core.c 182.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148

P
Peter Zijlstra 已提交
149 150 151 152
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

153
/*
154
 * perf event paranoia level:
155 156
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
157
 *   1 - disallow cpu events for unpriv
158
 *   2 - disallow kernel profiling for unpriv
159
 */
160
int sysctl_perf_event_paranoid __read_mostly = 1;
161

162 163
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 165

/*
166
 * max perf event sample rate
167
 */
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

static atomic_t perf_sample_allowed_ns __read_mostly =
	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
185
	do_div(tmp, 100);
186 187
	atomic_set(&perf_sample_allowed_ns, tmp);
}
P
Peter Zijlstra 已提交
188

189 190
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
191 192 193 194 195 196 197 198 199 200
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
219 220 221

	return 0;
}
222

223 224 225 226 227 228 229 230 231 232 233 234
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
DEFINE_PER_CPU(u64, running_sample_length);

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
235
	u64 local_samples_len;
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

	if (atomic_read(&perf_sample_allowed_ns) == 0)
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
			"perf samples too long (%lld > %d), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
			avg_local_sample_len,
			atomic_read(&perf_sample_allowed_ns),
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

273
static atomic64_t perf_event_id;
274

275 276 277 278
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
279 280 281 282 283
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
284

285
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
286

287
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
288
{
289
	return "pmu";
T
Thomas Gleixner 已提交
290 291
}

292 293 294 295 296
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
297 298 299 300 301 302
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
319 320
#ifdef CONFIG_CGROUP_PERF

321 322 323 324 325 326 327 328 329 330 331
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
332
	struct perf_cgroup_info	__percpu *info;
333 334
};

335 336 337 338 339
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
369 370
}

371
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
372
{
373
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
422 423
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
424
	/*
425 426
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
427
	 */
428
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
429 430
		return;

431 432 433 434 435 436
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
437 438 439
}

static inline void
440 441
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
442 443 444 445
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

446 447 448 449 450 451
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
452 453 454 455
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
456
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
489 490
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
491 492 493 494 495 496 497 498 499

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
500 501
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
502 503 504 505 506 507 508 509 510 511 512

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
513
				WARN_ON_ONCE(cpuctx->cgrp);
514 515 516 517
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
518 519 520 521
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
522 523
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
524 525 526 527 528 529 530 531
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

532 533
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
534
{
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
557 558
}

559 560
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
561
{
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
580 581 582 583 584 585 586 587
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
588 589
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
590

591
	if (!f.file)
S
Stephane Eranian 已提交
592 593
		return -EBADF;

594
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
595 596 597 598
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
599 600 601 602

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

603
	/* must be done before we fput() the file */
604 605 606 607 608
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
609

S
Stephane Eranian 已提交
610 611 612 613 614 615 616 617 618
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
619
out:
620
	fdput(f);
S
Stephane Eranian 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

694 695
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
696 697 698
{
}

699 700
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
701 702 703 704 705 706 707 708 709 710 711
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
712 713
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
807
	int timer;
808 809 810 811 812

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

813 814 815 816 817 818 819 820 821
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
844
void perf_pmu_disable(struct pmu *pmu)
845
{
P
Peter Zijlstra 已提交
846 847 848
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
849 850
}

P
Peter Zijlstra 已提交
851
void perf_pmu_enable(struct pmu *pmu)
852
{
P
Peter Zijlstra 已提交
853 854 855
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
856 857
}

858 859 860 861 862 863 864
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
865
static void perf_pmu_rotate_start(struct pmu *pmu)
866
{
P
Peter Zijlstra 已提交
867
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
868
	struct list_head *head = &__get_cpu_var(rotation_list);
869

870
	WARN_ON(!irqs_disabled());
871

872 873
	if (list_empty(&cpuctx->rotation_list)) {
		int was_empty = list_empty(head);
874
		list_add(&cpuctx->rotation_list, head);
875 876 877
		if (was_empty)
			tick_nohz_full_kick();
	}
878 879
}

880
static void get_ctx(struct perf_event_context *ctx)
881
{
882
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 884
}

885
static void put_ctx(struct perf_event_context *ctx)
886
{
887 888 889
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
890 891
		if (ctx->task)
			put_task_struct(ctx->task);
892
		kfree_rcu(ctx, rcu_head);
893
	}
894 895
}

896
static void unclone_ctx(struct perf_event_context *ctx)
897 898 899 900 901 902 903
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

926
/*
927
 * If we inherit events we want to return the parent event id
928 929
 * to userspace.
 */
930
static u64 primary_event_id(struct perf_event *event)
931
{
932
	u64 id = event->id;
933

934 935
	if (event->parent)
		id = event->parent->id;
936 937 938 939

	return id;
}

940
/*
941
 * Get the perf_event_context for a task and lock it.
942 943 944
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
945
static struct perf_event_context *
P
Peter Zijlstra 已提交
946
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947
{
948
	struct perf_event_context *ctx;
949

P
Peter Zijlstra 已提交
950
retry:
951 952 953 954 955 956 957 958 959 960 961
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
962
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
963 964 965 966
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
967
		 * perf_event_task_sched_out, though the
968 969 970 971 972 973
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
974
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
975
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
976
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
977 978
			rcu_read_unlock();
			preempt_enable();
979 980
			goto retry;
		}
981 982

		if (!atomic_inc_not_zero(&ctx->refcount)) {
983
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 985
			ctx = NULL;
		}
986 987
	}
	rcu_read_unlock();
988
	preempt_enable();
989 990 991 992 993 994 995 996
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
997 998
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
999
{
1000
	struct perf_event_context *ctx;
1001 1002
	unsigned long flags;

P
Peter Zijlstra 已提交
1003
	ctx = perf_lock_task_context(task, ctxn, &flags);
1004 1005
	if (ctx) {
		++ctx->pin_count;
1006
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007 1008 1009 1010
	}
	return ctx;
}

1011
static void perf_unpin_context(struct perf_event_context *ctx)
1012 1013 1014
{
	unsigned long flags;

1015
	raw_spin_lock_irqsave(&ctx->lock, flags);
1016
	--ctx->pin_count;
1017
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1031 1032 1033
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1034 1035 1036 1037

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1038 1039 1040
	return ctx ? ctx->time : 0;
}

1041 1042
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1043
 * The caller of this function needs to hold the ctx->lock.
1044 1045 1046 1047 1048 1049 1050 1051 1052
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1064
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1065 1066
	else if (ctx->is_active)
		run_end = ctx->time;
1067 1068 1069 1070
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1071 1072 1073 1074

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1075
		run_end = perf_event_time(event);
1076 1077

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1078

1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1102
/*
1103
 * Add a event from the lists for its context.
1104 1105
 * Must be called with ctx->mutex and ctx->lock held.
 */
1106
static void
1107
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108
{
1109 1110
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1111 1112

	/*
1113 1114 1115
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1116
	 */
1117
	if (event->group_leader == event) {
1118 1119
		struct list_head *list;

1120 1121 1122
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1123 1124
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1125
	}
P
Peter Zijlstra 已提交
1126

1127
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1128 1129
		ctx->nr_cgroups++;

1130 1131 1132
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1133
	list_add_rcu(&event->event_entry, &ctx->event_list);
1134
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1135
		perf_pmu_rotate_start(ctx->pmu);
1136 1137
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1138
		ctx->nr_stat++;
1139 1140
}

J
Jiri Olsa 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1189 1190 1191 1192 1193 1194
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1195 1196 1197
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1198 1199 1200
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1201 1202 1203
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1204 1205 1206 1207 1208 1209 1210 1211 1212
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1228
	event->id_header_size = size;
1229 1230
}

1231 1232
static void perf_group_attach(struct perf_event *event)
{
1233
	struct perf_event *group_leader = event->group_leader, *pos;
1234

P
Peter Zijlstra 已提交
1235 1236 1237 1238 1239 1240
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1252 1253 1254 1255 1256

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1257 1258
}

1259
/*
1260
 * Remove a event from the lists for its context.
1261
 * Must be called with ctx->mutex and ctx->lock held.
1262
 */
1263
static void
1264
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1265
{
1266
	struct perf_cpu_context *cpuctx;
1267 1268 1269 1270
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1271
		return;
1272 1273 1274

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1275
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1276
		ctx->nr_cgroups--;
1277 1278 1279 1280 1281 1282 1283 1284 1285
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1286

1287 1288 1289
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1290 1291
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1292
		ctx->nr_stat--;
1293

1294
	list_del_rcu(&event->event_entry);
1295

1296 1297
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1298

1299
	update_group_times(event);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1310 1311
}

1312
static void perf_group_detach(struct perf_event *event)
1313 1314
{
	struct perf_event *sibling, *tmp;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1331
		goto out;
1332 1333 1334 1335
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1336

1337
	/*
1338 1339
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1340
	 * to whatever list we are on.
1341
	 */
1342
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1343 1344
		if (list)
			list_move_tail(&sibling->group_entry, list);
1345
		sibling->group_leader = sibling;
1346 1347 1348

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1349
	}
1350 1351 1352 1353 1354 1355

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1356 1357
}

1358 1359 1360
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1361 1362
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1363 1364
}

1365 1366
static void
event_sched_out(struct perf_event *event,
1367
		  struct perf_cpu_context *cpuctx,
1368
		  struct perf_event_context *ctx)
1369
{
1370
	u64 tstamp = perf_event_time(event);
1371 1372 1373 1374 1375 1376 1377 1378 1379
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1380
		delta = tstamp - event->tstamp_stopped;
1381
		event->tstamp_running += delta;
1382
		event->tstamp_stopped = tstamp;
1383 1384
	}

1385
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1386
		return;
1387

1388 1389 1390 1391
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1392
	}
1393
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1394
	event->pmu->del(event, 0);
1395
	event->oncpu = -1;
1396

1397
	if (!is_software_event(event))
1398 1399
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1400 1401
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1402
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1403 1404 1405
		cpuctx->exclusive = 0;
}

1406
static void
1407
group_sched_out(struct perf_event *group_event,
1408
		struct perf_cpu_context *cpuctx,
1409
		struct perf_event_context *ctx)
1410
{
1411
	struct perf_event *event;
1412
	int state = group_event->state;
1413

1414
	event_sched_out(group_event, cpuctx, ctx);
1415 1416 1417 1418

	/*
	 * Schedule out siblings (if any):
	 */
1419 1420
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1421

1422
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1423 1424 1425
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1426
/*
1427
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1428
 *
1429
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1430 1431
 * remove it from the context list.
 */
1432
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1433
{
1434 1435
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1436
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1437

1438
	raw_spin_lock(&ctx->lock);
1439 1440
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1441 1442 1443 1444
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1445
	raw_spin_unlock(&ctx->lock);
1446 1447

	return 0;
T
Thomas Gleixner 已提交
1448 1449 1450 1451
}


/*
1452
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1453
 *
1454
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1455
 * call when the task is on a CPU.
1456
 *
1457 1458
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1459 1460
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1461
 * When called from perf_event_exit_task, it's OK because the
1462
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1463
 */
1464
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1465
{
1466
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1467 1468
	struct task_struct *task = ctx->task;

1469 1470
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1471 1472
	if (!task) {
		/*
1473
		 * Per cpu events are removed via an smp call and
1474
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1475
		 */
1476
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1477 1478 1479 1480
		return;
	}

retry:
1481 1482
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1483

1484
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1485
	/*
1486 1487
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1488
	 */
1489
	if (ctx->is_active) {
1490
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1491 1492 1493 1494
		goto retry;
	}

	/*
1495 1496
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1497
	 */
1498
	list_del_event(event, ctx);
1499
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1500 1501
}

1502
/*
1503
 * Cross CPU call to disable a performance event
1504
 */
1505
int __perf_event_disable(void *info)
1506
{
1507 1508
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1509
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1510 1511

	/*
1512 1513
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1514 1515 1516
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1517
	 */
1518
	if (ctx->task && cpuctx->task_ctx != ctx)
1519
		return -EINVAL;
1520

1521
	raw_spin_lock(&ctx->lock);
1522 1523

	/*
1524
	 * If the event is on, turn it off.
1525 1526
	 * If it is in error state, leave it in error state.
	 */
1527
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1528
		update_context_time(ctx);
S
Stephane Eranian 已提交
1529
		update_cgrp_time_from_event(event);
1530 1531 1532
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1533
		else
1534 1535
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1536 1537
	}

1538
	raw_spin_unlock(&ctx->lock);
1539 1540

	return 0;
1541 1542 1543
}

/*
1544
 * Disable a event.
1545
 *
1546 1547
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1548
 * remains valid.  This condition is satisifed when called through
1549 1550 1551 1552
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1553
 * is the current context on this CPU and preemption is disabled,
1554
 * hence we can't get into perf_event_task_sched_out for this context.
1555
 */
1556
void perf_event_disable(struct perf_event *event)
1557
{
1558
	struct perf_event_context *ctx = event->ctx;
1559 1560 1561 1562
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1563
		 * Disable the event on the cpu that it's on
1564
		 */
1565
		cpu_function_call(event->cpu, __perf_event_disable, event);
1566 1567 1568
		return;
	}

P
Peter Zijlstra 已提交
1569
retry:
1570 1571
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1572

