core.c 209.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
L
Li Zefan 已提交
39
#include <linux/ftrace_event.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54
struct remote_function_call {
55 56 57 58
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
92 93 94 95
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
116 117 118 119
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
120 121 122 123 124 125 126
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

127 128 129 130 131 132 133
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
134 135
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
136 137
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
138

139 140 141 142 143 144 145
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

146 147 148 149 150 151
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
152 153 154 155
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
156
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
157
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
158
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
159

160 161 162
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
163
static atomic_t nr_freq_events __read_mostly;
164

P
Peter Zijlstra 已提交
165 166 167 168
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

169
/*
170
 * perf event paranoia level:
171 172
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
173
 *   1 - disallow cpu events for unpriv
174
 *   2 - disallow kernel profiling for unpriv
175
 */
176
int sysctl_perf_event_paranoid __read_mostly = 1;
177

178 179
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
180 181

/*
182
 * max perf event sample rate
183
 */
184 185 186 187 188 189 190 191 192
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
193 194
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
195 196 197 198 199 200

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
201
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
202
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
203
}
P
Peter Zijlstra 已提交
204

205 206
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
207 208 209 210
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
211
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
212 213 214 215 216

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
235 236 237

	return 0;
}
238

239 240 241 242 243 244 245
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
246
static DEFINE_PER_CPU(u64, running_sample_length);
247

248
static void perf_duration_warn(struct irq_work *w)
249
{
250
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
251
	u64 avg_local_sample_len;
252
	u64 local_samples_len;
253

254
	local_samples_len = __this_cpu_read(running_sample_length);
255 256 257 258 259
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
260
			avg_local_sample_len, allowed_ns >> 1,
261 262 263 264 265 266 267
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
268
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
269 270
	u64 avg_local_sample_len;
	u64 local_samples_len;
271

P
Peter Zijlstra 已提交
272
	if (allowed_ns == 0)
273 274 275
		return;

	/* decay the counter by 1 average sample */
276
	local_samples_len = __this_cpu_read(running_sample_length);
277 278
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
279
	__this_cpu_write(running_sample_length, local_samples_len);
280 281 282 283 284 285 286 287

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
288
	if (avg_local_sample_len <= allowed_ns)
289 290 291 292 293 294 295 296 297 298
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
299

300 301 302 303 304 305
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
306 307
}

308
static atomic64_t perf_event_id;
309

310 311 312 313
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
314 315 316 317 318
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
319

320
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
321

322
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
323
{
324
	return "pmu";
T
Thomas Gleixner 已提交
325 326
}

327 328 329 330 331
static inline u64 perf_clock(void)
{
	return local_clock();
}

332 333 334 335 336
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
337 338 339 340 341 342
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
359 360 361 362 363 364 365 366
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
383 384 385 386
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
387
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
426 427
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
428
	/*
429 430
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
431
	 */
432
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
433 434
		return;

435 436 437 438 439 440
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
441 442 443
}

static inline void
444 445
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
446 447 448 449
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

450 451 452 453 454 455
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
456 457 458 459
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
460
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
493 494
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
495 496 497 498 499 500 501 502 503

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
504 505
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
506 507 508 509 510 511 512 513 514 515 516

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
517
				WARN_ON_ONCE(cpuctx->cgrp);
518 519 520 521
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
522 523 524 525
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
526 527
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
528 529 530 531 532 533 534 535
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

536 537
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
538
{
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
561 562
}

563 564
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
565
{
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
584 585 586 587 588 589 590 591
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
592 593
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
594

595
	if (!f.file)
S
Stephane Eranian 已提交
596 597
		return -EBADF;

A
Al Viro 已提交
598
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
599
					 &perf_event_cgrp_subsys);
600 601 602 603
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
617
out:
618
	fdput(f);
S
Stephane Eranian 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

692 693
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
694 695 696
{
}

697 698
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
699 700 701 702 703 704 705 706 707 708 709
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
710 711
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
805
	int timer;
806 807 808 809 810

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

811 812 813 814 815 816 817 818 819
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

837
	hrtimer_start(hr, cpuctx->hrtimer_interval, HRTIMER_MODE_REL_PINNED);
838 839
}

P
Peter Zijlstra 已提交
840
void perf_pmu_disable(struct pmu *pmu)
841
{
P
Peter Zijlstra 已提交
842 843 844
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
845 846
}

P
Peter Zijlstra 已提交
847
void perf_pmu_enable(struct pmu *pmu)
848
{
P
Peter Zijlstra 已提交
849 850 851
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
852 853
}

854
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
855 856

/*
857 858 859 860
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
861
 */
862
static void perf_event_ctx_activate(struct perf_event_context *ctx)
863
{
864
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
865

866
	WARN_ON(!irqs_disabled());
867

868 869 870 871 872 873 874 875 876 877 878 879
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
880 881
}

882
static void get_ctx(struct perf_event_context *ctx)
883
{
884
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
885 886
}

887 888 889 890 891 892 893 894 895
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

896
static void put_ctx(struct perf_event_context *ctx)
897
{
898 899 900
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
901 902
		if (ctx->task)
			put_task_struct(ctx->task);
903
		call_rcu(&ctx->rcu_head, free_ctx);
904
	}
905 906
}

P
Peter Zijlstra 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
948 949
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
950 951 952 953 954 955 956 957 958 959 960 961
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
962
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
963 964 965 966 967 968 969 970 971
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
972 973 974 975 976 977
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
978 979 980 981 982 983 984
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

985 986 987 988 989 990 991
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
992
{
993 994 995 996 997
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
998
		ctx->parent_ctx = NULL;
999
	ctx->generation++;
1000 1001

	return parent_ctx;
1002 1003
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1026
/*
1027
 * If we inherit events we want to return the parent event id
1028 1029
 * to userspace.
 */
1030
static u64 primary_event_id(struct perf_event *event)
1031
{
1032
	u64 id = event->id;
1033

1034 1035
	if (event->parent)
		id = event->parent->id;
1036 1037 1038 1039

	return id;
}

1040
/*
1041
 * Get the perf_event_context for a task and lock it.
1042 1043 1044
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1045
static struct perf_event_context *
P
Peter Zijlstra 已提交
1046
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1047
{
1048
	struct perf_event_context *ctx;
1049

P
Peter Zijlstra 已提交
1050
retry:
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1062
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1063 1064 1065 1066
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1067
		 * perf_event_task_sched_out, though the
1068 1069 1070 1071 1072 1073
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1074
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1075
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1076
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1077 1078
			rcu_read_unlock();
			preempt_enable();
1079 1080
			goto retry;
		}
1081 1082

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1083
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1084 1085
			ctx = NULL;
		}
1086 1087
	}
	rcu_read_unlock();
1088
	preempt_enable();
1089 1090 1091 1092 1093 1094 1095 1096
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1097 1098
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1099
{
1100
	struct perf_event_context *ctx;
1101 1102
	unsigned long flags;

P
Peter Zijlstra 已提交
1103
	ctx = perf_lock_task_context(task, ctxn, &flags);
1104 1105
	if (ctx) {
		++ctx->pin_count;
1106
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1107 1108 1109 1110
	}
	return ctx;
}

1111
static void perf_unpin_context(struct perf_event_context *ctx)
1112 1113 1114
{
	unsigned long flags;

1115
	raw_spin_lock_irqsave(&ctx->lock, flags);
1116
	--ctx->pin_count;
1117
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1131 1132 1133
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1134 1135 1136 1137

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1138 1139 1140
	return ctx ? ctx->time : 0;
}

1141 1142
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1143
 * The caller of this function needs to hold the ctx->lock.
1144 1145 1146 1147 1148 1149 1150 1151 1152
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1164
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1165 1166
	else if (ctx->is_active)
		run_end = ctx->time;
1167 1168 1169 1170
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1171 1172 1173 1174

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1175
		run_end = perf_event_time(event);
1176 1177

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1178

1179 1180
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1193 1194 1195 1196 1197 1198 1199 1200 1201
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1202
/*
1203
 * Add a event from the lists for its context.
1204 1205
 * Must be called with ctx->mutex and ctx->lock held.
 */
1206
static void
1207
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1208
{
1209 1210
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1211 1212

	/*
1213 1214 1215
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1216
	 */
1217
	if (event->group_leader == event) {
1218 1219
		struct list_head *list;

1220 1221 1222
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1223 1224
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1225
	}
P
Peter Zijlstra 已提交
1226

1227
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1228 1229
		ctx->nr_cgroups++;

1230 1231 1232
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1233
		ctx->nr_stat++;
1234 1235

	ctx->generation++;
1236 1237
}

J
Jiri Olsa 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1286 1287 1288 1289 1290 1291
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1292 1293 1294
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1295 1296 1297
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1298 1299 1300
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1301 1302 1303
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1304 1305 1306 1307 1308 1309 1310 1311 1312
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1313 1314 1315 1316 1317 1318
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1319 1320 1321
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1322 1323 1324 1325 1326 1327 1328 1329 1330
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1331
	event->id_header_size = size;
1332 1333
}

1334 1335
static void perf_group_attach(struct perf_event *event)
{
1336
	struct perf_event *group_leader = event->group_leader, *pos;
1337

P
Peter Zijlstra 已提交
1338 1339 1340 1341 1342 1343
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1344 1345 1346 1347 1348
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1349 1350
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1351 1352 1353 1354 1355 1356
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1357 1358 1359 1360 1361

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1362 1363
}

1364
/*
1365
 * Remove a event from the lists for its context.
1366
 * Must be called with ctx->mutex and ctx->lock held.
1367
 */
1368
static void
1369
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1370
{
1371
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1372 1373 1374 1375

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1376 1377 1378 1379
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1380
		return;
1381 1382 1383

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1384
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1385
		ctx->nr_cgroups--;
1386 1387 1388 1389 1390 1391 1392 1393 1394
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1395

1396 1397
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1398
		ctx->nr_stat--;
1399

1400
	list_del_rcu(&event->event_entry);
1401

1402 1403
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1404

1405
	update_group_times(event);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1416 1417

	ctx->generation++;
1418 1419
}

1420
static void perf_group_detach(struct perf_event *event)
1421 1422
{
	struct perf_event *sibling, *tmp;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1439
		goto out;
1440 1441 1442 1443
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1444

1445
	/*
1446 1447
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1448
	 * to whatever list we are on.
1449
	 */
1450
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1451 1452
		if (list)
			list_move_tail(&sibling->group_entry, list);
1453
		sibling->group_leader = sibling;
1454 1455 1456

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1457 1458

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1459
	}
1460 1461 1462 1463 1464 1465

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1466 1467
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1507 1508 1509
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1510 1511
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1512 1513
}

1514 1515
static void
event_sched_out(struct perf_event *event,
1516
		  struct perf_cpu_context *cpuctx,
1517
		  struct perf_event_context *ctx)
1518
{
1519
	u64 tstamp = perf_event_time(event);
1520
	u64 delta;
P
Peter Zijlstra 已提交
1521 1522 1523 1524

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1525 1526 1527 1528 1529 1530 1531 1532
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1533
		delta = tstamp - event->tstamp_stopped;
1534
		event->tstamp_running += delta;
1535
		event->tstamp_stopped = tstamp;
1536 1537
	}

1538
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1539
		return;
1540

1541 1542
	perf_pmu_disable(event->pmu);

1543 1544 1545 1546
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1547
	}
1548
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1549
	event->pmu->del(event, 0);
1550
	event->oncpu = -1;
1551

1552
	if (!is_software_event(event))
1553
		cpuctx->active_oncpu--;
1554 1555
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1556 1557
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1558
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1559
		cpuctx->exclusive = 0;
1560

1561 1562 1563
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1564
	perf_pmu_enable(event->pmu);
1565 1566
}

1567
static void
1568
group_sched_out(struct perf_event *group_event,
1569
		struct perf_cpu_context *cpuctx,
1570
		struct perf_event_context *ctx)
1571
{
1572
	struct perf_event *event;
1573
	int state = group_event->state;
1574

1575
	event_sched_out(group_event, cpuctx, ctx);
1576 1577 1578 1579

	/*
	 * Schedule out siblings (if any):
	 */
1580 1581
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1582

1583
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1584 1585 1586
		cpuctx->exclusive = 0;
}

1587 1588 1589 1590 1591
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1592
/*
1593
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1594
 *
1595
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1596 1597
 * remove it from the context list.
 */
1598
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1599
{
1600 1601
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1602
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1603
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1604

1605
	raw_spin_lock(&ctx->lock);
1606
	event_sched_out(event, cpuctx, ctx);
1607 1608
	if (re->detach_group)
		perf_group_detach(event);
1609
	list_del_event(event, ctx);
1610 1611 1612 1613
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1614
	raw_spin_unlock(&ctx->lock);
1615 1616

	return 0;
T
Thomas Gleixner 已提交
1617 1618 1619 1620
}


/*
1621
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1622
 *
1623
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1624
 * call when the task is on a CPU.
1625
 *
1626 1627
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1628 1629
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1630
 * When called from perf_event_exit_task, it's OK because the
1631
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1632
 */
1633
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1634
{
1635
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1636
	struct task_struct *task = ctx->task;
1637 1638 1639 1640
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1641

1642 1643
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1644 1645
	if (!task) {
		/*
1646 1647 1648 1649
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1650
		 */
1651
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1652 1653 1654 1655
		return;
	}

retry:
1656
	if (!task_function_call(task, __perf_remove_from_context, &re))
1657
		return;
T
Thomas Gleixner 已提交
1658

1659
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1660
	/*
1661 1662
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1663
	 */
1664
	if (ctx->is_active) {
1665
		raw_spin_unlock_irq(&ctx->lock);
1666 1667 1668 1669 1670
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1671 1672 1673 1674
		goto retry;
	}

	/*
1675 1676
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1677
	 */
1678 1679
	if (detach_group)
		perf_group_detach(event);
1680
	list_del_event(event, ctx);
1681
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1682 1683
}

1684
/*
1685
 * Cross CPU call to disable a performance event
1686
 */
1687
int __perf_event_disable(void *info)
1688
{
1689 1690
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1691
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692 1693

	/*
1694 1695
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1696 1697 1698
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1699
	 */
1700
	if (ctx->task && cpuctx->task_ctx != ctx)
1701
		return -EINVAL;
1702

1703
	raw_spin_lock(&ctx->lock);
1704 1705

	/*
1706
	 * If the event is on, turn it off.
1707 1708
	 * If it is in error state, leave it in error state.
	 */
1709
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1710
		update_context_time(ctx);
S
Stephane Eranian 已提交
1711
		update_cgrp_time_from_event(event);
1712 1713 1714
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1715
		else
1716 1717
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1718 1719
	}

