core.c 216.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 199 200 201 202 203

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438 439 440 441 442 443
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460 461 462
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 497
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
498 499 500 501 502 503 504 505 506

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
507 508
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516 517 518 519

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
520
				WARN_ON_ONCE(cpuctx->cgrp);
521 522 523 524
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
525 526 527 528
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
529 530
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
531 532 533 534 535 536 537 538
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

539 540
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
541
{
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
564 565
}

566 567
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
568
{
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
595 596
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
597

598
	if (!f.file)
S
Stephane Eranian 已提交
599 600
		return -EBADF;

A
Al Viro 已提交
601
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602
					 &perf_event_cgrp_subsys);
603 604 605 606
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
753
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 755 756 757 758 759 760 761 762
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
763 764
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
765
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
766 767 768
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
769

P
Peter Zijlstra 已提交
770
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 772
}

773
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774
{
775
	struct hrtimer *timer = &cpuctx->hrtimer;
776
	struct pmu *pmu = cpuctx->ctx.pmu;
777
	u64 interval;
778 779 780 781 782

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

783 784 785 786
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
787 788 789
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790

791
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792

P
Peter Zijlstra 已提交
793 794
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795
	timer->function = perf_mux_hrtimer_handler;
796 797
}

798
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799
{
800
	struct hrtimer *timer = &cpuctx->hrtimer;
801
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
802
	unsigned long flags;
803 804 805

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
806
		return 0;
807

P
Peter Zijlstra 已提交
808 809 810 811 812 813 814
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815

816
	return 0;
817 818
}

P
Peter Zijlstra 已提交
819
void perf_pmu_disable(struct pmu *pmu)
820
{
P
Peter Zijlstra 已提交
821 822 823
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
824 825
}

P
Peter Zijlstra 已提交
826
void perf_pmu_enable(struct pmu *pmu)
827
{
P
Peter Zijlstra 已提交
828 829 830
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
831 832
}

833
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 835

/*
836 837 838 839
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
840
 */
841
static void perf_event_ctx_activate(struct perf_event_context *ctx)
842
{
843
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844

845
	WARN_ON(!irqs_disabled());
846

847 848 849 850 851 852 853 854 855 856 857 858
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
859 860
}

861
static void get_ctx(struct perf_event_context *ctx)
862
{
863
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 865
}

866 867 868 869 870 871 872 873 874
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

875
static void put_ctx(struct perf_event_context *ctx)
876
{
877 878 879
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
880 881
		if (ctx->task)
			put_task_struct(ctx->task);
882
		call_rcu(&ctx->rcu_head, free_ctx);
883
	}
884 885
}

P
Peter Zijlstra 已提交
886 887 888 889 890 891 892
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
947 948
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
961
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
971 972 973 974 975 976
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

984 985 986 987 988 989 990
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
991
{
992 993 994 995 996
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
997
		ctx->parent_ctx = NULL;
998
	ctx->generation++;
999 1000

	return parent_ctx;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1025
/*
1026
 * If we inherit events we want to return the parent event id
1027 1028
 * to userspace.
 */
1029
static u64 primary_event_id(struct perf_event *event)
1030
{
1031
	u64 id = event->id;
1032

1033 1034
	if (event->parent)
		id = event->parent->id;
1035 1036 1037 1038

	return id;
}

1039
/*
1040
 * Get the perf_event_context for a task and lock it.
1041 1042 1043
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1044
static struct perf_event_context *
P
Peter Zijlstra 已提交
1045
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046
{
1047
	struct perf_event_context *ctx;
1048

P
Peter Zijlstra 已提交
1049
retry:
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1061
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 1063 1064 1065
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1066
		 * perf_event_task_sched_out, though the
1067 1068 1069 1070 1071 1072
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1073
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1074
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 1077
			rcu_read_unlock();
			preempt_enable();
1078 1079
			goto retry;
		}
1080 1081

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 1084
			ctx = NULL;
		}
1085 1086
	}
	rcu_read_unlock();
1087
	preempt_enable();
1088 1089 1090 1091 1092 1093 1094 1095
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1096 1097
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1098
{
1099
	struct perf_event_context *ctx;
1100 1101
	unsigned long flags;

P
Peter Zijlstra 已提交
1102
	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 1104
	if (ctx) {
		++ctx->pin_count;
1105
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 1107 1108 1109
	}
	return ctx;
}

1110
static void perf_unpin_context(struct perf_event_context *ctx)
1111 1112 1113
{
	unsigned long flags;

1114
	raw_spin_lock_irqsave(&ctx->lock, flags);
1115
	--ctx->pin_count;
1116
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1130 1131 1132
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1133 1134 1135 1136

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1137 1138 1139
	return ctx ? ctx->time : 0;
}

1140 1141
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1142
 * The caller of this function needs to hold the ctx->lock.
1143 1144 1145 1146 1147 1148 1149 1150 1151
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1163
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1164 1165
	else if (ctx->is_active)
		run_end = ctx->time;
1166 1167 1168 1169
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 1171 1172 1173

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1174
		run_end = perf_event_time(event);
1175 1176

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1177

1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1201
/*
1202
 * Add a event from the lists for its context.
1203 1204
 * Must be called with ctx->mutex and ctx->lock held.
 */
1205
static void
1206
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207
{
1208 1209
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 1211

	/*
1212 1213 1214
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1215
	 */
1216
	if (event->group_leader == event) {
1217 1218
		struct list_head *list;

1219 1220 1221
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1222 1223
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1224
	}
P
Peter Zijlstra 已提交
1225

1226
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1227 1228
		ctx->nr_cgroups++;

1229 1230 1231
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1232
		ctx->nr_stat++;
1233 1234

	ctx->generation++;
1235 1236
}

J
Jiri Olsa 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1285 1286 1287 1288 1289 1290
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1291 1292 1293
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1294 1295 1296
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1297 1298 1299
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1300 1301 1302
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1303 1304 1305 1306 1307 1308 1309 1310 1311
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1312 1313 1314 1315 1316 1317
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1318 1319 1320
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1330
	event->id_header_size = size;
1331 1332
}

1333 1334
static void perf_group_attach(struct perf_event *event)
{
1335
	struct perf_event *group_leader = event->group_leader, *pos;
1336

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1343 1344 1345 1346 1347
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1348 1349
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1350 1351 1352 1353 1354 1355
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1356 1357 1358 1359 1360

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1361 1362
}

1363
/*
1364
 * Remove a event from the lists for its context.
1365
 * Must be called with ctx->mutex and ctx->lock held.
1366
 */
1367
static void
1368
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369
{
1370
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1371 1372 1373 1374

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1375 1376 1377 1378
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379
		return;
1380 1381 1382

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1383
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1384
		ctx->nr_cgroups--;
1385 1386 1387 1388 1389 1390 1391 1392 1393
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1394

1395 1396
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1397
		ctx->nr_stat--;
1398

1399
	list_del_rcu(&event->event_entry);
1400

1401 1402
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1403

1404
	update_group_times(event);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1415 1416

	ctx->generation++;
1417 1418
}

1419
static void perf_group_detach(struct perf_event *event)
1420 1421
{
	struct perf_event *sibling, *tmp;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1438
		goto out;
1439 1440 1441 1442
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1443

1444
	/*
1445 1446
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1447
	 * to whatever list we are on.
1448
	 */
1449
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 1451
		if (list)
			list_move_tail(&sibling->group_entry, list);
1452
		sibling->group_leader = sibling;
1453 1454 1455

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1456 1457

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1458
	}
1459 1460 1461 1462 1463 1464

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1465 1466
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1506 1507 1508 1509 1510 1511
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1512 1513 1514
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1515
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1516
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1517 1518
}

1519 1520
static void
event_sched_out(struct perf_event *event,
1521
		  struct perf_cpu_context *cpuctx,
1522
		  struct perf_event_context *ctx)
1523
{
1524
	u64 tstamp = perf_event_time(event);
1525
	u64 delta;
P
Peter Zijlstra 已提交
1526 1527 1528 1529

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1538
		delta = tstamp - event->tstamp_stopped;
1539
		event->tstamp_running += delta;
1540
		event->tstamp_stopped = tstamp;
1541 1542
	}

1543
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1544
		return;
1545

1546 1547
	perf_pmu_disable(event->pmu);

1548 1549 1550 1551
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1552
	}
1553
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1554
	event->pmu->del(event, 0);
1555
	event->oncpu = -1;
1556

1557
	if (!is_software_event(event))
1558
		cpuctx->active_oncpu--;
1559 1560
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1561 1562
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1563
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1564
		cpuctx->exclusive = 0;
1565

1566 1567 1568
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1569
	perf_pmu_enable(event->pmu);
1570 1571
}

1572
static void
1573
group_sched_out(struct perf_event *group_event,
1574
		struct perf_cpu_context *cpuctx,
1575
		struct perf_event_context *ctx)
1576
{
1577
	struct perf_event *event;
1578
	int state = group_event->state;
1579

1580
	event_sched_out(group_event, cpuctx, ctx);
1581 1582 1583 1584

	/*
	 * Schedule out siblings (if any):
	 */
1585 1586
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1587

1588
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 1590 1591
		cpuctx->exclusive = 0;
}

1592 1593 1594 1595 1596
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1597
/*
1598
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1599
 *
1600
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1601 1602
 * remove it from the context list.
 */
1603
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1604
{
1605 1606
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1607
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1608
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1609

1610
	raw_spin_lock(&ctx->lock);
1611
	event_sched_out(event, cpuctx, ctx);
1612 1613
	if (re->detach_group)
		perf_group_detach(event);
1614
	list_del_event(event, ctx);
1615 1616 1617 1618
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1619
	raw_spin_unlock(&ctx->lock);
1620 1621

	return 0;
T
Thomas Gleixner 已提交
1622 1623 1624 1625
}


/*
1626
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1627
 *
1628
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1629
 * call when the task is on a CPU.
1630
 *
1631 1632
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1633 1634
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1635
 * When called from perf_event_exit_task, it's OK because the
1636
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1637
 */
1638
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1639
{
1640
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1641
	struct task_struct *task = ctx->task;
1642 1643 1644 1645
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1646

1647 1648
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1649 1650
	if (!task) {
		/*
1651 1652 1653 1654
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1655
		 */
1656
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1657 1658 1659 1660
		return;
	}

retry:
1661
	if (!task_function_call(task, __perf_remove_from_context, &re))
1662
		return;
T
Thomas Gleixner 已提交
1663

1664
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1665
	/*
1666 1667
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1668
	 */
1669
	if (ctx->is_active) {
1670
		raw_spin_unlock_irq(&ctx->lock);
1671 1672 1673 1674 1675
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1676 1677 1678 1679
		goto retry;
	}

	/*
1680 1681
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1682
	 */
1683 1684
	if (detach_group)
		perf_group_detach(event);
1685
	list_del_event(event, ctx);
1686
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1687 1688
}

1689
/*
1690
 * Cross CPU call to disable a performance event
1691
 */
1692
int __perf_event_disable(void *info)
1693
{
1694 1695
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1696
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697 1698

	/*
1699 1700
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1701 1702 1703
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1704
	 */
1705
	if (ctx->task && cpuctx->task_ctx != ctx)
1706
		return -EINVAL;
1707

1708
	raw_spin_lock(&ctx->lock);
1709 1710

	/*
1711
	 * If the event is on, turn it off.
1712 1713
	 * If it is in error state, leave it in error state.
	 */
1714
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715
		update_context_time(ctx);
S
Stephane Eranian 已提交
1716
		update_cgrp_time_from_event(event);
1717 1718 1719
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1720
		else
1721 1722
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1723 1724
	}

1725
	raw_spin_unlock(&ctx->lock);
1726 1727

	return 0;
1728 1729 1730
}

/*
1731
 * Disable a event.
1732
 *
1733 1734
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1735
 * remains valid.  This condition is satisifed when called through
1736 1737 1738 1739
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1740
 * is the current context on this CPU and preemption is disabled,
1741
 * hence we can't get into perf_event_task_sched_out for this context.
1742
 */
P
Peter Zijlstra 已提交
1743
static void _perf_event_disable(struct perf_event *event)
1744
{
1745
	struct perf_event_context *ctx = event->ctx;
1746 1747 1748 1749
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1750
		 * Disable the event on the cpu that it's on
1751
		 */
1752
		cpu_function_call(event->cpu, __perf_event_disable, event);
1753 1754 1755
		return;
	}

P
Peter Zijlstra 已提交
1756
retry:
1757 1758
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1759

1760
	raw_spin_lock_irq(&ctx->lock);
1761
	/*
1762
	 * If the event is still active, we need to retry the cross-call.
1763
	 */
1764
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765
		raw_spin_unlock_irq(&ctx->lock);
1766 1767 1768 1769 1770
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1771 1772 1773 1774 1775 1776 1777
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1778 1779 1780
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1781
	}
1782
	raw_spin_unlock_irq(&ctx->lock);
1783
}
P
Peter Zijlstra 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1797
EXPORT_SYMBOL_GPL(perf_event_disable);
1798

S
Stephane Eranian 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1834 1835 1836
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1837
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1838

1839
static int
1840
event_sched_in(struct perf_event *event,
1841
		 struct perf_cpu_context *cpuctx,
1842
		 struct perf_event_context *ctx)
1843
{
1844
	u64 tstamp = perf_event_time(event);
1845
	int ret = 0;
1846

1847 1848
	lockdep_assert_held(&ctx->lock);

1849
	if (event->state <= PERF_EVENT_STATE_OFF)
1850 1851
		return 0;

1852
	event->state = PERF_EVENT_STATE_ACTIVE;
1853
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1865 1866 1867 1868 1869
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1870 1871
	perf_pmu_disable(event->pmu);

1872 1873
	perf_set_shadow_time(event, ctx, tstamp);

1874 1875
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1876
	if (event->pmu->add(event, PERF_EF_START)) {
1877 1878
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1879 1880
		ret = -EAGAIN;
		goto out;
1881 1882
	}

1883 1884
	event->tstamp_running += tstamp - event->tstamp_stopped;

1885
	if (!is_software_event(event))
1886
		cpuctx->active_oncpu++;
1887 1888
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1889 1890
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1891

1892
	if (event->attr.exclusive)
1893 1894
		cpuctx->exclusive = 1;

1895 1896 1897
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1898 1899 1900 1901
out:
	perf_pmu_enable(event->pmu);

	return ret;
1902 1903
}

1904
static int
1905
group_sched_in(struct perf_event *group_event,
1906
	       struct perf_cpu_context *cpuctx,
1907
	       struct perf_event_context *ctx)
1908
{
1909
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1910
	struct pmu *pmu = ctx->pmu;
1911 1912
	u64 now = ctx->time;
	bool simulate = false;
1913