1573
	raw_spin_lock_irq(&ctx->lock);
1574
	/*
1575
	 * If the event is still active, we need to retry the cross-call.
1576
	 */
1577
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1578
		raw_spin_unlock_irq(&ctx->lock);
1579 1580 1581 1582 1583
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1584 1585 1586 1587 1588 1589 1590
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1591 1592 1593
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1594
	}
1595
	raw_spin_unlock_irq(&ctx->lock);
1596
}
1597
EXPORT_SYMBOL_GPL(perf_event_disable);
1598

S
Stephane Eranian 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1634 1635 1636 1637
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1638
static int
1639
event_sched_in(struct perf_event *event,
1640
		 struct perf_cpu_context *cpuctx,
1641
		 struct perf_event_context *ctx)
1642
{
1643 1644
	u64 tstamp = perf_event_time(event);

1645
	if (event->state <= PERF_EVENT_STATE_OFF)
1646 1647
		return 0;

1648
	event->state = PERF_EVENT_STATE_ACTIVE;
1649
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1661 1662 1663 1664 1665
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1666
	if (event->pmu->add(event, PERF_EF_START)) {
1667 1668
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1669 1670 1671
		return -EAGAIN;
	}

1672
	event->tstamp_running += tstamp - event->tstamp_stopped;
1673

S
Stephane Eranian 已提交
1674
	perf_set_shadow_time(event, ctx, tstamp);
1675

1676
	if (!is_software_event(event))
1677
		cpuctx->active_oncpu++;
1678
	ctx->nr_active++;
1679 1680
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1681

1682
	if (event->attr.exclusive)
1683 1684
		cpuctx->exclusive = 1;

1685 1686 1687
	return 0;
}

1688
static int
1689
group_sched_in(struct perf_event *group_event,
1690
	       struct perf_cpu_context *cpuctx,
1691
	       struct perf_event_context *ctx)
1692
{
1693
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1694
	struct pmu *pmu = group_event->pmu;
1695 1696
	u64 now = ctx->time;
	bool simulate = false;
1697

1698
	if (group_event->state == PERF_EVENT_STATE_OFF)
1699 1700
		return 0;

P
Peter Zijlstra 已提交
1701
	pmu->start_txn(pmu);
1702

1703
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1704
		pmu->cancel_txn(pmu);
1705
		perf_cpu_hrtimer_restart(cpuctx);
1706
		return -EAGAIN;
1707
	}
1708 1709 1710 1711

	/*
	 * Schedule in siblings as one group (if any):
	 */
1712
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1713
		if (event_sched_in(event, cpuctx, ctx)) {
1714
			partial_group = event;
1715 1716 1717 1718
			goto group_error;
		}
	}

1719
	if (!pmu->commit_txn(pmu))
1720
		return 0;
1721

1722 1723 1724 1725
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1736
	 */
1737 1738
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1739 1740 1741 1742 1743 1744 1745 1746
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1747
	}
1748
	event_sched_out(group_event, cpuctx, ctx);
1749

P
Peter Zijlstra 已提交
1750
	pmu->cancel_txn(pmu);
1751

1752 1753
	perf_cpu_hrtimer_restart(cpuctx);

1754 1755 1756
	return -EAGAIN;
}

1757
/*
1758
 * Work out whether we can put this event group on the CPU now.
1759
 */
1760
static int group_can_go_on(struct perf_event *event,
1761 1762 1763 1764
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1765
	 * Groups consisting entirely of software events can always go on.
1766
	 */
1767
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1768 1769 1770
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1771
	 * events can go on.
1772 1773 1774 1775 1776
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1777
	 * events on the CPU, it can't go on.
1778
	 */
1779
	if (event->attr.exclusive && cpuctx->active_oncpu)
1780 1781 1782 1783 1784 1785 1786 1787
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1788 1789
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1790
{
1791 1792
	u64 tstamp = perf_event_time(event);

1793
	list_add_event(event, ctx);
1794
	perf_group_attach(event);
1795 1796 1797
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1798 1799
}

1800 1801 1802 1803 1804 1805
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1819
/*
1820
 * Cross CPU call to install and enable a performance event
1821 1822
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1823
 */
1824
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1825
{
1826 1827
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1828
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1829 1830 1831
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1832
	perf_ctx_lock(cpuctx, task_ctx);
1833
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1834 1835

	/*
1836
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1837
	 */
1838
	if (task_ctx)
1839
		task_ctx_sched_out(task_ctx);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1854 1855
		task = task_ctx->task;
	}
1856

1857
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1858

1859
	update_context_time(ctx);
S
Stephane Eranian 已提交
1860 1861 1862 1863 1864 1865
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1866

1867
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1868

1869
	/*
1870
	 * Schedule everything back in
1871
	 */
1872
	perf_event_sched_in(cpuctx, task_ctx, task);
1873 1874 1875

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1876 1877

	return 0;
T
Thomas Gleixner 已提交
1878 1879 1880
}

/*
1881
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1882
 *
1883 1884
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1885
 *
1886
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1887 1888 1889 1890
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1891 1892
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1893 1894 1895 1896
			int cpu)
{
	struct task_struct *task = ctx->task;

1897 1898
	lockdep_assert_held(&ctx->mutex);

1899
	event->ctx = ctx;
1900 1901
	if (event->cpu != -1)
		event->cpu = cpu;
1902

T
Thomas Gleixner 已提交
1903 1904
	if (!task) {
		/*
1905
		 * Per cpu events are installed via an smp call and
1906
		 * the install is always successful.
T
Thomas Gleixner 已提交
1907
		 */
1908
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1909 1910 1911 1912
		return;
	}

retry:
1913 1914
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1915

1916
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1917
	/*
1918 1919
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1920
	 */
1921
	if (ctx->is_active) {
1922
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1923 1924 1925 1926
		goto retry;
	}

	/*
1927 1928
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1929
	 */
1930
	add_event_to_ctx(event, ctx);
1931
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1932 1933
}

1934
/*
1935
 * Put a event into inactive state and update time fields.
1936 1937 1938 1939 1940 1941
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1942
static void __perf_event_mark_enabled(struct perf_event *event)
1943
{
1944
	struct perf_event *sub;
1945
	u64 tstamp = perf_event_time(event);
1946

1947
	event->state = PERF_EVENT_STATE_INACTIVE;
1948
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1949
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950 1951
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1952
	}
1953 1954
}

1955
/*
1956
 * Cross CPU call to enable a performance event
1957
 */
1958
static int __perf_event_enable(void *info)
1959
{
1960 1961 1962
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1963
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1964
	int err;
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1976
		return -EINVAL;
1977

1978
	raw_spin_lock(&ctx->lock);
1979
	update_context_time(ctx);
1980

1981
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1982
		goto unlock;
S
Stephane Eranian 已提交
1983 1984 1985 1986

	/*
	 * set current task's cgroup time reference point
	 */
1987
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1988

1989
	__perf_event_mark_enabled(event);
1990

S
Stephane Eranian 已提交
1991 1992 1993
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1994
		goto unlock;
S
Stephane Eranian 已提交
1995
	}
1996

1997
	/*
1998
	 * If the event is in a group and isn't the group leader,
1999
	 * then don't put it on unless the group is on.
2000
	 */
2001
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2002
		goto unlock;
2003

2004
	if (!group_can_go_on(event, cpuctx, 1)) {
2005
		err = -EEXIST;
2006
	} else {
2007
		if (event == leader)
2008
			err = group_sched_in(event, cpuctx, ctx);
2009
		else
2010
			err = event_sched_in(event, cpuctx, ctx);
2011
	}
2012 2013 2014

	if (err) {
		/*
2015
		 * If this event can't go on and it's part of a
2016 2017
		 * group, then the whole group has to come off.
		 */
2018
		if (leader != event) {
2019
			group_sched_out(leader, cpuctx, ctx);
2020 2021
			perf_cpu_hrtimer_restart(cpuctx);
		}
2022
		if (leader->attr.pinned) {
2023
			update_group_times(leader);
2024
			leader->state = PERF_EVENT_STATE_ERROR;
2025
		}
2026 2027
	}

P
Peter Zijlstra 已提交
2028
unlock:
2029
	raw_spin_unlock(&ctx->lock);
2030 2031

	return 0;
2032 2033 2034
}

/*
2035
 * Enable a event.
2036
 *
2037 2038
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2039
 * remains valid.  This condition is satisfied when called through
2040 2041
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2042
 */
2043
void perf_event_enable(struct perf_event *event)
2044
{
2045
	struct perf_event_context *ctx = event->ctx;
2046 2047 2048 2049
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2050
		 * Enable the event on the cpu that it's on
2051
		 */
2052
		cpu_function_call(event->cpu, __perf_event_enable, event);
2053 2054 2055
		return;
	}

2056
	raw_spin_lock_irq(&ctx->lock);
2057
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2058 2059 2060
		goto out;

	/*
2061 2062
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2063 2064 2065 2066
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2067 2068
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2069

P
Peter Zijlstra 已提交
2070
retry:
2071
	if (!ctx->is_active) {
2072
		__perf_event_mark_enabled(event);
2073 2074 2075
		goto out;
	}

2076
	raw_spin_unlock_irq(&ctx->lock);
2077 2078 2079

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2080

2081
	raw_spin_lock_irq(&ctx->lock);
2082 2083

	/*
2084
	 * If the context is active and the event is still off,
2085 2086
	 * we need to retry the cross-call.
	 */
2087 2088 2089 2090 2091 2092
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2093
		goto retry;
2094
	}
2095

P
Peter Zijlstra 已提交
2096
out:
2097
	raw_spin_unlock_irq(&ctx->lock);
2098
}
2099
EXPORT_SYMBOL_GPL(perf_event_enable);
2100

2101
int perf_event_refresh(struct perf_event *event, int refresh)
2102
{
2103
	/*
2104
	 * not supported on inherited events
2105
	 */
2106
	if (event->attr.inherit || !is_sampling_event(event))
2107 2108
		return -EINVAL;

2109 2110
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2111 2112

	return 0;
2113
}
2114
EXPORT_SYMBOL_GPL(perf_event_refresh);
2115

2116 2117 2118
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2119
{
2120
	struct perf_event *event;
2121
	int is_active = ctx->is_active;
2122

2123
	ctx->is_active &= ~event_type;
2124
	if (likely(!ctx->nr_events))
2125 2126
		return;

2127
	update_context_time(ctx);
S
Stephane Eranian 已提交
2128
	update_cgrp_time_from_cpuctx(cpuctx);
2129
	if (!ctx->nr_active)
2130
		return;
2131

P
Peter Zijlstra 已提交
2132
	perf_pmu_disable(ctx->pmu);
2133
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134 2135
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2136
	}
2137

2138
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2141
	}
P
Peter Zijlstra 已提交
2142
	perf_pmu_enable(ctx->pmu);
2143 2144
}

2145 2146 2147
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2148 2149 2150 2151
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2152
 * in them directly with an fd; we can only enable/disable all
2153
 * events via prctl, or enable/disable all events in a family
2154 2155
 * via ioctl, which will have the same effect on both contexts.
 */
2156 2157
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2158 2159
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160
		&& ctx1->parent_gen == ctx2->parent_gen
2161
		&& !ctx1->pin_count && !ctx2->pin_count;
2162 2163
}

2164 2165
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2166 2167 2168
{
	u64 value;

2169
	if (!event->attr.inherit_stat)
2170 2171 2172
		return;

	/*
2173
	 * Update the event value, we cannot use perf_event_read()
2174 2175
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2176
	 * we know the event must be on the current CPU, therefore we
2177 2178
	 * don't need to use it.
	 */
2179 2180
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2181 2182
		event->pmu->read(event);
		/* fall-through */
2183

2184 2185
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2186 2187 2188 2189 2190 2191 2192
		break;

	default:
		break;
	}

	/*
2193
	 * In order to keep per-task stats reliable we need to flip the event
2194 2195
	 * values when we flip the contexts.
	 */
2196 2197 2198
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2199

2200 2201
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2202

2203
	/*
2204
	 * Since we swizzled the values, update the user visible data too.
2205
	 */
2206 2207
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2208 2209 2210 2211 2212
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2213 2214
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2215
{
2216
	struct perf_event *event, *next_event;
2217 2218 2219 2220

	if (!ctx->nr_stat)
		return;

2221 2222
	update_context_time(ctx);

2223 2224
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2225

2226 2227
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2228

2229 2230
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2231

2232
		__perf_event_sync_stat(event, next_event);
2233

2234 2235
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2236 2237 2238
	}
}

2239 2240
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2241
{
P
Peter Zijlstra 已提交
2242
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243 2244
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2245
	struct perf_cpu_context *cpuctx;
2246
	int do_switch = 1;
T
Thomas Gleixner 已提交
2247

P
Peter Zijlstra 已提交
2248 2249
	if (likely(!ctx))
		return;
2250

P
Peter Zijlstra 已提交
2251 2252
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2253 2254
		return;

2255 2256
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2257
	next_ctx = next->perf_event_ctxp[ctxn];
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2269 2270
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271
		if (context_equiv(ctx, next_ctx)) {
2272 2273
			/*
			 * XXX do we need a memory barrier of sorts
2274
			 * wrt to rcu_dereference() of perf_event_ctxp
2275
			 */
P
Peter Zijlstra 已提交
2276 2277
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2278 2279 2280
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2281

2282
			perf_event_sync_stat(ctx, next_ctx);
2283
		}
2284 2285
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2286
	}
2287
	rcu_read_unlock();
2288

2289
	if (do_switch) {
2290
		raw_spin_lock(&ctx->lock);
2291
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292
		cpuctx->task_ctx = NULL;
2293
		raw_spin_unlock(&ctx->lock);
2294
	}
T
Thomas Gleixner 已提交
2295 2296
}