1720
	raw_spin_unlock(&ctx->lock);
1721 1722

	return 0;
1723 1724 1725
}

/*
1726
 * Disable a event.
1727
 *
1728 1729
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1730
 * remains valid.  This condition is satisifed when called through
1731 1732 1733 1734
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1735
 * is the current context on this CPU and preemption is disabled,
1736
 * hence we can't get into perf_event_task_sched_out for this context.
1737
 */
P
Peter Zijlstra 已提交
1738
static void _perf_event_disable(struct perf_event *event)
1739
{
1740
	struct perf_event_context *ctx = event->ctx;
1741 1742 1743 1744
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1745
		 * Disable the event on the cpu that it's on
1746
		 */
1747
		cpu_function_call(event->cpu, __perf_event_disable, event);
1748 1749 1750
		return;
	}

P
Peter Zijlstra 已提交
1751
retry:
1752 1753
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1754

1755
	raw_spin_lock_irq(&ctx->lock);
1756
	/*
1757
	 * If the event is still active, we need to retry the cross-call.
1758
	 */
1759
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1760
		raw_spin_unlock_irq(&ctx->lock);
1761 1762 1763 1764 1765
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1766 1767 1768 1769 1770 1771 1772
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1773 1774 1775
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1776
	}
1777
	raw_spin_unlock_irq(&ctx->lock);
1778
}
P
Peter Zijlstra 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1792
EXPORT_SYMBOL_GPL(perf_event_disable);
1793

S
Stephane Eranian 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1829 1830 1831
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1832
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1833

1834
static int
1835
event_sched_in(struct perf_event *event,
1836
		 struct perf_cpu_context *cpuctx,
1837
		 struct perf_event_context *ctx)
1838
{
1839
	u64 tstamp = perf_event_time(event);
1840
	int ret = 0;
1841

1842 1843
	lockdep_assert_held(&ctx->lock);

1844
	if (event->state <= PERF_EVENT_STATE_OFF)
1845 1846
		return 0;

1847
	event->state = PERF_EVENT_STATE_ACTIVE;
1848
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1860 1861 1862 1863 1864
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1865 1866
	perf_pmu_disable(event->pmu);

1867 1868 1869 1870
	event->tstamp_running += tstamp - event->tstamp_stopped;

	perf_set_shadow_time(event, ctx, tstamp);

1871 1872
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1873
	if (event->pmu->add(event, PERF_EF_START)) {
1874 1875
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1876 1877
		ret = -EAGAIN;
		goto out;
1878 1879
	}

1880
	if (!is_software_event(event))
1881
		cpuctx->active_oncpu++;
1882 1883
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1884 1885
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1886

1887
	if (event->attr.exclusive)
1888 1889
		cpuctx->exclusive = 1;

1890 1891 1892
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1893 1894 1895 1896
out:
	perf_pmu_enable(event->pmu);

	return ret;
1897 1898
}

1899
static int
1900
group_sched_in(struct perf_event *group_event,
1901
	       struct perf_cpu_context *cpuctx,
1902
	       struct perf_event_context *ctx)
1903
{
1904
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1905
	struct pmu *pmu = ctx->pmu;
1906 1907
	u64 now = ctx->time;
	bool simulate = false;
1908

1909
	if (group_event->state == PERF_EVENT_STATE_OFF)
1910 1911
		return 0;

P
Peter Zijlstra 已提交
1912
	pmu->start_txn(pmu);
1913

1914
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1915
		pmu->cancel_txn(pmu);
1916
		perf_cpu_hrtimer_restart(cpuctx);
1917
		return -EAGAIN;
1918
	}
1919 1920 1921 1922

	/*
	 * Schedule in siblings as one group (if any):
	 */
1923
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1924
		if (event_sched_in(event, cpuctx, ctx)) {
1925
			partial_group = event;
1926 1927 1928 1929
			goto group_error;
		}
	}

1930
	if (!pmu->commit_txn(pmu))
1931
		return 0;
1932

1933 1934 1935 1936
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1947
	 */
1948 1949
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1950 1951 1952 1953 1954 1955 1956 1957
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1958
	}
1959
	event_sched_out(group_event, cpuctx, ctx);
1960

P
Peter Zijlstra 已提交
1961
	pmu->cancel_txn(pmu);
1962

1963 1964
	perf_cpu_hrtimer_restart(cpuctx);

1965 1966 1967
	return -EAGAIN;
}

1968
/*
1969
 * Work out whether we can put this event group on the CPU now.
1970
 */
1971
static int group_can_go_on(struct perf_event *event,
1972 1973 1974 1975
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1976
	 * Groups consisting entirely of software events can always go on.
1977
	 */
1978
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1979 1980 1981
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1982
	 * events can go on.
1983 1984 1985 1986 1987
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1988
	 * events on the CPU, it can't go on.
1989
	 */
1990
	if (event->attr.exclusive && cpuctx->active_oncpu)
1991 1992 1993 1994 1995 1996 1997 1998
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1999 2000
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2001
{
2002 2003
	u64 tstamp = perf_event_time(event);

2004
	list_add_event(event, ctx);
2005
	perf_group_attach(event);
2006 2007 2008
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2009 2010
}

2011 2012 2013 2014 2015 2016
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2030
/*
2031
 * Cross CPU call to install and enable a performance event
2032 2033
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2034
 */
2035
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2036
{
2037 2038
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2039
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2040 2041 2042
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2043
	perf_ctx_lock(cpuctx, task_ctx);
2044
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2045 2046

	/*
2047
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2048
	 */
2049
	if (task_ctx)
2050
		task_ctx_sched_out(task_ctx);
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2065 2066
		task = task_ctx->task;
	}
2067

2068
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2069

2070
	update_context_time(ctx);
S
Stephane Eranian 已提交
2071 2072 2073 2074 2075 2076
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2077

2078
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2079

2080
	/*
2081
	 * Schedule everything back in
2082
	 */
2083
	perf_event_sched_in(cpuctx, task_ctx, task);
2084 2085 2086

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2087 2088

	return 0;
T
Thomas Gleixner 已提交
2089 2090 2091
}

/*
2092
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2093
 *
2094 2095
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2096
 *
2097
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2098 2099 2100 2101
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2102 2103
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2104 2105 2106 2107
			int cpu)
{
	struct task_struct *task = ctx->task;

2108 2109
	lockdep_assert_held(&ctx->mutex);

2110
	event->ctx = ctx;
2111 2112
	if (event->cpu != -1)
		event->cpu = cpu;
2113

T
Thomas Gleixner 已提交
2114 2115
	if (!task) {
		/*
2116
		 * Per cpu events are installed via an smp call and
2117
		 * the install is always successful.
T
Thomas Gleixner 已提交
2118
		 */
2119
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2120 2121 2122 2123
		return;
	}

retry:
2124 2125
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2126

2127
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2128
	/*
2129 2130
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2131
	 */
2132
	if (ctx->is_active) {
2133
		raw_spin_unlock_irq(&ctx->lock);
2134 2135 2136 2137 2138
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2139 2140 2141 2142
		goto retry;
	}

	/*
2143 2144
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2145
	 */
2146
	add_event_to_ctx(event, ctx);
2147
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2148 2149
}

2150
/*
2151
 * Put a event into inactive state and update time fields.
2152 2153 2154 2155 2156 2157
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2158
static void __perf_event_mark_enabled(struct perf_event *event)
2159
{
2160
	struct perf_event *sub;
2161
	u64 tstamp = perf_event_time(event);
2162

2163
	event->state = PERF_EVENT_STATE_INACTIVE;
2164
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2165
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2166 2167
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2168
	}
2169 2170
}

2171
/*
2172
 * Cross CPU call to enable a performance event
2173
 */
2174
static int __perf_event_enable(void *info)
2175
{
2176 2177 2178
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2179
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2180
	int err;
2181

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2192
		return -EINVAL;
2193

2194
	raw_spin_lock(&ctx->lock);
2195
	update_context_time(ctx);
2196

2197
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2198
		goto unlock;
S
Stephane Eranian 已提交
2199 2200 2201 2202

	/*
	 * set current task's cgroup time reference point
	 */
2203
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2204

2205
	__perf_event_mark_enabled(event);
2206

S
Stephane Eranian 已提交
2207 2208 2209
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2210
		goto unlock;
S
Stephane Eranian 已提交
2211
	}
2212

2213
	/*
2214
	 * If the event is in a group and isn't the group leader,
2215
	 * then don't put it on unless the group is on.
2216
	 */
2217
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2218
		goto unlock;
2219

2220
	if (!group_can_go_on(event, cpuctx, 1)) {
2221
		err = -EEXIST;
2222
	} else {
2223
		if (event == leader)
2224
			err = group_sched_in(event, cpuctx, ctx);
2225
		else
2226
			err = event_sched_in(event, cpuctx, ctx);
2227
	}
2228 2229 2230

	if (err) {
		/*
2231
		 * If this event can't go on and it's part of a
2232 2233
		 * group, then the whole group has to come off.
		 */
2234
		if (leader != event) {
2235
			group_sched_out(leader, cpuctx, ctx);
2236 2237
			perf_cpu_hrtimer_restart(cpuctx);
		}
2238
		if (leader->attr.pinned) {
2239
			update_group_times(leader);
2240
			leader->state = PERF_EVENT_STATE_ERROR;
2241
		}
2242 2243
	}

P
Peter Zijlstra 已提交
2244
unlock:
2245
	raw_spin_unlock(&ctx->lock);
2246 2247

	return 0;
2248 2249 2250
}

/*
2251
 * Enable a event.
2252
 *
2253 2254
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2255
 * remains valid.  This condition is satisfied when called through
2256 2257
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2258
 */
P
Peter Zijlstra 已提交
2259
static void _perf_event_enable(struct perf_event *event)
2260
{
2261
	struct perf_event_context *ctx = event->ctx;
2262 2263 2264 2265
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2266
		 * Enable the event on the cpu that it's on
2267
		 */
2268
		cpu_function_call(event->cpu, __perf_event_enable, event);
2269 2270 2271
		return;
	}

2272
	raw_spin_lock_irq(&ctx->lock);
2273
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2274 2275 2276
		goto out;

	/*
2277 2278
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2279 2280 2281 2282
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2283 2284
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2285

P
Peter Zijlstra 已提交
2286
retry:
2287
	if (!ctx->is_active) {
2288
		__perf_event_mark_enabled(event);
2289 2290 2291
		goto out;
	}

2292
	raw_spin_unlock_irq(&ctx->lock);
2293 2294 2295

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2296

2297
	raw_spin_lock_irq(&ctx->lock);
2298 2299

	/*
2300
	 * If the context is active and the event is still off,
2301 2302
	 * we need to retry the cross-call.
	 */
2303 2304 2305 2306 2307 2308
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2309
		goto retry;
2310
	}
2311

P
Peter Zijlstra 已提交
2312
out:
2313
	raw_spin_unlock_irq(&ctx->lock);
2314
}
P
Peter Zijlstra 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2327
EXPORT_SYMBOL_GPL(perf_event_enable);
2328

P
Peter Zijlstra 已提交
2329
static int _perf_event_refresh(struct perf_event *event, int refresh)
2330
{
2331
	/*
2332
	 * not supported on inherited events
2333
	 */
2334
	if (event->attr.inherit || !is_sampling_event(event))
2335 2336
		return -EINVAL;

2337
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2338
	_perf_event_enable(event);
2339 2340

	return 0;
2341
}
P
Peter Zijlstra 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2357
EXPORT_SYMBOL_GPL(perf_event_refresh);
2358

2359 2360 2361
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2362
{
2363
	struct perf_event *event;
2364
	int is_active = ctx->is_active;
2365

2366
	ctx->is_active &= ~event_type;
2367
	if (likely(!ctx->nr_events))
2368 2369
		return;

2370
	update_context_time(ctx);
S
Stephane Eranian 已提交
2371
	update_cgrp_time_from_cpuctx(cpuctx);
2372
	if (!ctx->nr_active)
2373
		return;
2374

P
Peter Zijlstra 已提交
2375
	perf_pmu_disable(ctx->pmu);
2376
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2377 2378
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2379
	}
2380

2381
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2382
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2383
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2384
	}
P
Peter Zijlstra 已提交
2385
	perf_pmu_enable(ctx->pmu);
2386 2387
}

2388
/*
2389 2390 2391 2392 2393 2394
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2395
 */
2396 2397
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2398
{
2399 2400 2401
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2424 2425
}

2426 2427
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2428 2429 2430
{
	u64 value;

2431
	if (!event->attr.inherit_stat)
2432 2433 2434
		return;

	/*
2435
	 * Update the event value, we cannot use perf_event_read()
2436 2437
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2438
	 * we know the event must be on the current CPU, therefore we
2439 2440
	 * don't need to use it.
	 */
2441 2442
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2443 2444
		event->pmu->read(event);
		/* fall-through */
2445

2446 2447
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2448 2449 2450 2451 2452 2453 2454
		break;

	default:
		break;
	}

	/*
2455
	 * In order to keep per-task stats reliable we need to flip the event
2456 2457
	 * values when we flip the contexts.
	 */
2458 2459 2460
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2461

2462 2463
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2464

2465
	/*
2466
	 * Since we swizzled the values, update the user visible data too.
2467
	 */
2468 2469
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2470 2471
}

2472 2473
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2474
{
2475
	struct perf_event *event, *next_event;
2476 2477 2478 2479

	if (!ctx->nr_stat)
		return;

2480 2481
	update_context_time(ctx);

2482 2483
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2484

2485 2486
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2487

2488 2489
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2490

2491
		__perf_event_sync_stat(event, next_event);
2492

2493 2494
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2495 2496 2497
	}
}

2498 2499
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2500
{
P
Peter Zijlstra 已提交
2501
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2502
	struct perf_event_context *next_ctx;
2503
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2504
	struct perf_cpu_context *cpuctx;
2505
	int do_switch = 1;
T
Thomas Gleixner 已提交
2506

P
Peter Zijlstra 已提交
2507 2508
	if (likely(!ctx))
		return;
2509

P
Peter Zijlstra 已提交
2510 2511
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2512 2513
		return;

2514
	rcu_read_lock();
P
Peter Zijlstra 已提交
2515
	next_ctx = next->perf_event_ctxp[ctxn];
2516 2517 2518 2519 2520 2521 2522
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2523
	if (!parent && !next_parent)
2524 2525 2526
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2527 2528 2529 2530 2531 2532 2533 2534 2535
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2536 2537
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2538
		if (context_equiv(ctx, next_ctx)) {
2539 2540
			/*
			 * XXX do we need a memory barrier of sorts
2541
			 * wrt to rcu_dereference() of perf_event_ctxp
2542
			 */
P
Peter Zijlstra 已提交
2543 2544
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2545 2546
			ctx->task = next;
			next_ctx->task = task;
2547 2548 2549