1914
	if (group_event->state == PERF_EVENT_STATE_OFF)
1915 1916
		return 0;

1917
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1918

1919
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1920
		pmu->cancel_txn(pmu);
1921
		perf_mux_hrtimer_restart(cpuctx);
1922
		return -EAGAIN;
1923
	}
1924 1925 1926 1927

	/*
	 * Schedule in siblings as one group (if any):
	 */
1928
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929
		if (event_sched_in(event, cpuctx, ctx)) {
1930
			partial_group = event;
1931 1932 1933 1934
			goto group_error;
		}
	}

1935
	if (!pmu->commit_txn(pmu))
1936
		return 0;
1937

1938 1939 1940 1941
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1952
	 */
1953 1954
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1955 1956 1957 1958 1959 1960 1961 1962
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1963
	}
1964
	event_sched_out(group_event, cpuctx, ctx);
1965

P
Peter Zijlstra 已提交
1966
	pmu->cancel_txn(pmu);
1967

1968
	perf_mux_hrtimer_restart(cpuctx);
1969

1970 1971 1972
	return -EAGAIN;
}

1973
/*
1974
 * Work out whether we can put this event group on the CPU now.
1975
 */
1976
static int group_can_go_on(struct perf_event *event,
1977 1978 1979 1980
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1981
	 * Groups consisting entirely of software events can always go on.
1982
	 */
1983
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 1985 1986
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1987
	 * events can go on.
1988 1989 1990 1991 1992
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1993
	 * events on the CPU, it can't go on.
1994
	 */
1995
	if (event->attr.exclusive && cpuctx->active_oncpu)
1996 1997 1998 1999 2000 2001 2002 2003
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2004 2005
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2006
{
2007 2008
	u64 tstamp = perf_event_time(event);

2009
	list_add_event(event, ctx);
2010
	perf_group_attach(event);
2011 2012 2013
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2014 2015
}

2016 2017 2018 2019 2020 2021
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2035
/*
2036
 * Cross CPU call to install and enable a performance event
2037 2038
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2039
 */
2040
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2041
{
2042 2043
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2044
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 2046 2047
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2048
	perf_ctx_lock(cpuctx, task_ctx);
2049
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2050 2051

	/*
2052
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2053
	 */
2054
	if (task_ctx)
2055
		task_ctx_sched_out(task_ctx);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2070 2071
		task = task_ctx->task;
	}
2072

2073
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2074

2075
	update_context_time(ctx);
S
Stephane Eranian 已提交
2076 2077 2078 2079 2080 2081
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2082

2083
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2084

2085
	/*
2086
	 * Schedule everything back in
2087
	 */
2088
	perf_event_sched_in(cpuctx, task_ctx, task);
2089 2090 2091

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2092 2093

	return 0;
T
Thomas Gleixner 已提交
2094 2095 2096
}

/*
2097
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2098
 *
2099 2100
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2101
 *
2102
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2103 2104 2105 2106
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2107 2108
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2109 2110 2111 2112
			int cpu)
{
	struct task_struct *task = ctx->task;

2113 2114
	lockdep_assert_held(&ctx->mutex);

2115
	event->ctx = ctx;
2116 2117
	if (event->cpu != -1)
		event->cpu = cpu;
2118

T
Thomas Gleixner 已提交
2119 2120
	if (!task) {
		/*
2121
		 * Per cpu events are installed via an smp call and
2122
		 * the install is always successful.
T
Thomas Gleixner 已提交
2123
		 */
2124
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2125 2126 2127 2128
		return;
	}

retry:
2129 2130
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2131

2132
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2133
	/*
2134 2135
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2136
	 */
2137
	if (ctx->is_active) {
2138
		raw_spin_unlock_irq(&ctx->lock);
2139 2140 2141 2142 2143
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2144 2145 2146 2147
		goto retry;
	}

	/*
2148 2149
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2150
	 */
2151
	add_event_to_ctx(event, ctx);
2152
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2153 2154
}

2155
/*
2156
 * Put a event into inactive state and update time fields.
2157 2158 2159 2160 2161 2162
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2163
static void __perf_event_mark_enabled(struct perf_event *event)
2164
{
2165
	struct perf_event *sub;
2166
	u64 tstamp = perf_event_time(event);
2167

2168
	event->state = PERF_EVENT_STATE_INACTIVE;
2169
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2170
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 2172
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2173
	}
2174 2175
}

2176
/*
2177
 * Cross CPU call to enable a performance event
2178
 */
2179
static int __perf_event_enable(void *info)
2180
{
2181 2182 2183
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2184
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185
	int err;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2197
		return -EINVAL;
2198

2199
	raw_spin_lock(&ctx->lock);
2200
	update_context_time(ctx);
2201

2202
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203
		goto unlock;
S
Stephane Eranian 已提交
2204 2205 2206 2207

	/*
	 * set current task's cgroup time reference point
	 */
2208
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2209

2210
	__perf_event_mark_enabled(event);
2211

S
Stephane Eranian 已提交
2212 2213 2214
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2215
		goto unlock;
S
Stephane Eranian 已提交
2216
	}
2217

2218
	/*
2219
	 * If the event is in a group and isn't the group leader,
2220
	 * then don't put it on unless the group is on.
2221
	 */
2222
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223
		goto unlock;
2224

2225
	if (!group_can_go_on(event, cpuctx, 1)) {
2226
		err = -EEXIST;
2227
	} else {
2228
		if (event == leader)
2229
			err = group_sched_in(event, cpuctx, ctx);
2230
		else
2231
			err = event_sched_in(event, cpuctx, ctx);
2232
	}
2233 2234 2235

	if (err) {
		/*
2236
		 * If this event can't go on and it's part of a
2237 2238
		 * group, then the whole group has to come off.
		 */
2239
		if (leader != event) {
2240
			group_sched_out(leader, cpuctx, ctx);
2241
			perf_mux_hrtimer_restart(cpuctx);
2242
		}
2243
		if (leader->attr.pinned) {
2244
			update_group_times(leader);
2245
			leader->state = PERF_EVENT_STATE_ERROR;
2246
		}
2247 2248
	}

P
Peter Zijlstra 已提交
2249
unlock:
2250
	raw_spin_unlock(&ctx->lock);
2251 2252

	return 0;
2253 2254 2255
}

/*
2256
 * Enable a event.
2257
 *
2258 2259
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2260
 * remains valid.  This condition is satisfied when called through
2261 2262
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2263
 */
P
Peter Zijlstra 已提交
2264
static void _perf_event_enable(struct perf_event *event)
2265
{
2266
	struct perf_event_context *ctx = event->ctx;
2267 2268 2269 2270
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2271
		 * Enable the event on the cpu that it's on
2272
		 */
2273
		cpu_function_call(event->cpu, __perf_event_enable, event);
2274 2275 2276
		return;
	}

2277
	raw_spin_lock_irq(&ctx->lock);
2278
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 2280 2281
		goto out;

	/*
2282 2283
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2284 2285 2286 2287
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2288 2289
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2290

P
Peter Zijlstra 已提交
2291
retry:
2292
	if (!ctx->is_active) {
2293
		__perf_event_mark_enabled(event);
2294 2295 2296
		goto out;
	}

2297
	raw_spin_unlock_irq(&ctx->lock);
2298 2299 2300

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2301

2302
	raw_spin_lock_irq(&ctx->lock);
2303 2304

	/*
2305
	 * If the context is active and the event is still off,
2306 2307
	 * we need to retry the cross-call.
	 */
2308 2309 2310 2311 2312 2313
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2314
		goto retry;
2315
	}
2316

P
Peter Zijlstra 已提交
2317
out:
2318
	raw_spin_unlock_irq(&ctx->lock);
2319
}
P
Peter Zijlstra 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2332
EXPORT_SYMBOL_GPL(perf_event_enable);
2333

P
Peter Zijlstra 已提交
2334
static int _perf_event_refresh(struct perf_event *event, int refresh)
2335
{
2336
	/*
2337
	 * not supported on inherited events
2338
	 */
2339
	if (event->attr.inherit || !is_sampling_event(event))
2340 2341
		return -EINVAL;

2342
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2343
	_perf_event_enable(event);
2344 2345

	return 0;
2346
}
P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2362
EXPORT_SYMBOL_GPL(perf_event_refresh);
2363

2364 2365 2366
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2367
{
2368
	struct perf_event *event;
2369
	int is_active = ctx->is_active;
2370

2371
	ctx->is_active &= ~event_type;
2372
	if (likely(!ctx->nr_events))
2373 2374
		return;

2375
	update_context_time(ctx);
S
Stephane Eranian 已提交
2376
	update_cgrp_time_from_cpuctx(cpuctx);
2377
	if (!ctx->nr_active)
2378
		return;
2379

P
Peter Zijlstra 已提交
2380
	perf_pmu_disable(ctx->pmu);
2381
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 2383
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2384
	}
2385

2386
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2389
	}
P
Peter Zijlstra 已提交
2390
	perf_pmu_enable(ctx->pmu);
2391 2392
}

2393
/*
2394 2395 2396 2397 2398 2399
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2400
 */
2401 2402
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2403
{
2404 2405 2406
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2429 2430
}

2431 2432
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2433 2434 2435
{
	u64 value;

2436
	if (!event->attr.inherit_stat)
2437 2438 2439
		return;

	/*
2440
	 * Update the event value, we cannot use perf_event_read()
2441 2442
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2443
	 * we know the event must be on the current CPU, therefore we
2444 2445
	 * don't need to use it.
	 */
2446 2447
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2448 2449
		event->pmu->read(event);
		/* fall-through */
2450

2451 2452
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2453 2454 2455 2456 2457 2458 2459
		break;

	default:
		break;
	}

	/*
2460
	 * In order to keep per-task stats reliable we need to flip the event
2461 2462
	 * values when we flip the contexts.
	 */
2463 2464 2465
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2466

2467 2468
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2469

2470
	/*
2471
	 * Since we swizzled the values, update the user visible data too.
2472
	 */
2473 2474
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2475 2476
}

2477 2478
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2479
{
2480
	struct perf_event *event, *next_event;
2481 2482 2483 2484

	if (!ctx->nr_stat)
		return;

2485 2486
	update_context_time(ctx);

2487 2488
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2489

2490 2491
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2492

2493 2494
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2495

2496
		__perf_event_sync_stat(event, next_event);
2497

2498 2499
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2500 2501 2502
	}
}

2503 2504
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2505
{
P
Peter Zijlstra 已提交
2506
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507
	struct perf_event_context *next_ctx;
2508
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2509
	struct perf_cpu_context *cpuctx;
2510
	int do_switch = 1;
T
Thomas Gleixner 已提交
2511

P
Peter Zijlstra 已提交
2512 2513
	if (likely(!ctx))
		return;
2514

P
Peter Zijlstra 已提交
2515 2516
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2517 2518
		return;

2519
	rcu_read_lock();
P
Peter Zijlstra 已提交
2520
	next_ctx = next->perf_event_ctxp[ctxn];
2521 2522 2523 2524 2525 2526 2527
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2528
	if (!parent && !next_parent)
2529 2530 2531
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 2533 2534 2535 2536 2537 2538 2539 2540
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2541 2542
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543
		if (context_equiv(ctx, next_ctx)) {
2544 2545
			/*
			 * XXX do we need a memory barrier of sorts
2546
			 * wrt to rcu_dereference() of perf_event_ctxp
2547
			 */
P
Peter Zijlstra 已提交
2548 2549
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2550 2551
			ctx->task = next;
			next_ctx->task = task;
2552 2553 2554

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2555
			do_switch = 0;
2556

2557
			perf_event_sync_stat(ctx, next_ctx);
2558
		}
2559 2560
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2561
	}
2562
unlock:
2563
	rcu_read_unlock();
2564

2565
	if (do_switch) {
2566
		raw_spin_lock(&ctx->lock);
2567
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568
		cpuctx->task_ctx = NULL;
2569
		raw_spin_unlock(&ctx->lock);
2570
	}
T
Thomas Gleixner 已提交
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2623 2624 2625
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2640 2641
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2642 2643 2644
{
	int ctxn;

2645 2646 2647
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2648 2649 2650
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2651 2652
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2653 2654 2655 2656 2657 2658

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2659
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2661 2662
}

2663
static void task_ctx_sched_out(struct perf_event_context *ctx)
2664
{
P
Peter Zijlstra 已提交
2665
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666

2667 2668
	if (!cpuctx->task_ctx)
		return;
2669 2670 2671 2672

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2673
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 2675 2676
	cpuctx->task_ctx = NULL;
}

2677 2678 2679 2680 2681 2682 2683
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 2685
}

2686
static void
2687
ctx_pinned_sched_in(struct perf_event_context *ctx,
2688
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2689
{
2690
	struct perf_event *event;
T
Thomas Gleixner 已提交
2691

2692 2693
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2694
			continue;
2695
		if (!event_filter_match(event))
2696 2697
			continue;

S
Stephane Eranian 已提交
2698 2699 2700 2701
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2702
		if (group_can_go_on(event, cpuctx, 1))
2703
			group_sched_in(event, cpuctx, ctx);
2704 2705 2706 2707 2708

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2709 2710 2711
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2712
		}
2713
	}
2714 2715 2716 2717
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2718
		      struct perf_cpu_context *cpuctx)
2719 2720 2721
{
	struct perf_event *event;
	int can_add_hw = 1;
2722

2723 2724 2725
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2726
			continue;
2727 2728
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2729
		 * of events:
2730
		 */
2731
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2732 2733
			continue;

S
Stephane Eranian 已提交
2734 2735 2736 2737
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2738
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739
			if (group_sched_in(event, cpuctx, ctx))
2740
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2741
		}
T
Thomas Gleixner 已提交
2742
	}
2743 2744 2745 2746 2747
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2748 2749
	     enum event_type_t event_type,
	     struct task_struct *task)
2750
{
S
Stephane Eranian 已提交
2751
	u64 now;
2752
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2753

2754
	ctx->is_active |= event_type;
2755
	if (likely(!ctx->nr_events))
2756
		return;
2757

S
Stephane Eranian 已提交
2758 2759
	now = perf_clock();
	ctx->timestamp = now;
2760
	perf_cgroup_set_timestamp(task, ctx);
2761 2762 2763 2764
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2765
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766
		ctx_pinned_sched_in(ctx, cpuctx);
2767 2768