P
Peter Zijlstra 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2311 2312
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2313 2314 2315 2316 2317
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2318 2319 2320 2321 2322 2323 2324

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2326 2327
}

2328
static void task_ctx_sched_out(struct perf_event_context *ctx)
2329
{
P
Peter Zijlstra 已提交
2330
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2331

2332 2333
	if (!cpuctx->task_ctx)
		return;
2334 2335 2336 2337

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2338
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339 2340 2341
	cpuctx->task_ctx = NULL;
}

2342 2343 2344 2345 2346 2347 2348
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2349 2350
}

2351
static void
2352
ctx_pinned_sched_in(struct perf_event_context *ctx,
2353
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2354
{
2355
	struct perf_event *event;
T
Thomas Gleixner 已提交
2356

2357 2358
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2359
			continue;
2360
		if (!event_filter_match(event))
2361 2362
			continue;

S
Stephane Eranian 已提交
2363 2364 2365 2366
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2367
		if (group_can_go_on(event, cpuctx, 1))
2368
			group_sched_in(event, cpuctx, ctx);
2369 2370 2371 2372 2373

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2374 2375 2376
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2377
		}
2378
	}
2379 2380 2381 2382
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2383
		      struct perf_cpu_context *cpuctx)
2384 2385 2386
{
	struct perf_event *event;
	int can_add_hw = 1;
2387

2388 2389 2390
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2391
			continue;
2392 2393
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2394
		 * of events:
2395
		 */
2396
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2397 2398
			continue;

S
Stephane Eranian 已提交
2399 2400 2401 2402
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2403
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404
			if (group_sched_in(event, cpuctx, ctx))
2405
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2406
		}
T
Thomas Gleixner 已提交
2407
	}
2408 2409 2410 2411 2412
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2413 2414
	     enum event_type_t event_type,
	     struct task_struct *task)
2415
{
S
Stephane Eranian 已提交
2416
	u64 now;
2417
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2418

2419
	ctx->is_active |= event_type;
2420
	if (likely(!ctx->nr_events))
2421
		return;
2422

S
Stephane Eranian 已提交
2423 2424
	now = perf_clock();
	ctx->timestamp = now;
2425
	perf_cgroup_set_timestamp(task, ctx);
2426 2427 2428 2429
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2430
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431
		ctx_pinned_sched_in(ctx, cpuctx);
2432 2433

	/* Then walk through the lower prio flexible groups */
2434
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435
		ctx_flexible_sched_in(ctx, cpuctx);
2436 2437
}

2438
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2439 2440
			     enum event_type_t event_type,
			     struct task_struct *task)
2441 2442 2443
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2444
	ctx_sched_in(ctx, cpuctx, event_type, task);
2445 2446
}

S
Stephane Eranian 已提交
2447 2448
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2449
{
P
Peter Zijlstra 已提交
2450
	struct perf_cpu_context *cpuctx;
2451

P
Peter Zijlstra 已提交
2452
	cpuctx = __get_cpu_context(ctx);
2453 2454 2455
	if (cpuctx->task_ctx == ctx)
		return;

2456
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2457
	perf_pmu_disable(ctx->pmu);
2458 2459 2460 2461 2462 2463 2464
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2465 2466
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2467

2468 2469
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2470 2471 2472
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2473 2474 2475 2476
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2477
	perf_pmu_rotate_start(ctx->pmu);
2478 2479
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2551 2552
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2562
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2563
	}
S
Stephane Eranian 已提交
2564 2565 2566 2567 2568 2569
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570
		perf_cgroup_sched_in(prev, task);
2571 2572 2573 2574

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2604
#define REDUCE_FLS(a, b)		\
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2644 2645 2646
	if (!divisor)
		return dividend;

2647 2648 2649
	return div64_u64(dividend, divisor);
}

2650 2651 2652
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2653
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2654
{
2655
	struct hw_perf_event *hwc = &event->hw;
2656
	s64 period, sample_period;
2657 2658
	s64 delta;

2659
	period = perf_calculate_period(event, nsec, count);
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2670

2671
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2672 2673 2674
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2675
		local64_set(&hwc->period_left, 0);
2676 2677 2678

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2679
	}
2680 2681
}

2682 2683 2684 2685 2686 2687 2688
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2689
{
2690 2691
	struct perf_event *event;
	struct hw_perf_event *hwc;
2692
	u64 now, period = TICK_NSEC;
2693
	s64 delta;
2694

2695 2696 2697 2698 2699 2700
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2701 2702
		return;

2703
	raw_spin_lock(&ctx->lock);
2704
	perf_pmu_disable(ctx->pmu);
2705

2706
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2708 2709
			continue;

2710
		if (!event_filter_match(event))
2711 2712
			continue;

2713
		hwc = &event->hw;
2714

2715 2716
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2717
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2718
			event->pmu->start(event, 0);
2719 2720
		}

2721
		if (!event->attr.freq || !event->attr.sample_freq)
2722 2723
			continue;

2724 2725 2726 2727 2728
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2729
		now = local64_read(&event->count);
2730 2731
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2732

2733 2734 2735
		/*
		 * restart the event
		 * reload only if value has changed
2736 2737 2738
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2739
		 */
2740
		if (delta > 0)
2741
			perf_adjust_period(event, period, delta, false);
2742 2743

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2744
	}
2745

2746
	perf_pmu_enable(ctx->pmu);
2747
	raw_spin_unlock(&ctx->lock);
2748 2749
}

2750
/*
2751
 * Round-robin a context's events:
2752
 */
2753
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2754
{
2755 2756 2757 2758 2759 2760
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2761 2762
}

2763
/*
2764 2765 2766
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2767
 */
2768
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2769
{
P
Peter Zijlstra 已提交
2770
	struct perf_event_context *ctx = NULL;
2771
	int rotate = 0, remove = 1;
2772

2773
	if (cpuctx->ctx.nr_events) {
2774
		remove = 0;
2775 2776 2777
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2778

P
Peter Zijlstra 已提交
2779
	ctx = cpuctx->task_ctx;
2780
	if (ctx && ctx->nr_events) {
2781
		remove = 0;
2782 2783 2784
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2785

2786
	if (!rotate)
2787 2788
		goto done;

2789
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2790
	perf_pmu_disable(cpuctx->ctx.pmu);
2791

2792 2793 2794
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2795

2796 2797 2798
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2799

2800
	perf_event_sched_in(cpuctx, ctx, current);
2801

2802 2803
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2804
done:
2805 2806
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2807 2808

	return rotate;
2809 2810
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
	if (list_empty(&__get_cpu_var(rotation_list)))
		return true;
	else
		return false;
}
#endif

2821 2822 2823 2824
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2825 2826
	struct perf_event_context *ctx;
	int throttled;
2827

2828 2829
	WARN_ON(!irqs_disabled());

2830 2831 2832
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2833
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2834 2835 2836 2837 2838 2839
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2840
	}
T
Thomas Gleixner 已提交
2841 2842
}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2853
	__perf_event_mark_enabled(event);
2854 2855 2856 2857

	return 1;
}

2858
/*
2859
 * Enable all of a task's events that have been marked enable-on-exec.
2860 2861
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2862
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2863
{
2864
	struct perf_event *event;
2865 2866
	unsigned long flags;
	int enabled = 0;
2867
	int ret;
2868 2869

	local_irq_save(flags);
2870
	if (!ctx || !ctx->nr_events)
2871 2872
		goto out;

2873 2874 2875 2876 2877 2878 2879
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2880
	perf_cgroup_sched_out(current, NULL);
2881

2882
	raw_spin_lock(&ctx->lock);
2883
	task_ctx_sched_out(ctx);
2884

2885
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2886 2887 2888
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2889 2890 2891
	}

	/*
2892
	 * Unclone this context if we enabled any event.
2893
	 */
2894 2895
	if (enabled)
		unclone_ctx(ctx);
2896

2897
	raw_spin_unlock(&ctx->lock);
2898

2899 2900 2901
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2902
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2903
out:
2904 2905 2906
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2907
/*
2908
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2909
 */
2910
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2911
{
2912 2913
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2914
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2915

2916 2917 2918 2919
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2920 2921
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2922 2923 2924 2925
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2926
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2927
	if (ctx->is_active) {
2928
		update_context_time(ctx);
S
Stephane Eranian 已提交
2929 2930
		update_cgrp_time_from_event(event);
	}
2931
	update_event_times(event);
2932 2933
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2934
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2935 2936
}

P
Peter Zijlstra 已提交
2937 2938
static inline u64 perf_event_count(struct perf_event *event)
{
2939
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2940 2941
}

2942
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2943 2944
{
	/*
2945 2946
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2947
	 */
2948 2949 2950 2951
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2952 2953 2954
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2955
		raw_spin_lock_irqsave(&ctx->lock, flags);
2956 2957 2958 2959 2960
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2961
		if (ctx->is_active) {
2962
			update_context_time(ctx);
S
Stephane Eranian 已提交
2963 2964
			update_cgrp_time_from_event(event);
		}
2965
		update_event_times(event);
2966
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2967 2968
	}

P
Peter Zijlstra 已提交
2969
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2970 2971
}

2972
/*
2973
 * Initialize the perf_event context in a task_struct:
2974
 */
2975
static void __perf_event_init_context(struct perf_event_context *ctx)
2976
{
2977
	raw_spin_lock_init(&ctx->lock);
2978
	mutex_init(&ctx->mutex);
2979 2980
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2981 2982
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2998
	}
2999 3000 3001
	ctx->pmu = pmu;

	return ctx;
3002 3003
}

3004 3005 3006 3007 3008
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3009 3010

	rcu_read_lock();
3011
	if (!vpid)
T
Thomas Gleixner 已提交
3012 3013
		task = current;
	else
3014
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3015 3016 3017 3018 3019 3020 3021 3022
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3023 3024 3025 3026
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3027 3028 3029 3030 3031 3032 3033
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3034 3035 3036
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3037
static struct perf_event_context *
M
Matt Helsley 已提交
3038
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3039
{
3040
	struct perf_event_context *ctx;
3041
	struct perf_cpu_context *cpuctx;
3042
	unsigned long flags;
P
Peter Zijlstra 已提交
3043
	int ctxn, err;
T
Thomas Gleixner 已提交
3044

3045
	if (!task) {
3046
		/* Must be root to operate on a CPU event: */
3047
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3048 3049 3050
			return ERR_PTR(-EACCES);

		/*
3051
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3052 3053 3054
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3055
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3056 3057
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3058
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3059
		ctx = &cpuctx->ctx;
3060
		get_ctx(ctx);
3061
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3062 3063 3064 3065

		return ctx;
	}

P
Peter Zijlstra 已提交
3066 3067 3068 3069 3070
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3071
retry:
P
Peter Zijlstra 已提交
3072
	ctx = perf_lock_task_context(task, ctxn, &flags);
3073
	if (ctx) {
3074
		unclone_ctx(ctx);
3075
		++ctx->pin_count;
3076
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3077
	} else {
3078
		ctx = alloc_perf_context(pmu, task);
3079 3080 3081
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3082

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3093
		else {
3094
			get_ctx(ctx);
3095
			++ctx->pin_count;
3096
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3097
		}
3098 3099 3100
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3101
			put_ctx(ctx);
3102 3103 3104 3105

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3106 3107 3108
		}
	}

T
Thomas Gleixner 已提交
3109
	return ctx;
3110

P
Peter Zijlstra 已提交
3111
errout:
3112
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3113 3114
}

L
Li Zefan 已提交
3115 3116
static void perf_event_free_filter(struct perf_event *event);

3117
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3118
{
3119
	struct perf_event *event;
P
Peter Zijlstra 已提交
3120

3121 3122 3123
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3124
	perf_event_free_filter(event);
3125
	kfree(event);
P
Peter Zijlstra 已提交
3126 3127
}

3128
static void ring_buffer_put(struct ring_buffer *rb);
3129
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
static void unaccount_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}

static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
static void __free_event(struct perf_event *event)
{
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3180
static void free_event(struct perf_event *event)
3181
{
3182
	irq_work_sync(&event->pending);
3183

3184
	unaccount_event(event);
3185

3186
	if (event->rb) {
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3203 3204
	}

S
Stephane Eranian 已提交
3205 3206 3207
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3208

3209
	__free_event(event);
3210 3211
}

3212
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3213
{
3214
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3215

3216
	WARN_ON_ONCE(ctx->parent_ctx);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3230
	raw_spin_lock_irq(&ctx->lock);
3231
	perf_group_detach(event);
3232
	raw_spin_unlock_irq(&ctx->lock);
3233
	perf_remove_from_context(event);
3234
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3235

3236
	free_event(event);
T
Thomas Gleixner 已提交
3237 3238 3239

	return 0;
}
3240
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3241

3242 3243 3244
/*
 * Called when the last reference to the file is gone.
 */
3245
static void put_event(struct perf_event *event)
3246
{
P
Peter Zijlstra 已提交
3247
	struct task_struct *owner;
3248

3249 3250
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3251

P
Peter Zijlstra 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3285 3286 3287 3288 3289 3290 3291
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3292 3293
}

3294
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3295
{
3296
	struct perf_event *child;
3297 3298
	u64 total = 0;

3299 3300 3301
	*enabled = 0;
	*running = 0;