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2550
			do_switch = 0;
2551

2552
			perf_event_sync_stat(ctx, next_ctx);
2553
		}
2554 2555
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2556
	}
2557
unlock:
2558
	rcu_read_unlock();
2559

2560
	if (do_switch) {
2561
		raw_spin_lock(&ctx->lock);
2562
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2563
		cpuctx->task_ctx = NULL;
2564
		raw_spin_unlock(&ctx->lock);
2565
	}
T
Thomas Gleixner 已提交
2566 2567
}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2632 2633
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2634 2635 2636
{
	int ctxn;

2637 2638 2639
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

P
Peter Zijlstra 已提交
2640 2641
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2642 2643 2644 2645 2646 2647

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2648
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2649
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2650 2651
}

2652
static void task_ctx_sched_out(struct perf_event_context *ctx)
2653
{
P
Peter Zijlstra 已提交
2654
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2655

2656 2657
	if (!cpuctx->task_ctx)
		return;
2658 2659 2660 2661

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2662
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2663 2664 2665
	cpuctx->task_ctx = NULL;
}

2666 2667 2668 2669 2670 2671 2672
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2673 2674
}

2675
static void
2676
ctx_pinned_sched_in(struct perf_event_context *ctx,
2677
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2678
{
2679
	struct perf_event *event;
T
Thomas Gleixner 已提交
2680

2681 2682
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2683
			continue;
2684
		if (!event_filter_match(event))
2685 2686
			continue;

S
Stephane Eranian 已提交
2687 2688 2689 2690
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2691
		if (group_can_go_on(event, cpuctx, 1))
2692
			group_sched_in(event, cpuctx, ctx);
2693 2694 2695 2696 2697

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2698 2699 2700
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2701
		}
2702
	}
2703 2704 2705 2706
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2707
		      struct perf_cpu_context *cpuctx)
2708 2709 2710
{
	struct perf_event *event;
	int can_add_hw = 1;
2711

2712 2713 2714
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2715
			continue;
2716 2717
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2718
		 * of events:
2719
		 */
2720
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2721 2722
			continue;

S
Stephane Eranian 已提交
2723 2724 2725 2726
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2727
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2728
			if (group_sched_in(event, cpuctx, ctx))
2729
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2730
		}
T
Thomas Gleixner 已提交
2731
	}
2732 2733 2734 2735 2736
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2737 2738
	     enum event_type_t event_type,
	     struct task_struct *task)
2739
{
S
Stephane Eranian 已提交
2740
	u64 now;
2741
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2742

2743
	ctx->is_active |= event_type;
2744
	if (likely(!ctx->nr_events))
2745
		return;
2746

S
Stephane Eranian 已提交
2747 2748
	now = perf_clock();
	ctx->timestamp = now;
2749
	perf_cgroup_set_timestamp(task, ctx);
2750 2751 2752 2753
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2754
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2755
		ctx_pinned_sched_in(ctx, cpuctx);
2756 2757

	/* Then walk through the lower prio flexible groups */
2758
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2759
		ctx_flexible_sched_in(ctx, cpuctx);
2760 2761
}

2762
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2763 2764
			     enum event_type_t event_type,
			     struct task_struct *task)
2765 2766 2767
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2768
	ctx_sched_in(ctx, cpuctx, event_type, task);
2769 2770
}

S
Stephane Eranian 已提交
2771 2772
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2773
{
P
Peter Zijlstra 已提交
2774
	struct perf_cpu_context *cpuctx;
2775

P
Peter Zijlstra 已提交
2776
	cpuctx = __get_cpu_context(ctx);
2777 2778 2779
	if (cpuctx->task_ctx == ctx)
		return;

2780
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2781
	perf_pmu_disable(ctx->pmu);
2782 2783 2784 2785 2786 2787 2788
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2789 2790
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2791

2792 2793
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2794 2795
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2796 2797
}

P
Peter Zijlstra 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2809 2810
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2820
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2821
	}
S
Stephane Eranian 已提交
2822 2823 2824 2825 2826
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2827
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2828
		perf_cgroup_sched_in(prev, task);
2829

2830 2831
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2832 2833
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2861
#define REDUCE_FLS(a, b)		\
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2901 2902 2903
	if (!divisor)
		return dividend;

2904 2905 2906
	return div64_u64(dividend, divisor);
}

2907 2908 2909
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2910
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2911
{
2912
	struct hw_perf_event *hwc = &event->hw;
2913
	s64 period, sample_period;
2914 2915
	s64 delta;

2916
	period = perf_calculate_period(event, nsec, count);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2927

2928
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2929 2930 2931
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2932
		local64_set(&hwc->period_left, 0);
2933 2934 2935

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2936
	}
2937 2938
}

2939 2940 2941 2942 2943 2944 2945
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2946
{
2947 2948
	struct perf_event *event;
	struct hw_perf_event *hwc;
2949
	u64 now, period = TICK_NSEC;
2950
	s64 delta;
2951

2952 2953 2954 2955 2956 2957
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2958 2959
		return;

2960
	raw_spin_lock(&ctx->lock);
2961
	perf_pmu_disable(ctx->pmu);
2962

2963
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2964
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2965 2966
			continue;

2967
		if (!event_filter_match(event))
2968 2969
			continue;

2970 2971
		perf_pmu_disable(event->pmu);

2972
		hwc = &event->hw;
2973

2974
		if (hwc->interrupts == MAX_INTERRUPTS) {
2975
			hwc->interrupts = 0;
2976
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2977
			event->pmu->start(event, 0);
2978 2979
		}

2980
		if (!event->attr.freq || !event->attr.sample_freq)
2981
			goto next;
2982

2983 2984 2985 2986 2987
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2988
		now = local64_read(&event->count);
2989 2990
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2991

2992 2993 2994
		/*
		 * restart the event
		 * reload only if value has changed
2995 2996 2997
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2998
		 */
2999
		if (delta > 0)
3000
			perf_adjust_period(event, period, delta, false);
3001 3002

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3003 3004
	next:
		perf_pmu_enable(event->pmu);
3005
	}
3006

3007
	perf_pmu_enable(ctx->pmu);
3008
	raw_spin_unlock(&ctx->lock);
3009 3010
}

3011
/*
3012
 * Round-robin a context's events:
3013
 */
3014
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3015
{
3016 3017 3018 3019 3020 3021
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3022 3023
}

3024
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3025
{
P
Peter Zijlstra 已提交
3026
	struct perf_event_context *ctx = NULL;
3027
	int rotate = 0;
3028

3029 3030 3031 3032
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3033

P
Peter Zijlstra 已提交
3034
	ctx = cpuctx->task_ctx;
3035 3036 3037 3038
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3039

3040
	if (!rotate)
3041 3042
		goto done;

3043
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3044
	perf_pmu_disable(cpuctx->ctx.pmu);
3045

3046 3047 3048
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3049

3050 3051 3052
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3053

3054
	perf_event_sched_in(cpuctx, ctx, current);
3055

3056 3057
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3058
done:
3059 3060

	return rotate;
3061 3062
}

3063 3064 3065
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3066
	if (atomic_read(&nr_freq_events) ||
3067
	    __this_cpu_read(perf_throttled_count))
3068
		return false;
3069 3070
	else
		return true;
3071 3072 3073
}
#endif

3074 3075
void perf_event_task_tick(void)
{
3076 3077
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3078
	int throttled;
3079

3080 3081
	WARN_ON(!irqs_disabled());

3082 3083 3084
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3085
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3086
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3087 3088
}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3099
	__perf_event_mark_enabled(event);
3100 3101 3102 3103

	return 1;
}

3104
/*
3105
 * Enable all of a task's events that have been marked enable-on-exec.
3106 3107
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3108
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3109
{
3110
	struct perf_event_context *clone_ctx = NULL;
3111
	struct perf_event *event;
3112 3113
	unsigned long flags;
	int enabled = 0;
3114
	int ret;
3115 3116

	local_irq_save(flags);
3117
	if (!ctx || !ctx->nr_events)
3118 3119
		goto out;

3120 3121 3122 3123 3124 3125 3126
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3127
	perf_cgroup_sched_out(current, NULL);
3128

3129
	raw_spin_lock(&ctx->lock);
3130
	task_ctx_sched_out(ctx);
3131

3132
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3133 3134 3135
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3136 3137 3138
	}

	/*
3139
	 * Unclone this context if we enabled any event.
3140
	 */
3141
	if (enabled)
3142
		clone_ctx = unclone_ctx(ctx);
3143

3144
	raw_spin_unlock(&ctx->lock);
3145

3146 3147 3148
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3149
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3150
out:
3151
	local_irq_restore(flags);
3152 3153 3154

	if (clone_ctx)
		put_ctx(clone_ctx);
3155 3156
}

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3173
/*
3174
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3175
 */
3176
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3177
{
3178 3179
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3180
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3181

3182 3183 3184 3185
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3186 3187
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3188 3189 3190 3191
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3192
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3193
	if (ctx->is_active) {
3194
		update_context_time(ctx);
S
Stephane Eranian 已提交
3195 3196
		update_cgrp_time_from_event(event);
	}
3197
	update_event_times(event);
3198 3199
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3200
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3201 3202
}

P
Peter Zijlstra 已提交
3203 3204
static inline u64 perf_event_count(struct perf_event *event)
{
3205 3206 3207 3208
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3209 3210
}

3211
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3212 3213
{
	/*
3214 3215
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3216
	 */
3217 3218 3219 3220
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3221 3222 3223
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3224
		raw_spin_lock_irqsave(&ctx->lock, flags);
3225 3226 3227 3228 3229
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3230
		if (ctx->is_active) {
3231
			update_context_time(ctx);
S
Stephane Eranian 已提交
3232 3233
			update_cgrp_time_from_event(event);
		}
3234
		update_event_times(event);
3235
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3236 3237
	}

P
Peter Zijlstra 已提交
3238
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3239 3240
}

3241
/*
3242
 * Initialize the perf_event context in a task_struct:
3243
 */
3244
static void __perf_event_init_context(struct perf_event_context *ctx)
3245
{
3246
	raw_spin_lock_init(&ctx->lock);
3247
	mutex_init(&ctx->mutex);
3248
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3249 3250
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3251 3252
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3253
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3269
	}
3270 3271 3272
	ctx->pmu = pmu;

	return ctx;
3273 3274
}

3275 3276 3277 3278 3279
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3280 3281

	rcu_read_lock();
3282
	if (!vpid)
T
Thomas Gleixner 已提交
3283 3284
		task = current;
	else
3285
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3286 3287 3288 3289 3290 3291 3292 3293
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3294 3295 3296 3297
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3298 3299 3300 3301 3302 3303 3304
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3305 3306 3307
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3308
static struct perf_event_context *
3309 3310
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3311
{
3312
	struct perf_event_context *ctx, *clone_ctx = NULL;
3313
	struct perf_cpu_context *cpuctx;
3314
	void *task_ctx_data = NULL;
3315
	unsigned long flags;
P
Peter Zijlstra 已提交
3316
	int ctxn, err;
3317
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3318

3319
	if (!task) {
3320
		/* Must be root to operate on a CPU event: */
3321
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3322 3323 3324
			return ERR_PTR(-EACCES);

		/*
3325
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3326 3327 3328
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3329
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3330 3331
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3332
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3333
		ctx = &cpuctx->ctx;
3334
		get_ctx(ctx);
3335
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3336 3337 3338 3339

		return ctx;
	}

P
Peter Zijlstra 已提交
3340 3341 3342 3343 3344
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3345 3346 3347 3348 3349 3350 3351 3352
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3353
retry:
P
Peter Zijlstra 已提交
3354
	ctx = perf_lock_task_context(task, ctxn, &flags);
3355
	if (ctx) {
3356
		clone_ctx = unclone_ctx(ctx);
3357
		++ctx->pin_count;
3358 3359 3360 3361 3362

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3363
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3364 3365 3366

		if (clone_ctx)
			put_ctx(clone_ctx);
3367
	} else {
3368
		ctx = alloc_perf_context(pmu, task);
3369 3370 3371
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3372

3373 3374 3375 3376 3377
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3388
		else {
3389
			get_ctx(ctx);
3390
			++ctx->pin_count;
3391
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3392
		}
3393 3394 3395
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3396
			put_ctx(ctx);
3397 3398 3399 3400

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3401 3402 3403
		}
	}

3404
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3405
	return ctx;
3406

P
Peter Zijlstra 已提交
3407
errout:
3408
	kfree(task_ctx_data);
3409
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3410 3411
}

L
Li Zefan 已提交
3412
static void perf_event_free_filter(struct perf_event *event);
3413
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3414

3415
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3416
{
3417
	struct perf_event *event;
P
Peter Zijlstra 已提交
3418

3419 3420 3421
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3422
	perf_event_free_filter(event);
3423
	perf_event_free_bpf_prog(event);
3424
	kfree(event);
P
Peter Zijlstra 已提交
3425 3426
}

3427 3428
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3429

3430
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3431
{
3432 3433 3434 3435 3436 3437
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3452 3453
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3454 3455 3456 3457 3458 3459 3460
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3461

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3547 3548
static void __free_event(struct perf_event *event)
{
3549
	if (!event->parent) {
3550 3551
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3552
	}
3553

3554 3555 3556 3557 3558 3559
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3560 3561
	if (event->pmu) {
		exclusive_event_destroy(event);
3562
		module_put(event->pmu->module);
3563
	}
3564

3565 3566
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3567 3568

static void _free_event(struct perf_event *event)
3569
{
3570
	irq_work_sync(&event->pending);
3571

3572
	unaccount_event(event);
3573

3574
	if (event->rb) {
3575 3576 3577 3578 3579 3580 3581
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3582
		ring_buffer_attach(event, NULL);
3583
		mutex_unlock(&event->mmap_mutex);
3584 3585
	}

S
Stephane Eranian 已提交
3586 3587 3588
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3589
	__free_event(event);
3590 3591
}

P
Peter Zijlstra 已提交
3592 3593 3594 3595 3596
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3597
{
P
Peter Zijlstra 已提交
3598 3599 3600 3601 3602 3603
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3604