	/* Then walk through the lower prio flexible groups */
2769
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770
		ctx_flexible_sched_in(ctx, cpuctx);
2771 2772
}

2773
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2774 2775
			     enum event_type_t event_type,
			     struct task_struct *task)
2776 2777 2778
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2779
	ctx_sched_in(ctx, cpuctx, event_type, task);
2780 2781
}

S
Stephane Eranian 已提交
2782 2783
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2784
{
P
Peter Zijlstra 已提交
2785
	struct perf_cpu_context *cpuctx;
2786

P
Peter Zijlstra 已提交
2787
	cpuctx = __get_cpu_context(ctx);
2788 2789 2790
	if (cpuctx->task_ctx == ctx)
		return;

2791
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2792
	perf_pmu_disable(ctx->pmu);
2793 2794 2795 2796 2797 2798 2799
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2800 2801
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2802

2803 2804
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2805 2806
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2807 2808
}

P
Peter Zijlstra 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2820 2821
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2831
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2832
	}
S
Stephane Eranian 已提交
2833 2834 2835 2836 2837
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2838
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839
		perf_cgroup_sched_in(prev, task);
2840

2841 2842 2843
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2844 2845
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2875
#define REDUCE_FLS(a, b)		\
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2915 2916 2917
	if (!divisor)
		return dividend;

2918 2919 2920
	return div64_u64(dividend, divisor);
}

2921 2922 2923
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2924
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925
{
2926
	struct hw_perf_event *hwc = &event->hw;
2927
	s64 period, sample_period;
2928 2929
	s64 delta;

2930
	period = perf_calculate_period(event, nsec, count);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2941

2942
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 2944 2945
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2946
		local64_set(&hwc->period_left, 0);
2947 2948 2949

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2950
	}
2951 2952
}

2953 2954 2955 2956 2957 2958 2959
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2960
{
2961 2962
	struct perf_event *event;
	struct hw_perf_event *hwc;
2963
	u64 now, period = TICK_NSEC;
2964
	s64 delta;
2965

2966 2967 2968 2969 2970 2971
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2972 2973
		return;

2974
	raw_spin_lock(&ctx->lock);
2975
	perf_pmu_disable(ctx->pmu);
2976

2977
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 2980
			continue;

2981
		if (!event_filter_match(event))
2982 2983
			continue;

2984 2985
		perf_pmu_disable(event->pmu);

2986
		hwc = &event->hw;
2987

2988
		if (hwc->interrupts == MAX_INTERRUPTS) {
2989
			hwc->interrupts = 0;
2990
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2991
			event->pmu->start(event, 0);
2992 2993
		}

2994
		if (!event->attr.freq || !event->attr.sample_freq)
2995
			goto next;
2996

2997 2998 2999 3000 3001
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3002
		now = local64_read(&event->count);
3003 3004
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3005

3006 3007 3008
		/*
		 * restart the event
		 * reload only if value has changed
3009 3010 3011
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3012
		 */
3013
		if (delta > 0)
3014
			perf_adjust_period(event, period, delta, false);
3015 3016

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 3018
	next:
		perf_pmu_enable(event->pmu);
3019
	}
3020

3021
	perf_pmu_enable(ctx->pmu);
3022
	raw_spin_unlock(&ctx->lock);
3023 3024
}

3025
/*
3026
 * Round-robin a context's events:
3027
 */
3028
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3029
{
3030 3031 3032 3033 3034 3035
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3036 3037
}

3038
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039
{
P
Peter Zijlstra 已提交
3040
	struct perf_event_context *ctx = NULL;
3041
	int rotate = 0;
3042

3043 3044 3045 3046
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3047

P
Peter Zijlstra 已提交
3048
	ctx = cpuctx->task_ctx;
3049 3050 3051 3052
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3053

3054
	if (!rotate)
3055 3056
		goto done;

3057
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3058
	perf_pmu_disable(cpuctx->ctx.pmu);
3059

3060 3061 3062
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3063

3064 3065 3066
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3067

3068
	perf_event_sched_in(cpuctx, ctx, current);
3069

3070 3071
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072
done:
3073 3074

	return rotate;
3075 3076
}

3077 3078 3079
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3080
	if (atomic_read(&nr_freq_events) ||
3081
	    __this_cpu_read(perf_throttled_count))
3082
		return false;
3083 3084
	else
		return true;
3085 3086 3087
}
#endif

3088 3089
void perf_event_task_tick(void)
{
3090 3091
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3092
	int throttled;
3093

3094 3095
	WARN_ON(!irqs_disabled());

3096 3097 3098
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3099
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3113
	__perf_event_mark_enabled(event);
3114 3115 3116 3117

	return 1;
}

3118
/*
3119
 * Enable all of a task's events that have been marked enable-on-exec.
3120 3121
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3122
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123
{
3124
	struct perf_event_context *clone_ctx = NULL;
3125
	struct perf_event *event;
3126 3127
	unsigned long flags;
	int enabled = 0;
3128
	int ret;
3129 3130

	local_irq_save(flags);
3131
	if (!ctx || !ctx->nr_events)
3132 3133
		goto out;

3134 3135 3136 3137 3138 3139 3140
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3141
	perf_cgroup_sched_out(current, NULL);
3142

3143
	raw_spin_lock(&ctx->lock);
3144
	task_ctx_sched_out(ctx);
3145

3146
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 3148 3149
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3150 3151 3152
	}

	/*
3153
	 * Unclone this context if we enabled any event.
3154
	 */
3155
	if (enabled)
3156
		clone_ctx = unclone_ctx(ctx);
3157

3158
	raw_spin_unlock(&ctx->lock);
3159

3160 3161 3162
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3163
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3164
out:
3165
	local_irq_restore(flags);
3166 3167 3168

	if (clone_ctx)
		put_ctx(clone_ctx);
3169 3170
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

3187 3188 3189 3190 3191
struct perf_read_data {
	struct perf_event *event;
	bool group;
};

T
Thomas Gleixner 已提交
3192
/*
3193
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3194
 */
3195
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3196
{
3197 3198
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3199
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3200
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3201

3202 3203 3204 3205
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3206 3207
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3208 3209 3210 3211
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3212
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3213
	if (ctx->is_active) {
3214
		update_context_time(ctx);
S
Stephane Eranian 已提交
3215 3216
		update_cgrp_time_from_event(event);
	}
3217

3218
	update_event_times(event);
3219 3220
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

	if (!data->group)
		goto unlock;

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
		if (sub->state == PERF_EVENT_STATE_ACTIVE)
			sub->pmu->read(sub);
	}

unlock:
3232
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3233 3234
}

P
Peter Zijlstra 已提交
3235 3236
static inline u64 perf_event_count(struct perf_event *event)
{
3237 3238 3239 3240
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3241 3242
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3296
static void perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3297 3298
{
	/*
3299 3300
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3301
	 */
3302
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3303 3304 3305 3306
		struct perf_read_data data = {
			.event = event,
			.group = group,
		};
3307
		smp_call_function_single(event->oncpu,
3308
					 __perf_event_read, &data, 1);
3309
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3310 3311 3312
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3313
		raw_spin_lock_irqsave(&ctx->lock, flags);
3314 3315 3316 3317 3318
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3319
		if (ctx->is_active) {
3320
			update_context_time(ctx);
S
Stephane Eranian 已提交
3321 3322
			update_cgrp_time_from_event(event);
		}
3323 3324 3325 3326
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3327
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3328 3329 3330
	}
}

3331
/*
3332
 * Initialize the perf_event context in a task_struct:
3333
 */
3334
static void __perf_event_init_context(struct perf_event_context *ctx)
3335
{
3336
	raw_spin_lock_init(&ctx->lock);
3337
	mutex_init(&ctx->mutex);
3338
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3339 3340
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3341 3342
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3343
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3359
	}
3360 3361 3362
	ctx->pmu = pmu;

	return ctx;
3363 3364
}

3365 3366 3367 3368 3369
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3370 3371

	rcu_read_lock();
3372
	if (!vpid)
T
Thomas Gleixner 已提交
3373 3374
		task = current;
	else
3375
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3376 3377 3378 3379 3380 3381 3382 3383
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3384 3385 3386 3387
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3388 3389 3390 3391 3392 3393 3394
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3395 3396 3397
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3398
static struct perf_event_context *
3399 3400
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3401
{
3402
	struct perf_event_context *ctx, *clone_ctx = NULL;
3403
	struct perf_cpu_context *cpuctx;
3404
	void *task_ctx_data = NULL;
3405
	unsigned long flags;
P
Peter Zijlstra 已提交
3406
	int ctxn, err;
3407
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3408

3409
	if (!task) {
3410
		/* Must be root to operate on a CPU event: */
3411
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3412 3413 3414
			return ERR_PTR(-EACCES);

		/*
3415
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3416 3417 3418
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3419
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3420 3421
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3422
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3423
		ctx = &cpuctx->ctx;
3424
		get_ctx(ctx);
3425
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3426 3427 3428 3429

		return ctx;
	}

P
Peter Zijlstra 已提交
3430 3431 3432 3433 3434
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3435 3436 3437 3438 3439 3440 3441 3442
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3443
retry:
P
Peter Zijlstra 已提交
3444
	ctx = perf_lock_task_context(task, ctxn, &flags);
3445
	if (ctx) {
3446
		clone_ctx = unclone_ctx(ctx);
3447
		++ctx->pin_count;
3448 3449 3450 3451 3452

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3453
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3454 3455 3456

		if (clone_ctx)
			put_ctx(clone_ctx);
3457
	} else {
3458
		ctx = alloc_perf_context(pmu, task);
3459 3460 3461
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3462

3463 3464 3465 3466 3467
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3478
		else {
3479
			get_ctx(ctx);
3480
			++ctx->pin_count;
3481
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3482
		}
3483 3484 3485
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3486
			put_ctx(ctx);
3487 3488 3489 3490

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3491 3492 3493
		}
	}

3494
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3495
	return ctx;
3496

P
Peter Zijlstra 已提交
3497
errout:
3498
	kfree(task_ctx_data);
3499
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3500 3501
}

L
Li Zefan 已提交
3502
static void perf_event_free_filter(struct perf_event *event);
3503
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3504

3505
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3506
{
3507
	struct perf_event *event;
P
Peter Zijlstra 已提交
3508

3509 3510 3511
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3512
	perf_event_free_filter(event);
3513
	kfree(event);
P
Peter Zijlstra 已提交
3514 3515
}

3516 3517
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3518

3519
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3520
{
3521 3522 3523 3524 3525 3526
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3527

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3541 3542
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3543 3544 3545 3546
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3547 3548 3549 3550 3551 3552 3553
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3554

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3640 3641
static void __free_event(struct perf_event *event)
{
3642
	if (!event->parent) {
3643 3644
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3645
	}
3646

3647 3648
	perf_event_free_bpf_prog(event);

3649 3650 3651 3652 3653 3654
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3655 3656
	if (event->pmu) {
		exclusive_event_destroy(event);
3657
		module_put(event->pmu->module);
3658
	}
3659

3660 3661
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3662 3663

static void _free_event(struct perf_event *event)
3664
{
3665
	irq_work_sync(&event->pending);
3666

3667
	unaccount_event(event);
3668

3669
	if (event->rb) {
3670 3671 3672 3673 3674 3675 3676
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3677
		ring_buffer_attach(event, NULL);
3678
		mutex_unlock(&event->mmap_mutex);
3679 3680
	}

S
Stephane Eranian 已提交
3681 3682 3683
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3684
	__free_event(event);
3685 3686
}

P
Peter Zijlstra 已提交
3687 3688 3689 3690 3691
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3692
{
P
Peter Zijlstra 已提交
3693 3694 3695 3696 3697 3698
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3699

P
Peter Zijlstra 已提交
3700
	_free_event(event);
T
Thomas Gleixner 已提交
3701 3702
}

3703
/*
3704
 * Remove user event from the owner task.
3705
 */
3706
static void perf_remove_from_owner(struct perf_event *event)
3707
{
P
Peter Zijlstra 已提交
3708
	struct task_struct *owner;
3709

P
Peter Zijlstra 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3751 3752 3753 3754
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3755
	struct perf_event_context *ctx;
3756 3757 3758 3759 3760 3761

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3762

P
Peter Zijlstra 已提交
3763 3764 3765 3766 3767 3768 3769
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3770
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3771 3772 3773 3774
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3775 3776
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3777
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3778
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3779 3780

	_free_event(event);
3781 3782
}

P
Peter Zijlstra 已提交
3783 3784 3785 3786 3787 3788 3789
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3790 3791 3792
/*
 * Called when the last reference to the file is gone.
 */
3793 3794 3795 3796
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3797 3798
}

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3835
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3836
{
3837
	struct perf_event *child;
3838 3839
	u64 total = 0;

3840 3841 3842
	*enabled = 0;
	*running = 0;

3843
	mutex_lock(&event->child_mutex);
3844

3845
	perf_event_read(event, false);
3846 3847
	total += perf_event_count(event);

3848 3849 3850 3851 3852 3853
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3854
		perf_event_read(child, false);
3855
		total += perf_event_count(child);
3856 3857 3858
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3859
	mutex_unlock(&event->child_mutex);
3860 3861 3862

	return total;
}
3863
EXPORT_SYMBOL_GPL(perf_event_read_value);
3864

3865
static int perf_read_group(struct perf_event *event,
3866 3867
				   u64 read_format, char __user *buf)
{
3868
	struct perf_event *leader = event->group_leader, *sub;
3869
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3870
	int n = 0, size = 0, ret;
3871
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3872 3873 3874
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3875

3876
	count = perf_event_read_value(leader, &enabled, &running);
3877 3878

	values[n++] = 1 + leader->nr_siblings;
3879 3880 3881 3882
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3883 3884 3885
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3886 3887 3888 3889

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3890
		return -EFAULT;
3891

3892
	ret = size;
3893

3894
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3895
		n = 0;
3896

3897
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3898 3899 3900 3901 3902
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3903
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3904
			return -EFAULT;
3905
		}
3906 3907

		ret += size;
3908 3909
	}

3910
	return ret;
3911 3912
}

3913
static int perf_read_one(struct perf_event *event,
3914 3915
				 u64 read_format, char __user *buf)
{
3916
	u64 enabled, running;
3917 3918 3919
	u64 values[4];
	int n = 0;

3920 3921 3922 3923 3924
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3925
	if (read_format & PERF_FORMAT_ID)
3926
		values[n++] = primary_event_id(event);
3927 3928 3929 3930 3931 3932 3933