3302
	mutex_lock(&event->child_mutex);
3303
	total += perf_event_read(event);
3304 3305 3306 3307 3308 3309
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3310
		total += perf_event_read(child);
3311 3312 3313
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3314
	mutex_unlock(&event->child_mutex);
3315 3316 3317

	return total;
}
3318
EXPORT_SYMBOL_GPL(perf_event_read_value);
3319

3320
static int perf_event_read_group(struct perf_event *event,
3321 3322
				   u64 read_format, char __user *buf)
{
3323
	struct perf_event *leader = event->group_leader, *sub;
3324 3325
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3326
	u64 values[5];
3327
	u64 count, enabled, running;
3328

3329
	mutex_lock(&ctx->mutex);
3330
	count = perf_event_read_value(leader, &enabled, &running);
3331 3332

	values[n++] = 1 + leader->nr_siblings;
3333 3334 3335 3336
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3337 3338 3339
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3340 3341 3342 3343

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3344
		goto unlock;
3345

3346
	ret = size;
3347

3348
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3349
		n = 0;
3350

3351
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3352 3353 3354 3355 3356
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3357
		if (copy_to_user(buf + ret, values, size)) {
3358 3359 3360
			ret = -EFAULT;
			goto unlock;
		}
3361 3362

		ret += size;
3363
	}
3364 3365
unlock:
	mutex_unlock(&ctx->mutex);
3366

3367
	return ret;
3368 3369
}

3370
static int perf_event_read_one(struct perf_event *event,
3371 3372
				 u64 read_format, char __user *buf)
{
3373
	u64 enabled, running;
3374 3375 3376
	u64 values[4];
	int n = 0;

3377 3378 3379 3380 3381
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3382
	if (read_format & PERF_FORMAT_ID)
3383
		values[n++] = primary_event_id(event);
3384 3385 3386 3387 3388 3389 3390

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3391
/*
3392
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3393 3394
 */
static ssize_t
3395
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3396
{
3397
	u64 read_format = event->attr.read_format;
3398
	int ret;
T
Thomas Gleixner 已提交
3399

3400
	/*
3401
	 * Return end-of-file for a read on a event that is in
3402 3403 3404
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3405
	if (event->state == PERF_EVENT_STATE_ERROR)
3406 3407
		return 0;

3408
	if (count < event->read_size)
3409 3410
		return -ENOSPC;

3411
	WARN_ON_ONCE(event->ctx->parent_ctx);
3412
	if (read_format & PERF_FORMAT_GROUP)
3413
		ret = perf_event_read_group(event, read_format, buf);
3414
	else
3415
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3416

3417
	return ret;
T
Thomas Gleixner 已提交
3418 3419 3420 3421 3422
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3423
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3424

3425
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3426 3427 3428 3429
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3430
	struct perf_event *event = file->private_data;
3431
	struct ring_buffer *rb;
3432
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3433

3434
	/*
3435 3436
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3437 3438
	 */
	mutex_lock(&event->mmap_mutex);
3439 3440
	rb = event->rb;
	if (rb)
3441
		events = atomic_xchg(&rb->poll, 0);
3442 3443
	mutex_unlock(&event->mmap_mutex);

3444
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3445 3446 3447 3448

	return events;
}

3449
static void perf_event_reset(struct perf_event *event)
3450
{
3451
	(void)perf_event_read(event);
3452
	local64_set(&event->count, 0);
3453
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3454 3455
}

3456
/*
3457 3458 3459 3460
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3461
 */
3462 3463
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3464
{
3465
	struct perf_event *child;
P
Peter Zijlstra 已提交
3466

3467 3468 3469 3470
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3471
		func(child);
3472
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3473 3474
}

3475 3476
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3477
{
3478 3479
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3480

3481 3482
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3483
	event = event->group_leader;
3484

3485 3486
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3487
		perf_event_for_each_child(sibling, func);
3488
	mutex_unlock(&ctx->mutex);
3489 3490
}

3491
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3492
{
3493
	struct perf_event_context *ctx = event->ctx;
3494 3495 3496
	int ret = 0;
	u64 value;

3497
	if (!is_sampling_event(event))
3498 3499
		return -EINVAL;

3500
	if (copy_from_user(&value, arg, sizeof(value)))
3501 3502 3503 3504 3505
		return -EFAULT;

	if (!value)
		return -EINVAL;

3506
	raw_spin_lock_irq(&ctx->lock);
3507 3508
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3509 3510 3511 3512
			ret = -EINVAL;
			goto unlock;
		}

3513
		event->attr.sample_freq = value;
3514
	} else {
3515 3516
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3517 3518
	}
unlock:
3519
	raw_spin_unlock_irq(&ctx->lock);
3520 3521 3522 3523

	return ret;
}

3524 3525
static const struct file_operations perf_fops;

3526
static inline int perf_fget_light(int fd, struct fd *p)
3527
{
3528 3529 3530
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3531

3532 3533 3534
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3535
	}
3536 3537
	*p = f;
	return 0;
3538 3539 3540 3541
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3542
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3543

3544 3545
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3546 3547
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3548
	u32 flags = arg;
3549 3550

	switch (cmd) {
3551 3552
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3553
		break;
3554 3555
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3556
		break;
3557 3558
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3559
		break;
P
Peter Zijlstra 已提交
3560

3561 3562
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3563

3564 3565
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3566

3567
	case PERF_EVENT_IOC_SET_OUTPUT:
3568 3569 3570
	{
		int ret;
		if (arg != -1) {
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3581 3582 3583
		}
		return ret;
	}
3584

L
Li Zefan 已提交
3585 3586 3587
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3588
	default:
P
Peter Zijlstra 已提交
3589
		return -ENOTTY;
3590
	}
P
Peter Zijlstra 已提交
3591 3592

	if (flags & PERF_IOC_FLAG_GROUP)
3593
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3594
	else
3595
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3596 3597

	return 0;
3598 3599
}

3600
int perf_event_task_enable(void)
3601
{
3602
	struct perf_event *event;
3603

3604 3605 3606 3607
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3608 3609 3610 3611

	return 0;
}

3612
int perf_event_task_disable(void)
3613
{
3614
	struct perf_event *event;
3615

3616 3617 3618 3619
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3620 3621 3622 3623

	return 0;
}

3624
static int perf_event_index(struct perf_event *event)
3625
{
P
Peter Zijlstra 已提交
3626 3627 3628
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3629
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3630 3631
		return 0;

3632
	return event->pmu->event_idx(event);
3633 3634
}

3635
static void calc_timer_values(struct perf_event *event,
3636
				u64 *now,
3637 3638
				u64 *enabled,
				u64 *running)
3639
{
3640
	u64 ctx_time;
3641

3642 3643
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3644 3645 3646 3647
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3648
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3649 3650 3651
{
}

3652 3653 3654 3655 3656
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3657
void perf_event_update_userpage(struct perf_event *event)
3658
{
3659
	struct perf_event_mmap_page *userpg;
3660
	struct ring_buffer *rb;
3661
	u64 enabled, running, now;
3662 3663

	rcu_read_lock();
3664 3665 3666 3667 3668 3669 3670 3671 3672
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3673
	calc_timer_values(event, &now, &enabled, &running);
3674 3675
	rb = rcu_dereference(event->rb);
	if (!rb)
3676 3677
		goto unlock;

3678
	userpg = rb->user_page;
3679

3680 3681 3682 3683 3684
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3685
	++userpg->lock;
3686
	barrier();
3687
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3688
	userpg->offset = perf_event_count(event);
3689
	if (userpg->index)
3690
		userpg->offset -= local64_read(&event->hw.prev_count);
3691

3692
	userpg->time_enabled = enabled +
3693
			atomic64_read(&event->child_total_time_enabled);
3694

3695
	userpg->time_running = running +
3696
			atomic64_read(&event->child_total_time_running);
3697

3698
	arch_perf_update_userpage(userpg, now);
3699

3700
	barrier();
3701
	++userpg->lock;
3702
	preempt_enable();
3703
unlock:
3704
	rcu_read_unlock();
3705 3706
}

3707 3708 3709
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3710
	struct ring_buffer *rb;
3711 3712 3713 3714 3715 3716 3717 3718 3719
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3720 3721
	rb = rcu_dereference(event->rb);
	if (!rb)
3722 3723 3724 3725 3726
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3727
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3742 3743 3744 3745 3746 3747 3748 3749 3750
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3751 3752
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3753 3754 3755
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3756
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3775 3776 3777 3778
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3779 3780 3781
	rcu_read_unlock();
}

3782
static void rb_free_rcu(struct rcu_head *rcu_head)
3783
{
3784
	struct ring_buffer *rb;
3785

3786 3787
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3788 3789
}

3790
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3791
{
3792
	struct ring_buffer *rb;
3793

3794
	rcu_read_lock();
3795 3796 3797 3798
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3799 3800 3801
	}
	rcu_read_unlock();

3802
	return rb;
3803 3804
}

3805
static void ring_buffer_put(struct ring_buffer *rb)
3806
{
3807
	if (!atomic_dec_and_test(&rb->refcount))
3808
		return;
3809

3810
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3811

3812
	call_rcu(&rb->rcu_head, rb_free_rcu);
3813 3814 3815 3816
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3817
	struct perf_event *event = vma->vm_file->private_data;
3818

3819
	atomic_inc(&event->mmap_count);
3820
	atomic_inc(&event->rb->mmap_count);
3821 3822
}

3823 3824 3825 3826 3827 3828 3829 3830
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3831 3832
static void perf_mmap_close(struct vm_area_struct *vma)
{
3833
	struct perf_event *event = vma->vm_file->private_data;
3834

3835 3836 3837 3838
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3839

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3855

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3872

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3888
		}
3889
		mutex_unlock(&event->mmap_mutex);
3890
		put_event(event);
3891

3892 3893 3894 3895 3896
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3897
	}
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3914 3915
}

3916
static const struct vm_operations_struct perf_mmap_vmops = {
3917 3918 3919 3920
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3921 3922 3923 3924
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3925
	struct perf_event *event = file->private_data;
3926
	unsigned long user_locked, user_lock_limit;
3927
	struct user_struct *user = current_user();
3928
	unsigned long locked, lock_limit;
3929
	struct ring_buffer *rb;
3930 3931
	unsigned long vma_size;
	unsigned long nr_pages;
3932
	long user_extra, extra;
3933
	int ret = 0, flags = 0;
3934

3935 3936 3937
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3938
	 * same rb.
3939 3940 3941 3942
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3943
	if (!(vma->vm_flags & VM_SHARED))
3944
		return -EINVAL;
3945 3946 3947 3948

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3949
	/*
3950
	 * If we have rb pages ensure they're a power-of-two number, so we
3951 3952 3953
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3954 3955
		return -EINVAL;

3956
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3957 3958
		return -EINVAL;

3959 3960
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3961

3962
	WARN_ON_ONCE(event->ctx->parent_ctx);
3963
again:
3964
	mutex_lock(&event->mmap_mutex);
3965
	if (event->rb) {
3966
		if (event->rb->nr_pages != nr_pages) {
3967
			ret = -EINVAL;
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

3981 3982 3983
		goto unlock;
	}

3984
	user_extra = nr_pages + 1;
3985
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3986 3987 3988 3989 3990 3991

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3992
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3993

3994 3995 3996
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3997

3998
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3999
	lock_limit >>= PAGE_SHIFT;
4000
	locked = vma->vm_mm->pinned_vm + extra;
4001

4002 4003
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4004 4005 4006
		ret = -EPERM;
		goto unlock;
	}
4007

4008
	WARN_ON(event->rb);
4009

4010
	if (vma->vm_flags & VM_WRITE)
4011
		flags |= RING_BUFFER_WRITABLE;
4012

4013 4014 4015 4016
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4017
	if (!rb) {
4018
		ret = -ENOMEM;
4019
		goto unlock;
4020
	}
P
Peter Zijlstra 已提交
4021

4022
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4023 4024
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4025

4026
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4027 4028
	vma->vm_mm->pinned_vm += extra;

4029
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4030
	rcu_assign_pointer(event->rb, rb);
4031

4032 4033
	perf_event_update_userpage(event);

4034
unlock:
4035 4036
	if (!ret)
		atomic_inc(&event->mmap_count);
4037
	mutex_unlock(&event->mmap_mutex);
4038

4039 4040 4041 4042
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4043
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4044
	vma->vm_ops = &perf_mmap_vmops;
4045 4046

	return ret;
4047 4048
}

P
Peter Zijlstra 已提交
4049 4050
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4051
	struct inode *inode = file_inode(filp);
4052
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4053 4054 4055
	int retval;

	mutex_lock(&inode->i_mutex);
4056
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4057 4058 4059 4060 4061 4062 4063 4064
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4065
static const struct file_operations perf_fops = {
4066
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4067 4068 4069
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4070 4071
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4072
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4073
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4074 4075
};

4076
/*
4077
 * Perf event wakeup
4078 4079 4080 4081 4082
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4083
void perf_event_wakeup(struct perf_event *event)
4084
{
4085
	ring_buffer_wakeup(event);
4086

4087 4088 4089
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4090
	}
4091 4092
}

4093
static void perf_pending_event(struct irq_work *entry)
4094
{
4095 4096
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4097

4098 4099 4100
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4101 4102
	}

4103 4104 4105
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4106 4107 4108
	}
}