P
Peter Zijlstra 已提交
3605
	_free_event(event);
T
Thomas Gleixner 已提交
3606 3607
}

3608
/*
3609
 * Remove user event from the owner task.
3610
 */
3611
static void perf_remove_from_owner(struct perf_event *event)
3612
{
P
Peter Zijlstra 已提交
3613
	struct task_struct *owner;
3614

P
Peter Zijlstra 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3656 3657 3658 3659 3660 3661 3662
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3663
	struct perf_event_context *ctx;
3664 3665 3666 3667 3668 3669

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3670

P
Peter Zijlstra 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3683 3684
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3685
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3686
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3687 3688

	_free_event(event);
3689 3690
}

P
Peter Zijlstra 已提交
3691 3692 3693 3694 3695 3696 3697
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3698 3699 3700 3701
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3702 3703
}

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3740
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3741
{
3742
	struct perf_event *child;
3743 3744
	u64 total = 0;

3745 3746 3747
	*enabled = 0;
	*running = 0;

3748
	mutex_lock(&event->child_mutex);
3749
	total += perf_event_read(event);
3750 3751 3752 3753 3754 3755
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3756
		total += perf_event_read(child);
3757 3758 3759
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3760
	mutex_unlock(&event->child_mutex);
3761 3762 3763

	return total;
}
3764
EXPORT_SYMBOL_GPL(perf_event_read_value);
3765

3766
static int perf_event_read_group(struct perf_event *event,
3767 3768
				   u64 read_format, char __user *buf)
{
3769
	struct perf_event *leader = event->group_leader, *sub;
3770
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3771
	int n = 0, size = 0, ret;
3772
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3773 3774 3775
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3776

3777
	count = perf_event_read_value(leader, &enabled, &running);
3778 3779

	values[n++] = 1 + leader->nr_siblings;
3780 3781 3782 3783
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3784 3785 3786
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3787 3788 3789 3790

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3791
		return -EFAULT;
3792

3793
	ret = size;
3794

3795
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3796
		n = 0;
3797

3798
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3799 3800 3801 3802 3803
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3804
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3805
			return -EFAULT;
3806
		}
3807 3808

		ret += size;
3809 3810
	}

3811
	return ret;
3812 3813
}

3814
static int perf_event_read_one(struct perf_event *event,
3815 3816
				 u64 read_format, char __user *buf)
{
3817
	u64 enabled, running;
3818 3819 3820
	u64 values[4];
	int n = 0;

3821 3822 3823 3824 3825
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3826
	if (read_format & PERF_FORMAT_ID)
3827
		values[n++] = primary_event_id(event);
3828 3829 3830 3831 3832 3833 3834

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3848
/*
3849
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3850 3851
 */
static ssize_t
3852
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3853
{
3854
	u64 read_format = event->attr.read_format;
3855
	int ret;
T
Thomas Gleixner 已提交
3856

3857
	/*
3858
	 * Return end-of-file for a read on a event that is in
3859 3860 3861
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3862
	if (event->state == PERF_EVENT_STATE_ERROR)
3863 3864
		return 0;

3865
	if (count < event->read_size)
3866 3867
		return -ENOSPC;

3868
	WARN_ON_ONCE(event->ctx->parent_ctx);
3869
	if (read_format & PERF_FORMAT_GROUP)
3870
		ret = perf_event_read_group(event, read_format, buf);
3871
	else
3872
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3873

3874
	return ret;
T
Thomas Gleixner 已提交
3875 3876 3877 3878 3879
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3880
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3881 3882
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3883

P
Peter Zijlstra 已提交
3884 3885 3886 3887 3888
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3889 3890 3891 3892
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3893
	struct perf_event *event = file->private_data;
3894
	struct ring_buffer *rb;
3895
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3896

3897
	poll_wait(file, &event->waitq, wait);
3898

3899
	if (is_event_hup(event))
3900
		return events;
P
Peter Zijlstra 已提交
3901

3902
	/*
3903 3904
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3905 3906
	 */
	mutex_lock(&event->mmap_mutex);
3907 3908
	rb = event->rb;
	if (rb)
3909
		events = atomic_xchg(&rb->poll, 0);
3910
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3911 3912 3913
	return events;
}

P
Peter Zijlstra 已提交
3914
static void _perf_event_reset(struct perf_event *event)
3915
{
3916
	(void)perf_event_read(event);
3917
	local64_set(&event->count, 0);
3918
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3919 3920
}

3921
/*
3922 3923 3924 3925
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3926
 */
3927 3928
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3929
{
3930
	struct perf_event *child;
P
Peter Zijlstra 已提交
3931

3932
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3933

3934 3935 3936
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3937
		func(child);
3938
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3939 3940
}

3941 3942
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3943
{
3944 3945
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3946

P
Peter Zijlstra 已提交
3947 3948
	lockdep_assert_held(&ctx->mutex);

3949
	event = event->group_leader;
3950

3951 3952
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3953
		perf_event_for_each_child(sibling, func);
3954 3955
}

3956
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3957
{
3958
	struct perf_event_context *ctx = event->ctx;
3959
	int ret = 0, active;
3960 3961
	u64 value;

3962
	if (!is_sampling_event(event))
3963 3964
		return -EINVAL;

3965
	if (copy_from_user(&value, arg, sizeof(value)))
3966 3967 3968 3969 3970
		return -EFAULT;

	if (!value)
		return -EINVAL;

3971
	raw_spin_lock_irq(&ctx->lock);
3972 3973
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3974 3975 3976 3977
			ret = -EINVAL;
			goto unlock;
		}

3978
		event->attr.sample_freq = value;
3979
	} else {
3980 3981
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3982
	}
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3997
unlock:
3998
	raw_spin_unlock_irq(&ctx->lock);
3999 4000 4001 4002

	return ret;
}

4003 4004
static const struct file_operations perf_fops;

4005
static inline int perf_fget_light(int fd, struct fd *p)
4006
{
4007 4008 4009
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4010

4011 4012 4013
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4014
	}
4015 4016
	*p = f;
	return 0;
4017 4018 4019 4020
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4021
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4022
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4023

P
Peter Zijlstra 已提交
4024
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4025
{
4026
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4027
	u32 flags = arg;
4028 4029

	switch (cmd) {
4030
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4031
		func = _perf_event_enable;
4032
		break;
4033
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4034
		func = _perf_event_disable;
4035
		break;
4036
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4037
		func = _perf_event_reset;
4038
		break;
P
Peter Zijlstra 已提交
4039

4040
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4041
		return _perf_event_refresh(event, arg);
4042

4043 4044
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4045

4046 4047 4048 4049 4050 4051 4052 4053 4054
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4055
	case PERF_EVENT_IOC_SET_OUTPUT:
4056 4057 4058
	{
		int ret;
		if (arg != -1) {
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4069 4070 4071
		}
		return ret;
	}
4072

L
Li Zefan 已提交
4073 4074 4075
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4076 4077 4078
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4079
	default:
P
Peter Zijlstra 已提交
4080
		return -ENOTTY;
4081
	}
P
Peter Zijlstra 已提交
4082 4083

	if (flags & PERF_IOC_FLAG_GROUP)
4084
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4085
	else
4086
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4087 4088

	return 0;
4089 4090
}

P
Peter Zijlstra 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4124
int perf_event_task_enable(void)
4125
{
P
Peter Zijlstra 已提交
4126
	struct perf_event_context *ctx;
4127
	struct perf_event *event;
4128

4129
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4130 4131 4132 4133 4134
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4135
	mutex_unlock(&current->perf_event_mutex);
4136 4137 4138 4139

	return 0;
}

4140
int perf_event_task_disable(void)
4141
{
P
Peter Zijlstra 已提交
4142
	struct perf_event_context *ctx;
4143
	struct perf_event *event;
4144

4145
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4146 4147 4148 4149 4150
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4151
	mutex_unlock(&current->perf_event_mutex);
4152 4153 4154 4155

	return 0;
}

4156
static int perf_event_index(struct perf_event *event)
4157
{
P
Peter Zijlstra 已提交
4158 4159 4160
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4161
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4162 4163
		return 0;

4164
	return event->pmu->event_idx(event);
4165 4166
}

4167
static void calc_timer_values(struct perf_event *event,
4168
				u64 *now,
4169 4170
				u64 *enabled,
				u64 *running)
4171
{
4172
	u64 ctx_time;
4173

4174 4175
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4176 4177 4178 4179
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4195 4196
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4197 4198 4199 4200 4201

unlock:
	rcu_read_unlock();
}

4202 4203
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4204 4205 4206
{
}

4207 4208 4209 4210 4211
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4212
void perf_event_update_userpage(struct perf_event *event)
4213
{
4214
	struct perf_event_mmap_page *userpg;
4215
	struct ring_buffer *rb;
4216
	u64 enabled, running, now;
4217 4218

	rcu_read_lock();
4219 4220 4221 4222
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4223 4224 4225 4226 4227 4228 4229 4230 4231
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4232
	calc_timer_values(event, &now, &enabled, &running);
4233

4234
	userpg = rb->user_page;
4235 4236 4237 4238 4239
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4240
	++userpg->lock;
4241
	barrier();
4242
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4243
	userpg->offset = perf_event_count(event);
4244
	if (userpg->index)
4245
		userpg->offset -= local64_read(&event->hw.prev_count);
4246

4247
	userpg->time_enabled = enabled +
4248
			atomic64_read(&event->child_total_time_enabled);
4249

4250
	userpg->time_running = running +
4251
			atomic64_read(&event->child_total_time_running);
4252

4253
	arch_perf_update_userpage(event, userpg, now);
4254

4255
	barrier();
4256
	++userpg->lock;
4257
	preempt_enable();
4258
unlock:
4259
	rcu_read_unlock();
4260 4261
}

4262 4263 4264
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4265
	struct ring_buffer *rb;
4266 4267 4268 4269 4270 4271 4272 4273 4274
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4275 4276
	rb = rcu_dereference(event->rb);
	if (!rb)
4277 4278 4279 4280 4281
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4282
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4297 4298 4299
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4300
	struct ring_buffer *old_rb = NULL;
4301 4302
	unsigned long flags;

4303 4304 4305 4306 4307 4308
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4309

4310 4311 4312
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4313

4314 4315 4316 4317
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4318

4319 4320 4321 4322
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4323

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4341 4342 4343 4344 4345 4346 4347 4348
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4349 4350 4351 4352
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4353 4354 4355
	rcu_read_unlock();
}

4356
static void rb_free_rcu(struct rcu_head *rcu_head)
4357
{
4358
	struct ring_buffer *rb;
4359

4360 4361
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4362 4363
}

4364
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4365
{
4366
	struct ring_buffer *rb;
4367

4368
	rcu_read_lock();
4369 4370 4371 4372
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4373 4374 4375
	}
	rcu_read_unlock();

4376
	return rb;
4377 4378
}

4379
void ring_buffer_put(struct ring_buffer *rb)
4380
{
4381
	if (!atomic_dec_and_test(&rb->refcount))
4382
		return;
4383

4384
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4385

4386
	call_rcu(&rb->rcu_head, rb_free_rcu);
4387 4388 4389 4390
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4391
	struct perf_event *event = vma->vm_file->private_data;
4392

4393
	atomic_inc(&event->mmap_count);
4394
	atomic_inc(&event->rb->mmap_count);
4395

4396 4397 4398
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4399 4400
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4401 4402
}

4403 4404 4405 4406 4407 4408 4409 4410
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4411 4412
static void perf_mmap_close(struct vm_area_struct *vma)
{
4413
	struct perf_event *event = vma->vm_file->private_data;
4414

4415
	struct ring_buffer *rb = ring_buffer_get(event);
4416 4417 4418
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4419

4420 4421 4422
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4437 4438 4439
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4440
		goto out_put;
4441

4442
	ring_buffer_attach(event, NULL);
4443 4444 4445
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4446 4447
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4448

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4465

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4477 4478 4479
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4480
		mutex_unlock(&event->mmap_mutex);
4481
		put_event(event);
4482

4483 4484 4485 4486 4487
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4488
	}
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4504
out_put:
4505
	ring_buffer_put(rb); /* could be last */
4506 4507
}

4508
static const struct vm_operations_struct perf_mmap_vmops = {
4509
	.open		= perf_mmap_open,
4510
	.close		= perf_mmap_close, /* non mergable */
4511 4512
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4513 4514 4515 4516
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4517
	struct perf_event *event = file->private_data;
4518
	unsigned long user_locked, user_lock_limit;
4519
	struct user_struct *user = current_user();
4520
	unsigned long locked, lock_limit;
4521
	struct ring_buffer *rb = NULL;
4522 4523
	unsigned long vma_size;
	unsigned long nr_pages;
4524
	long user_extra = 0, extra = 0;
4525
	int ret = 0, flags = 0;
4526

4527 4528 4529
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4530
	 * same rb.
4531 4532 4533 4534
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4535
	if (!(vma->vm_flags & VM_SHARED))
4536
		return -EINVAL;
4537 4538

	vma_size = vma->vm_end - vma->vm_start;
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4599

4600
	/*
4601
	 * If we have rb pages ensure they're a power-of-two number, so we
4602 4603
	 * can do bitmasks instead of modulo.
	 */
4604
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4605 4606
		return -EINVAL;

4607
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4608 4609
		return -EINVAL;

4610
	WARN_ON_ONCE(event->ctx->parent_ctx);
4611
again:
4612
	mutex_lock(&event->mmap_mutex);
4613
	if (event->rb) {
4614
		if (event->rb->nr_pages != nr_pages) {
4615
			ret = -EINVAL;
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4629 4630 4631
		goto unlock;
	}

4632
	user_extra = nr_pages + 1;
4633 4634

accounting:
4635
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4636 4637 4638 4639 4640 4641

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4642
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4643

4644 4645
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4646

4647
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4648
	lock_limit >>= PAGE_SHIFT;
4649
	locked = vma->vm_mm->pinned_vm + extra;
4650

4651 4652
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4653 4654 4655
		ret = -EPERM;
		goto unlock;
	}
4656

4657
	WARN_ON(!rb && event->rb);
4658

4659
	if (vma->vm_flags & VM_WRITE)
4660
		flags |= RING_BUFFER_WRITABLE;
4661

4662
	if (!rb) {
4663 4664 4665
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4666

4667 4668 4669 4670
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4671

4672 4673 4674
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4675

4676
		ring_buffer_attach(event, rb);
4677

4678 4679 4680
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4681 4682
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4683 4684 4685
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4686

4687
unlock:
4688 4689 4690 4691
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4692
		atomic_inc(&event->mmap_count);
4693 4694 4695 4696
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4697
	mutex_unlock(&event->mmap_mutex);
4698

4699 4700 4701 4702
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4703
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4704
	vma->vm_ops = &perf_mmap_vmops;
4705

