已提交
5739
static void cpu_clock_event_start(struct perf_event *event, int flags)
5740
{
P
Peter Zijlstra 已提交
5741
	local64_set(&event->hw.prev_count, local_clock());
5742 5743 5744
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5745
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5746
{
5747 5748 5749
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5750

P
Peter Zijlstra 已提交
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5764 5765 5766 5767
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5768

5769 5770 5771 5772 5773 5774 5775 5776
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5777 5778
	perf_swevent_init_hrtimer(event);

5779
	return 0;
5780 5781
}

5782
static struct pmu perf_cpu_clock = {
5783 5784
	.task_ctx_nr	= perf_sw_context,

5785
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5786 5787 5788 5789
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5790 5791 5792 5793 5794 5795 5796 5797
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5798
{
5799 5800
	u64 prev;
	s64 delta;
5801

5802 5803 5804 5805
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5806

P
Peter Zijlstra 已提交
5807
static void task_clock_event_start(struct perf_event *event, int flags)
5808
{
P
Peter Zijlstra 已提交
5809
	local64_set(&event->hw.prev_count, event->ctx->time);
5810 5811 5812
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5813
static void task_clock_event_stop(struct perf_event *event, int flags)
5814 5815 5816
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5817 5818 5819 5820 5821 5822
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5823

P
Peter Zijlstra 已提交
5824 5825 5826 5827 5828 5829
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5830 5831 5832 5833
}

static void task_clock_event_read(struct perf_event *event)
{
5834 5835 5836
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5837 5838 5839 5840 5841

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5842
{
5843 5844 5845 5846 5847 5848
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5849 5850
	perf_swevent_init_hrtimer(event);

5851
	return 0;
L
Li Zefan 已提交
5852 5853
}

5854
static struct pmu perf_task_clock = {
5855 5856
	.task_ctx_nr	= perf_sw_context,

5857
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5858 5859 5860 5861
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5862 5863
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5864

P
Peter Zijlstra 已提交
5865
static void perf_pmu_nop_void(struct pmu *pmu)
5866 5867
{
}
L
Li Zefan 已提交
5868

P
Peter Zijlstra 已提交
5869
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5870
{
P
Peter Zijlstra 已提交
5871
	return 0;
L
Li Zefan 已提交
5872 5873
}

P
Peter Zijlstra 已提交
5874
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5875
{
P
Peter Zijlstra 已提交
5876
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5877 5878
}

P
Peter Zijlstra 已提交
5879 5880 5881 5882 5883
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5884

P
Peter Zijlstra 已提交
5885
static void perf_pmu_cancel_txn(struct pmu *pmu)
5886
{
P
Peter Zijlstra 已提交
5887
	perf_pmu_enable(pmu);
5888 5889
}

P
Peter Zijlstra 已提交
5890 5891 5892 5893 5894
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5895
{
P
Peter Zijlstra 已提交
5896
	struct pmu *pmu;
5897

P
Peter Zijlstra 已提交
5898 5899
	if (ctxn < 0)
		return NULL;
5900

P
Peter Zijlstra 已提交
5901 5902 5903 5904
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5905

P
Peter Zijlstra 已提交
5906
	return NULL;
5907 5908
}

5909
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5910
{
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5926

P
Peter Zijlstra 已提交
5927
	mutex_lock(&pmus_lock);
5928
	/*
P
Peter Zijlstra 已提交
5929
	 * Like a real lame refcount.
5930
	 */
5931 5932 5933
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5934
			goto out;
5935
		}
P
Peter Zijlstra 已提交
5936
	}
5937

5938
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5939 5940
out:
	mutex_unlock(&pmus_lock);
5941
}
P
Peter Zijlstra 已提交
5942
static struct idr pmu_idr;
5943

P
Peter Zijlstra 已提交
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5996 5997
static struct lock_class_key cpuctx_mutex;

P
Peter Zijlstra 已提交
5998
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5999
{
P
Peter Zijlstra 已提交
6000
	int cpu, ret;
6001

6002
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6003 6004 6005 6006
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6007