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3947
/*
3948
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3949 3950
 */
static ssize_t
3951
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3952
{
3953
	u64 read_format = event->attr.read_format;
3954
	int ret;
T
Thomas Gleixner 已提交
3955

3956
	/*
3957
	 * Return end-of-file for a read on a event that is in
3958 3959 3960
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3961
	if (event->state == PERF_EVENT_STATE_ERROR)
3962 3963
		return 0;

3964
	if (count < event->read_size)
3965 3966
		return -ENOSPC;

3967
	WARN_ON_ONCE(event->ctx->parent_ctx);
3968
	if (read_format & PERF_FORMAT_GROUP)
3969
		ret = perf_read_group(event, read_format, buf);
3970
	else
3971
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3972

3973
	return ret;
T
Thomas Gleixner 已提交
3974 3975 3976 3977 3978
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3979
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3980 3981
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3982

P
Peter Zijlstra 已提交
3983
	ctx = perf_event_ctx_lock(event);
3984
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
3985 3986 3987
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3988 3989 3990 3991
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3992
	struct perf_event *event = file->private_data;
3993
	struct ring_buffer *rb;
3994
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3995

3996
	poll_wait(file, &event->waitq, wait);
3997

3998
	if (is_event_hup(event))
3999
		return events;
P
Peter Zijlstra 已提交
4000

4001
	/*
4002 4003
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4004 4005
	 */
	mutex_lock(&event->mmap_mutex);
4006 4007
	rb = event->rb;
	if (rb)
4008
		events = atomic_xchg(&rb->poll, 0);
4009
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4010 4011 4012
	return events;
}

P
Peter Zijlstra 已提交
4013
static void _perf_event_reset(struct perf_event *event)
4014
{
4015
	perf_event_read(event, false);
4016
	local64_set(&event->count, 0);
4017
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4018 4019
}

4020
/*
4021 4022 4023 4024
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4025
 */
4026 4027
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4028
{
4029
	struct perf_event *child;
P
Peter Zijlstra 已提交
4030

4031
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4032

4033 4034 4035
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4036
		func(child);
4037
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4038 4039
}

4040 4041
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4042
{
4043 4044
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4045

P
Peter Zijlstra 已提交
4046 4047
	lockdep_assert_held(&ctx->mutex);

4048
	event = event->group_leader;
4049

4050 4051
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4052
		perf_event_for_each_child(sibling, func);
4053 4054
}

4055 4056
struct period_event {
	struct perf_event *event;
4057
	u64 value;
4058
};
4059

4060 4061 4062 4063 4064 4065 4066
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4067

4068
	raw_spin_lock(&ctx->lock);
4069 4070
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4071
	} else {
4072 4073
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4074
	}
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4088
	raw_spin_unlock(&ctx->lock);
4089

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

	__perf_event_period(&pe);
4132
	raw_spin_unlock_irq(&ctx->lock);
4133

4134
	return 0;
4135 4136
}

4137 4138
static const struct file_operations perf_fops;

4139
static inline int perf_fget_light(int fd, struct fd *p)
4140
{
4141 4142 4143
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4144

4145 4146 4147
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4148
	}
4149 4150
	*p = f;
	return 0;
4151 4152 4153 4154
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4155
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4156
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4157

P
Peter Zijlstra 已提交
4158
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4159
{
4160
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4161
	u32 flags = arg;
4162 4163

	switch (cmd) {
4164
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4165
		func = _perf_event_enable;
4166
		break;
4167
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4168
		func = _perf_event_disable;
4169
		break;
4170
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4171
		func = _perf_event_reset;
4172
		break;
P
Peter Zijlstra 已提交
4173

4174
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4175
		return _perf_event_refresh(event, arg);
4176

4177 4178
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4179

4180 4181 4182 4183 4184 4185 4186 4187 4188
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4189
	case PERF_EVENT_IOC_SET_OUTPUT:
4190 4191 4192
	{
		int ret;
		if (arg != -1) {
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4203 4204 4205
		}
		return ret;
	}
4206

L
Li Zefan 已提交
4207 4208 4209
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4210 4211 4212
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4213
	default:
P
Peter Zijlstra 已提交
4214
		return -ENOTTY;
4215
	}
P
Peter Zijlstra 已提交
4216 4217

	if (flags & PERF_IOC_FLAG_GROUP)
4218
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4219
	else
4220
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4221 4222

	return 0;
4223 4224
}

P
Peter Zijlstra 已提交
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4258
int perf_event_task_enable(void)
4259
{
P
Peter Zijlstra 已提交
4260
	struct perf_event_context *ctx;
4261
	struct perf_event *event;
4262

4263
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4264 4265 4266 4267 4268
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4269
	mutex_unlock(&current->perf_event_mutex);
4270 4271 4272 4273

	return 0;
}

4274
int perf_event_task_disable(void)
4275
{
P
Peter Zijlstra 已提交
4276
	struct perf_event_context *ctx;
4277
	struct perf_event *event;
4278

4279
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4280 4281 4282 4283 4284
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4285
	mutex_unlock(&current->perf_event_mutex);
4286 4287 4288 4289

	return 0;
}

4290
static int perf_event_index(struct perf_event *event)
4291
{
P
Peter Zijlstra 已提交
4292 4293 4294
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4295
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4296 4297
		return 0;

4298
	return event->pmu->event_idx(event);
4299 4300
}

4301
static void calc_timer_values(struct perf_event *event,
4302
				u64 *now,
4303 4304
				u64 *enabled,
				u64 *running)
4305
{
4306
	u64 ctx_time;
4307

4308 4309
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4310 4311 4312 4313
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4329 4330
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4331 4332 4333 4334 4335

unlock:
	rcu_read_unlock();
}

4336 4337
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4338 4339 4340
{
}

4341 4342 4343 4344 4345
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4346
void perf_event_update_userpage(struct perf_event *event)
4347
{
4348
	struct perf_event_mmap_page *userpg;
4349
	struct ring_buffer *rb;
4350
	u64 enabled, running, now;
4351 4352

	rcu_read_lock();
4353 4354 4355 4356
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4357 4358 4359 4360 4361 4362 4363 4364 4365
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4366
	calc_timer_values(event, &now, &enabled, &running);
4367

4368
	userpg = rb->user_page;
4369 4370 4371 4372 4373
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4374
	++userpg->lock;
4375
	barrier();
4376
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4377
	userpg->offset = perf_event_count(event);
4378
	if (userpg->index)
4379
		userpg->offset -= local64_read(&event->hw.prev_count);
4380

4381
	userpg->time_enabled = enabled +
4382
			atomic64_read(&event->child_total_time_enabled);
4383

4384
	userpg->time_running = running +
4385
			atomic64_read(&event->child_total_time_running);
4386

4387
	arch_perf_update_userpage(event, userpg, now);
4388

4389
	barrier();
4390
	++userpg->lock;
4391
	preempt_enable();
4392
unlock:
4393
	rcu_read_unlock();
4394 4395
}

4396 4397 4398
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4399
	struct ring_buffer *rb;
4400 4401 4402 4403 4404 4405 4406 4407 4408
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4409 4410
	rb = rcu_dereference(event->rb);
	if (!rb)
4411 4412 4413 4414 4415
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4416
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4431 4432 4433
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4434
	struct ring_buffer *old_rb = NULL;
4435 4436
	unsigned long flags;

4437 4438 4439 4440 4441 4442
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4443

4444 4445 4446 4447
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4448

4449 4450
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4451
	}
4452

4453
	if (rb) {
4454 4455 4456 4457 4458
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4475 4476 4477 4478 4479 4480 4481 4482
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4483 4484 4485 4486
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4487 4488 4489
	rcu_read_unlock();
}

4490
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4491
{
4492
	struct ring_buffer *rb;
4493

4494
	rcu_read_lock();
4495 4496 4497 4498
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4499 4500 4501
	}
	rcu_read_unlock();

4502
	return rb;
4503 4504
}

4505
void ring_buffer_put(struct ring_buffer *rb)
4506
{
4507
	if (!atomic_dec_and_test(&rb->refcount))
4508
		return;
4509

4510
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4511

4512
	call_rcu(&rb->rcu_head, rb_free_rcu);
4513 4514 4515 4516
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4517
	struct perf_event *event = vma->vm_file->private_data;
4518

4519
	atomic_inc(&event->mmap_count);
4520
	atomic_inc(&event->rb->mmap_count);
4521

4522 4523 4524
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4525 4526
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4527 4528
}

4529 4530 4531 4532 4533 4534 4535 4536
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4537 4538
static void perf_mmap_close(struct vm_area_struct *vma)
{
4539
	struct perf_event *event = vma->vm_file->private_data;
4540

4541
	struct ring_buffer *rb = ring_buffer_get(event);
4542 4543 4544
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4545

4546 4547 4548
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4563 4564 4565
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4566
		goto out_put;
4567

4568
	ring_buffer_attach(event, NULL);
4569 4570 4571
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4572 4573
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4574

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4591

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4603 4604 4605
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4606
		mutex_unlock(&event->mmap_mutex);
4607
		put_event(event);
4608

4609 4610 4611 4612 4613
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4614
	}
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4630
out_put:
4631
	ring_buffer_put(rb); /* could be last */
4632 4633
}

4634
static const struct vm_operations_struct perf_mmap_vmops = {
4635
	.open		= perf_mmap_open,
4636
	.close		= perf_mmap_close, /* non mergable */
4637 4638
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4639 4640 4641 4642
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4643
	struct perf_event *event = file->private_data;
4644
	unsigned long user_locked, user_lock_limit;
4645
	struct user_struct *user = current_user();
4646
	unsigned long locked, lock_limit;
4647
	struct ring_buffer *rb = NULL;
4648 4649
	unsigned long vma_size;
	unsigned long nr_pages;
4650
	long user_extra = 0, extra = 0;
4651
	int ret = 0, flags = 0;
4652

4653 4654 4655
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4656
	 * same rb.
4657 4658 4659 4660
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4661
	if (!(vma->vm_flags & VM_SHARED))
4662
		return -EINVAL;
4663 4664

	vma_size = vma->vm_end - vma->vm_start;
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4725

4726
	/*
4727
	 * If we have rb pages ensure they're a power-of-two number, so we
4728 4729
	 * can do bitmasks instead of modulo.
	 */
4730
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4731 4732
		return -EINVAL;

4733
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4734 4735
		return -EINVAL;

4736
	WARN_ON_ONCE(event->ctx->parent_ctx);
4737
again:
4738
	mutex_lock(&event->mmap_mutex);
4739
	if (event->rb) {
4740
		if (event->rb->nr_pages != nr_pages) {
4741
			ret = -EINVAL;
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4755 4756 4757
		goto unlock;
	}

4758
	user_extra = nr_pages + 1;
4759 4760

accounting:
4761
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4762 4763 4764 4765 4766 4767

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4768
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4769

4770 4771
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4772

4773
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4774
	lock_limit >>= PAGE_SHIFT;
4775
	locked = vma->vm_mm->pinned_vm + extra;
4776

4777 4778
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4779 4780 4781
		ret = -EPERM;
		goto unlock;
	}
4782

4783
	WARN_ON(!rb && event->rb);
4784

4785
	if (vma->vm_flags & VM_WRITE)
4786
		flags |= RING_BUFFER_WRITABLE;
4787

4788
	if (!rb) {
4789 4790 4791
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4792

4793 4794 4795 4796
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4797

4798 4799 4800
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4801

4802
		ring_buffer_attach(event, rb);
4803

4804 4805 4806
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4807 4808
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4809 4810 4811
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4812

4813
unlock:
4814 4815 4816 4817
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4818
		atomic_inc(&event->mmap_count);
4819 4820 4821 4822
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4823
	mutex_unlock(&event->mmap_mutex);
4824

4825 4826 4827 4828
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4829
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4830
	vma->vm_ops = &perf_mmap_vmops;
4831

4832 4833 4834
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4835
	return ret;
4836 4837
}

P
Peter Zijlstra 已提交
4838 4839
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4840
	struct inode *inode = file_inode(filp);
4841
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4842 4843 4844
	int retval;

	mutex_lock(&inode->i_mutex);
4845
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4846 4847 4848 4849 4850 4851 4852 4853
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4854
static const struct file_operations perf_fops = {
4855
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4856 4857 4858
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4859
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4860
	.compat_ioctl		= perf_compat_ioctl,
4861
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4862
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4863 4864
};

4865
/*
4866
 * Perf event wakeup
4867 4868 4869 4870 4871
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4872 4873 4874 4875 4876 4877 4878 4879
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4880
void perf_event_wakeup(struct perf_event *event)
4881
{
4882
	ring_buffer_wakeup(event);
4883

4884
	if (event->pending_kill) {
4885
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4886
		event->pending_kill = 0;
4887
	}
4888 4889
}

4890
static void perf_pending_event(struct irq_work *entry)
4891
{
4892 4893
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4894 4895 4896 4897 4898 4899 4900
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4901

4902 4903 4904
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4905 4906
	}

4907 4908 4909
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4910
	}
4911 4912 4913

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4914 4915
}

4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4952
static void perf_sample_regs_user(struct perf_regs *regs_user,
4953 4954
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4955
{
4956 4957
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4958
		regs_user->regs = regs;
4959 4960
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4961 4962 4963
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4964 4965 4966
	}
}

4967 4968 4969 4970 4971 4972 4973 4974
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5070 5071 5072
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5086
		data->time = perf_event_clock(event);
5087

5088
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5100 5101 5102
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5127 5128 5129

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5130 5131
}

5132 5133 5134
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5135 5136 5137 5138 5139
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5140
static void perf_output_read_one(struct perf_output_handle *handle,
5141 5142
				 struct perf_event *event,
				 u64 enabled, u64 running)
5143
{
5144
	u64 read_format = event->attr.read_format;
5145 5146 5147
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5148
	values[n++] = perf_event_count(event);
5149
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5150
		values[n++] = enabled +
5151
			atomic64_read(&event->child_total_time_enabled);
5152 5153
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5154
		values[n++] = running +
5155
			atomic64_read(&event->child_total_time_running);
5156 5157
	}
	if (read_format & PERF_FORMAT_ID)
5158
		values[n++] = primary_event_id(event);
5159

5160
	__output_copy(handle, values, n * sizeof(u64));
5161 5162 5163
}

/*
5164
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5165 5166
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5167 5168
			    struct perf_event *event,
			    u64 enabled, u64 running)
5169
{
5170 5171
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5172 5173 5174 5175 5176 5177
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5178
		values[n++] = enabled;
5179 5180

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5181
		values[n++] = running;
5182