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4256 4257 4258
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4286 4287 4288
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4315 4316 4317
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4318 4319 4320 4321 4322
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4323
static void perf_output_read_one(struct perf_output_handle *handle,
4324 4325
				 struct perf_event *event,
				 u64 enabled, u64 running)
4326
{
4327
	u64 read_format = event->attr.read_format;
4328 4329 4330
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4331
	values[n++] = perf_event_count(event);
4332
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4333
		values[n++] = enabled +
4334
			atomic64_read(&event->child_total_time_enabled);
4335 4336
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4337
		values[n++] = running +
4338
			atomic64_read(&event->child_total_time_running);
4339 4340
	}
	if (read_format & PERF_FORMAT_ID)
4341
		values[n++] = primary_event_id(event);
4342

4343
	__output_copy(handle, values, n * sizeof(u64));
4344 4345 4346
}

/*
4347
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4348 4349
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4350 4351
			    struct perf_event *event,
			    u64 enabled, u64 running)
4352
{
4353 4354
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4355 4356 4357 4358 4359 4360
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4361
		values[n++] = enabled;
4362 4363

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4364
		values[n++] = running;
4365

4366
	if (leader != event)
4367 4368
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4369
	values[n++] = perf_event_count(leader);
4370
	if (read_format & PERF_FORMAT_ID)
4371
		values[n++] = primary_event_id(leader);
4372

4373
	__output_copy(handle, values, n * sizeof(u64));
4374

4375
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4376 4377
		n = 0;

4378
		if (sub != event)
4379 4380
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4381
		values[n++] = perf_event_count(sub);
4382
		if (read_format & PERF_FORMAT_ID)
4383
			values[n++] = primary_event_id(sub);
4384

4385
		__output_copy(handle, values, n * sizeof(u64));
4386 4387 4388
	}
}

4389 4390 4391
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4392
static void perf_output_read(struct perf_output_handle *handle,
4393
			     struct perf_event *event)
4394
{
4395
	u64 enabled = 0, running = 0, now;
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4407
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4408
		calc_timer_values(event, &now, &enabled, &running);
4409

4410
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4411
		perf_output_read_group(handle, event, enabled, running);
4412
	else
4413
		perf_output_read_one(handle, event, enabled, running);
4414 4415
}

4416 4417 4418
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4419
			struct perf_event *event)
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4450
		perf_output_read(handle, event);
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4461
			__output_copy(handle, data->callchain, size);
4462 4463 4464 4465 4466 4467 4468 4469 4470
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4471 4472
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4484

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4519

4520
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4521 4522 4523
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4524
	}
A
Andi Kleen 已提交
4525 4526 4527

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4528 4529 4530

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4545 4546 4547 4548
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4549
			 struct perf_event *event,
4550
			 struct pt_regs *regs)
4551
{
4552
	u64 sample_type = event->attr.sample_type;
4553

4554
	header->type = PERF_RECORD_SAMPLE;
4555
	header->size = sizeof(*header) + event->header_size;
4556 4557 4558

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4559

4560
	__perf_event_header__init_id(header, data, event);
4561

4562
	if (sample_type & PERF_SAMPLE_IP)
4563 4564
		data->ip = perf_instruction_pointer(regs);

4565
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4566
		int size = 1;
4567

4568
		data->callchain = perf_callchain(event, regs);
4569 4570 4571 4572 4573

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4574 4575
	}

4576
	if (sample_type & PERF_SAMPLE_RAW) {
4577 4578 4579 4580 4581 4582 4583 4584
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4585
		header->size += size;
4586
	}
4587 4588 4589 4590 4591 4592 4593 4594 4595

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4639
}
4640

4641
static void perf_event_output(struct perf_event *event,
4642 4643 4644 4645 4646
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4647

4648 4649 4650
	/* protect the callchain buffers */
	rcu_read_lock();

4651
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4652

4653
	if (perf_output_begin(&handle, event, header.size))
4654
		goto exit;
4655

4656
	perf_output_sample(&handle, &header, data, event);
4657

4658
	perf_output_end(&handle);
4659 4660 4661

exit:
	rcu_read_unlock();
4662 4663
}

4664
/*
4665
 * read event_id
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4676
perf_event_read_event(struct perf_event *event,
4677 4678 4679
			struct task_struct *task)
{
	struct perf_output_handle handle;
4680
	struct perf_sample_data sample;
4681
	struct perf_read_event read_event = {
4682
		.header = {
4683
			.type = PERF_RECORD_READ,
4684
			.misc = 0,
4685
			.size = sizeof(read_event) + event->read_size,
4686
		},
4687 4688
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4689
	};
4690
	int ret;
4691

4692
	perf_event_header__init_id(&read_event.header, &sample, event);
4693
	ret = perf_output_begin(&handle, event, read_event.header.size);
4694 4695 4696
	if (ret)
		return;

4697
	perf_output_put(&handle, read_event);
4698
	perf_output_read(&handle, event);
4699
	perf_event__output_id_sample(event, &handle, &sample);
4700

4701 4702 4703
	perf_output_end(&handle);
}

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4718
		output(event, data);
4719 4720 4721 4722
	}
}

static void
4723
perf_event_aux(perf_event_aux_output_cb output, void *data,
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4736
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4737 4738 4739 4740 4741 4742 4743
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4744
			perf_event_aux_ctx(ctx, output, data);
4745 4746 4747 4748 4749 4750
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4751
		perf_event_aux_ctx(task_ctx, output, data);
4752 4753 4754 4755 4756
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4757
/*
P
Peter Zijlstra 已提交
4758 4759
 * task tracking -- fork/exit
 *
4760
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4761 4762
 */

P
Peter Zijlstra 已提交
4763
struct perf_task_event {
4764
	struct task_struct		*task;
4765
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4766 4767 4768 4769 4770 4771

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4772 4773
		u32				tid;
		u32				ptid;
4774
		u64				time;
4775
	} event_id;
P
Peter Zijlstra 已提交
4776 4777
};

4778 4779 4780 4781 4782 4783
static int perf_event_task_match(struct perf_event *event)
{
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
}

4784
static void perf_event_task_output(struct perf_event *event,
4785
				   void *data)
P
Peter Zijlstra 已提交
4786
{
4787
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4788
	struct perf_output_handle handle;
4789
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4790
	struct task_struct *task = task_event->task;
4791
	int ret, size = task_event->event_id.header.size;
4792

4793 4794 4795
	if (!perf_event_task_match(event))
		return;

4796
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4797

4798
	ret = perf_output_begin(&handle, event,
4799
				task_event->event_id.header.size);
4800
	if (ret)
4801
		goto out;
P
Peter Zijlstra 已提交
4802

4803 4804
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4805

4806 4807
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4808

4809
	perf_output_put(&handle, task_event->event_id);
4810

4811 4812
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4813
	perf_output_end(&handle);
4814 4815
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4816 4817
}

4818 4819
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4820
			      int new)
P
Peter Zijlstra 已提交
4821
{
P
Peter Zijlstra 已提交
4822
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4823

4824 4825 4826
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4827 4828
		return;

P
Peter Zijlstra 已提交
4829
	task_event = (struct perf_task_event){
4830 4831
		.task	  = task,
		.task_ctx = task_ctx,
4832
		.event_id    = {
P
Peter Zijlstra 已提交
4833
			.header = {
4834
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4835
				.misc = 0,
4836
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4837
			},
4838 4839
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4840 4841
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4842
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4843 4844 4845
		},
	};

4846
	perf_event_aux(perf_event_task_output,
4847 4848
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4849 4850
}

4851
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4852
{
4853
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4854 4855
}

4856 4857 4858 4859 4860
/*
 * comm tracking
 */

struct perf_comm_event {
4861 4862
	struct task_struct	*task;
	char			*comm;
4863 4864 4865 4866 4867 4868 4869
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4870
	} event_id;
4871 4872
};

4873 4874 4875 4876 4877
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4878
static void perf_event_comm_output(struct perf_event *event,
4879
				   void *data)
4880
{
4881
	struct perf_comm_event *comm_event = data;
4882
	struct perf_output_handle handle;
4883
	struct perf_sample_data sample;
4884
	int size = comm_event->event_id.header.size;
4885 4886
	int ret;

4887 4888 4889
	if (!perf_event_comm_match(event))
		return;

4890 4891
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4892
				comm_event->event_id.header.size);
4893 4894

	if (ret)
4895
		goto out;
4896

4897 4898
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4899

4900
	perf_output_put(&handle, comm_event->event_id);
4901
	__output_copy(&handle, comm_event->comm,
4902
				   comm_event->comm_size);
4903 4904 4905

	perf_event__output_id_sample(event, &handle, &sample);

4906
	perf_output_end(&handle);
4907 4908
out:
	comm_event->event_id.header.size = size;
4909 4910
}

4911
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4912
{
4913
	char comm[TASK_COMM_LEN];
4914 4915
	unsigned int size;

4916
	memset(comm, 0, sizeof(comm));
4917
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4918
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4919 4920 4921 4922

	comm_event->comm = comm;
	comm_event->comm_size = size;

4923
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4924

4925
	perf_event_aux(perf_event_comm_output,
4926 4927
		       comm_event,
		       NULL);
4928 4929
}

4930
void perf_event_comm(struct task_struct *task)
4931
{
4932
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4933 4934
	struct perf_event_context *ctx;
	int ctxn;
4935

4936
	rcu_read_lock();
P
Peter Zijlstra 已提交
4937 4938 4939 4940
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4941

P
Peter Zijlstra 已提交
4942 4943
		perf_event_enable_on_exec(ctx);
	}
4944
	rcu_read_unlock();
4945

4946
	if (!atomic_read(&nr_comm_events))
4947
		return;
4948

4949
	comm_event = (struct perf_comm_event){
4950
		.task	= task,
4951 4952
		/* .comm      */
		/* .comm_size */
4953
		.event_id  = {
4954
			.header = {
4955
				.type = PERF_RECORD_COMM,
4956 4957 4958 4959 4960
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4961 4962 4963
		},
	};

4964
	perf_event_comm_event(&comm_event);
4965 4966
}

4967 4968 4969 4970 4971
/*
 * mmap tracking
 */

struct perf_mmap_event {
4972 4973 4974 4975
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4976 4977 4978 4979 4980 4981 4982 4983 4984

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4985
	} event_id;
4986 4987
};

4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
}

4999
static void perf_event_mmap_output(struct perf_event *event,
5000
				   void *data)
5001
{
5002
	struct perf_mmap_event *mmap_event = data;
5003
	struct perf_output_handle handle;
5004
	struct perf_sample_data sample;
5005
	int size = mmap_event->event_id.header.size;
5006
	int ret;
5007

5008 5009 5010
	if (!perf_event_mmap_match(event, data))
		return;

5011 5012
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5013
				mmap_event->event_id.header.size);
5014
	if (ret)
5015
		goto out;
5016

5017 5018
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5019

5020
	perf_output_put(&handle, mmap_event->event_id);
5021
	__output_copy(&handle, mmap_event->file_name,
5022
				   mmap_event->file_size);
5023 5024 5025

	perf_event__output_id_sample(event, &handle, &sample);

5026
	perf_output_end(&handle);
5027 5028
out:
	mmap_event->event_id.header.size = size;
5029 5030
}

5031
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5032
{
5033 5034
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5035 5036 5037
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5038
	const char *name;
5039

5040 5041
	memset(tmp, 0, sizeof(tmp));

5042
	if (file) {
5043
		/*
5044
		 * d_path works from the end of the rb backwards, so we
5045 5046 5047 5048
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5049 5050 5051 5052
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
5053
		name = d_path(&file->f_path, buf, PATH_MAX);
5054 5055 5056 5057 5058
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
5059 5060
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5061 5062
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
5063
			goto got_name;
5064
		}
5065 5066 5067 5068

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
5069 5070 5071 5072 5073 5074 5075 5076
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
5077 5078
		}

5079 5080 5081 5082 5083
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
5084
	size = ALIGN(strlen(name)+1, sizeof(u64));
5085 5086 5087 5088

	mmap_event->file_name = name;
	mmap_event->file_size = size;

5089 5090 5091
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5092
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5093

5094
	perf_event_aux(perf_event_mmap_output,
5095 5096
		       mmap_event,
		       NULL);
5097

5098 5099 5100
	kfree(buf);
}

5101
void perf_event_mmap(struct vm_area_struct *vma)
5102
{
5103 5104
	struct perf_mmap_event mmap_event;

5105
	if (!atomic_read(&nr_mmap_events))
5106 5107 5108
		return;

	mmap_event = (struct perf_mmap_event){
5109
		.vma	= vma,
5110 5111
		/* .file_name */
		/* .file_size */
5112
		.event_id  = {
5113
			.header = {
5114
				.type = PERF_RECORD_MMAP,
5115
				.misc = PERF_RECORD_MISC_USER,
5116 5117 5118 5119
				/* .size */
			},
			/* .pid */
			/* .tid */
5120 5121
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5122
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5123 5124 5125
		},
	};

5126
	perf_event_mmap_event(&mmap_event);
5127 5128
}

5129 5130 5131 5132
/*
 * IRQ throttle logging
 */

5133
static void perf_log_throttle(struct perf_event *event, int enable)
5134 5135
{
	struct perf_output_handle handle;
5136
	struct perf_sample_data sample;
5137 5138 5139 5140 5141
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5142
		u64				id;
5143
		u64				stream_id;
5144 5145
	} throttle_event = {
		.header = {
5146
			.type = PERF_RECORD_THROTTLE,
5147 5148 5149
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5150
		.time		= perf_clock(),
5151 5152
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5153 5154
	};