P
Peter Zijlstra 已提交
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6026 6027 6028 6029 6030 6031
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6032
skip_type:
P
Peter Zijlstra 已提交
6033 6034 6035
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6036

P
Peter Zijlstra 已提交
6037 6038
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6039
		goto free_dev;
6040

P
Peter Zijlstra 已提交
6041 6042 6043 6044
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6045
		__perf_event_init_context(&cpuctx->ctx);
6046
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6047
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6048
		cpuctx->ctx.pmu = pmu;
6049 6050
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6051
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6052
	}
6053

P
Peter Zijlstra 已提交
6054
got_cpu_context:
P
Peter Zijlstra 已提交
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6069
		}
6070
	}
6071

P
Peter Zijlstra 已提交
6072 6073 6074 6075 6076
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6077
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6078 6079
	ret = 0;
unlock:
6080 6081
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6082
	return ret;
P
Peter Zijlstra 已提交
6083

P
Peter Zijlstra 已提交
6084 6085 6086 6087
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6088 6089 6090 6091
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6092 6093 6094
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6095 6096
}

6097
void perf_pmu_unregister(struct pmu *pmu)
6098
{
6099 6100 6101
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6102

6103
	/*
P
Peter Zijlstra 已提交
6104 6105
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6106
	 */
6107
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6108
	synchronize_rcu();
6109

P
Peter Zijlstra 已提交
6110
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6111 6112
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6113 6114
	device_del(pmu->dev);
	put_device(pmu->dev);
6115
	free_pmu_context(pmu);
6116
}
6117

6118 6119 6120 6121
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6122
	int ret;
6123 6124

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6125 6126 6127 6128

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6129 6130 6131 6132
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6133
		goto unlock;
6134
	}
P
Peter Zijlstra 已提交
6135

6136
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6137
		ret = pmu->event_init(event);
6138
		if (!ret)
P
Peter Zijlstra 已提交
6139
			goto unlock;
6140

6141 6142
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6143
			goto unlock;
6144
		}
6145
	}
P
Peter Zijlstra 已提交
6146 6147
	pmu = ERR_PTR(-ENOENT);
unlock:
6148
	srcu_read_unlock(&pmus_srcu, idx);
6149

6150
	return pmu;
6151 6152
}

T
Thomas Gleixner 已提交
6153
/*
6154
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6155
 */
6156
static struct perf_event *
6157
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6158 6159 6160 6161
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6162
{
P
Peter Zijlstra 已提交
6163
	struct pmu *pmu;
6164 6165
	struct perf_event *event;
	struct hw_perf_event *hwc;
6166
	long err;
T
Thomas Gleixner 已提交
6167

6168 6169 6170 6171 6172
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6173
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6174
	if (!event)
6175
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6176

6177
	/*
6178
	 * Single events are their own group leaders, with an
6179 6180 6181
	 * empty sibling list:
	 */
	if (!group_leader)
6182
		group_leader = event;
6183

6184 6185
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6186

6187 6188 6189 6190
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6191
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6192

6193
	mutex_init(&event->mmap_mutex);
6194

6195 6196 6197 6198 6199
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6200

6201
	event->parent		= parent_event;
6202

6203 6204
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6205

6206
	event->state		= PERF_EVENT_STATE_INACTIVE;
6207

6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6219 6220
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6221

6222
	event->overflow_handler	= overflow_handler;
6223

6224
	if (attr->disabled)
6225
		event->state = PERF_EVENT_STATE_OFF;
6226

6227
	pmu = NULL;
6228

6229
	hwc = &event->hw;
6230
	hwc->sample_period = attr->sample_period;
6231
	if (attr->freq && attr->sample_freq)
6232
		hwc->sample_period = 1;
6233
	hwc->last_period = hwc->sample_period;
6234

6235
	local64_set(&hwc->period_left, hwc->sample_period);
6236

6237
	/*
6238
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6239
	 */
6240
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6241 6242
		goto done;

6243
	pmu = perf_init_event(event);
6244

6245 6246
done:
	err = 0;
6247
	if (!pmu)
6248
		err = -EINVAL;
6249 6250
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6251

6252
	if (err) {
6253 6254 6255
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6256
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6257
	}
6258