5183
	if (leader != event)
5184 5185
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5186
	values[n++] = perf_event_count(leader);
5187
	if (read_format & PERF_FORMAT_ID)
5188
		values[n++] = primary_event_id(leader);
5189

5190
	__output_copy(handle, values, n * sizeof(u64));
5191

5192
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5193 5194
		n = 0;

5195 5196
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5197 5198
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5199
		values[n++] = perf_event_count(sub);
5200
		if (read_format & PERF_FORMAT_ID)
5201
			values[n++] = primary_event_id(sub);
5202

5203
		__output_copy(handle, values, n * sizeof(u64));
5204 5205 5206
	}
}

5207 5208 5209
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5210
static void perf_output_read(struct perf_output_handle *handle,
5211
			     struct perf_event *event)
5212
{
5213
	u64 enabled = 0, running = 0, now;
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5225
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5226
		calc_timer_values(event, &now, &enabled, &running);
5227

5228
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5229
		perf_output_read_group(handle, event, enabled, running);
5230
	else
5231
		perf_output_read_one(handle, event, enabled, running);
5232 5233
}

5234 5235 5236
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5237
			struct perf_event *event)
5238 5239 5240 5241 5242
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5243 5244 5245
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5271
		perf_output_read(handle, event);
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5282
			__output_copy(handle, data->callchain, size);
5283 5284 5285 5286 5287 5288 5289 5290 5291
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5292 5293
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5305

5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5340

5341
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5342 5343 5344
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5345
	}
A
Andi Kleen 已提交
5346 5347 5348

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5349 5350 5351

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5352

A
Andi Kleen 已提交
5353 5354 5355
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5386 5387 5388 5389
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5390
			 struct perf_event *event,
5391
			 struct pt_regs *regs)
5392
{
5393
	u64 sample_type = event->attr.sample_type;
5394

5395
	header->type = PERF_RECORD_SAMPLE;
5396
	header->size = sizeof(*header) + event->header_size;
5397 5398 5399

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5400

5401
	__perf_event_header__init_id(header, data, event);
5402

5403
	if (sample_type & PERF_SAMPLE_IP)
5404 5405
		data->ip = perf_instruction_pointer(regs);

5406
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5407
		int size = 1;
5408

5409
		data->callchain = perf_callchain(event, regs);
5410 5411 5412 5413 5414

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5415 5416
	}

5417
	if (sample_type & PERF_SAMPLE_RAW) {
5418 5419 5420 5421 5422 5423 5424 5425
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5426
		header->size += size;
5427
	}
5428 5429 5430 5431 5432 5433 5434 5435 5436

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5437

5438
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5439 5440
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5441

5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5465
						     data->regs_user.regs);
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5493
}
5494

5495 5496 5497
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5498 5499 5500
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5501

5502 5503 5504
	/* protect the callchain buffers */
	rcu_read_lock();

5505
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5506

5507
	if (perf_output_begin(&handle, event, header.size))
5508
		goto exit;
5509

5510
	perf_output_sample(&handle, &header, data, event);
5511

5512
	perf_output_end(&handle);
5513 5514 5515

exit:
	rcu_read_unlock();
5516 5517
}

5518
/*
5519
 * read event_id
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5530
perf_event_read_event(struct perf_event *event,
5531 5532 5533
			struct task_struct *task)
{
	struct perf_output_handle handle;
5534
	struct perf_sample_data sample;
5535
	struct perf_read_event read_event = {
5536
		.header = {
5537
			.type = PERF_RECORD_READ,
5538
			.misc = 0,
5539
			.size = sizeof(read_event) + event->read_size,
5540
		},
5541 5542
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5543
	};
5544
	int ret;
5545

5546
	perf_event_header__init_id(&read_event.header, &sample, event);
5547
	ret = perf_output_begin(&handle, event, read_event.header.size);
5548 5549 5550
	if (ret)
		return;

5551
	perf_output_put(&handle, read_event);
5552
	perf_output_read(&handle, event);
5553
	perf_event__output_id_sample(event, &handle, &sample);
5554

5555 5556 5557
	perf_output_end(&handle);
}

5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5572
		output(event, data);
5573 5574 5575 5576
	}
}

static void
5577
perf_event_aux(perf_event_aux_output_cb output, void *data,
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5590
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5591 5592 5593 5594 5595 5596 5597
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5598
			perf_event_aux_ctx(ctx, output, data);
5599 5600 5601 5602 5603 5604
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5605
		perf_event_aux_ctx(task_ctx, output, data);
5606 5607 5608 5609 5610
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5611
/*
P
Peter Zijlstra 已提交
5612 5613
 * task tracking -- fork/exit
 *
5614
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5615 5616
 */

P
Peter Zijlstra 已提交
5617
struct perf_task_event {
5618
	struct task_struct		*task;
5619
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5620 5621 5622 5623 5624 5625

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5626 5627
		u32				tid;
		u32				ptid;
5628
		u64				time;
5629
	} event_id;
P
Peter Zijlstra 已提交
5630 5631
};

5632 5633
static int perf_event_task_match(struct perf_event *event)
{
5634 5635 5636
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5637 5638
}

5639
static void perf_event_task_output(struct perf_event *event,
5640
				   void *data)
P
Peter Zijlstra 已提交
5641
{
5642
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5643
	struct perf_output_handle handle;
5644
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5645
	struct task_struct *task = task_event->task;
5646
	int ret, size = task_event->event_id.header.size;
5647

5648 5649 5650
	if (!perf_event_task_match(event))
		return;

5651
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5652

5653
	ret = perf_output_begin(&handle, event,
5654
				task_event->event_id.header.size);
5655
	if (ret)
5656
		goto out;
P
Peter Zijlstra 已提交
5657

5658 5659
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5660

5661 5662
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5663

5664 5665
	task_event->event_id.time = perf_event_clock(event);

5666
	perf_output_put(&handle, task_event->event_id);
5667

5668 5669
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5670
	perf_output_end(&handle);
5671 5672
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5673 5674
}

5675 5676
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5677
			      int new)
P
Peter Zijlstra 已提交
5678
{
P
Peter Zijlstra 已提交
5679
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5680

5681 5682 5683
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5684 5685
		return;

P
Peter Zijlstra 已提交
5686
	task_event = (struct perf_task_event){
5687 5688
		.task	  = task,
		.task_ctx = task_ctx,
5689
		.event_id    = {
P
Peter Zijlstra 已提交
5690
			.header = {
5691
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5692
				.misc = 0,
5693
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5694
			},
5695 5696
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5697 5698
			/* .tid  */
			/* .ptid */
5699
			/* .time */
P
Peter Zijlstra 已提交
5700 5701 5702
		},
	};

5703
	perf_event_aux(perf_event_task_output,
5704 5705
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5706 5707
}

5708
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5709
{
5710
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5711 5712
}

5713 5714 5715 5716 5717
/*
 * comm tracking
 */

struct perf_comm_event {
5718 5719
	struct task_struct	*task;
	char			*comm;
5720 5721 5722 5723 5724 5725 5726
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5727
	} event_id;
5728 5729
};

5730 5731 5732 5733 5734
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5735
static void perf_event_comm_output(struct perf_event *event,
5736
				   void *data)
5737
{
5738
	struct perf_comm_event *comm_event = data;
5739
	struct perf_output_handle handle;
5740
	struct perf_sample_data sample;
5741
	int size = comm_event->event_id.header.size;
5742 5743
	int ret;

5744 5745 5746
	if (!perf_event_comm_match(event))
		return;

5747 5748
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5749
				comm_event->event_id.header.size);
5750 5751

	if (ret)
5752
		goto out;
5753

5754 5755
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5756

5757
	perf_output_put(&handle, comm_event->event_id);
5758
	__output_copy(&handle, comm_event->comm,
5759
				   comm_event->comm_size);
5760 5761 5762

	perf_event__output_id_sample(event, &handle, &sample);

5763
	perf_output_end(&handle);
5764 5765
out:
	comm_event->event_id.header.size = size;
5766 5767
}

5768
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5769
{
5770
	char comm[TASK_COMM_LEN];
5771 5772
	unsigned int size;

5773
	memset(comm, 0, sizeof(comm));
5774
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5775
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5776 5777 5778 5779

	comm_event->comm = comm;
	comm_event->comm_size = size;

5780
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5781

5782
	perf_event_aux(perf_event_comm_output,
5783 5784
		       comm_event,
		       NULL);
5785 5786
}

5787
void perf_event_comm(struct task_struct *task, bool exec)
5788
{
5789 5790
	struct perf_comm_event comm_event;

5791
	if (!atomic_read(&nr_comm_events))
5792
		return;
5793

5794
	comm_event = (struct perf_comm_event){
5795
		.task	= task,
5796 5797
		/* .comm      */
		/* .comm_size */
5798
		.event_id  = {
5799
			.header = {
5800
				.type = PERF_RECORD_COMM,
5801
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5802 5803 5804 5805
				/* .size */
			},
			/* .pid */
			/* .tid */
5806 5807 5808
		},
	};

5809
	perf_event_comm_event(&comm_event);
5810 5811
}

5812 5813 5814 5815 5816
/*
 * mmap tracking
 */

struct perf_mmap_event {
5817 5818 5819 5820
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5821 5822 5823
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5824
	u32			prot, flags;
5825 5826 5827 5828 5829 5830 5831 5832 5833

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5834
	} event_id;
5835 5836
};

5837 5838 5839 5840 5841 5842 5843 5844
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5845
	       (executable && (event->attr.mmap || event->attr.mmap2));
5846 5847
}

5848
static void perf_event_mmap_output(struct perf_event *event,
5849
				   void *data)
5850
{
5851
	struct perf_mmap_event *mmap_event = data;
5852
	struct perf_output_handle handle;
5853
	struct perf_sample_data sample;
5854
	int size = mmap_event->event_id.header.size;
5855
	int ret;
5856

5857 5858 5859
	if (!perf_event_mmap_match(event, data))
		return;

5860 5861 5862 5863 5864
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5865
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5866 5867
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5868 5869
	}

5870 5871
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5872
				mmap_event->event_id.header.size);
5873
	if (ret)
5874
		goto out;
5875

5876 5877
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5878

5879
	perf_output_put(&handle, mmap_event->event_id);
5880 5881 5882 5883 5884 5885

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5886 5887
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5888 5889
	}

5890
	__output_copy(&handle, mmap_event->file_name,
5891
				   mmap_event->file_size);
5892 5893 5894

	perf_event__output_id_sample(event, &handle, &sample);

5895
	perf_output_end(&handle);
5896 5897
out:
	mmap_event->event_id.header.size = size;
5898 5899
}

5900
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5901
{
5902 5903
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5904 5905
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5906
	u32 prot = 0, flags = 0;
5907 5908 5909
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5910
	char *name;
5911

5912
	if (file) {
5913 5914
		struct inode *inode;
		dev_t dev;
5915

5916
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5917
		if (!buf) {
5918 5919
			name = "//enomem";
			goto cpy_name;
5920
		}
5921
		/*
5922
		 * d_path() works from the end of the rb backwards, so we
5923 5924 5925
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5926
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5927
		if (IS_ERR(name)) {
5928 5929
			name = "//toolong";
			goto cpy_name;
5930
		}
5931 5932 5933 5934 5935 5936
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5959
		goto got_name;
5960
	} else {
5961 5962 5963 5964 5965 5966
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5967
		name = (char *)arch_vma_name(vma);
5968 5969
		if (name)
			goto cpy_name;
5970

5971
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5972
				vma->vm_end >= vma->vm_mm->brk) {
5973 5974
			name = "[heap]";
			goto cpy_name;
5975 5976
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5977
				vma->vm_end >= vma->vm_mm->start_stack) {
5978 5979
			name = "[stack]";
			goto cpy_name;
5980 5981
		}

5982 5983
		name = "//anon";
		goto cpy_name;
5984 5985
	}

5986 5987 5988
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5989
got_name:
5990 5991 5992 5993 5994 5995 5996 5997
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5998 5999 6000

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6001 6002 6003 6004
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6005 6006
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6007

6008 6009 6010
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6011
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6012

6013
	perf_event_aux(perf_event_mmap_output,
6014 6015
		       mmap_event,
		       NULL);
6016

6017 6018 6019
	kfree(buf);
}

6020
void perf_event_mmap(struct vm_area_struct *vma)
6021
{
6022 6023
	struct perf_mmap_event mmap_event;

6024
	if (!atomic_read(&nr_mmap_events))
6025 6026 6027
		return;

	mmap_event = (struct perf_mmap_event){
6028
		.vma	= vma,
6029 6030
		/* .file_name */
		/* .file_size */
6031
		.event_id  = {
6032
			.header = {
6033
				.type = PERF_RECORD_MMAP,
6034
				.misc = PERF_RECORD_MISC_USER,
6035 6036 6037 6038
				/* .size */
			},
			/* .pid */
			/* .tid */
6039 6040
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6041
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6042
		},
6043 6044 6045 6046
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6047 6048
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6049 6050
	};

6051
	perf_event_mmap_event(&mmap_event);
6052 6053
}

A
Alexander Shishkin 已提交
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6206 6207 6208 6209
/*
 * IRQ throttle logging
 */

6210
static void perf_log_throttle(struct perf_event *event, int enable)
6211 6212
{
	struct perf_output_handle handle;
6213
	struct perf_sample_data sample;
6214 6215 6216 6217 6218
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6219
		u64				id;
6220
		u64				stream_id;
6221 6222
	} throttle_event = {
		.header = {
6223
			.type = PERF_RECORD_THROTTLE,
6224 6225 6226
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6227
		.time		= perf_event_clock(event),
6228 6229
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6230 6231
	};

6232
	if (enable)
6233
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6234

6235 6236 6237
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6238
				throttle_event.header.size);
6239 6240 6241 6242
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6243
	perf_event__output_id_sample(event, &handle, &sample);
6244 6245 6246
	perf_output_end(&handle);
}

6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6283
/*
6284
 * Generic event overflow handling, sampling.
6285 6286
 */

6287
static int __perf_event_overflow(struct perf_event *event,
6288 6289
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6290
{
6291 6292
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6293
	u64 seq;
6294 6295
	int ret = 0;

6296 6297 6298 6299 6300 6301 6302
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6303 6304 6305 6306 6307 6308 6309 6310 6311
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6312 6313
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6314
			tick_nohz_full_kick();
6315 6316
			ret = 1;
		}
6317
	}
6318

6319
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6320
		u64 now = perf_clock();
6321
		s64 delta = now - hwc->freq_time_stamp;
6322