5155
	if (enable)
5156
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5157

5158 5159 5160
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5161
				throttle_event.header.size);
5162 5163 5164 5165
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5166
	perf_event__output_id_sample(event, &handle, &sample);
5167 5168 5169
	perf_output_end(&handle);
}

5170
/*
5171
 * Generic event overflow handling, sampling.
5172 5173
 */

5174
static int __perf_event_overflow(struct perf_event *event,
5175 5176
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5177
{
5178 5179
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5180
	u64 seq;
5181 5182
	int ret = 0;

5183 5184 5185 5186 5187 5188 5189
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5190 5191 5192 5193 5194 5195 5196 5197 5198
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5199 5200
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5201 5202
			ret = 1;
		}
5203
	}
5204

5205
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5206
		u64 now = perf_clock();
5207
		s64 delta = now - hwc->freq_time_stamp;
5208

5209
		hwc->freq_time_stamp = now;
5210

5211
		if (delta > 0 && delta < 2*TICK_NSEC)
5212
			perf_adjust_period(event, delta, hwc->last_period, true);
5213 5214
	}

5215 5216
	/*
	 * XXX event_limit might not quite work as expected on inherited
5217
	 * events
5218 5219
	 */

5220 5221
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5222
		ret = 1;
5223
		event->pending_kill = POLL_HUP;
5224 5225
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5226 5227
	}

5228
	if (event->overflow_handler)
5229
		event->overflow_handler(event, data, regs);
5230
	else
5231
		perf_event_output(event, data, regs);
5232

P
Peter Zijlstra 已提交
5233
	if (event->fasync && event->pending_kill) {
5234 5235
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5236 5237
	}

5238
	return ret;
5239 5240
}

5241
int perf_event_overflow(struct perf_event *event,
5242 5243
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5244
{
5245
	return __perf_event_overflow(event, 1, data, regs);
5246 5247
}

5248
/*
5249
 * Generic software event infrastructure
5250 5251
 */

5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5263
/*
5264 5265
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5266 5267 5268 5269
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5270
u64 perf_swevent_set_period(struct perf_event *event)
5271
{
5272
	struct hw_perf_event *hwc = &event->hw;
5273 5274 5275 5276 5277
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5278 5279

again:
5280
	old = val = local64_read(&hwc->period_left);
5281 5282
	if (val < 0)
		return 0;
5283

5284 5285 5286
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5287
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5288
		goto again;
5289

5290
	return nr;
5291 5292
}

5293
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5294
				    struct perf_sample_data *data,
5295
				    struct pt_regs *regs)
5296
{
5297
	struct hw_perf_event *hwc = &event->hw;
5298
	int throttle = 0;
5299

5300 5301
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5302

5303 5304
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5305

5306
	for (; overflow; overflow--) {
5307
		if (__perf_event_overflow(event, throttle,
5308
					    data, regs)) {
5309 5310 5311 5312 5313 5314
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5315
		throttle = 1;
5316
	}
5317 5318
}

P
Peter Zijlstra 已提交
5319
static void perf_swevent_event(struct perf_event *event, u64 nr,
5320
			       struct perf_sample_data *data,
5321
			       struct pt_regs *regs)
5322
{
5323
	struct hw_perf_event *hwc = &event->hw;
5324

5325
	local64_add(nr, &event->count);
5326

5327 5328 5329
	if (!regs)
		return;

5330
	if (!is_sampling_event(event))
5331
		return;
5332

5333 5334 5335 5336 5337 5338
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5339
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5340
		return perf_swevent_overflow(event, 1, data, regs);
5341

5342
	if (local64_add_negative(nr, &hwc->period_left))
5343
		return;
5344

5345
	perf_swevent_overflow(event, 0, data, regs);
5346 5347
}

5348 5349 5350
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5351
	if (event->hw.state & PERF_HES_STOPPED)
5352
		return 1;
P
Peter Zijlstra 已提交
5353

5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5365
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5366
				enum perf_type_id type,
L
Li Zefan 已提交
5367 5368 5369
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5370
{
5371
	if (event->attr.type != type)
5372
		return 0;
5373

5374
	if (event->attr.config != event_id)
5375 5376
		return 0;

5377 5378
	if (perf_exclude_event(event, regs))
		return 0;
5379 5380 5381 5382

	return 1;
}

5383 5384 5385 5386 5387 5388 5389
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5390 5391
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5392
{
5393 5394 5395 5396
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5397

5398 5399
/* For the read side: events when they trigger */
static inline struct hlist_head *
5400
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5401 5402
{
	struct swevent_hlist *hlist;
5403

5404
	hlist = rcu_dereference(swhash->swevent_hlist);
5405 5406 5407
	if (!hlist)
		return NULL;

5408 5409 5410 5411 5412
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5413
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5424
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5425 5426 5427 5428 5429
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5430 5431 5432
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5433
				    u64 nr,
5434 5435
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5436
{
5437
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5438
	struct perf_event *event;
5439
	struct hlist_head *head;
5440

5441
	rcu_read_lock();
5442
	head = find_swevent_head_rcu(swhash, type, event_id);
5443 5444 5445
	if (!head)
		goto end;

5446
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5447
		if (perf_swevent_match(event, type, event_id, data, regs))
5448
			perf_swevent_event(event, nr, data, regs);
5449
	}
5450 5451
end:
	rcu_read_unlock();
5452 5453
}

5454
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5455
{
5456
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5457

5458
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5459
}
I
Ingo Molnar 已提交
5460
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5461

5462
inline void perf_swevent_put_recursion_context(int rctx)
5463
{
5464
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5465

5466
	put_recursion_context(swhash->recursion, rctx);
5467
}
5468

5469
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5470
{
5471
	struct perf_sample_data data;
5472 5473
	int rctx;

5474
	preempt_disable_notrace();
5475 5476 5477
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5478

5479
	perf_sample_data_init(&data, addr, 0);
5480

5481
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5482 5483

	perf_swevent_put_recursion_context(rctx);
5484
	preempt_enable_notrace();
5485 5486
}

5487
static void perf_swevent_read(struct perf_event *event)
5488 5489 5490
{
}

P
Peter Zijlstra 已提交
5491
static int perf_swevent_add(struct perf_event *event, int flags)
5492
{
5493
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5494
	struct hw_perf_event *hwc = &event->hw;
5495 5496
	struct hlist_head *head;

5497
	if (is_sampling_event(event)) {
5498
		hwc->last_period = hwc->sample_period;
5499
		perf_swevent_set_period(event);
5500
	}
5501

P
Peter Zijlstra 已提交
5502 5503
	hwc->state = !(flags & PERF_EF_START);

5504
	head = find_swevent_head(swhash, event);
5505 5506 5507 5508 5509
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5510 5511 5512
	return 0;
}

P
Peter Zijlstra 已提交
5513
static void perf_swevent_del(struct perf_event *event, int flags)
5514
{
5515
	hlist_del_rcu(&event->hlist_entry);
5516 5517
}

P
Peter Zijlstra 已提交
5518
static void perf_swevent_start(struct perf_event *event, int flags)
5519
{
P
Peter Zijlstra 已提交
5520
	event->hw.state = 0;
5521
}
I
Ingo Molnar 已提交
5522

P
Peter Zijlstra 已提交
5523
static void perf_swevent_stop(struct perf_event *event, int flags)
5524
{
P
Peter Zijlstra 已提交
5525
	event->hw.state = PERF_HES_STOPPED;
5526 5527
}

5528 5529
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5530
swevent_hlist_deref(struct swevent_htable *swhash)
5531
{
5532 5533
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5534 5535
}

5536
static void swevent_hlist_release(struct swevent_htable *swhash)
5537
{
5538
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5539

5540
	if (!hlist)
5541 5542
		return;

5543
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5544
	kfree_rcu(hlist, rcu_head);
5545 5546 5547 5548
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5549
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5550

5551
	mutex_lock(&swhash->hlist_mutex);
5552

5553 5554
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5555

5556
	mutex_unlock(&swhash->hlist_mutex);
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5574
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5575 5576
	int err = 0;

5577
	mutex_lock(&swhash->hlist_mutex);
5578

5579
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5580 5581 5582 5583 5584 5585 5586
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5587
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5588
	}
5589
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5590
exit:
5591
	mutex_unlock(&swhash->hlist_mutex);
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5615
fail:
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5626
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5627

5628 5629 5630
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5631

5632 5633
	WARN_ON(event->parent);

5634
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5635 5636 5637 5638 5639
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5640
	u64 event_id = event->attr.config;
5641 5642 5643 5644

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5645 5646 5647 5648 5649 5650
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5651 5652 5653 5654 5655 5656 5657 5658 5659
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5660
	if (event_id >= PERF_COUNT_SW_MAX)
5661 5662 5663 5664 5665 5666 5667 5668 5669
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5670
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5671 5672 5673 5674 5675 5676
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5677 5678 5679 5680 5681
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5682
static struct pmu perf_swevent = {
5683
	.task_ctx_nr	= perf_sw_context,
5684

5685
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5686 5687 5688 5689
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5690
	.read		= perf_swevent_read,
5691 5692

	.event_idx	= perf_swevent_event_idx,
5693 5694
};

5695 5696
#ifdef CONFIG_EVENT_TRACING

5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5711 5712
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5713 5714 5715 5716
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5717 5718 5719 5720 5721 5722 5723 5724 5725
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5726 5727
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5728 5729
{
	struct perf_sample_data data;
5730 5731
	struct perf_event *event;

5732 5733 5734 5735 5736
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5737
	perf_sample_data_init(&data, addr, 0);
5738 5739
	data.raw = &raw;

5740
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5741
		if (perf_tp_event_match(event, &data, regs))
5742
			perf_swevent_event(event, count, &data, regs);
5743
	}
5744

5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5770
	perf_swevent_put_recursion_context(rctx);
5771 5772 5773
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5774
static void tp_perf_event_destroy(struct perf_event *event)
5775
{
5776
	perf_trace_destroy(event);
5777 5778
}

5779
static int perf_tp_event_init(struct perf_event *event)
5780
{
5781 5782
	int err;

5783 5784 5785
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5786 5787 5788 5789 5790 5791
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5792 5793
	err = perf_trace_init(event);
	if (err)
5794
		return err;
5795

5796
	event->destroy = tp_perf_event_destroy;
5797

5798 5799 5800 5801
	return 0;
}

static struct pmu perf_tracepoint = {
5802 5803
	.task_ctx_nr	= perf_sw_context,

5804
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5805 5806 5807 5808
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5809
	.read		= perf_swevent_read,
5810 5811

	.event_idx	= perf_swevent_event_idx,
5812 5813 5814 5815
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5816
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5817
}
L
Li Zefan 已提交
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5842
#else
L
Li Zefan 已提交
5843

5844
static inline void perf_tp_register(void)
5845 5846
{
}
L
Li Zefan 已提交
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5857
#endif /* CONFIG_EVENT_TRACING */
5858

5859
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5860
void perf_bp_event(struct perf_event *bp, void *data)
5861
{
5862 5863 5864
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5865
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5866

P
Peter Zijlstra 已提交
5867
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5868
		perf_swevent_event(bp, 1, &sample, regs);
5869 5870 5871
}
#endif

5872 5873 5874
/*
 * hrtimer based swevent callback
 */
5875

5876
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5877
{
5878 5879 5880 5881 5882
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5883

5884
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5885 5886 5887 5888

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5889
	event->pmu->read(event);
5890

5891
	perf_sample_data_init(&data, 0, event->hw.last_period);
5892 5893 5894
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5895
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5896
			if (__perf_event_overflow(event, 1, &data, regs))
5897 5898
				ret = HRTIMER_NORESTART;
	}
5899

5900 5901
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5902

5903
	return ret;
5904 5905
}

5906
static void perf_swevent_start_hrtimer(struct perf_event *event)
5907
{
5908
	struct hw_perf_event *hwc = &event->hw;
5909 5910 5911 5912
	s64 period;

	if (!is_sampling_event(event))
		return;
5913

5914 5915 5916 5917
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5918

5919 5920 5921 5922 5923
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5924
				ns_to_ktime(period), 0,
5925
				HRTIMER_MODE_REL_PINNED, 0);
5926
}
5927 5928

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5929
{
5930 5931
	struct hw_perf_event *hwc = &event->hw;

5932
	if (is_sampling_event(event)) {
5933
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5934
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5935 5936 5937

		hrtimer_cancel(&hwc->hrtimer);
	}
5938 5939
}

P
Peter Zijlstra 已提交
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5960
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5961 5962 5963 5964
		event->attr.freq = 0;
	}
}

5965 5966 5967 5968 5969
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5970
{
5971 5972 5973
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5974
	now = local_clock();
5975 5976
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5977 5978
}

P
Peter Zijlstra 已提交
5979
static void cpu_clock_event_start(struct perf_event *event, int flags)
5980
{
P
Peter Zijlstra 已提交
5981
	local64_set(&event->hw.prev_count, local_clock());
5982 5983 5984
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5985
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5986
{
5987 5988 5989
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5990

P
Peter Zijlstra 已提交
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6004 6005 6006 6007
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6008

6009 6010 6011 6012 6013 6014 6015 6016
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6017 6018 6019 6020 6021 6022
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6023 6024
	perf_swevent_init_hrtimer(event);

6025
	return 0;
6026 6027
}

6028
static struct pmu perf_cpu_clock = {
6029 6030
	.task_ctx_nr	= perf_sw_context,