4706 4707 4708
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4709
	return ret;
4710 4711
}

P
Peter Zijlstra 已提交
4712 4713
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4714
	struct inode *inode = file_inode(filp);
4715
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4716 4717 4718
	int retval;

	mutex_lock(&inode->i_mutex);
4719
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4720 4721 4722 4723 4724 4725 4726 4727
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4728
static const struct file_operations perf_fops = {
4729
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4730 4731 4732
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4733
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4734
	.compat_ioctl		= perf_compat_ioctl,
4735
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4736
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4737 4738
};

4739
/*
4740
 * Perf event wakeup
4741 4742 4743 4744 4745
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4746
void perf_event_wakeup(struct perf_event *event)
4747
{
4748
	ring_buffer_wakeup(event);
4749

4750 4751 4752
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4753
	}
4754 4755
}

4756
static void perf_pending_event(struct irq_work *entry)
4757
{
4758 4759
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4760 4761 4762 4763 4764 4765 4766
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4767

4768 4769 4770
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4771 4772
	}

4773 4774 4775
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4776
	}
4777 4778 4779

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4780 4781
}

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4818
static void perf_sample_regs_user(struct perf_regs *regs_user,
4819 4820
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4821
{
4822 4823
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4824
		regs_user->regs = regs;
4825 4826
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4827 4828 4829
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4830 4831 4832
	}
}

4833 4834 4835 4836 4837 4838 4839 4840
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4936 4937 4938
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
4952
		data->time = perf_event_clock(event);
4953

4954
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4966 4967 4968
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4993 4994 4995

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4996 4997
}

4998 4999 5000
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5001 5002 5003 5004 5005
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5006
static void perf_output_read_one(struct perf_output_handle *handle,
5007 5008
				 struct perf_event *event,
				 u64 enabled, u64 running)
5009
{
5010
	u64 read_format = event->attr.read_format;
5011 5012 5013
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5014
	values[n++] = perf_event_count(event);
5015
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5016
		values[n++] = enabled +
5017
			atomic64_read(&event->child_total_time_enabled);
5018 5019
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5020
		values[n++] = running +
5021
			atomic64_read(&event->child_total_time_running);
5022 5023
	}
	if (read_format & PERF_FORMAT_ID)
5024
		values[n++] = primary_event_id(event);
5025

5026
	__output_copy(handle, values, n * sizeof(u64));
5027 5028 5029
}

/*
5030
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5031 5032
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5033 5034
			    struct perf_event *event,
			    u64 enabled, u64 running)
5035
{
5036 5037
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5038 5039 5040 5041 5042 5043
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5044
		values[n++] = enabled;
5045 5046

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5047
		values[n++] = running;
5048

5049
	if (leader != event)
5050 5051
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5052
	values[n++] = perf_event_count(leader);
5053
	if (read_format & PERF_FORMAT_ID)
5054
		values[n++] = primary_event_id(leader);
5055

5056
	__output_copy(handle, values, n * sizeof(u64));
5057

5058
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5059 5060
		n = 0;

5061 5062
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5063 5064
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5065
		values[n++] = perf_event_count(sub);
5066
		if (read_format & PERF_FORMAT_ID)
5067
			values[n++] = primary_event_id(sub);
5068

5069
		__output_copy(handle, values, n * sizeof(u64));
5070 5071 5072
	}
}

5073 5074 5075
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5076
static void perf_output_read(struct perf_output_handle *handle,
5077
			     struct perf_event *event)
5078
{
5079
	u64 enabled = 0, running = 0, now;
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5091
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5092
		calc_timer_values(event, &now, &enabled, &running);
5093

5094
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5095
		perf_output_read_group(handle, event, enabled, running);
5096
	else
5097
		perf_output_read_one(handle, event, enabled, running);
5098 5099
}

5100 5101 5102
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5103
			struct perf_event *event)
5104 5105 5106 5107 5108
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5109 5110 5111
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5137
		perf_output_read(handle, event);
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5148
			__output_copy(handle, data->callchain, size);
5149 5150 5151 5152 5153 5154 5155 5156 5157
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5158 5159
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5171

5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5206

5207
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5208 5209 5210
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5211
	}
A
Andi Kleen 已提交
5212 5213 5214

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5215 5216 5217

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5218

A
Andi Kleen 已提交
5219 5220 5221
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5252 5253 5254 5255
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5256
			 struct perf_event *event,
5257
			 struct pt_regs *regs)
5258
{
5259
	u64 sample_type = event->attr.sample_type;
5260

5261
	header->type = PERF_RECORD_SAMPLE;
5262
	header->size = sizeof(*header) + event->header_size;
5263 5264 5265

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5266

5267
	__perf_event_header__init_id(header, data, event);
5268

5269
	if (sample_type & PERF_SAMPLE_IP)
5270 5271
		data->ip = perf_instruction_pointer(regs);

5272
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5273
		int size = 1;
5274

5275
		data->callchain = perf_callchain(event, regs);
5276 5277 5278 5279 5280

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5281 5282
	}

5283
	if (sample_type & PERF_SAMPLE_RAW) {
5284 5285 5286 5287 5288 5289 5290 5291
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5292
		header->size += size;
5293
	}
5294 5295 5296 5297 5298 5299 5300 5301 5302

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5303

5304
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5305 5306
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5307

5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5331
						     data->regs_user.regs);
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5359
}
5360

5361
static void perf_event_output(struct perf_event *event,
5362 5363 5364 5365 5366
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5367

5368 5369 5370
	/* protect the callchain buffers */
	rcu_read_lock();

5371
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5372

5373
	if (perf_output_begin(&handle, event, header.size))
5374
		goto exit;
5375

5376
	perf_output_sample(&handle, &header, data, event);
5377

5378
	perf_output_end(&handle);
5379 5380 5381

exit:
	rcu_read_unlock();
5382 5383
}

5384
/*
5385
 * read event_id
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5396
perf_event_read_event(struct perf_event *event,
5397 5398 5399
			struct task_struct *task)
{
	struct perf_output_handle handle;
5400
	struct perf_sample_data sample;
5401
	struct perf_read_event read_event = {
5402
		.header = {
5403
			.type = PERF_RECORD_READ,
5404
			.misc = 0,
5405
			.size = sizeof(read_event) + event->read_size,
5406
		},
5407 5408
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5409
	};
5410
	int ret;
5411

5412
	perf_event_header__init_id(&read_event.header, &sample, event);
5413
	ret = perf_output_begin(&handle, event, read_event.header.size);
5414 5415 5416
	if (ret)
		return;

5417
	perf_output_put(&handle, read_event);
5418
	perf_output_read(&handle, event);
5419
	perf_event__output_id_sample(event, &handle, &sample);
5420

5421 5422 5423
	perf_output_end(&handle);
}

5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5438
		output(event, data);
5439 5440 5441 5442
	}
}

static void
5443
perf_event_aux(perf_event_aux_output_cb output, void *data,
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5456
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5457 5458 5459 5460 5461 5462 5463
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5464
			perf_event_aux_ctx(ctx, output, data);
5465 5466 5467 5468 5469 5470
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5471
		perf_event_aux_ctx(task_ctx, output, data);
5472 5473 5474 5475 5476
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5477
/*
P
Peter Zijlstra 已提交
5478 5479
 * task tracking -- fork/exit
 *
5480
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5481 5482
 */

P
Peter Zijlstra 已提交
5483
struct perf_task_event {
5484
	struct task_struct		*task;
5485
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5486 5487 5488 5489 5490 5491

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5492 5493
		u32				tid;
		u32				ptid;
5494
		u64				time;
5495
	} event_id;
P
Peter Zijlstra 已提交
5496 5497
};

5498 5499
static int perf_event_task_match(struct perf_event *event)
{
5500 5501 5502
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5503 5504
}

5505
static void perf_event_task_output(struct perf_event *event,
5506
				   void *data)
P
Peter Zijlstra 已提交
5507
{
5508
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5509
	struct perf_output_handle handle;
5510
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5511
	struct task_struct *task = task_event->task;
5512
	int ret, size = task_event->event_id.header.size;
5513

5514 5515 5516
	if (!perf_event_task_match(event))
		return;

5517
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5518

5519
	ret = perf_output_begin(&handle, event,
5520
				task_event->event_id.header.size);
5521
	if (ret)
5522
		goto out;
P
Peter Zijlstra 已提交
5523

5524 5525
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5526

5527 5528
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5529

5530 5531
	task_event->event_id.time = perf_event_clock(event);

5532
	perf_output_put(&handle, task_event->event_id);
5533

5534 5535
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5536
	perf_output_end(&handle);
5537 5538
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5539 5540
}

5541 5542
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5543
			      int new)
P
Peter Zijlstra 已提交
5544
{
P
Peter Zijlstra 已提交
5545
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5546

5547 5548 5549
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5550 5551
		return;

P
Peter Zijlstra 已提交
5552
	task_event = (struct perf_task_event){
5553 5554
		.task	  = task,
		.task_ctx = task_ctx,
5555
		.event_id    = {
P
Peter Zijlstra 已提交
5556
			.header = {
5557
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5558
				.misc = 0,
5559
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5560
			},
5561 5562
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5563 5564
			/* .tid  */
			/* .ptid */
5565
			/* .time */
P
Peter Zijlstra 已提交
5566 5567 5568
		},
	};

5569
	perf_event_aux(perf_event_task_output,
5570 5571
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5572 5573
}

5574
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5575
{
5576
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5577 5578
}

5579 5580 5581 5582 5583
/*
 * comm tracking
 */

struct perf_comm_event {
5584 5585
	struct task_struct	*task;
	char			*comm;
5586 5587 5588 5589 5590 5591 5592
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5593
	} event_id;
5594 5595
};

5596 5597 5598 5599 5600
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5601
static void perf_event_comm_output(struct perf_event *event,
5602
				   void *data)
5603
{
5604
	struct perf_comm_event *comm_event = data;
5605
	struct perf_output_handle handle;
5606
	struct perf_sample_data sample;
5607
	int size = comm_event->event_id.header.size;
5608 5609
	int ret;

5610 5611 5612
	if (!perf_event_comm_match(event))
		return;

5613 5614
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5615
				comm_event->event_id.header.size);
5616 5617

	if (ret)
5618
		goto out;
5619

5620 5621
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5622

5623
	perf_output_put(&handle, comm_event->event_id);
5624
	__output_copy(&handle, comm_event->comm,
5625
				   comm_event->comm_size);
5626 5627 5628

	perf_event__output_id_sample(event, &handle, &sample);

5629
	perf_output_end(&handle);
5630 5631
out:
	comm_event->event_id.header.size = size;
5632 5633
}

5634
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5635
{
5636
	char comm[TASK_COMM_LEN];
5637 5638
	unsigned int size;

5639
	memset(comm, 0, sizeof(comm));
5640
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5641
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5642 5643 5644 5645

	comm_event->comm = comm;
	comm_event->comm_size = size;

5646
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5647

5648
	perf_event_aux(perf_event_comm_output,
5649 5650
		       comm_event,
		       NULL);
5651 5652
}

5653
void perf_event_comm(struct task_struct *task, bool exec)
5654
{
5655 5656
	struct perf_comm_event comm_event;

5657
	if (!atomic_read(&nr_comm_events))
5658
		return;
5659

5660
	comm_event = (struct perf_comm_event){
5661
		.task	= task,
5662 5663
		/* .comm      */
		/* .comm_size */
5664
		.event_id  = {
5665
			.header = {
5666
				.type = PERF_RECORD_COMM,
5667
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5668 5669 5670 5671
				/* .size */
			},
			/* .pid */
			/* .tid */
5672 5673 5674
		},
	};

5675
	perf_event_comm_event(&comm_event);
5676 5677
}

5678 5679 5680 5681 5682
/*
 * mmap tracking
 */

struct perf_mmap_event {
5683 5684 5685 5686
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5687 5688 5689
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5690
	u32			prot, flags;
5691 5692 5693 5694 5695 5696 5697 5698 5699

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5700
	} event_id;
5701 5702
};

5703 5704 5705 5706 5707 5708 5709 5710
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5711
	       (executable && (event->attr.mmap || event->attr.mmap2));
5712 5713
}

5714
static void perf_event_mmap_output(struct perf_event *event,
5715
				   void *data)
5716
{
5717
	struct perf_mmap_event *mmap_event = data;
5718
	struct perf_output_handle handle;
5719
	struct perf_sample_data sample;
5720
	int size = mmap_event->event_id.header.size;
5721
	int ret;
5722

5723 5724 5725
	if (!perf_event_mmap_match(event, data))
		return;

5726 5727 5728 5729 5730
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5731
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5732 5733
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5734 5735
	}

5736 5737
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5738
				mmap_event->event_id.header.size);
5739
	if (ret)
5740
		goto out;
5741

5742 5743
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5744

5745
	perf_output_put(&handle, mmap_event->event_id);
5746 5747 5748 5749 5750 5751

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5752 5753
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5754 5755
	}

5756
	__output_copy(&handle, mmap_event->file_name,
5757
				   mmap_event->file_size);
5758 5759 5760

	perf_event__output_id_sample(event, &handle, &sample);

5761
	perf_output_end(&handle);
5762 5763
out:
	mmap_event->event_id.header.size = size;
5764 5765
}

5766
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5767
{
5768 5769
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5770 5771
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5772
	u32 prot = 0, flags = 0;
5773 5774 5775
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5776
	char *name;
5777

5778
	if (file) {
5779 5780
		struct inode *inode;
		dev_t dev;
5781

5782
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5783
		if (!buf) {
5784 5785
			name = "//enomem";
			goto cpy_name;
5786
		}
5787
		/*
5788
		 * d_path() works from the end of the rb backwards, so we
5789 5790 5791
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5792
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5793
		if (IS_ERR(name)) {
5794 5795
			name = "//toolong";
			goto cpy_name;
5796
		}
5797 5798 5799 5800 5801 5802
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5825
		goto got_name;
5826
	} else {
5827 5828 5829 5830 5831 5832
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5833
		name = (char *)arch_vma_name(vma);
5834 5835
		if (name)
			goto cpy_name;
5836

5837
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5838
				vma->vm_end >= vma->vm_mm->brk) {
5839 5840
			name = "[heap]";
			goto cpy_name;
5841 5842
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5843
				vma->vm_end >= vma->vm_mm->start_stack) {
5844 5845
			name = "[stack]";
			goto cpy_name;
5846 5847
		}

5848 5849
		name = "//anon";
		goto cpy_name;
5850 5851
	}

5852 5853 5854
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5855
got_name:
5856 5857 5858 5859 5860 5861 5862 5863
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5864 5865 5866