6323
		hwc->freq_time_stamp = now;
6324

6325
		if (delta > 0 && delta < 2*TICK_NSEC)
6326
			perf_adjust_period(event, delta, hwc->last_period, true);
6327 6328
	}

6329 6330
	/*
	 * XXX event_limit might not quite work as expected on inherited
6331
	 * events
6332 6333
	 */

6334 6335
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6336
		ret = 1;
6337
		event->pending_kill = POLL_HUP;
6338 6339
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6340 6341
	}

6342
	if (event->overflow_handler)
6343
		event->overflow_handler(event, data, regs);
6344
	else
6345
		perf_event_output(event, data, regs);
6346

6347
	if (*perf_event_fasync(event) && event->pending_kill) {
6348 6349
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6350 6351
	}

6352
	return ret;
6353 6354
}

6355
int perf_event_overflow(struct perf_event *event,
6356 6357
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6358
{
6359
	return __perf_event_overflow(event, 1, data, regs);
6360 6361
}

6362
/*
6363
 * Generic software event infrastructure
6364 6365
 */

6366 6367 6368 6369 6370 6371 6372
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6373 6374 6375

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6376 6377 6378 6379
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6380
/*
6381 6382
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6383 6384 6385 6386
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6387
u64 perf_swevent_set_period(struct perf_event *event)
6388
{
6389
	struct hw_perf_event *hwc = &event->hw;
6390 6391 6392 6393 6394
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6395 6396

again:
6397
	old = val = local64_read(&hwc->period_left);
6398 6399
	if (val < 0)
		return 0;
6400

6401 6402 6403
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6404
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6405
		goto again;
6406

6407
	return nr;
6408 6409
}

6410
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6411
				    struct perf_sample_data *data,
6412
				    struct pt_regs *regs)
6413
{
6414
	struct hw_perf_event *hwc = &event->hw;
6415
	int throttle = 0;
6416

6417 6418
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6419

6420 6421
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6422

6423
	for (; overflow; overflow--) {
6424
		if (__perf_event_overflow(event, throttle,
6425
					    data, regs)) {
6426 6427 6428 6429 6430 6431
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6432
		throttle = 1;
6433
	}
6434 6435
}

P
Peter Zijlstra 已提交
6436
static void perf_swevent_event(struct perf_event *event, u64 nr,
6437
			       struct perf_sample_data *data,
6438
			       struct pt_regs *regs)
6439
{
6440
	struct hw_perf_event *hwc = &event->hw;
6441

6442
	local64_add(nr, &event->count);
6443

6444 6445 6446
	if (!regs)
		return;

6447
	if (!is_sampling_event(event))
6448
		return;
6449

6450 6451 6452 6453 6454 6455
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6456
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6457
		return perf_swevent_overflow(event, 1, data, regs);
6458

6459
	if (local64_add_negative(nr, &hwc->period_left))
6460
		return;
6461

6462
	perf_swevent_overflow(event, 0, data, regs);
6463 6464
}

6465 6466 6467
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6468
	if (event->hw.state & PERF_HES_STOPPED)
6469
		return 1;
P
Peter Zijlstra 已提交
6470

6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6482
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6483
				enum perf_type_id type,
L
Li Zefan 已提交
6484 6485 6486
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6487
{
6488
	if (event->attr.type != type)
6489
		return 0;
6490

6491
	if (event->attr.config != event_id)
6492 6493
		return 0;

6494 6495
	if (perf_exclude_event(event, regs))
		return 0;
6496 6497 6498 6499

	return 1;
}

6500 6501 6502 6503 6504 6505 6506
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6507 6508
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6509
{
6510 6511 6512 6513
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6514

6515 6516
/* For the read side: events when they trigger */
static inline struct hlist_head *
6517
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6518 6519
{
	struct swevent_hlist *hlist;
6520

6521
	hlist = rcu_dereference(swhash->swevent_hlist);
6522 6523 6524
	if (!hlist)
		return NULL;

6525 6526 6527 6528 6529
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6530
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6541
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6542 6543 6544 6545 6546
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6547 6548 6549
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6550
				    u64 nr,
6551 6552
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6553
{
6554
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6555
	struct perf_event *event;
6556
	struct hlist_head *head;
6557

6558
	rcu_read_lock();
6559
	head = find_swevent_head_rcu(swhash, type, event_id);
6560 6561 6562
	if (!head)
		goto end;

6563
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6564
		if (perf_swevent_match(event, type, event_id, data, regs))
6565
			perf_swevent_event(event, nr, data, regs);
6566
	}
6567 6568
end:
	rcu_read_unlock();
6569 6570
}

6571 6572
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6573
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6574
{
6575
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6576

6577
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6578
}
I
Ingo Molnar 已提交
6579
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6580

6581
inline void perf_swevent_put_recursion_context(int rctx)
6582
{
6583
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6584

6585
	put_recursion_context(swhash->recursion, rctx);
6586
}
6587

6588
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6589
{
6590
	struct perf_sample_data data;
6591

6592
	if (WARN_ON_ONCE(!regs))
6593
		return;
6594

6595
	perf_sample_data_init(&data, addr, 0);
6596
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6609 6610

	perf_swevent_put_recursion_context(rctx);
6611
fail:
6612
	preempt_enable_notrace();
6613 6614
}

6615
static void perf_swevent_read(struct perf_event *event)
6616 6617 6618
{
}

P
Peter Zijlstra 已提交
6619
static int perf_swevent_add(struct perf_event *event, int flags)
6620
{
6621
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6622
	struct hw_perf_event *hwc = &event->hw;
6623 6624
	struct hlist_head *head;

6625
	if (is_sampling_event(event)) {
6626
		hwc->last_period = hwc->sample_period;
6627
		perf_swevent_set_period(event);
6628
	}
6629

P
Peter Zijlstra 已提交
6630 6631
	hwc->state = !(flags & PERF_EF_START);

6632
	head = find_swevent_head(swhash, event);
6633 6634 6635 6636 6637 6638
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6639
		return -EINVAL;
6640
	}
6641 6642

	hlist_add_head_rcu(&event->hlist_entry, head);
6643
	perf_event_update_userpage(event);
6644

6645 6646 6647
	return 0;
}

P
Peter Zijlstra 已提交
6648
static void perf_swevent_del(struct perf_event *event, int flags)
6649
{
6650
	hlist_del_rcu(&event->hlist_entry);
6651 6652
}

P
Peter Zijlstra 已提交
6653
static void perf_swevent_start(struct perf_event *event, int flags)
6654
{
P
Peter Zijlstra 已提交
6655
	event->hw.state = 0;
6656
}
I
Ingo Molnar 已提交
6657

P
Peter Zijlstra 已提交
6658
static void perf_swevent_stop(struct perf_event *event, int flags)
6659
{
P
Peter Zijlstra 已提交
6660
	event->hw.state = PERF_HES_STOPPED;
6661 6662
}

6663 6664
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6665
swevent_hlist_deref(struct swevent_htable *swhash)
6666
{
6667 6668
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6669 6670
}

6671
static void swevent_hlist_release(struct swevent_htable *swhash)
6672
{
6673
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6674

6675
	if (!hlist)
6676 6677
		return;

6678
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6679
	kfree_rcu(hlist, rcu_head);
6680 6681 6682 6683
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6684
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6685

6686
	mutex_lock(&swhash->hlist_mutex);
6687

6688 6689
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6690

6691
	mutex_unlock(&swhash->hlist_mutex);
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6704
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6705 6706
	int err = 0;

6707
	mutex_lock(&swhash->hlist_mutex);
6708

6709
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6710 6711 6712 6713 6714 6715 6716
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6717
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6718
	}
6719
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6720
exit:
6721
	mutex_unlock(&swhash->hlist_mutex);
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6742
fail:
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6753
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6754

6755 6756 6757
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6758

6759 6760
	WARN_ON(event->parent);

6761
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6762 6763 6764 6765 6766
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6767
	u64 event_id = event->attr.config;
6768 6769 6770 6771

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6772 6773 6774 6775 6776 6777
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6778 6779 6780 6781 6782 6783 6784 6785 6786
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6787
	if (event_id >= PERF_COUNT_SW_MAX)
6788 6789 6790 6791 6792 6793 6794 6795 6796
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6797
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6798 6799 6800 6801 6802 6803 6804
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6805
	.task_ctx_nr	= perf_sw_context,
6806

6807 6808
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6809
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6810 6811 6812 6813
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6814 6815 6816
	.read		= perf_swevent_read,
};

6817 6818
#ifdef CONFIG_EVENT_TRACING

6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6833 6834
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6835 6836 6837 6838
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6839 6840 6841 6842 6843 6844 6845 6846 6847
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6848 6849
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6850 6851
{
	struct perf_sample_data data;
6852 6853
	struct perf_event *event;

6854 6855 6856 6857 6858
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6859
	perf_sample_data_init(&data, addr, 0);
6860 6861
	data.raw = &raw;

6862
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6863
		if (perf_tp_event_match(event, &data, regs))
6864
			perf_swevent_event(event, count, &data, regs);
6865
	}
6866

6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6892
	perf_swevent_put_recursion_context(rctx);
6893 6894 6895
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6896
static void tp_perf_event_destroy(struct perf_event *event)
6897
{
6898
	perf_trace_destroy(event);
6899 6900
}

6901
static int perf_tp_event_init(struct perf_event *event)
6902
{
6903 6904
	int err;

6905 6906 6907
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6908 6909 6910 6911 6912 6913
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6914 6915
	err = perf_trace_init(event);
	if (err)
6916
		return err;
6917

6918
	event->destroy = tp_perf_event_destroy;
6919

6920 6921 6922 6923
	return 0;
}

static struct pmu perf_tracepoint = {
6924 6925
	.task_ctx_nr	= perf_sw_context,

6926
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6927 6928 6929 6930
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6931 6932 6933 6934 6935
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6936
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6937
}
L
Li Zefan 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6962 6963 6964 6965 6966 6967 6968 6969 6970 6971
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

6972 6973
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
6974 6975 6976 6977 6978 6979
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6980
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7005
#else
L
Li Zefan 已提交
7006

7007
static inline void perf_tp_register(void)
7008 7009
{
}
L
Li Zefan 已提交
7010 7011 7012 7013 7014 7015 7016 7017 7018 7019

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7020 7021 7022 7023 7024 7025 7026 7027
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7028
#endif /* CONFIG_EVENT_TRACING */
7029

7030
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7031
void perf_bp_event(struct perf_event *bp, void *data)
7032
{
7033 7034 7035
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7036
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7037

P
Peter Zijlstra 已提交
7038
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7039
		perf_swevent_event(bp, 1, &sample, regs);
7040 7041 7042
}
#endif

7043 7044 7045
/*
 * hrtimer based swevent callback
 */
7046

7047
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7048
{
7049 7050 7051 7052 7053
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7054

7055
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7056 7057 7058 7059

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7060
	event->pmu->read(event);
7061

7062
	perf_sample_data_init(&data, 0, event->hw.last_period);
7063 7064 7065
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7066
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7067
			if (__perf_event_overflow(event, 1, &data, regs))
7068 7069
				ret = HRTIMER_NORESTART;
	}
7070

7071 7072
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7073

7074
	return ret;
7075 7076
}

7077
static void perf_swevent_start_hrtimer(struct perf_event *event)
7078
{
7079
	struct hw_perf_event *hwc = &event->hw;
7080 7081 7082 7083
	s64 period;

	if (!is_sampling_event(event))
		return;
7084

7085 7086 7087 7088
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7089

7090 7091 7092 7093
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7094 7095
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7096
}
7097 7098

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7099
{
7100 7101
	struct hw_perf_event *hwc = &event->hw;

7102
	if (is_sampling_event(event)) {
7103
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7104
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7105 7106 7107

		hrtimer_cancel(&hwc->hrtimer);
	}
7108 7109
}

P
Peter Zijlstra 已提交
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7130
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7131 7132 7133 7134
		event->attr.freq = 0;
	}
}

7135 7136 7137 7138 7139
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7140
{
7141 7142 7143
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7144
	now = local_clock();
7145 7146
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7147 7148
}

P
Peter Zijlstra 已提交
7149
static void cpu_clock_event_start(struct perf_event *event, int flags)
7150
{
P
Peter Zijlstra 已提交
7151
	local64_set(&event->hw.prev_count, local_clock());
7152 7153 7154
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7155
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7156
{
7157 7158 7159
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7160

P
Peter Zijlstra 已提交
7161 7162 7163 7164
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7165
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7166 7167 7168 7169 7170 7171 7172 7173 7174

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7175 7176 7177 7178
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7179

7180 7181 7182 7183 7184 7185 7186 7187
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7188 7189 7190 7191 7192 7193
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7194 7195
	perf_swevent_init_hrtimer(event);

7196
	return 0;
7197 7198
}

7199
static struct pmu perf_cpu_clock = {
7200 7201
	.task_ctx_nr	= perf_sw_context,

7202 7203
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7204
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7205 7206 7207 7208
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7209 7210 7211 7212 7213 7214 7215 7216
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7217
{
7218 7219
	u64 prev;
	s64 delta;
7220

7221 7222 7223 7224
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7225

P
Peter Zijlstra 已提交
7226
static void task_clock_event_start(struct perf_event *event, int flags)
7227
{
P
Peter Zijlstra 已提交
7228
	local64_set(&event->hw.prev_count, event->ctx->time);
7229 7230 7231
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7232
static void task_clock_event_stop(struct perf_event *event, int flags)
7233 7234 7235
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7236 7237 7238 7239 7240 7241
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7242
	perf_event_update_userpage(event);
7243

P
Peter Zijlstra 已提交
7244 7245 7246 7247 7248 7249
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7250 7251 7252 7253
}

static void task_clock_event_read(struct perf_event *event)
{
7254 7255 7256
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7257 7258 7259 7260 7261

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7262
{
7263 7264 7265 7266 7267 7268
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7269 7270 7271 7272 7273 7274
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7275 7276
	perf_swevent_init_hrtimer(event);

7277
	return 0;
L
Li Zefan 已提交
7278 7279
}

7280
static struct pmu perf_task_clock = {
7281 7282
	.task_ctx_nr	= perf_sw_context,

7283 7284
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7285
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7286 7287 7288 7289
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7290 7291
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7292

P
Peter Zijlstra 已提交
7293
static void perf_pmu_nop_void(struct pmu *pmu)
7294 7295
{
}
L
Li Zefan 已提交
7296

7297 7298 7299 7300
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7301
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7302
{
P
Peter Zijlstra 已提交
7303
	return 0;
L
Li Zefan 已提交
7304 7305
}