6259
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6260

6261
	if (!event->parent) {
6262
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6263
			jump_label_inc(&perf_sched_events);
6264
		if (event->attr.mmap || event->attr.mmap_data)
6265 6266 6267 6268 6269
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6270 6271 6272 6273 6274 6275 6276
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6277
	}
6278

6279
	return event;
T
Thomas Gleixner 已提交
6280 6281
}

6282 6283
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6284 6285
{
	u32 size;
6286
	int ret;
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6311 6312 6313
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6314 6315
	 */
	if (size > sizeof(*attr)) {
6316 6317 6318
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6319

6320 6321
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6322

6323
		for (; addr < end; addr++) {
6324 6325 6326 6327 6328 6329
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6330
		size = sizeof(*attr);
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6344
	if (attr->__reserved_1)
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6362 6363
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6364
{
6365
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6366 6367
	int ret = -EINVAL;

6368
	if (!output_event)
6369 6370
		goto set;

6371 6372
	/* don't allow circular references */
	if (event == output_event)
6373 6374
		goto out;

6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6387
set:
6388
	mutex_lock(&event->mmap_mutex);
6389 6390 6391
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6392

6393 6394
	if (output_event) {
		/* get the buffer we want to redirect to */
6395 6396
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6397
			goto unlock;
6398 6399
	}

6400 6401
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6402
	ret = 0;
6403 6404 6405
unlock:
	mutex_unlock(&event->mmap_mutex);

6406 6407
	if (old_buffer)
		perf_buffer_put(old_buffer);
6408 6409 6410 6411
out:
	return ret;
}

T
Thomas Gleixner 已提交
6412
/**
6413
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6414
 *
6415
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6416
 * @pid:		target pid
I
Ingo Molnar 已提交
6417
 * @cpu:		target cpu
6418
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6419
 */
6420 6421
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6422
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6423
{
6424 6425
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6426 6427 6428
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6429
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6430
	struct task_struct *task = NULL;
6431
	struct pmu *pmu;
6432
	int event_fd;
6433
	int move_group = 0;
6434
	int fput_needed = 0;
6435
	int err;
T
Thomas Gleixner 已提交
6436

6437
	/* for future expandability... */
S
Stephane Eranian 已提交
6438
	if (flags & ~PERF_FLAG_ALL)
6439 6440
		return -EINVAL;

6441 6442 6443
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6444

6445 6446 6447 6448 6449
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6450
	if (attr.freq) {
6451
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6452 6453 6454
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6455 6456 6457 6458 6459 6460 6461 6462 6463
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6464 6465 6466 6467
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6468 6469 6470 6471
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6472
			goto err_fd;
6473 6474 6475 6476 6477 6478 6479 6480
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6481
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6482 6483 6484 6485 6486 6487 6488
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6489
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6490 6491
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6492
		goto err_task;
6493 6494
	}

S
Stephane Eranian 已提交
6495 6496 6497 6498
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6499 6500 6501 6502 6503 6504 6505
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6506 6507
	}

6508 6509 6510 6511 6512
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6536 6537 6538 6539

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6540
	ctx = find_get_context(pmu, task, cpu);
6541 6542
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6543
		goto err_alloc;
6544 6545
	}

6546 6547 6548 6549 6550
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6551
	/*
6552
	 * Look up the group leader (we will attach this event to it):
6553
	 */
6554
	if (group_leader) {
6555
		err = -EINVAL;
6556 6557

		/*
I
Ingo Molnar 已提交
6558 6559 6560 6561
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6562
			goto err_context;
I
Ingo Molnar 已提交
6563 6564 6565
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6566
		 */
6567 6568 6569 6570 6571 6572 6573 6574
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6575 6576 6577
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6578
		if (attr.exclusive || attr.pinned)
6579
			goto err_context;
6580 6581 6582 6583 6584
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6585
			goto err_context;
6586
	}
T
Thomas Gleixner 已提交
6587

6588 6589 6590
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6591
		goto err_context;
6592
	}
6593

6594 6595 6596 6597
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6598
		perf_remove_from_context(group_leader);
6599 6600
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6601
			perf_remove_from_context(sibling);
6602 6603 6604 6605
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6606
	}
6607