6031
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6032 6033 6034 6035
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6036
	.read		= cpu_clock_event_read,
6037 6038

	.event_idx	= perf_swevent_event_idx,
6039 6040 6041 6042 6043 6044 6045
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6046
{
6047 6048
	u64 prev;
	s64 delta;
6049

6050 6051 6052 6053
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6054

P
Peter Zijlstra 已提交
6055
static void task_clock_event_start(struct perf_event *event, int flags)
6056
{
P
Peter Zijlstra 已提交
6057
	local64_set(&event->hw.prev_count, event->ctx->time);
6058 6059 6060
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6061
static void task_clock_event_stop(struct perf_event *event, int flags)
6062 6063 6064
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6065 6066 6067 6068 6069 6070
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6071

P
Peter Zijlstra 已提交
6072 6073 6074 6075 6076 6077
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6078 6079 6080 6081
}

static void task_clock_event_read(struct perf_event *event)
{
6082 6083 6084
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6085 6086 6087 6088 6089

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6090
{
6091 6092 6093 6094 6095 6096
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6097 6098 6099 6100 6101 6102
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6103 6104
	perf_swevent_init_hrtimer(event);

6105
	return 0;
L
Li Zefan 已提交
6106 6107
}

6108
static struct pmu perf_task_clock = {
6109 6110
	.task_ctx_nr	= perf_sw_context,

6111
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6112 6113 6114 6115
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6116
	.read		= task_clock_event_read,
6117 6118

	.event_idx	= perf_swevent_event_idx,
6119
};
L
Li Zefan 已提交
6120

P
Peter Zijlstra 已提交
6121
static void perf_pmu_nop_void(struct pmu *pmu)
6122 6123
{
}
L
Li Zefan 已提交
6124

P
Peter Zijlstra 已提交
6125
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6126
{
P
Peter Zijlstra 已提交
6127
	return 0;
L
Li Zefan 已提交
6128 6129
}

P
Peter Zijlstra 已提交
6130
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6131
{
P
Peter Zijlstra 已提交
6132
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6133 6134
}

P
Peter Zijlstra 已提交
6135 6136 6137 6138 6139
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6140

P
Peter Zijlstra 已提交
6141
static void perf_pmu_cancel_txn(struct pmu *pmu)
6142
{
P
Peter Zijlstra 已提交
6143
	perf_pmu_enable(pmu);
6144 6145
}

6146 6147 6148 6149 6150
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6151 6152 6153 6154 6155
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6156
{
P
Peter Zijlstra 已提交
6157
	struct pmu *pmu;
6158

P
Peter Zijlstra 已提交
6159 6160
	if (ctxn < 0)
		return NULL;
6161

P
Peter Zijlstra 已提交
6162 6163 6164 6165
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6166

P
Peter Zijlstra 已提交
6167
	return NULL;
6168 6169
}

6170
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6171
{
6172 6173 6174 6175 6176 6177 6178
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6179 6180
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6181 6182 6183 6184 6185 6186
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6187

P
Peter Zijlstra 已提交
6188
	mutex_lock(&pmus_lock);
6189
	/*
P
Peter Zijlstra 已提交
6190
	 * Like a real lame refcount.
6191
	 */
6192 6193 6194
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6195
			goto out;
6196
		}
P
Peter Zijlstra 已提交
6197
	}
6198

6199
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6200 6201
out:
	mutex_unlock(&pmus_lock);
6202
}
P
Peter Zijlstra 已提交
6203
static struct idr pmu_idr;
6204

P
Peter Zijlstra 已提交
6205 6206 6207 6208 6209 6210 6211 6212
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

P
Peter Zijlstra 已提交
6257
static struct device_attribute pmu_dev_attrs[] = {
6258 6259 6260
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6282
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6303
static struct lock_class_key cpuctx_mutex;
6304
static struct lock_class_key cpuctx_lock;
6305

6306
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6307
{
P
Peter Zijlstra 已提交
6308
	int cpu, ret;
6309

6310
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6311 6312 6313 6314
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6315

P
Peter Zijlstra 已提交
6316 6317 6318 6319 6320 6321
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6322 6323 6324
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6325 6326 6327 6328 6329
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6330 6331 6332 6333 6334 6335
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6336
skip_type:
P
Peter Zijlstra 已提交
6337 6338 6339
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6340

W
Wei Yongjun 已提交
6341
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6342 6343
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6344
		goto free_dev;
6345

P
Peter Zijlstra 已提交
6346 6347 6348 6349
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6350
		__perf_event_init_context(&cpuctx->ctx);
6351
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6352
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6353
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6354
		cpuctx->ctx.pmu = pmu;
6355 6356 6357

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6358
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6359
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6360
	}
6361

P
Peter Zijlstra 已提交
6362
got_cpu_context:
P
Peter Zijlstra 已提交
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6377
		}
6378
	}
6379

P
Peter Zijlstra 已提交
6380 6381 6382 6383 6384
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6385 6386 6387
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6388
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6389 6390
	ret = 0;
unlock:
6391 6392
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6393
	return ret;
P
Peter Zijlstra 已提交
6394

P
Peter Zijlstra 已提交
6395 6396 6397 6398
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6399 6400 6401 6402
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6403 6404 6405
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6406 6407
}

6408
void perf_pmu_unregister(struct pmu *pmu)
6409
{
6410 6411 6412
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6413

6414
	/*
P
Peter Zijlstra 已提交
6415 6416
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6417
	 */
6418
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6419
	synchronize_rcu();
6420

P
Peter Zijlstra 已提交
6421
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6422 6423
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6424 6425
	device_del(pmu->dev);
	put_device(pmu->dev);
6426
	free_pmu_context(pmu);
6427
}
6428

6429 6430 6431 6432
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6433
	int ret;
6434 6435

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6436 6437 6438 6439

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6440
	if (pmu) {
6441
		event->pmu = pmu;
6442 6443 6444
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6445
		goto unlock;
6446
	}
P
Peter Zijlstra 已提交
6447

6448
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6449
		event->pmu = pmu;
6450
		ret = pmu->event_init(event);
6451
		if (!ret)
P
Peter Zijlstra 已提交
6452
			goto unlock;
6453

6454 6455
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6456
			goto unlock;
6457
		}
6458
	}
P
Peter Zijlstra 已提交
6459 6460
	pmu = ERR_PTR(-ENOENT);
unlock:
6461
	srcu_read_unlock(&pmus_srcu, idx);
6462

6463
	return pmu;
6464 6465
}

6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6479 6480
static void account_event(struct perf_event *event)
{
6481 6482 6483
	if (event->parent)
		return;

6484 6485 6486 6487 6488 6489 6490 6491
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6492
	if (has_branch_stack(event))
6493
		static_key_slow_inc(&perf_sched_events.key);
6494
	if (is_cgroup_event(event))
6495
		static_key_slow_inc(&perf_sched_events.key);
6496 6497

	account_event_cpu(event, event->cpu);
6498 6499
}

T
Thomas Gleixner 已提交
6500
/*
6501
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6502
 */
6503
static struct perf_event *
6504
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6505 6506 6507
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6508 6509
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6510
{
P
Peter Zijlstra 已提交
6511
	struct pmu *pmu;
6512 6513
	struct perf_event *event;
	struct hw_perf_event *hwc;
6514
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6515

6516 6517 6518 6519 6520
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6521
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6522
	if (!event)
6523
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6524

6525
	/*
6526
	 * Single events are their own group leaders, with an
6527 6528 6529
	 * empty sibling list:
	 */
	if (!group_leader)
6530
		group_leader = event;
6531

6532 6533
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6534

6535 6536 6537
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6538 6539
	INIT_LIST_HEAD(&event->rb_entry);

6540
	init_waitqueue_head(&event->waitq);
6541
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6542

6543
	mutex_init(&event->mmap_mutex);
6544

6545
	atomic_long_set(&event->refcount, 1);
6546 6547 6548 6549 6550
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6551

6552
	event->parent		= parent_event;
6553

6554
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6555
	event->id		= atomic64_inc_return(&perf_event_id);
6556

6557
	event->state		= PERF_EVENT_STATE_INACTIVE;
6558

6559 6560
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6561 6562 6563

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6564 6565 6566 6567
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6568
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6569 6570 6571 6572
			event->hw.bp_target = task;
#endif
	}

6573
	if (!overflow_handler && parent_event) {
6574
		overflow_handler = parent_event->overflow_handler;
6575 6576
		context = parent_event->overflow_handler_context;
	}
6577

6578
	event->overflow_handler	= overflow_handler;
6579
	event->overflow_handler_context = context;
6580

J
Jiri Olsa 已提交
6581
	perf_event__state_init(event);
6582

6583
	pmu = NULL;
6584

6585
	hwc = &event->hw;
6586
	hwc->sample_period = attr->sample_period;
6587
	if (attr->freq && attr->sample_freq)
6588
		hwc->sample_period = 1;
6589
	hwc->last_period = hwc->sample_period;
6590

6591
	local64_set(&hwc->period_left, hwc->sample_period);
6592

6593
	/*
6594
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6595
	 */
6596
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6597
		goto err_ns;
6598

6599
	pmu = perf_init_event(event);
6600
	if (!pmu)
6601 6602
		goto err_ns;
	else if (IS_ERR(pmu)) {
6603
		err = PTR_ERR(pmu);
6604
		goto err_ns;
I
Ingo Molnar 已提交
6605
	}
6606

6607
	if (!event->parent) {
6608 6609 6610 6611 6612
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err)
				goto err_pmu;
		}
6613
	}
6614

6615
	return event;
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6626 6627
}

6628 6629
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6630 6631
{
	u32 size;
6632
	int ret;
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6657 6658 6659
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6660 6661
	 */
	if (size > sizeof(*attr)) {
6662 6663 6664
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6665

6666 6667
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6668

6669
		for (; addr < end; addr++) {
6670 6671 6672 6673 6674 6675
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6676
		size = sizeof(*attr);
6677 6678 6679 6680 6681 6682
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6683
	if (attr->__reserved_1)
6684 6685 6686 6687 6688 6689 6690 6691
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6720 6721
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6722 6723
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6724
	}
6725

6726
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6727
		ret = perf_reg_validate(attr->sample_regs_user);
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6746

6747 6748 6749 6750 6751 6752 6753 6754 6755
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6756 6757
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6758
{
6759
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6760 6761
	int ret = -EINVAL;

6762
	if (!output_event)
6763 6764
		goto set;

6765 6766
	/* don't allow circular references */
	if (event == output_event)
6767 6768
		goto out;

6769 6770 6771 6772 6773 6774 6775
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6776
	 * If its not a per-cpu rb, it must be the same task.
6777 6778 6779 6780
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6781
set:
6782
	mutex_lock(&event->mmap_mutex);
6783 6784 6785
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6786

6787 6788
	old_rb = event->rb;

6789
	if (output_event) {
6790 6791 6792
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6793
			goto unlock;
6794 6795
	}

6796 6797
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6814
	ret = 0;
6815 6816 6817
unlock:
	mutex_unlock(&event->mmap_mutex);

6818 6819 6820 6821
out:
	return ret;
}

T
Thomas Gleixner 已提交
6822
/**
6823
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6824
 *
6825
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6826
 * @pid:		target pid
I
Ingo Molnar 已提交
6827
 * @cpu:		target cpu
6828
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6829
 */
6830 6831
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6832
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6833
{
6834 6835
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6836 6837 6838
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6839
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6840
	struct task_struct *task = NULL;
6841
	struct pmu *pmu;
6842
	int event_fd;
6843
	int move_group = 0;
6844
	int err;
T
Thomas Gleixner 已提交
6845

6846
	/* for future expandability... */
S
Stephane Eranian 已提交
6847
	if (flags & ~PERF_FLAG_ALL)
6848 6849
		return -EINVAL;

6850 6851 6852
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6853

6854 6855 6856 6857 6858
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6859
	if (attr.freq) {
6860
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6861 6862 6863
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6864 6865 6866 6867 6868 6869 6870 6871 6872
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6873
	event_fd = get_unused_fd();
6874 6875 6876
	if (event_fd < 0)
		return event_fd;

6877
	if (group_fd != -1) {
6878 6879
		err = perf_fget_light(group_fd, &group);
		if (err)
6880
			goto err_fd;
6881
		group_leader = group.file->private_data;
6882 6883 6884 6885 6886 6887
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6888
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6889 6890 6891 6892 6893 6894 6895
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6896 6897
	get_online_cpus();

6898 6899
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6900 6901
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6902
		goto err_task;
6903 6904
	}

S
Stephane Eranian 已提交
6905 6906
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6907 6908 6909 6910
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
6911 6912
	}

6913 6914
	account_event(event);

6915 6916 6917 6918 6919
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6943 6944 6945 6946

	/*
	 * Get the target context (task or percpu):
	 */
6947
	ctx = find_get_context(pmu, task, event->cpu);
6948 6949
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6950
		goto err_alloc;
6951 6952
	}

6953 6954 6955 6956 6957
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6958
	/*
6959
	 * Look up the group leader (we will attach this event to it):
6960
	 */
6961
	if (group_leader) {
6962
		err = -EINVAL;
6963 6964

		/*
I
Ingo Molnar 已提交
6965 6966 6967 6968
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6969
			goto err_context;
I
Ingo Molnar 已提交
6970 6971 6972
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6973
		 */
6974 6975 6976 6977 6978 6979 6980 6981
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6982 6983 6984
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6985
		if (attr.exclusive || attr.pinned)
6986
			goto err_context;
6987 6988 6989 6990 6991
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6992
			goto err_context;
6993
	}
T
Thomas Gleixner 已提交
6994