7306 7307 7308
DEFINE_PER_CPU(unsigned int, nop_txn_flags);

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7309
{
7310 7311 7312 7313 7314
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7315
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7316 7317
}

P
Peter Zijlstra 已提交
7318 7319
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7320 7321 7322 7323 7324 7325 7326
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7327 7328 7329
	perf_pmu_enable(pmu);
	return 0;
}
7330

P
Peter Zijlstra 已提交
7331
static void perf_pmu_cancel_txn(struct pmu *pmu)
7332
{
7333 7334 7335 7336 7337 7338 7339
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7340
	perf_pmu_enable(pmu);
7341 7342
}

7343 7344
static int perf_event_idx_default(struct perf_event *event)
{
7345
	return 0;
7346 7347
}

P
Peter Zijlstra 已提交
7348 7349 7350 7351
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7352
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7353
{
P
Peter Zijlstra 已提交
7354
	struct pmu *pmu;
7355

P
Peter Zijlstra 已提交
7356 7357
	if (ctxn < 0)
		return NULL;
7358

P
Peter Zijlstra 已提交
7359 7360 7361 7362
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7363

P
Peter Zijlstra 已提交
7364
	return NULL;
7365 7366
}

7367
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7368
{
7369 7370 7371 7372 7373 7374 7375
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7376 7377
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7378 7379 7380 7381 7382 7383
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7384

P
Peter Zijlstra 已提交
7385
	mutex_lock(&pmus_lock);
7386
	/*
P
Peter Zijlstra 已提交
7387
	 * Like a real lame refcount.
7388
	 */
7389 7390 7391
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7392
			goto out;
7393
		}
P
Peter Zijlstra 已提交
7394
	}
7395

7396
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7397 7398
out:
	mutex_unlock(&pmus_lock);
7399
}
P
Peter Zijlstra 已提交
7400
static struct idr pmu_idr;
7401

P
Peter Zijlstra 已提交
7402 7403 7404 7405 7406 7407 7408
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7409
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7410

7411 7412 7413 7414 7415 7416 7417 7418 7419 7420
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7421 7422
static DEFINE_MUTEX(mux_interval_mutex);

7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7442
	mutex_lock(&mux_interval_mutex);
7443 7444 7445
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7446 7447
	get_online_cpus();
	for_each_online_cpu(cpu) {
7448 7449 7450 7451
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7452 7453
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7454
	}
7455 7456
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7457 7458 7459

	return count;
}
7460
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7461

7462 7463 7464 7465
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7466
};
7467
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7468 7469 7470 7471

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7472
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7488
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7509
static struct lock_class_key cpuctx_mutex;
7510
static struct lock_class_key cpuctx_lock;
7511

7512
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7513
{
P
Peter Zijlstra 已提交
7514
	int cpu, ret;
7515

7516
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7517 7518 7519 7520
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7521

P
Peter Zijlstra 已提交
7522 7523 7524 7525 7526 7527
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7528 7529 7530
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7531 7532 7533 7534 7535
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7536 7537 7538 7539 7540 7541
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7542
skip_type:
P
Peter Zijlstra 已提交
7543 7544 7545
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7546

W
Wei Yongjun 已提交
7547
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7548 7549
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7550
		goto free_dev;
7551

P
Peter Zijlstra 已提交
7552 7553 7554 7555
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7556
		__perf_event_init_context(&cpuctx->ctx);
7557
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7558
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7559
		cpuctx->ctx.pmu = pmu;
7560

7561
		__perf_mux_hrtimer_init(cpuctx, cpu);
7562

7563
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7564
	}
7565

P
Peter Zijlstra 已提交
7566
got_cpu_context:
P
Peter Zijlstra 已提交
7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7578
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7579 7580
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7581
		}
7582
	}
7583

P
Peter Zijlstra 已提交
7584 7585 7586 7587 7588
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7589 7590 7591
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7592
	list_add_rcu(&pmu->entry, &pmus);
7593
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7594 7595
	ret = 0;
unlock:
7596 7597
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7598
	return ret;
P
Peter Zijlstra 已提交
7599

P
Peter Zijlstra 已提交
7600 7601 7602 7603
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7604 7605 7606 7607
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7608 7609 7610
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7611
}
7612
EXPORT_SYMBOL_GPL(perf_pmu_register);
7613

7614
void perf_pmu_unregister(struct pmu *pmu)
7615
{
7616 7617 7618
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7619

7620
	/*
P
Peter Zijlstra 已提交
7621 7622
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7623
	 */
7624
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7625
	synchronize_rcu();
7626

P
Peter Zijlstra 已提交
7627
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7628 7629
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7630 7631
	device_del(pmu->dev);
	put_device(pmu->dev);
7632
	free_pmu_context(pmu);
7633
}
7634
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7635

7636 7637
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7638
	struct perf_event_context *ctx = NULL;
7639 7640 7641 7642
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7643 7644

	if (event->group_leader != event) {
7645 7646 7647 7648 7649 7650
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7651 7652 7653
		BUG_ON(!ctx);
	}

7654 7655
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7656 7657 7658 7659

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7660 7661 7662 7663 7664 7665
	if (ret)
		module_put(pmu->module);

	return ret;
}

7666 7667 7668 7669
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7670
	int ret;
7671 7672

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7673 7674 7675 7676

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7677
	if (pmu) {
7678
		ret = perf_try_init_event(pmu, event);
7679 7680
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7681
		goto unlock;
7682
	}
P
Peter Zijlstra 已提交
7683

7684
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7685
		ret = perf_try_init_event(pmu, event);
7686
		if (!ret)
P
Peter Zijlstra 已提交
7687
			goto unlock;
7688

7689 7690
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7691
			goto unlock;
7692
		}
7693
	}
P
Peter Zijlstra 已提交
7694 7695
	pmu = ERR_PTR(-ENOENT);
unlock:
7696
	srcu_read_unlock(&pmus_srcu, idx);
7697

7698
	return pmu;
7699 7700
}

7701 7702 7703 7704 7705 7706 7707 7708 7709
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7710 7711
static void account_event(struct perf_event *event)
{
7712 7713 7714
	if (event->parent)
		return;

7715 7716 7717 7718 7719 7720 7721 7722
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7723 7724 7725 7726
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7727 7728 7729 7730
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7731
	if (has_branch_stack(event))
7732
		static_key_slow_inc(&perf_sched_events.key);
7733
	if (is_cgroup_event(event))
7734
		static_key_slow_inc(&perf_sched_events.key);
7735 7736

	account_event_cpu(event, event->cpu);
7737 7738
}

T
Thomas Gleixner 已提交
7739
/*
7740
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7741
 */
7742
static struct perf_event *
7743
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7744 7745 7746
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7747
		 perf_overflow_handler_t overflow_handler,
7748
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7749
{
P
Peter Zijlstra 已提交
7750
	struct pmu *pmu;
7751 7752
	struct perf_event *event;
	struct hw_perf_event *hwc;
7753
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7754

7755 7756 7757 7758 7759
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7760
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7761
	if (!event)
7762
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7763

7764
	/*
7765
	 * Single events are their own group leaders, with an
7766 7767 7768
	 * empty sibling list:
	 */
	if (!group_leader)
7769
		group_leader = event;
7770

7771 7772
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7773

7774 7775 7776
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7777
	INIT_LIST_HEAD(&event->rb_entry);
7778
	INIT_LIST_HEAD(&event->active_entry);
7779 7780
	INIT_HLIST_NODE(&event->hlist_entry);

7781

7782
	init_waitqueue_head(&event->waitq);
7783
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7784

7785
	mutex_init(&event->mmap_mutex);
7786

7787
	atomic_long_set(&event->refcount, 1);
7788 7789 7790 7791 7792
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7793

7794
	event->parent		= parent_event;
7795

7796
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7797
	event->id		= atomic64_inc_return(&perf_event_id);
7798

7799
	event->state		= PERF_EVENT_STATE_INACTIVE;
7800

7801 7802 7803
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7804 7805 7806
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7807
		 */
7808
		event->hw.target = task;
7809 7810
	}

7811 7812 7813 7814
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7815
	if (!overflow_handler && parent_event) {
7816
		overflow_handler = parent_event->overflow_handler;
7817 7818
		context = parent_event->overflow_handler_context;
	}
7819

7820
	event->overflow_handler	= overflow_handler;
7821
	event->overflow_handler_context = context;
7822

J
Jiri Olsa 已提交
7823
	perf_event__state_init(event);
7824

7825
	pmu = NULL;
7826

7827
	hwc = &event->hw;
7828
	hwc->sample_period = attr->sample_period;
7829
	if (attr->freq && attr->sample_freq)
7830
		hwc->sample_period = 1;
7831
	hwc->last_period = hwc->sample_period;
7832

7833
	local64_set(&hwc->period_left, hwc->sample_period);
7834

7835
	/*
7836
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7837
	 */
7838
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7839
		goto err_ns;
7840 7841 7842

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7843

7844 7845 7846 7847 7848 7849
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7850
	pmu = perf_init_event(event);
7851
	if (!pmu)
7852 7853
		goto err_ns;
	else if (IS_ERR(pmu)) {
7854
		err = PTR_ERR(pmu);
7855
		goto err_ns;
I
Ingo Molnar 已提交
7856
	}
7857

7858 7859 7860 7861
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7862
	if (!event->parent) {
7863 7864
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7865
			if (err)
7866
				goto err_per_task;
7867
		}
7868
	}
7869

7870
	return event;
7871

7872 7873 7874
err_per_task:
	exclusive_event_destroy(event);

7875 7876 7877
err_pmu:
	if (event->destroy)
		event->destroy(event);
7878
	module_put(pmu->module);
7879
err_ns:
7880 7881
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7882 7883 7884 7885 7886
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7887 7888
}

7889 7890
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7891 7892
{
	u32 size;
7893
	int ret;
7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7918 7919 7920
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7921 7922
	 */
	if (size > sizeof(*attr)) {
7923 7924 7925
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7926

7927 7928
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7929

7930
		for (; addr < end; addr++) {
7931 7932 7933 7934 7935 7936
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7937
		size = sizeof(*attr);
7938 7939 7940 7941 7942 7943
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7944
	if (attr->__reserved_1)
7945 7946 7947 7948 7949 7950 7951 7952
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7981 7982
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7983 7984
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7985
	}
7986

7987
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7988
		ret = perf_reg_validate(attr->sample_regs_user);
7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8007

8008 8009
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8010 8011 8012 8013 8014 8015 8016 8017 8018
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8019 8020
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8021
{
8022
	struct ring_buffer *rb = NULL;
8023 8024
	int ret = -EINVAL;

8025
	if (!output_event)
8026 8027
		goto set;

8028 8029
	/* don't allow circular references */
	if (event == output_event)
8030 8031
		goto out;

8032 8033 8034 8035 8036 8037 8038
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8039
	 * If its not a per-cpu rb, it must be the same task.
8040 8041 8042 8043
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8044 8045 8046 8047 8048 8049
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8050 8051 8052 8053 8054 8055 8056
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8057
set:
8058
	mutex_lock(&event->mmap_mutex);
8059 8060 8061
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8062

8063
	if (output_event) {
8064 8065 8066
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8067
			goto unlock;
8068 8069
	}

8070
	ring_buffer_attach(event, rb);
8071

8072
	ret = 0;
8073 8074 8075
unlock:
	mutex_unlock(&event->mmap_mutex);

8076 8077 8078 8079
out:
	return ret;
}

P
Peter Zijlstra 已提交
8080 8081 8082 8083 8084 8085 8086 8087 8088
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8126
/**
8127
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8128
 *
8129
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8130
 * @pid:		target pid
I
Ingo Molnar 已提交
8131
 * @cpu:		target cpu
8132
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8133
 */
8134 8135
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8136
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8137
{
8138 8139
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8140
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8141
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8142
	struct file *event_file = NULL;
8143
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8144
	struct task_struct *task = NULL;
8145
	struct pmu *pmu;
8146
	int event_fd;
8147
	int move_group = 0;
8148
	int err;
8149
	int f_flags = O_RDWR;
8150
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8151

8152
	/* for future expandability... */
S
Stephane Eranian 已提交
8153
	if (flags & ~PERF_FLAG_ALL)
8154 8155
		return -EINVAL;

8156 8157 8158
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8159

8160 8161 8162 8163 8164
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8165
	if (attr.freq) {
8166
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8167
			return -EINVAL;
8168 8169 8170
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8171 8172
	}

S
Stephane Eranian 已提交
8173 8174 8175 8176 8177 8178 8179 8180 8181
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8182 8183 8184 8185
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8186 8187 8188
	if (event_fd < 0)
		return event_fd;

8189
	if (group_fd != -1) {
8190 8191
		err = perf_fget_light(group_fd, &group);
		if (err)
8192
			goto err_fd;
8193
		group_leader = group.file->private_data;
8194 8195 8196 8197 8198 8199
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8200
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8201 8202 8203 8204 8205 8206 8207
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8208 8209 8210 8211 8212 8213
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8214 8215
	get_online_cpus();

8216 8217 8218
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8219
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8220
				 NULL, NULL, cgroup_fd);
8221 8222
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8223
		goto err_cpus;
8224 8225
	}

8226 8227 8228 8229 8230 8231 8232
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8233 8234
	account_event(event);

8235 8236 8237 8238 8239
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8240

8241 8242 8243 8244 8245 8246
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8269 8270 8271 8272

	/*
	 * Get the target context (task or percpu):
	 */
8273
	ctx = find_get_context(pmu, task, event);
8274 8275
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8276
		goto err_alloc;
8277 8278
	}

8279 8280 8281 8282 8283
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8284 8285 8286 8287 8288
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8289
	/*
8290
	 * Look up the group leader (we will attach this event to it):
8291
	 */
8292
	if (group_leader) {
8293
		err = -EINVAL;
8294 8295

		/*
I
Ingo Molnar 已提交
8296 8297 8298 8299
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8300
			goto err_context;
8301 8302 8303 8304 8305

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8306 8307 8308
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8309
		 */
8310
		if (move_group) {
8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8324 8325 8326 8327 8328 8329
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8330 8331 8332
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8333
		if (attr.exclusive || attr.pinned)
8334
			goto err_context;
8335 8336 8337 8338 8339
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8340
			goto err_context;
8341
	}
T
Thomas Gleixner 已提交
8342

8343 8344
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8345 8346
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8347
		goto err_context;
8348
	}
8349

8350
	if (move_group) {
P
Peter Zijlstra 已提交
8351 8352 8353 8354 8355 8356 8357
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8358