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5867 5868 5869 5870
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5871 5872
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5873

5874 5875 5876
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5877
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5878

5879
	perf_event_aux(perf_event_mmap_output,
5880 5881
		       mmap_event,
		       NULL);
5882

5883 5884 5885
	kfree(buf);
}

5886
void perf_event_mmap(struct vm_area_struct *vma)
5887
{
5888 5889
	struct perf_mmap_event mmap_event;

5890
	if (!atomic_read(&nr_mmap_events))
5891 5892 5893
		return;

	mmap_event = (struct perf_mmap_event){
5894
		.vma	= vma,
5895 5896
		/* .file_name */
		/* .file_size */
5897
		.event_id  = {
5898
			.header = {
5899
				.type = PERF_RECORD_MMAP,
5900
				.misc = PERF_RECORD_MISC_USER,
5901 5902 5903 5904
				/* .size */
			},
			/* .pid */
			/* .tid */
5905 5906
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5907
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5908
		},
5909 5910 5911 5912
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5913 5914
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5915 5916
	};

5917
	perf_event_mmap_event(&mmap_event);
5918 5919
}

A
Alexander Shishkin 已提交
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

5954 5955 5956 5957
/*
 * IRQ throttle logging
 */

5958
static void perf_log_throttle(struct perf_event *event, int enable)
5959 5960
{
	struct perf_output_handle handle;
5961
	struct perf_sample_data sample;
5962 5963 5964 5965 5966
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5967
		u64				id;
5968
		u64				stream_id;
5969 5970
	} throttle_event = {
		.header = {
5971
			.type = PERF_RECORD_THROTTLE,
5972 5973 5974
			.misc = 0,
			.size = sizeof(throttle_event),
		},
5975
		.time		= perf_event_clock(event),
5976 5977
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5978 5979
	};

5980
	if (enable)
5981
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5982

5983 5984 5985
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5986
				throttle_event.header.size);
5987 5988 5989 5990
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5991
	perf_event__output_id_sample(event, &handle, &sample);
5992 5993 5994
	perf_output_end(&handle);
}

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	event->hw.itrace_started = 1;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6033
/*
6034
 * Generic event overflow handling, sampling.
6035 6036
 */

6037
static int __perf_event_overflow(struct perf_event *event,
6038 6039
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6040
{
6041 6042
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6043
	u64 seq;
6044 6045
	int ret = 0;

6046 6047 6048 6049 6050 6051 6052
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6053 6054 6055 6056 6057 6058 6059 6060 6061
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6062 6063
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6064
			tick_nohz_full_kick();
6065 6066
			ret = 1;
		}
6067
	}
6068

6069
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6070
		u64 now = perf_clock();
6071
		s64 delta = now - hwc->freq_time_stamp;
6072

6073
		hwc->freq_time_stamp = now;
6074

6075
		if (delta > 0 && delta < 2*TICK_NSEC)
6076
			perf_adjust_period(event, delta, hwc->last_period, true);
6077 6078
	}

6079 6080
	/*
	 * XXX event_limit might not quite work as expected on inherited
6081
	 * events
6082 6083
	 */

6084 6085
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6086
		ret = 1;
6087
		event->pending_kill = POLL_HUP;
6088 6089
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6090 6091
	}

6092
	if (event->overflow_handler)
6093
		event->overflow_handler(event, data, regs);
6094
	else
6095
		perf_event_output(event, data, regs);
6096

P
Peter Zijlstra 已提交
6097
	if (event->fasync && event->pending_kill) {
6098 6099
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6100 6101
	}

6102
	return ret;
6103 6104
}

6105
int perf_event_overflow(struct perf_event *event,
6106 6107
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6108
{
6109
	return __perf_event_overflow(event, 1, data, regs);
6110 6111
}

6112
/*
6113
 * Generic software event infrastructure
6114 6115
 */

6116 6117 6118 6119 6120 6121 6122
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6123 6124 6125

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6126 6127 6128 6129
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6130
/*
6131 6132
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6133 6134 6135 6136
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6137
u64 perf_swevent_set_period(struct perf_event *event)
6138
{
6139
	struct hw_perf_event *hwc = &event->hw;
6140 6141 6142 6143 6144
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6145 6146

again:
6147
	old = val = local64_read(&hwc->period_left);
6148 6149
	if (val < 0)
		return 0;
6150

6151 6152 6153
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6154
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6155
		goto again;
6156

6157
	return nr;
6158 6159
}

6160
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6161
				    struct perf_sample_data *data,
6162
				    struct pt_regs *regs)
6163
{
6164
	struct hw_perf_event *hwc = &event->hw;
6165
	int throttle = 0;
6166

6167 6168
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6169

6170 6171
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6172

6173
	for (; overflow; overflow--) {
6174
		if (__perf_event_overflow(event, throttle,
6175
					    data, regs)) {
6176 6177 6178 6179 6180 6181
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6182
		throttle = 1;
6183
	}
6184 6185
}

P
Peter Zijlstra 已提交
6186
static void perf_swevent_event(struct perf_event *event, u64 nr,
6187
			       struct perf_sample_data *data,
6188
			       struct pt_regs *regs)
6189
{
6190
	struct hw_perf_event *hwc = &event->hw;
6191

6192
	local64_add(nr, &event->count);
6193

6194 6195 6196
	if (!regs)
		return;

6197
	if (!is_sampling_event(event))
6198
		return;
6199

6200 6201 6202 6203 6204 6205
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6206
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6207
		return perf_swevent_overflow(event, 1, data, regs);
6208

6209
	if (local64_add_negative(nr, &hwc->period_left))
6210
		return;
6211

6212
	perf_swevent_overflow(event, 0, data, regs);
6213 6214
}

6215 6216 6217
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6218
	if (event->hw.state & PERF_HES_STOPPED)
6219
		return 1;
P
Peter Zijlstra 已提交
6220

6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6232
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6233
				enum perf_type_id type,
L
Li Zefan 已提交
6234 6235 6236
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6237
{
6238
	if (event->attr.type != type)
6239
		return 0;
6240

6241
	if (event->attr.config != event_id)
6242 6243
		return 0;

6244 6245
	if (perf_exclude_event(event, regs))
		return 0;
6246 6247 6248 6249

	return 1;
}

6250 6251 6252 6253 6254 6255 6256
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6257 6258
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6259
{
6260 6261 6262 6263
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6264

6265 6266
/* For the read side: events when they trigger */
static inline struct hlist_head *
6267
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6268 6269
{
	struct swevent_hlist *hlist;
6270

6271
	hlist = rcu_dereference(swhash->swevent_hlist);
6272 6273 6274
	if (!hlist)
		return NULL;

6275 6276 6277 6278 6279
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6280
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6291
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6292 6293 6294 6295 6296
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6297 6298 6299
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6300
				    u64 nr,
6301 6302
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6303
{
6304
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6305
	struct perf_event *event;
6306
	struct hlist_head *head;
6307

6308
	rcu_read_lock();
6309
	head = find_swevent_head_rcu(swhash, type, event_id);
6310 6311 6312
	if (!head)
		goto end;

6313
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6314
		if (perf_swevent_match(event, type, event_id, data, regs))
6315
			perf_swevent_event(event, nr, data, regs);
6316
	}
6317 6318
end:
	rcu_read_unlock();
6319 6320
}

6321 6322
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6323
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6324
{
6325
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6326

6327
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6328
}
I
Ingo Molnar 已提交
6329
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6330

6331
inline void perf_swevent_put_recursion_context(int rctx)
6332
{
6333
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6334

6335
	put_recursion_context(swhash->recursion, rctx);
6336
}
6337

6338
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6339
{
6340
	struct perf_sample_data data;
6341

6342
	if (WARN_ON_ONCE(!regs))
6343
		return;
6344

6345
	perf_sample_data_init(&data, addr, 0);
6346
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6359 6360

	perf_swevent_put_recursion_context(rctx);
6361
fail:
6362
	preempt_enable_notrace();
6363 6364
}

6365
static void perf_swevent_read(struct perf_event *event)
6366 6367 6368
{
}

P
Peter Zijlstra 已提交
6369
static int perf_swevent_add(struct perf_event *event, int flags)
6370
{
6371
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6372
	struct hw_perf_event *hwc = &event->hw;
6373 6374
	struct hlist_head *head;

6375
	if (is_sampling_event(event)) {
6376
		hwc->last_period = hwc->sample_period;
6377
		perf_swevent_set_period(event);
6378
	}
6379

P
Peter Zijlstra 已提交
6380 6381
	hwc->state = !(flags & PERF_EF_START);

6382
	head = find_swevent_head(swhash, event);
6383 6384 6385 6386 6387 6388
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6389
		return -EINVAL;
6390
	}
6391 6392

	hlist_add_head_rcu(&event->hlist_entry, head);
6393
	perf_event_update_userpage(event);
6394

6395 6396 6397
	return 0;
}

P
Peter Zijlstra 已提交
6398
static void perf_swevent_del(struct perf_event *event, int flags)
6399
{
6400
	hlist_del_rcu(&event->hlist_entry);
6401 6402
}

P
Peter Zijlstra 已提交
6403
static void perf_swevent_start(struct perf_event *event, int flags)
6404
{
P
Peter Zijlstra 已提交
6405
	event->hw.state = 0;
6406
}
I
Ingo Molnar 已提交
6407

P
Peter Zijlstra 已提交
6408
static void perf_swevent_stop(struct perf_event *event, int flags)
6409
{
P
Peter Zijlstra 已提交
6410
	event->hw.state = PERF_HES_STOPPED;
6411 6412
}

6413 6414
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6415
swevent_hlist_deref(struct swevent_htable *swhash)
6416
{
6417 6418
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6419 6420
}

6421
static void swevent_hlist_release(struct swevent_htable *swhash)
6422
{
6423
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6424

6425
	if (!hlist)
6426 6427
		return;

6428
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6429
	kfree_rcu(hlist, rcu_head);
6430 6431 6432 6433
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6434
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6435

6436
	mutex_lock(&swhash->hlist_mutex);
6437

6438 6439
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6440

6441
	mutex_unlock(&swhash->hlist_mutex);
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6454
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6455 6456
	int err = 0;

6457
	mutex_lock(&swhash->hlist_mutex);
6458

6459
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6460 6461 6462 6463 6464 6465 6466
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6467
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6468
	}
6469
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6470
exit:
6471
	mutex_unlock(&swhash->hlist_mutex);
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6492
fail:
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6503
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6504

6505 6506 6507
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6508

6509 6510
	WARN_ON(event->parent);

6511
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6512 6513 6514 6515 6516
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6517
	u64 event_id = event->attr.config;
6518 6519 6520 6521

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6522 6523 6524 6525 6526 6527
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6528 6529 6530 6531 6532 6533 6534 6535 6536
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6537
	if (event_id >= PERF_COUNT_SW_MAX)
6538 6539 6540 6541 6542 6543 6544 6545 6546
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6547
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6548 6549 6550 6551 6552 6553 6554
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6555
	.task_ctx_nr	= perf_sw_context,
6556

6557 6558
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6559
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6560 6561 6562 6563
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6564 6565 6566
	.read		= perf_swevent_read,
};

6567 6568
#ifdef CONFIG_EVENT_TRACING

6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6583 6584
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6585 6586 6587 6588
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6589 6590 6591 6592 6593 6594 6595 6596 6597
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6598 6599
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6600 6601
{
	struct perf_sample_data data;
6602 6603
	struct perf_event *event;

6604 6605 6606 6607 6608
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6609
	perf_sample_data_init(&data, addr, 0);
6610 6611
	data.raw = &raw;

6612
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6613
		if (perf_tp_event_match(event, &data, regs))
6614
			perf_swevent_event(event, count, &data, regs);
6615
	}
6616

6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6642
	perf_swevent_put_recursion_context(rctx);
6643 6644 6645
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6646
static void tp_perf_event_destroy(struct perf_event *event)
6647
{
6648
	perf_trace_destroy(event);
6649 6650
}

6651
static int perf_tp_event_init(struct perf_event *event)
6652
{
6653 6654
	int err;

6655 6656 6657
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6658 6659 6660 6661 6662 6663
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6664 6665
	err = perf_trace_init(event);
	if (err)
6666
		return err;
6667

6668
	event->destroy = tp_perf_event_destroy;
6669

6670 6671 6672 6673
	return 0;
}

static struct pmu perf_tracepoint = {
6674 6675
	.task_ctx_nr	= perf_sw_context,

6676
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6677 6678 6679 6680
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6681 6682 6683 6684 6685
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6686
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6687
}
L
Li Zefan 已提交
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
		/* bpf programs can only be attached to kprobes */
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6730
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

6755
#else
L
Li Zefan 已提交
6756

6757
static inline void perf_tp_register(void)
6758 6759
{
}
L
Li Zefan 已提交
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6770 6771 6772 6773 6774 6775 6776 6777
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
6778
#endif /* CONFIG_EVENT_TRACING */
6779

6780
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6781
void perf_bp_event(struct perf_event *bp, void *data)
6782
{
6783 6784 6785
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6786
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6787

P
Peter Zijlstra 已提交
6788
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6789
		perf_swevent_event(bp, 1, &sample, regs);
6790 6791 6792
}
#endif

6793 6794 6795
/*
 * hrtimer based swevent callback
 */
6796

6797
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6798
{
6799 6800 6801 6802 6803
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6804

6805
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6806 6807 6808 6809

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6810
	event->pmu->read(event);
6811

6812
	perf_sample_data_init(&data, 0, event->hw.last_period);
6813 6814 6815
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6816
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6817
			if (__perf_event_overflow(event, 1, &data, regs))
6818 6819
				ret = HRTIMER_NORESTART;
	}
6820

6821 6822
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6823

6824
	return ret;
6825 6826
}

6827
static void perf_swevent_start_hrtimer(struct perf_event *event)
6828
{
6829
	struct hw_perf_event *hwc = &event->hw;
6830 6831 6832 6833
	s64 period;

	if (!is_sampling_event(event))
		return;
6834

6835 6836 6837 6838
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6839

6840 6841 6842 6843
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
6844 6845
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
6846
}
6847 6848

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6849
{
6850 6851
	struct hw_perf_event *hwc = &event->hw;

6852
	if (is_sampling_event(event)) {
6853
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6854
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6855 6856 6857

		hrtimer_cancel(&hwc->hrtimer);
	}
6858 6859
}

P
Peter Zijlstra 已提交
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6880
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6881 6882 6883 6884
		event->attr.freq = 0;
	}
}