6995 6996 6997
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6998
		goto err_context;
6999
	}
7000

7001 7002 7003 7004
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7005
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7006 7007 7008 7009 7010 7011 7012

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7013 7014
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7015
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7016
			perf_event__state_init(sibling);
7017 7018 7019 7020
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7021
	}
7022

7023
	WARN_ON_ONCE(ctx->parent_ctx);
7024
	mutex_lock(&ctx->mutex);
7025 7026

	if (move_group) {
7027
		synchronize_rcu();
7028
		perf_install_in_context(ctx, group_leader, event->cpu);
7029 7030 7031
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7032
			perf_install_in_context(ctx, sibling, event->cpu);
7033 7034 7035 7036
			get_ctx(ctx);
		}
	}

7037
	perf_install_in_context(ctx, event, event->cpu);
7038
	++ctx->generation;
7039
	perf_unpin_context(ctx);
7040
	mutex_unlock(&ctx->mutex);
7041

7042 7043
	put_online_cpus();

7044
	event->owner = current;
P
Peter Zijlstra 已提交
7045

7046 7047 7048
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7049

7050 7051 7052 7053
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7054
	perf_event__id_header_size(event);
7055

7056 7057 7058 7059 7060 7061
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7062
	fdput(group);
7063 7064
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7065

7066
err_context:
7067
	perf_unpin_context(ctx);
7068
	put_ctx(ctx);
7069
err_alloc:
7070
	free_event(event);
P
Peter Zijlstra 已提交
7071
err_task:
7072
	put_online_cpus();
P
Peter Zijlstra 已提交
7073 7074
	if (task)
		put_task_struct(task);
7075
err_group_fd:
7076
	fdput(group);
7077 7078
err_fd:
	put_unused_fd(event_fd);
7079
	return err;
T
Thomas Gleixner 已提交
7080 7081
}

7082 7083 7084 7085 7086
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7087
 * @task: task to profile (NULL for percpu)
7088 7089 7090
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7091
				 struct task_struct *task,
7092 7093
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7094 7095
{
	struct perf_event_context *ctx;
7096
	struct perf_event *event;
7097
	int err;
7098

7099 7100 7101
	/*
	 * Get the target context (task or percpu):
	 */
7102

7103 7104
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7105 7106 7107 7108
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7109

7110 7111
	account_event(event);

M
Matt Helsley 已提交
7112
	ctx = find_get_context(event->pmu, task, cpu);
7113 7114
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7115
		goto err_free;
7116
	}
7117 7118 7119 7120 7121

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
7122
	perf_unpin_context(ctx);
7123 7124 7125 7126
	mutex_unlock(&ctx->mutex);

	return event;

7127 7128 7129
err_free:
	free_event(event);
err:
7130
	return ERR_PTR(err);
7131
}
7132
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7133

7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7167
static void sync_child_event(struct perf_event *child_event,
7168
			       struct task_struct *child)
7169
{
7170
	struct perf_event *parent_event = child_event->parent;
7171
	u64 child_val;
7172

7173 7174
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7175

P
Peter Zijlstra 已提交
7176
	child_val = perf_event_count(child_event);
7177 7178 7179 7180

	/*
	 * Add back the child's count to the parent's count:
	 */
7181
	atomic64_add(child_val, &parent_event->child_count);
7182 7183 7184 7185
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7186 7187

	/*
7188
	 * Remove this event from the parent's list
7189
	 */
7190 7191 7192 7193
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7194 7195

	/*
7196
	 * Release the parent event, if this was the last
7197 7198
	 * reference to it.
	 */
7199
	put_event(parent_event);
7200 7201
}

7202
static void
7203 7204
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7205
			 struct task_struct *child)
7206
{
7207 7208 7209 7210 7211
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7212

7213
	perf_remove_from_context(child_event);
7214

7215
	/*
7216
	 * It can happen that the parent exits first, and has events
7217
	 * that are still around due to the child reference. These
7218
	 * events need to be zapped.
7219
	 */
7220
	if (child_event->parent) {
7221 7222
		sync_child_event(child_event, child);
		free_event(child_event);
7223
	}
7224 7225
}

P
Peter Zijlstra 已提交
7226
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7227
{
7228 7229
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7230
	unsigned long flags;
7231

P
Peter Zijlstra 已提交
7232
	if (likely(!child->perf_event_ctxp[ctxn])) {
7233
		perf_event_task(child, NULL, 0);
7234
		return;
P
Peter Zijlstra 已提交
7235
	}
7236

7237
	local_irq_save(flags);
7238 7239 7240 7241 7242 7243
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7244
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7245 7246 7247

	/*
	 * Take the context lock here so that if find_get_context is
7248
	 * reading child->perf_event_ctxp, we wait until it has
7249 7250
	 * incremented the context's refcount before we do put_ctx below.
	 */
7251
	raw_spin_lock(&child_ctx->lock);
7252
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7253
	child->perf_event_ctxp[ctxn] = NULL;
7254 7255 7256
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7257
	 * the events from it.
7258 7259
	 */
	unclone_ctx(child_ctx);
7260
	update_context_time(child_ctx);
7261
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7262 7263

	/*
7264 7265 7266
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7267
	 */
7268
	perf_event_task(child, child_ctx, 0);
7269

7270 7271 7272
	/*
	 * We can recurse on the same lock type through:
	 *
7273 7274
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7275 7276
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7277 7278 7279
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7280
	mutex_lock(&child_ctx->mutex);
7281

7282
again:
7283 7284 7285 7286 7287
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7288
				 group_entry)
7289
		__perf_event_exit_task(child_event, child_ctx, child);
7290 7291

	/*
7292
	 * If the last event was a group event, it will have appended all
7293 7294 7295
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7296 7297
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7298
		goto again;
7299 7300 7301 7302

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7303 7304
}

P
Peter Zijlstra 已提交
7305 7306 7307 7308 7309
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7310
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7311 7312
	int ctxn;

P
Peter Zijlstra 已提交
7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7328 7329 7330 7331
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7344
	put_event(parent);
7345

7346
	perf_group_detach(event);
7347 7348 7349 7350
	list_del_event(event, ctx);
	free_event(event);
}

7351 7352
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7353
 * perf_event_init_task below, used by fork() in case of fail.
7354
 */
7355
void perf_event_free_task(struct task_struct *task)
7356
{
P
Peter Zijlstra 已提交
7357
	struct perf_event_context *ctx;
7358
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7359
	int ctxn;
7360

P
Peter Zijlstra 已提交
7361 7362 7363 7364
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7365

P
Peter Zijlstra 已提交
7366
		mutex_lock(&ctx->mutex);
7367
again:
P
Peter Zijlstra 已提交
7368 7369 7370
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7371

P
Peter Zijlstra 已提交
7372 7373 7374
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7375

P
Peter Zijlstra 已提交
7376 7377 7378
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7379

P
Peter Zijlstra 已提交
7380
		mutex_unlock(&ctx->mutex);
7381

P
Peter Zijlstra 已提交
7382 7383
		put_ctx(ctx);
	}
7384 7385
}

7386 7387 7388 7389 7390 7391 7392 7393
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7406
	unsigned long flags;
P
Peter Zijlstra 已提交
7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7419
					   child,
P
Peter Zijlstra 已提交
7420
					   group_leader, parent_event,
7421
				           NULL, NULL);
P
Peter Zijlstra 已提交
7422 7423
	if (IS_ERR(child_event))
		return child_event;
7424 7425 7426 7427 7428 7429

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7454 7455
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7456

7457 7458 7459 7460
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7461
	perf_event__id_header_size(child_event);
7462

P
Peter Zijlstra 已提交
7463 7464 7465
	/*
	 * Link it up in the child's context:
	 */
7466
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7467
	add_event_to_ctx(child_event, child_ctx);
7468
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7502 7503 7504 7505 7506
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7507
		   struct task_struct *child, int ctxn,
7508 7509 7510
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7511
	struct perf_event_context *child_ctx;
7512 7513 7514 7515

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7516 7517
	}

7518
	child_ctx = child->perf_event_ctxp[ctxn];
7519 7520 7521 7522 7523 7524 7525
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7526

7527
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7528 7529
		if (!child_ctx)
			return -ENOMEM;
7530

P
Peter Zijlstra 已提交
7531
		child->perf_event_ctxp[ctxn] = child_ctx;
7532 7533 7534 7535 7536 7537 7538 7539 7540
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7541 7542
}

7543
/*
7544
 * Initialize the perf_event context in task_struct
7545
 */
P
Peter Zijlstra 已提交
7546
int perf_event_init_context(struct task_struct *child, int ctxn)
7547
{
7548
	struct perf_event_context *child_ctx, *parent_ctx;
7549 7550
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7551
	struct task_struct *parent = current;
7552
	int inherited_all = 1;
7553
	unsigned long flags;
7554
	int ret = 0;
7555

P
Peter Zijlstra 已提交
7556
	if (likely(!parent->perf_event_ctxp[ctxn]))
7557 7558
		return 0;

7559
	/*
7560 7561
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7562
	 */
P
Peter Zijlstra 已提交
7563
	parent_ctx = perf_pin_task_context(parent, ctxn);
7564

7565 7566 7567 7568 7569 7570 7571
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7572 7573 7574 7575
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7576
	mutex_lock(&parent_ctx->mutex);
7577 7578 7579 7580 7581

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7582
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7583 7584
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7585 7586 7587
		if (ret)
			break;
	}
7588

7589 7590 7591 7592 7593 7594 7595 7596 7597
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7598
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7599 7600
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7601
		if (ret)
7602
			break;
7603 7604
	}

7605 7606 7607
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7608
	child_ctx = child->perf_event_ctxp[ctxn];
7609

7610
	if (child_ctx && inherited_all) {
7611 7612 7613
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7614 7615 7616
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7617
		 */
P
Peter Zijlstra 已提交
7618
		cloned_ctx = parent_ctx->parent_ctx;
7619 7620
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7621
			child_ctx->parent_gen = parent_ctx->parent_gen;
7622 7623 7624 7625 7626
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7627 7628
	}

P
Peter Zijlstra 已提交
7629
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7630
	mutex_unlock(&parent_ctx->mutex);
7631

7632
	perf_unpin_context(parent_ctx);
7633
	put_ctx(parent_ctx);
7634

7635
	return ret;
7636 7637
}

P
Peter Zijlstra 已提交
7638 7639 7640 7641 7642 7643 7644
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7645 7646 7647 7648
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7649 7650 7651 7652 7653 7654 7655 7656 7657
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7658 7659
static void __init perf_event_init_all_cpus(void)
{
7660
	struct swevent_htable *swhash;
7661 7662 7663
	int cpu;

	for_each_possible_cpu(cpu) {
7664 7665
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7666
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7667 7668 7669
	}
}

7670
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7671
{
P
Peter Zijlstra 已提交
7672
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7673

7674
	mutex_lock(&swhash->hlist_mutex);
7675
	if (swhash->hlist_refcount > 0) {
7676 7677
		struct swevent_hlist *hlist;

7678 7679 7680
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7681
	}
7682
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7683 7684
}

P
Peter Zijlstra 已提交
7685
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7686
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7687
{
7688 7689 7690 7691 7692 7693 7694
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7695
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7696
{
P
Peter Zijlstra 已提交
7697
	struct perf_event_context *ctx = __info;
7698
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7699

P
Peter Zijlstra 已提交
7700
	perf_pmu_rotate_stop(ctx->pmu);
7701

7702
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7703
		__perf_remove_from_context(event);
7704
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7705
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7706
}
P
Peter Zijlstra 已提交
7707 7708 7709 7710 7711 7712 7713 7714 7715

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7716
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7717 7718 7719 7720 7721 7722 7723 7724

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7725
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7726
{
7727
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7728

7729 7730 7731
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7732

P
Peter Zijlstra 已提交
7733
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7734 7735
}
#else
7736
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7737 7738
#endif

P
Peter Zijlstra 已提交
7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7759
static int
T
Thomas Gleixner 已提交
7760 7761 7762 7763
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7764
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7765 7766

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7767
	case CPU_DOWN_FAILED:
7768
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7769 7770
		break;

P
Peter Zijlstra 已提交
7771
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7772
	case CPU_DOWN_PREPARE:
7773
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7774 7775 7776 7777 7778 7779 7780 7781
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7782
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7783
{
7784 7785
	int ret;

P
Peter Zijlstra 已提交
7786 7787
	idr_init(&pmu_idr);

7788
	perf_event_init_all_cpus();
7789
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7790 7791 7792
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7793 7794
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7795
	register_reboot_notifier(&perf_reboot_notifier);
7796 7797 7798

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7799 7800 7801

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7802 7803 7804 7805 7806 7807 7808

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7809
}
P
Peter Zijlstra 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7838 7839

#ifdef CONFIG_CGROUP_PERF
7840
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7841 7842 7843
{
	struct perf_cgroup *jc;

7844
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7857
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7873
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7874
{
7875 7876 7877 7878
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7879 7880
}

7881 7882
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7883 7884 7885 7886 7887 7888 7889 7890 7891
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7892
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7893 7894 7895
}

struct cgroup_subsys perf_subsys = {
7896 7897
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7898 7899
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7900
	.exit		= perf_cgroup_exit,
7901
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7902 7903
};
#endif /* CONFIG_CGROUP_PERF */