8359
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8360

8361 8362
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8363
			perf_remove_from_context(sibling, false);
8364 8365
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
8366 8367
	} else {
		mutex_lock(&ctx->mutex);
8368
	}
8369

8370
	WARN_ON_ONCE(ctx->parent_ctx);
8371 8372

	if (move_group) {
P
Peter Zijlstra 已提交
8373 8374 8375 8376
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8377
		synchronize_rcu();
P
Peter Zijlstra 已提交
8378

8379 8380 8381 8382 8383 8384 8385 8386 8387 8388
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8389 8390
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8391
			perf_event__state_init(sibling);
8392
			perf_install_in_context(ctx, sibling, sibling->cpu);
8393 8394
			get_ctx(ctx);
		}
8395 8396 8397 8398 8399 8400 8401 8402 8403

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8404 8405
	}

8406 8407 8408 8409 8410 8411 8412
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
		mutex_unlock(&ctx->mutex);
		fput(event_file);
		goto err_context;
	}

8413
	perf_install_in_context(ctx, event, event->cpu);
8414
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8415 8416 8417 8418 8419

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
8420
	mutex_unlock(&ctx->mutex);
8421

8422 8423
	put_online_cpus();

8424
	event->owner = current;
P
Peter Zijlstra 已提交
8425

8426 8427 8428
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8429

8430 8431 8432 8433
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8434
	perf_event__id_header_size(event);
8435

8436 8437 8438 8439 8440 8441
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8442
	fdput(group);
8443 8444
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8445

8446
err_context:
8447
	perf_unpin_context(ctx);
8448
	put_ctx(ctx);
8449
err_alloc:
8450
	free_event(event);
8451
err_cpus:
8452
	put_online_cpus();
8453
err_task:
P
Peter Zijlstra 已提交
8454 8455
	if (task)
		put_task_struct(task);
8456
err_group_fd:
8457
	fdput(group);
8458 8459
err_fd:
	put_unused_fd(event_fd);
8460
	return err;
T
Thomas Gleixner 已提交
8461 8462
}

8463 8464 8465 8466 8467
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8468
 * @task: task to profile (NULL for percpu)
8469 8470 8471
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8472
				 struct task_struct *task,
8473 8474
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8475 8476
{
	struct perf_event_context *ctx;
8477
	struct perf_event *event;
8478
	int err;
8479

8480 8481 8482
	/*
	 * Get the target context (task or percpu):
	 */
8483

8484
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8485
				 overflow_handler, context, -1);
8486 8487 8488 8489
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8490

8491 8492 8493
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8494 8495
	account_event(event);

8496
	ctx = find_get_context(event->pmu, task, event);
8497 8498
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8499
		goto err_free;
8500
	}
8501 8502 8503

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8504 8505 8506 8507 8508 8509 8510 8511
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8512
	perf_install_in_context(ctx, event, cpu);
8513
	perf_unpin_context(ctx);
8514 8515 8516 8517
	mutex_unlock(&ctx->mutex);

	return event;

8518 8519 8520
err_free:
	free_event(event);
err:
8521
	return ERR_PTR(err);
8522
}
8523
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8524

8525 8526 8527 8528 8529 8530 8531 8532 8533 8534
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8535 8536 8537 8538 8539
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8540 8541
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8542
		perf_remove_from_context(event, false);
8543
		unaccount_event_cpu(event, src_cpu);
8544
		put_ctx(src_ctx);
8545
		list_add(&event->migrate_entry, &events);
8546 8547
	}

8548 8549 8550
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8551 8552
	synchronize_rcu();

8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8577 8578
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8579 8580
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8581
		account_event_cpu(event, dst_cpu);
8582 8583 8584 8585
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8586
	mutex_unlock(&src_ctx->mutex);
8587 8588 8589
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8590
static void sync_child_event(struct perf_event *child_event,
8591
			       struct task_struct *child)
8592
{
8593
	struct perf_event *parent_event = child_event->parent;
8594
	u64 child_val;
8595

8596 8597
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8598

P
Peter Zijlstra 已提交
8599
	child_val = perf_event_count(child_event);
8600 8601 8602 8603

	/*
	 * Add back the child's count to the parent's count:
	 */
8604
	atomic64_add(child_val, &parent_event->child_count);
8605 8606 8607 8608
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8609 8610

	/*
8611
	 * Remove this event from the parent's list
8612
	 */
8613 8614 8615 8616
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8617

8618 8619 8620 8621 8622 8623
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8624
	/*
8625
	 * Release the parent event, if this was the last
8626 8627
	 * reference to it.
	 */
8628
	put_event(parent_event);
8629 8630
}

8631
static void
8632 8633
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8634
			 struct task_struct *child)
8635
{
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8649

8650
	/*
8651
	 * It can happen that the parent exits first, and has events
8652
	 * that are still around due to the child reference. These
8653
	 * events need to be zapped.
8654
	 */
8655
	if (child_event->parent) {
8656 8657
		sync_child_event(child_event, child);
		free_event(child_event);
8658 8659 8660
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8661
	}
8662 8663
}

P
Peter Zijlstra 已提交
8664
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8665
{
8666
	struct perf_event *child_event, *next;
8667
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8668
	unsigned long flags;
8669

P
Peter Zijlstra 已提交
8670
	if (likely(!child->perf_event_ctxp[ctxn])) {
8671
		perf_event_task(child, NULL, 0);
8672
		return;
P
Peter Zijlstra 已提交
8673
	}
8674

8675
	local_irq_save(flags);
8676 8677 8678 8679 8680 8681
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8682
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8683 8684 8685

	/*
	 * Take the context lock here so that if find_get_context is
8686
	 * reading child->perf_event_ctxp, we wait until it has
8687 8688
	 * incremented the context's refcount before we do put_ctx below.
	 */
8689
	raw_spin_lock(&child_ctx->lock);
8690
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8691
	child->perf_event_ctxp[ctxn] = NULL;
8692

8693 8694 8695
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8696
	 * the events from it.
8697
	 */
8698
	clone_ctx = unclone_ctx(child_ctx);
8699
	update_context_time(child_ctx);
8700
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8701

8702 8703
	if (clone_ctx)
		put_ctx(clone_ctx);
8704

P
Peter Zijlstra 已提交
8705
	/*
8706 8707 8708
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8709
	 */
8710
	perf_event_task(child, child_ctx, 0);
8711

8712 8713 8714
	/*
	 * We can recurse on the same lock type through:
	 *
8715 8716
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8717 8718
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8719 8720 8721
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8722
	mutex_lock(&child_ctx->mutex);
8723

8724
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8725
		__perf_event_exit_task(child_event, child_ctx, child);
8726

8727 8728 8729
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8730 8731
}

P
Peter Zijlstra 已提交
8732 8733 8734 8735 8736
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8737
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8738 8739
	int ctxn;

P
Peter Zijlstra 已提交
8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8755 8756 8757 8758
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8771
	put_event(parent);
8772

P
Peter Zijlstra 已提交
8773
	raw_spin_lock_irq(&ctx->lock);
8774
	perf_group_detach(event);
8775
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8776
	raw_spin_unlock_irq(&ctx->lock);
8777 8778 8779
	free_event(event);
}

8780
/*
P
Peter Zijlstra 已提交
8781
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8782
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8783 8784 8785
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8786
 */
8787
void perf_event_free_task(struct task_struct *task)
8788
{
P
Peter Zijlstra 已提交
8789
	struct perf_event_context *ctx;
8790
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8791
	int ctxn;
8792

P
Peter Zijlstra 已提交
8793 8794 8795 8796
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8797

P
Peter Zijlstra 已提交
8798
		mutex_lock(&ctx->mutex);
8799
again:
P
Peter Zijlstra 已提交
8800 8801 8802
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8803

P
Peter Zijlstra 已提交
8804 8805 8806
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8807

P
Peter Zijlstra 已提交
8808 8809 8810
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8811

P
Peter Zijlstra 已提交
8812
		mutex_unlock(&ctx->mutex);
8813

P
Peter Zijlstra 已提交
8814 8815
		put_ctx(ctx);
	}
8816 8817
}

8818 8819 8820 8821 8822 8823 8824 8825
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8862
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8863
	struct perf_event *child_event;
8864
	unsigned long flags;
P
Peter Zijlstra 已提交
8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8877
					   child,
P
Peter Zijlstra 已提交
8878
					   group_leader, parent_event,
8879
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8880 8881
	if (IS_ERR(child_event))
		return child_event;
8882

8883 8884
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8885 8886 8887 8888
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8889 8890 8891 8892 8893 8894 8895
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8896
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8913 8914
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8915

8916 8917 8918 8919
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8920
	perf_event__id_header_size(child_event);
8921

P
Peter Zijlstra 已提交
8922 8923 8924
	/*
	 * Link it up in the child's context:
	 */
8925
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8926
	add_event_to_ctx(child_event, child_ctx);
8927
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8961 8962 8963 8964 8965
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8966
		   struct task_struct *child, int ctxn,
8967 8968 8969
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8970
	struct perf_event_context *child_ctx;
8971 8972 8973 8974

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8975 8976
	}

8977
	child_ctx = child->perf_event_ctxp[ctxn];
8978 8979 8980 8981 8982 8983 8984
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8985

8986
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8987 8988
		if (!child_ctx)
			return -ENOMEM;
8989

P
Peter Zijlstra 已提交
8990
		child->perf_event_ctxp[ctxn] = child_ctx;
8991 8992 8993 8994 8995 8996 8997 8998 8999
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9000 9001
}

9002
/*
9003
 * Initialize the perf_event context in task_struct
9004
 */
9005
static int perf_event_init_context(struct task_struct *child, int ctxn)
9006
{
9007
	struct perf_event_context *child_ctx, *parent_ctx;
9008 9009
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9010
	struct task_struct *parent = current;
9011
	int inherited_all = 1;
9012
	unsigned long flags;
9013
	int ret = 0;
9014

P
Peter Zijlstra 已提交
9015
	if (likely(!parent->perf_event_ctxp[ctxn]))
9016 9017
		return 0;

9018
	/*
9019 9020
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9021
	 */
P
Peter Zijlstra 已提交
9022
	parent_ctx = perf_pin_task_context(parent, ctxn);
9023 9024
	if (!parent_ctx)
		return 0;
9025

9026 9027 9028 9029 9030 9031 9032
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9033 9034 9035 9036
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9037
	mutex_lock(&parent_ctx->mutex);
9038 9039 9040 9041 9042

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9043
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9044 9045
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9046 9047 9048
		if (ret)
			break;
	}
9049

9050 9051 9052 9053 9054 9055 9056 9057 9058
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9059
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9060 9061
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9062
		if (ret)
9063
			break;
9064 9065
	}

9066 9067 9068
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9069
	child_ctx = child->perf_event_ctxp[ctxn];
9070

9071
	if (child_ctx && inherited_all) {
9072 9073 9074
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9075 9076 9077
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9078
		 */
P
Peter Zijlstra 已提交
9079
		cloned_ctx = parent_ctx->parent_ctx;
9080 9081
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9082
			child_ctx->parent_gen = parent_ctx->parent_gen;
9083 9084 9085 9086 9087
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9088 9089
	}

P
Peter Zijlstra 已提交
9090
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9091
	mutex_unlock(&parent_ctx->mutex);
9092

9093
	perf_unpin_context(parent_ctx);
9094
	put_ctx(parent_ctx);
9095

9096
	return ret;
9097 9098
}

P
Peter Zijlstra 已提交
9099 9100 9101 9102 9103 9104 9105
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9106 9107 9108 9109
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9110 9111
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9112 9113
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9114
			return ret;
P
Peter Zijlstra 已提交
9115
		}
P
Peter Zijlstra 已提交
9116 9117 9118 9119 9120
	}

	return 0;
}

9121 9122
static void __init perf_event_init_all_cpus(void)
{
9123
	struct swevent_htable *swhash;
9124 9125 9126
	int cpu;

	for_each_possible_cpu(cpu) {
9127 9128
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9129
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9130 9131 9132
	}
}

9133
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9134
{
P
Peter Zijlstra 已提交
9135
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9136

9137
	mutex_lock(&swhash->hlist_mutex);
9138
	swhash->online = true;
9139
	if (swhash->hlist_refcount > 0) {
9140 9141
		struct swevent_hlist *hlist;

9142 9143 9144
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9145
	}
9146
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9147 9148
}

9149
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9150
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9151
{
9152
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9153
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9154

P
Peter Zijlstra 已提交
9155
	rcu_read_lock();
9156 9157
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9158
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9159
}
P
Peter Zijlstra 已提交
9160 9161 9162 9163 9164 9165 9166 9167 9168

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9169
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9170 9171 9172 9173 9174 9175 9176 9177

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9178
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9179
{
9180
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9181

P
Peter Zijlstra 已提交
9182 9183
	perf_event_exit_cpu_context(cpu);

9184
	mutex_lock(&swhash->hlist_mutex);
9185
	swhash->online = false;
9186 9187
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9188 9189
}
#else
9190
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9191 9192
#endif

P
Peter Zijlstra 已提交
9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9213
static int
T
Thomas Gleixner 已提交
9214 9215 9216 9217
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9218
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9219 9220

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9221
	case CPU_DOWN_FAILED:
9222
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9223 9224
		break;

P
Peter Zijlstra 已提交
9225
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9226
	case CPU_DOWN_PREPARE:
9227
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9228 9229 9230 9231 9232 9233 9234 9235
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9236
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9237
{
9238 9239
	int ret;

P
Peter Zijlstra 已提交
9240 9241
	idr_init(&pmu_idr);

9242
	perf_event_init_all_cpus();
9243
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9244 9245 9246
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9247 9248
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9249
	register_reboot_notifier(&perf_reboot_notifier);
9250 9251 9252

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9253 9254 9255

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9256 9257 9258 9259 9260 9261 9262

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9263
}
P
Peter Zijlstra 已提交
9264

9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9304 9305

#ifdef CONFIG_CGROUP_PERF
9306 9307
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9308 9309 9310
{
	struct perf_cgroup *jc;

9311
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9324
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9325
{
9326 9327
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9339 9340
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9341
{
9342 9343
	struct task_struct *task;

9344
	cgroup_taskset_for_each(task, tset)
9345
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9346 9347
}

9348 9349
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9350
			     struct task_struct *task)
S
Stephane Eranian 已提交
9351
{
9352
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9353 9354
}

9355
struct cgroup_subsys perf_event_cgrp_subsys = {
9356 9357
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9358
	.exit		= perf_cgroup_exit,
9359
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9360 9361
};
#endif /* CONFIG_CGROUP_PERF */