6885 6886 6887 6888 6889
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6890
{
6891 6892 6893
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6894
	now = local_clock();
6895 6896
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6897 6898
}

P
Peter Zijlstra 已提交
6899
static void cpu_clock_event_start(struct perf_event *event, int flags)
6900
{
P
Peter Zijlstra 已提交
6901
	local64_set(&event->hw.prev_count, local_clock());
6902 6903 6904
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6905
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6906
{
6907 6908 6909
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6910

P
Peter Zijlstra 已提交
6911 6912 6913 6914
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
6915
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6925 6926 6927 6928
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6929

6930 6931 6932 6933 6934 6935 6936 6937
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6938 6939 6940 6941 6942 6943
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6944 6945
	perf_swevent_init_hrtimer(event);

6946
	return 0;
6947 6948
}

6949
static struct pmu perf_cpu_clock = {
6950 6951
	.task_ctx_nr	= perf_sw_context,

6952 6953
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6954
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6955 6956 6957 6958
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6959 6960 6961 6962 6963 6964 6965 6966
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6967
{
6968 6969
	u64 prev;
	s64 delta;
6970

6971 6972 6973 6974
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6975

P
Peter Zijlstra 已提交
6976
static void task_clock_event_start(struct perf_event *event, int flags)
6977
{
P
Peter Zijlstra 已提交
6978
	local64_set(&event->hw.prev_count, event->ctx->time);
6979 6980 6981
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6982
static void task_clock_event_stop(struct perf_event *event, int flags)
6983 6984 6985
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6986 6987 6988 6989 6990 6991
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6992
	perf_event_update_userpage(event);
6993

P
Peter Zijlstra 已提交
6994 6995 6996 6997 6998 6999
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7000 7001 7002 7003
}

static void task_clock_event_read(struct perf_event *event)
{
7004 7005 7006
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7007 7008 7009 7010 7011

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7012
{
7013 7014 7015 7016 7017 7018
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7019 7020 7021 7022 7023 7024
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7025 7026
	perf_swevent_init_hrtimer(event);

7027
	return 0;
L
Li Zefan 已提交
7028 7029
}

7030
static struct pmu perf_task_clock = {
7031 7032
	.task_ctx_nr	= perf_sw_context,

7033 7034
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7035
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7036 7037 7038 7039
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7040 7041
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7042

P
Peter Zijlstra 已提交
7043
static void perf_pmu_nop_void(struct pmu *pmu)
7044 7045
{
}
L
Li Zefan 已提交
7046

P
Peter Zijlstra 已提交
7047
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7048
{
P
Peter Zijlstra 已提交
7049
	return 0;
L
Li Zefan 已提交
7050 7051
}

P
Peter Zijlstra 已提交
7052
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
7053
{
P
Peter Zijlstra 已提交
7054
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7055 7056
}

P
Peter Zijlstra 已提交
7057 7058 7059 7060 7061
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
7062

P
Peter Zijlstra 已提交
7063
static void perf_pmu_cancel_txn(struct pmu *pmu)
7064
{
P
Peter Zijlstra 已提交
7065
	perf_pmu_enable(pmu);
7066 7067
}

7068 7069
static int perf_event_idx_default(struct perf_event *event)
{
7070
	return 0;
7071 7072
}

P
Peter Zijlstra 已提交
7073 7074 7075 7076
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7077
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7078
{
P
Peter Zijlstra 已提交
7079
	struct pmu *pmu;
7080

P
Peter Zijlstra 已提交
7081 7082
	if (ctxn < 0)
		return NULL;
7083

P
Peter Zijlstra 已提交
7084 7085 7086 7087
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7088

P
Peter Zijlstra 已提交
7089
	return NULL;
7090 7091
}

7092
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7093
{
7094 7095 7096 7097 7098 7099 7100
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7101 7102
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7103 7104 7105 7106 7107 7108
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7109

P
Peter Zijlstra 已提交
7110
	mutex_lock(&pmus_lock);
7111
	/*
P
Peter Zijlstra 已提交
7112
	 * Like a real lame refcount.
7113
	 */
7114 7115 7116
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7117
			goto out;
7118
		}
P
Peter Zijlstra 已提交
7119
	}
7120

7121
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7122 7123
out:
	mutex_unlock(&pmus_lock);
7124
}
P
Peter Zijlstra 已提交
7125
static struct idr pmu_idr;
7126

P
Peter Zijlstra 已提交
7127 7128 7129 7130 7131 7132 7133
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7134
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7135

7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
7179
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7180

7181 7182 7183 7184
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7185
};
7186
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7187 7188 7189 7190

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7191
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7207
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7228
static struct lock_class_key cpuctx_mutex;
7229
static struct lock_class_key cpuctx_lock;
7230

7231
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7232
{
P
Peter Zijlstra 已提交
7233
	int cpu, ret;
7234

7235
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7236 7237 7238 7239
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7240

P
Peter Zijlstra 已提交
7241 7242 7243 7244 7245 7246
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7247 7248 7249
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7250 7251 7252 7253 7254
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7255 7256 7257 7258 7259 7260
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7261
skip_type:
P
Peter Zijlstra 已提交
7262 7263 7264
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7265

W
Wei Yongjun 已提交
7266
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7267 7268
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7269
		goto free_dev;
7270

P
Peter Zijlstra 已提交
7271 7272 7273 7274
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7275
		__perf_event_init_context(&cpuctx->ctx);
7276
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7277
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7278
		cpuctx->ctx.pmu = pmu;
7279 7280 7281

		__perf_cpu_hrtimer_init(cpuctx, cpu);

7282
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7283
	}
7284

P
Peter Zijlstra 已提交
7285
got_cpu_context:
P
Peter Zijlstra 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7300
		}
7301
	}
7302

P
Peter Zijlstra 已提交
7303 7304 7305 7306 7307
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7308 7309 7310
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7311
	list_add_rcu(&pmu->entry, &pmus);
7312
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7313 7314
	ret = 0;
unlock:
7315 7316
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7317
	return ret;
P
Peter Zijlstra 已提交
7318

P
Peter Zijlstra 已提交
7319 7320 7321 7322
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7323 7324 7325 7326
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7327 7328 7329
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7330
}
7331
EXPORT_SYMBOL_GPL(perf_pmu_register);
7332

7333
void perf_pmu_unregister(struct pmu *pmu)
7334
{
7335 7336 7337
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7338

7339
	/*
P
Peter Zijlstra 已提交
7340 7341
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7342
	 */
7343
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7344
	synchronize_rcu();
7345

P
Peter Zijlstra 已提交
7346
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7347 7348
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7349 7350
	device_del(pmu->dev);
	put_device(pmu->dev);
7351
	free_pmu_context(pmu);
7352
}
7353
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7354

7355 7356
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7357
	struct perf_event_context *ctx = NULL;
7358 7359 7360 7361
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7362 7363 7364 7365 7366 7367

	if (event->group_leader != event) {
		ctx = perf_event_ctx_lock(event->group_leader);
		BUG_ON(!ctx);
	}

7368 7369
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7370 7371 7372 7373

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7374 7375 7376 7377 7378 7379
	if (ret)
		module_put(pmu->module);

	return ret;
}

7380 7381 7382 7383
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7384
	int ret;
7385 7386

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7387 7388 7389 7390

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7391
	if (pmu) {
7392
		ret = perf_try_init_event(pmu, event);
7393 7394
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7395
		goto unlock;
7396
	}
P
Peter Zijlstra 已提交
7397

7398
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7399
		ret = perf_try_init_event(pmu, event);
7400
		if (!ret)
P
Peter Zijlstra 已提交
7401
			goto unlock;
7402

7403 7404
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7405
			goto unlock;
7406
		}
7407
	}
P
Peter Zijlstra 已提交
7408 7409
	pmu = ERR_PTR(-ENOENT);
unlock:
7410
	srcu_read_unlock(&pmus_srcu, idx);
7411

7412
	return pmu;
7413 7414
}

7415 7416 7417 7418 7419 7420 7421 7422 7423
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7424 7425
static void account_event(struct perf_event *event)
{
7426 7427 7428
	if (event->parent)
		return;

7429 7430 7431 7432 7433 7434 7435 7436
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7437 7438 7439 7440
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7441
	if (has_branch_stack(event))
7442
		static_key_slow_inc(&perf_sched_events.key);
7443
	if (is_cgroup_event(event))
7444
		static_key_slow_inc(&perf_sched_events.key);
7445 7446

	account_event_cpu(event, event->cpu);
7447 7448
}

T
Thomas Gleixner 已提交
7449
/*
7450
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7451
 */
7452
static struct perf_event *
7453
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7454 7455 7456
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7457
		 perf_overflow_handler_t overflow_handler,
7458
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7459
{
P
Peter Zijlstra 已提交
7460
	struct pmu *pmu;
7461 7462
	struct perf_event *event;
	struct hw_perf_event *hwc;
7463
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7464

7465 7466 7467 7468 7469
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7470
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7471
	if (!event)
7472
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7473

7474
	/*
7475
	 * Single events are their own group leaders, with an
7476 7477 7478
	 * empty sibling list:
	 */
	if (!group_leader)
7479
		group_leader = event;
7480

7481 7482
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7483

7484 7485 7486
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7487
	INIT_LIST_HEAD(&event->rb_entry);
7488
	INIT_LIST_HEAD(&event->active_entry);
7489 7490
	INIT_HLIST_NODE(&event->hlist_entry);

7491

7492
	init_waitqueue_head(&event->waitq);
7493
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7494

7495
	mutex_init(&event->mmap_mutex);
7496

7497
	atomic_long_set(&event->refcount, 1);
7498 7499 7500 7501 7502
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7503

7504
	event->parent		= parent_event;
7505

7506
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7507
	event->id		= atomic64_inc_return(&perf_event_id);
7508

7509
	event->state		= PERF_EVENT_STATE_INACTIVE;
7510

7511 7512 7513
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7514 7515 7516
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7517
		 */
7518
		event->hw.target = task;
7519 7520
	}

7521 7522 7523 7524
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7525
	if (!overflow_handler && parent_event) {
7526
		overflow_handler = parent_event->overflow_handler;
7527 7528
		context = parent_event->overflow_handler_context;
	}
7529

7530
	event->overflow_handler	= overflow_handler;
7531
	event->overflow_handler_context = context;
7532

J
Jiri Olsa 已提交
7533
	perf_event__state_init(event);
7534

7535
	pmu = NULL;
7536

7537
	hwc = &event->hw;
7538
	hwc->sample_period = attr->sample_period;
7539
	if (attr->freq && attr->sample_freq)
7540
		hwc->sample_period = 1;
7541
	hwc->last_period = hwc->sample_period;
7542

7543
	local64_set(&hwc->period_left, hwc->sample_period);
7544

7545
	/*
7546
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7547
	 */
7548
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7549
		goto err_ns;
7550 7551 7552

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7553

7554 7555 7556 7557 7558 7559
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7560
	pmu = perf_init_event(event);
7561
	if (!pmu)
7562 7563
		goto err_ns;
	else if (IS_ERR(pmu)) {
7564
		err = PTR_ERR(pmu);
7565
		goto err_ns;
I
Ingo Molnar 已提交
7566
	}
7567

7568 7569 7570 7571
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7572
	if (!event->parent) {
7573 7574
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7575
			if (err)
7576
				goto err_per_task;
7577
		}
7578
	}
7579

7580
	return event;
7581

7582 7583 7584
err_per_task:
	exclusive_event_destroy(event);

7585 7586 7587
err_pmu:
	if (event->destroy)
		event->destroy(event);
7588
	module_put(pmu->module);
7589
err_ns:
7590 7591
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7592 7593 7594 7595 7596
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7597 7598
}

7599 7600
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7601 7602
{
	u32 size;
7603
	int ret;
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7628 7629 7630
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7631 7632
	 */
	if (size > sizeof(*attr)) {
7633 7634 7635
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7636

7637 7638
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7639

7640
		for (; addr < end; addr++) {
7641 7642 7643 7644 7645 7646
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7647
		size = sizeof(*attr);
7648 7649 7650 7651 7652 7653
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7654
	if (attr->__reserved_1)
7655 7656 7657 7658 7659 7660 7661 7662
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7691 7692
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7693 7694
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7695
	}
7696

7697
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7698
		ret = perf_reg_validate(attr->sample_regs_user);
7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7717

7718 7719
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7720 7721 7722 7723 7724 7725 7726 7727 7728
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7729 7730
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7731
{
7732
	struct ring_buffer *rb = NULL;
7733 7734
	int ret = -EINVAL;

7735
	if (!output_event)
7736 7737
		goto set;

7738 7739
	/* don't allow circular references */
	if (event == output_event)
7740 7741
		goto out;

7742 7743 7744 7745 7746 7747 7748
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7749
	 * If its not a per-cpu rb, it must be the same task.
7750 7751 7752 7753
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7754 7755 7756 7757 7758 7759
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

7760 7761 7762 7763 7764 7765 7766
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

7767
set:
7768
	mutex_lock(&event->mmap_mutex);
7769 7770 7771
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7772

7773
	if (output_event) {
7774 7775 7776
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7777
			goto unlock;
7778 7779
	}

7780
	ring_buffer_attach(event, rb);
7781

7782
	ret = 0;
7783 7784 7785
unlock:
	mutex_unlock(&event->mmap_mutex);

7786 7787 7788 7789
out:
	return ret;
}

P
Peter Zijlstra 已提交
7790 7791 7792 7793 7794 7795 7796 7797 7798
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
7836
/**
7837
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7838
 *
7839
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7840
 * @pid:		target pid
I
Ingo Molnar 已提交
7841
 * @cpu:		target cpu
7842
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7843
 */
7844 7845
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7846
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7847
{
7848 7849
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7850
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7851
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7852
	struct file *event_file = NULL;
7853
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7854
	struct task_struct *task = NULL;
7855
	struct pmu *pmu;
7856
	int event_fd;
7857
	int move_group = 0;
7858
	int err;
7859
	int f_flags = O_RDWR;
7860
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
7861

7862
	/* for future expandability... */
S
Stephane Eranian 已提交
7863
	if (flags & ~PERF_FLAG_ALL)
7864 7865
		return -EINVAL;

7866 7867 7868
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7869

7870 7871 7872 7873 7874
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7875
	if (attr.freq) {
7876
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7877
			return -EINVAL;
7878 7879 7880
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7881 7882
	}

S
Stephane Eranian 已提交
7883 7884 7885 7886 7887 7888 7889 7890 7891
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7892 7893 7894 7895
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7896 7897 7898
	if (event_fd < 0)
		return event_fd;