6608
	event->filp = event_file;
6609
	WARN_ON_ONCE(ctx->parent_ctx);
6610
	mutex_lock(&ctx->mutex);
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6622
	perf_install_in_context(ctx, event, cpu);
6623
	++ctx->generation;
6624
	perf_unpin_context(ctx);
6625
	mutex_unlock(&ctx->mutex);
6626

6627
	event->owner = current;
P
Peter Zijlstra 已提交
6628

6629 6630 6631
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6632

6633 6634 6635 6636
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6637
	perf_event__id_header_size(event);
6638

6639 6640 6641 6642 6643 6644
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6645 6646 6647
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6648

6649
err_context:
6650
	perf_unpin_context(ctx);
6651
	put_ctx(ctx);
6652
err_alloc:
6653
	free_event(event);
P
Peter Zijlstra 已提交
6654 6655 6656
err_task:
	if (task)
		put_task_struct(task);
6657
err_group_fd:
6658
	fput_light(group_file, fput_needed);
6659 6660
err_fd:
	put_unused_fd(event_fd);
6661
	return err;
T
Thomas Gleixner 已提交
6662 6663
}

6664 6665 6666 6667 6668
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6669
 * @task: task to profile (NULL for percpu)
6670 6671 6672
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6673
				 struct task_struct *task,
6674
				 perf_overflow_handler_t overflow_handler)
6675 6676
{
	struct perf_event_context *ctx;
6677
	struct perf_event *event;
6678
	int err;
6679

6680 6681 6682
	/*
	 * Get the target context (task or percpu):
	 */
6683

6684
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6685 6686 6687 6688
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6689

M
Matt Helsley 已提交
6690
	ctx = find_get_context(event->pmu, task, cpu);
6691 6692
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6693
		goto err_free;
6694
	}
6695 6696 6697 6698 6699 6700

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6701
	perf_unpin_context(ctx);
6702 6703 6704 6705
	mutex_unlock(&ctx->mutex);

	return event;

6706 6707 6708
err_free:
	free_event(event);
err:
6709
	return ERR_PTR(err);
6710
}
6711
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6712

6713
static void sync_child_event(struct perf_event *child_event,
6714
			       struct task_struct *child)
6715
{
6716
	struct perf_event *parent_event = child_event->parent;
6717
	u64 child_val;
6718

6719 6720
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6721

P
Peter Zijlstra 已提交
6722
	child_val = perf_event_count(child_event);
6723 6724 6725 6726

	/*
	 * Add back the child's count to the parent's count:
	 */
6727
	atomic64_add(child_val, &parent_event->child_count);
6728 6729 6730 6731
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6732 6733

	/*
6734
	 * Remove this event from the parent's list
6735
	 */
6736 6737 6738 6739
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6740 6741

	/*
6742
	 * Release the parent event, if this was the last
6743 6744
	 * reference to it.
	 */
6745
	fput(parent_event->filp);
6746 6747
}

6748
static void
6749 6750
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6751
			 struct task_struct *child)
6752
{
6753 6754 6755 6756 6757
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6758

6759
	perf_remove_from_context(child_event);
6760

6761
	/*
6762
	 * It can happen that the parent exits first, and has events
6763
	 * that are still around due to the child reference. These
6764
	 * events need to be zapped.
6765
	 */
6766
	if (child_event->parent) {
6767 6768
		sync_child_event(child_event, child);
		free_event(child_event);
6769
	}
6770 6771
}

P
Peter Zijlstra 已提交
6772
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6773
{
6774 6775
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6776
	unsigned long flags;
6777

P
Peter Zijlstra 已提交
6778
	if (likely(!child->perf_event_ctxp[ctxn])) {
6779
		perf_event_task(child, NULL, 0);
6780
		return;
P
Peter Zijlstra 已提交
6781
	}
6782

6783
	local_irq_save(flags);
6784 6785 6786 6787 6788 6789
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6790
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6791
	task_ctx_sched_out(child_ctx, EVENT_ALL);
6792 6793 6794

	/*
	 * Take the context lock here so that if find_get_context is
6795
	 * reading child->perf_event_ctxp, we wait until it has
6796 6797
	 * incremented the context's refcount before we do put_ctx below.
	 */
6798
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
6799
	child->perf_event_ctxp[ctxn] = NULL;
6800 6801 6802
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6803
	 * the events from it.
6804 6805
	 */
	unclone_ctx(child_ctx);
6806
	update_context_time(child_ctx);
6807
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6808 6809

	/*
6810 6811 6812
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6813
	 */
6814
	perf_event_task(child, child_ctx, 0);
6815

6816 6817 6818
	/*
	 * We can recurse on the same lock type through:
	 *
6819 6820 6821
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6822 6823 6824 6825 6826
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6827
	mutex_lock(&child_ctx->mutex);
6828

6829
again:
6830 6831 6832 6833 6834
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6835
				 group_entry)
6836
		__perf_event_exit_task(child_event, child_ctx, child);
6837 6838

	/*
6839
	 * If the last event was a group event, it will have appended all
6840 6841 6842
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6843 6844
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6845
		goto again;
6846 6847 6848 6849

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6850 6851
}

P
Peter Zijlstra 已提交
6852 6853 6854 6855 6856
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6857
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6858 6859
	int ctxn;

P
Peter Zijlstra 已提交
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6875 6876 6877 6878
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6893
	perf_group_detach(event);
6894 6895 6896 6897
	list_del_event(event, ctx);
	free_event(event);
}

6898 6899
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6900
 * perf_event_init_task below, used by fork() in case of fail.
6901
 */
6902
void perf_event_free_task(struct task_struct *task)
6903
{
P
Peter Zijlstra 已提交
6904
	struct perf_event_context *ctx;
6905
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6906
	int ctxn;
6907

P
Peter Zijlstra 已提交
6908 6909 6910 6911
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6912

P
Peter Zijlstra 已提交
6913
		mutex_lock(&ctx->mutex);
6914
again:
P
Peter Zijlstra 已提交
6915 6916 6917
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6918

P
Peter Zijlstra 已提交
6919 6920 6921
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6922

P
Peter Zijlstra 已提交
6923 6924 6925
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6926

P
Peter Zijlstra 已提交
6927
		mutex_unlock(&ctx->mutex);
6928

P
Peter Zijlstra 已提交
6929 6930
		put_ctx(ctx);
	}
6931 6932
}

6933 6934 6935 6936 6937 6938 6939 6940
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6953
	unsigned long flags;
P
Peter Zijlstra 已提交
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6966
					   child,
P
Peter Zijlstra 已提交
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6996 6997 6998 6999
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7000
	perf_event__id_header_size(child_event);
7001

P
Peter Zijlstra 已提交
7002 7003 7004
	/*
	 * Link it up in the child's context:
	 */
7005
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7006
	add_event_to_ctx(child_event, child_ctx);
7007
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7049 7050 7051 7052 7053
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7054
		   struct task_struct *child, int ctxn,
7055 7056 7057
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7058
	struct perf_event_context *child_ctx;
7059 7060 7061 7062

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7063 7064
	}

7065
	child_ctx = child->perf_event_ctxp[ctxn];
7066 7067 7068 7069 7070 7071 7072
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7073

7074
		child_ctx = alloc_perf_context(event->pmu, child);
7075 7076
		if (!child_ctx)
			return -ENOMEM;
7077

P
Peter Zijlstra 已提交
7078
		child->perf_event_ctxp[ctxn] = child_ctx;
7079 7080 7081 7082 7083 7084 7085 7086 7087
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7088 7089
}

7090
/*
7091
 * Initialize the perf_event context in task_struct
7092
 */
P
Peter Zijlstra 已提交
7093
int perf_event_init_context(struct task_struct *child, int ctxn)
7094
{
7095
	struct perf_event_context *child_ctx, *parent_ctx;
7096 7097
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7098
	struct task_struct *parent = current;
7099
	int inherited_all = 1;
7100
	unsigned long flags;
7101
	int ret = 0;
7102

P
Peter Zijlstra 已提交
7103
	if (likely(!parent->perf_event_ctxp[ctxn]))
7104 7105
		return 0;

7106
	/*
7107 7108
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7109
	 */
P
Peter Zijlstra 已提交
7110
	parent_ctx = perf_pin_task_context(parent, ctxn);
7111

7112 7113 7114 7115 7116 7117 7118
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7119 7120 7121 7122
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7123
	mutex_lock(&parent_ctx->mutex);
7124 7125 7126 7127 7128

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7129
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7130 7131
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7132 7133 7134
		if (ret)
			break;
	}
7135

7136 7137 7138 7139 7140 7141 7142 7143 7144
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7145
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7146 7147
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7148
		if (ret)
7149
			break;
7150 7151
	}

7152 7153 7154
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7155
	child_ctx = child->perf_event_ctxp[ctxn];
7156

7157
	if (child_ctx && inherited_all) {
7158 7159 7160
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7161 7162 7163
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7164
		 */
P
Peter Zijlstra 已提交
7165
		cloned_ctx = parent_ctx->parent_ctx;
7166 7167
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7168
			child_ctx->parent_gen = parent_ctx->parent_gen;
7169 7170 7171 7172 7173
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7174 7175
	}

P
Peter Zijlstra 已提交
7176
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7177
	mutex_unlock(&parent_ctx->mutex);
7178

7179
	perf_unpin_context(parent_ctx);
7180
	put_ctx(parent_ctx);
7181

7182
	return ret;
7183 7184
}

P
Peter Zijlstra 已提交
7185 7186 7187 7188 7189 7190 7191
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7192 7193 7194 7195
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7196 7197 7198 7199 7200 7201 7202 7203 7204
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7205 7206
static void __init perf_event_init_all_cpus(void)
{
7207
	struct swevent_htable *swhash;
7208 7209 7210
	int cpu;

	for_each_possible_cpu(cpu) {
7211 7212
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7213
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7214 7215 7216
	}
}

7217
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7218
{
P
Peter Zijlstra 已提交
7219
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7220

7221 7222
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7223 7224
		struct swevent_hlist *hlist;

7225 7226 7227
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7228
	}
7229
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7230 7231
}

P
Peter Zijlstra 已提交
7232
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7233
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7234
{
7235 7236 7237 7238 7239 7240 7241
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7242
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7243
{
P
Peter Zijlstra 已提交
7244
	struct perf_event_context *ctx = __info;
7245
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7246

P
Peter Zijlstra 已提交
7247
	perf_pmu_rotate_stop(ctx->pmu);
7248

7249
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7250
		__perf_remove_from_context(event);
7251
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7252
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7253
}
P
Peter Zijlstra 已提交
7254 7255 7256 7257 7258 7259 7260 7261 7262

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7263
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7264 7265 7266 7267 7268 7269 7270 7271

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7272
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7273
{
7274
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7275

7276 7277 7278
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7279

P
Peter Zijlstra 已提交
7280
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7281 7282
}
#else
7283
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7284 7285
#endif

P
Peter Zijlstra 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7306 7307 7308 7309 7310
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7311
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7312 7313

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7314
	case CPU_DOWN_FAILED:
7315
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7316 7317
		break;

P
Peter Zijlstra 已提交
7318
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7319
	case CPU_DOWN_PREPARE:
7320
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7321 7322 7323 7324 7325 7326 7327 7328 7329
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7330
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7331
{
7332 7333
	int ret;

P
Peter Zijlstra 已提交
7334 7335
	idr_init(&pmu_idr);

7336
	perf_event_init_all_cpus();
7337
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7338 7339 7340
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7341 7342
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7343
	register_reboot_notifier(&perf_reboot_notifier);
7344 7345 7346

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7347
}
P
Peter Zijlstra 已提交
7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7376 7377 7378 7379 7380 7381 7382

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7383
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
	.name = "perf_event",
	.subsys_id = perf_subsys_id,
	.create = perf_cgroup_create,
	.destroy = perf_cgroup_destroy,
	.exit = perf_cgroup_exit,
	.attach = perf_cgroup_attach,
};
#endif /* CONFIG_CGROUP_PERF */