7899
	if (group_fd != -1) {
7900 7901
		err = perf_fget_light(group_fd, &group);
		if (err)
7902
			goto err_fd;
7903
		group_leader = group.file->private_data;
7904 7905 7906 7907 7908 7909
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7910
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7911 7912 7913 7914 7915 7916 7917
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7918 7919 7920 7921 7922 7923
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7924 7925
	get_online_cpus();

7926 7927 7928
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

7929
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7930
				 NULL, NULL, cgroup_fd);
7931 7932
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7933
		goto err_cpus;
7934 7935
	}

7936 7937 7938 7939 7940 7941 7942
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7943 7944
	account_event(event);

7945 7946 7947 7948 7949
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7950

7951 7952 7953 7954 7955 7956
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7979 7980 7981 7982

	/*
	 * Get the target context (task or percpu):
	 */
7983
	ctx = find_get_context(pmu, task, event);
7984 7985
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7986
		goto err_alloc;
7987 7988
	}

7989 7990 7991 7992 7993
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

7994 7995 7996 7997 7998
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7999
	/*
8000
	 * Look up the group leader (we will attach this event to it):
8001
	 */
8002
	if (group_leader) {
8003
		err = -EINVAL;
8004 8005

		/*
I
Ingo Molnar 已提交
8006 8007 8008 8009
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8010
			goto err_context;
8011 8012 8013 8014 8015

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8016 8017 8018
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8019
		 */
8020
		if (move_group) {
8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8034 8035 8036 8037 8038 8039
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8040 8041 8042
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8043
		if (attr.exclusive || attr.pinned)
8044
			goto err_context;
8045 8046 8047 8048 8049
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8050
			goto err_context;
8051
	}
T
Thomas Gleixner 已提交
8052

8053 8054
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8055 8056
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8057
		goto err_context;
8058
	}
8059

8060
	if (move_group) {
P
Peter Zijlstra 已提交
8061 8062 8063 8064 8065 8066 8067
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8068

8069
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8070

8071 8072
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8073
			perf_remove_from_context(sibling, false);
8074 8075
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
8076 8077
	} else {
		mutex_lock(&ctx->mutex);
8078
	}
8079

8080
	WARN_ON_ONCE(ctx->parent_ctx);
8081 8082

	if (move_group) {
P
Peter Zijlstra 已提交
8083 8084 8085 8086
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8087
		synchronize_rcu();
P
Peter Zijlstra 已提交
8088

8089 8090 8091 8092 8093 8094 8095 8096 8097 8098
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8099 8100
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8101
			perf_event__state_init(sibling);
8102
			perf_install_in_context(ctx, sibling, sibling->cpu);
8103 8104
			get_ctx(ctx);
		}
8105 8106 8107 8108 8109 8110 8111 8112 8113

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8114 8115
	}

8116 8117 8118 8119 8120 8121 8122
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
		mutex_unlock(&ctx->mutex);
		fput(event_file);
		goto err_context;
	}

8123
	perf_install_in_context(ctx, event, event->cpu);
8124
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8125 8126 8127 8128 8129

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
8130
	mutex_unlock(&ctx->mutex);
8131

8132 8133
	put_online_cpus();

8134
	event->owner = current;
P
Peter Zijlstra 已提交
8135

8136 8137 8138
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8139

8140 8141 8142 8143
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8144
	perf_event__id_header_size(event);
8145

8146 8147 8148 8149 8150 8151
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8152
	fdput(group);
8153 8154
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8155

8156
err_context:
8157
	perf_unpin_context(ctx);
8158
	put_ctx(ctx);
8159
err_alloc:
8160
	free_event(event);
8161
err_cpus:
8162
	put_online_cpus();
8163
err_task:
P
Peter Zijlstra 已提交
8164 8165
	if (task)
		put_task_struct(task);
8166
err_group_fd:
8167
	fdput(group);
8168 8169
err_fd:
	put_unused_fd(event_fd);
8170
	return err;
T
Thomas Gleixner 已提交
8171 8172
}

8173 8174 8175 8176 8177
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8178
 * @task: task to profile (NULL for percpu)
8179 8180 8181
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8182
				 struct task_struct *task,
8183 8184
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8185 8186
{
	struct perf_event_context *ctx;
8187
	struct perf_event *event;
8188
	int err;
8189

8190 8191 8192
	/*
	 * Get the target context (task or percpu):
	 */
8193

8194
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8195
				 overflow_handler, context, -1);
8196 8197 8198 8199
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8200

8201 8202 8203
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8204 8205
	account_event(event);

8206
	ctx = find_get_context(event->pmu, task, event);
8207 8208
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8209
		goto err_free;
8210
	}
8211 8212 8213

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8214 8215 8216 8217 8218 8219 8220 8221
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8222
	perf_install_in_context(ctx, event, cpu);
8223
	perf_unpin_context(ctx);
8224 8225 8226 8227
	mutex_unlock(&ctx->mutex);

	return event;

8228 8229 8230
err_free:
	free_event(event);
err:
8231
	return ERR_PTR(err);
8232
}
8233
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8234

8235 8236 8237 8238 8239 8240 8241 8242 8243 8244
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8245 8246 8247 8248 8249
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8250 8251
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8252
		perf_remove_from_context(event, false);
8253
		unaccount_event_cpu(event, src_cpu);
8254
		put_ctx(src_ctx);
8255
		list_add(&event->migrate_entry, &events);
8256 8257
	}

8258 8259 8260
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8261 8262
	synchronize_rcu();

8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8287 8288
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8289 8290
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8291
		account_event_cpu(event, dst_cpu);
8292 8293 8294 8295
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8296
	mutex_unlock(&src_ctx->mutex);
8297 8298 8299
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8300
static void sync_child_event(struct perf_event *child_event,
8301
			       struct task_struct *child)
8302
{
8303
	struct perf_event *parent_event = child_event->parent;
8304
	u64 child_val;
8305

8306 8307
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8308

P
Peter Zijlstra 已提交
8309
	child_val = perf_event_count(child_event);
8310 8311 8312 8313

	/*
	 * Add back the child's count to the parent's count:
	 */
8314
	atomic64_add(child_val, &parent_event->child_count);
8315 8316 8317 8318
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8319 8320

	/*
8321
	 * Remove this event from the parent's list
8322
	 */
8323 8324 8325 8326
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8327

8328 8329 8330 8331 8332 8333
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8334
	/*
8335
	 * Release the parent event, if this was the last
8336 8337
	 * reference to it.
	 */
8338
	put_event(parent_event);
8339 8340
}

8341
static void
8342 8343
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8344
			 struct task_struct *child)
8345
{
8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8359

8360
	/*
8361
	 * It can happen that the parent exits first, and has events
8362
	 * that are still around due to the child reference. These
8363
	 * events need to be zapped.
8364
	 */
8365
	if (child_event->parent) {
8366 8367
		sync_child_event(child_event, child);
		free_event(child_event);
8368 8369 8370
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8371
	}
8372 8373
}

P
Peter Zijlstra 已提交
8374
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8375
{
8376
	struct perf_event *child_event, *next;
8377
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8378
	unsigned long flags;
8379

P
Peter Zijlstra 已提交
8380
	if (likely(!child->perf_event_ctxp[ctxn])) {
8381
		perf_event_task(child, NULL, 0);
8382
		return;
P
Peter Zijlstra 已提交
8383
	}
8384

8385
	local_irq_save(flags);
8386 8387 8388 8389 8390 8391
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8392
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8393 8394 8395

	/*
	 * Take the context lock here so that if find_get_context is
8396
	 * reading child->perf_event_ctxp, we wait until it has
8397 8398
	 * incremented the context's refcount before we do put_ctx below.
	 */
8399
	raw_spin_lock(&child_ctx->lock);
8400
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8401
	child->perf_event_ctxp[ctxn] = NULL;
8402

8403 8404 8405
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8406
	 * the events from it.
8407
	 */
8408
	clone_ctx = unclone_ctx(child_ctx);
8409
	update_context_time(child_ctx);
8410
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8411

8412 8413
	if (clone_ctx)
		put_ctx(clone_ctx);
8414

P
Peter Zijlstra 已提交
8415
	/*
8416 8417 8418
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8419
	 */
8420
	perf_event_task(child, child_ctx, 0);
8421

8422 8423 8424
	/*
	 * We can recurse on the same lock type through:
	 *
8425 8426
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8427 8428
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8429 8430 8431
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8432
	mutex_lock(&child_ctx->mutex);
8433

8434
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8435
		__perf_event_exit_task(child_event, child_ctx, child);
8436

8437 8438 8439
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8440 8441
}

P
Peter Zijlstra 已提交
8442 8443 8444 8445 8446
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8447
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8448 8449
	int ctxn;

P
Peter Zijlstra 已提交
8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8465 8466 8467 8468
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8481
	put_event(parent);
8482

P
Peter Zijlstra 已提交
8483
	raw_spin_lock_irq(&ctx->lock);
8484
	perf_group_detach(event);
8485
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8486
	raw_spin_unlock_irq(&ctx->lock);
8487 8488 8489
	free_event(event);
}

8490
/*
P
Peter Zijlstra 已提交
8491
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8492
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8493 8494 8495
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8496
 */
8497
void perf_event_free_task(struct task_struct *task)
8498
{
P
Peter Zijlstra 已提交
8499
	struct perf_event_context *ctx;
8500
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8501
	int ctxn;
8502

P
Peter Zijlstra 已提交
8503 8504 8505 8506
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8507

P
Peter Zijlstra 已提交
8508
		mutex_lock(&ctx->mutex);
8509
again:
P
Peter Zijlstra 已提交
8510 8511 8512
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8513

P
Peter Zijlstra 已提交
8514 8515 8516
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8517

P
Peter Zijlstra 已提交
8518 8519 8520
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8521

P
Peter Zijlstra 已提交
8522
		mutex_unlock(&ctx->mutex);
8523

P
Peter Zijlstra 已提交
8524 8525
		put_ctx(ctx);
	}
8526 8527
}

8528 8529 8530 8531 8532 8533 8534 8535
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8547
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8548
	struct perf_event *child_event;
8549
	unsigned long flags;
P
Peter Zijlstra 已提交
8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8562
					   child,
P
Peter Zijlstra 已提交
8563
					   group_leader, parent_event,
8564
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8565 8566
	if (IS_ERR(child_event))
		return child_event;
8567

8568 8569
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8570 8571 8572 8573
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8574 8575 8576 8577 8578 8579 8580
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8581
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8598 8599
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8600

8601 8602 8603 8604
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8605
	perf_event__id_header_size(child_event);
8606

P
Peter Zijlstra 已提交
8607 8608 8609
	/*
	 * Link it up in the child's context:
	 */
8610
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8611
	add_event_to_ctx(child_event, child_ctx);
8612
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8646 8647 8648 8649 8650
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8651
		   struct task_struct *child, int ctxn,
8652 8653 8654
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8655
	struct perf_event_context *child_ctx;
8656 8657 8658 8659

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8660 8661
	}

8662
	child_ctx = child->perf_event_ctxp[ctxn];
8663 8664 8665 8666 8667 8668 8669
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8670

8671
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8672 8673
		if (!child_ctx)
			return -ENOMEM;
8674

P
Peter Zijlstra 已提交
8675
		child->perf_event_ctxp[ctxn] = child_ctx;
8676 8677 8678 8679 8680 8681 8682 8683 8684
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8685 8686
}

8687
/*
8688
 * Initialize the perf_event context in task_struct
8689
 */
8690
static int perf_event_init_context(struct task_struct *child, int ctxn)
8691
{
8692
	struct perf_event_context *child_ctx, *parent_ctx;
8693 8694
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8695
	struct task_struct *parent = current;
8696
	int inherited_all = 1;
8697
	unsigned long flags;
8698
	int ret = 0;
8699

P
Peter Zijlstra 已提交
8700
	if (likely(!parent->perf_event_ctxp[ctxn]))
8701 8702
		return 0;

8703
	/*
8704 8705
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8706
	 */
P
Peter Zijlstra 已提交
8707
	parent_ctx = perf_pin_task_context(parent, ctxn);
8708 8709
	if (!parent_ctx)
		return 0;
8710

8711 8712 8713 8714 8715 8716 8717
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8718 8719 8720 8721
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8722
	mutex_lock(&parent_ctx->mutex);
8723 8724 8725 8726 8727

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8728
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8729 8730
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8731 8732 8733
		if (ret)
			break;
	}
8734

8735 8736 8737 8738 8739 8740 8741 8742 8743
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8744
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8745 8746
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8747
		if (ret)
8748
			break;
8749 8750
	}

8751 8752 8753
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8754
	child_ctx = child->perf_event_ctxp[ctxn];
8755

8756
	if (child_ctx && inherited_all) {
8757 8758 8759
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8760 8761 8762
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8763
		 */
P
Peter Zijlstra 已提交
8764
		cloned_ctx = parent_ctx->parent_ctx;
8765 8766
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8767
			child_ctx->parent_gen = parent_ctx->parent_gen;
8768 8769 8770 8771 8772
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8773 8774
	}

P
Peter Zijlstra 已提交
8775
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8776
	mutex_unlock(&parent_ctx->mutex);
8777

8778
	perf_unpin_context(parent_ctx);
8779
	put_ctx(parent_ctx);
8780

8781
	return ret;
8782 8783
}

P
Peter Zijlstra 已提交
8784 8785 8786 8787 8788 8789 8790
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8791 8792 8793 8794
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8795 8796
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8797 8798
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8799
			return ret;
P
Peter Zijlstra 已提交
8800
		}
P
Peter Zijlstra 已提交
8801 8802 8803 8804 8805
	}

	return 0;
}

8806 8807
static void __init perf_event_init_all_cpus(void)
{
8808
	struct swevent_htable *swhash;
8809 8810 8811
	int cpu;

	for_each_possible_cpu(cpu) {
8812 8813
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8814
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8815 8816 8817
	}
}

8818
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8819
{
P
Peter Zijlstra 已提交
8820
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8821

8822
	mutex_lock(&swhash->hlist_mutex);
8823
	swhash->online = true;
8824
	if (swhash->hlist_refcount > 0) {
8825 8826
		struct swevent_hlist *hlist;

8827 8828 8829
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8830
	}
8831
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8832 8833
}

P
Peter Zijlstra 已提交
8834
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8835
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8836
{
8837
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8838
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8839

P
Peter Zijlstra 已提交
8840
	rcu_read_lock();
8841 8842
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8843
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8844
}
P
Peter Zijlstra 已提交
8845 8846 8847 8848 8849 8850 8851 8852 8853

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8854
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8855 8856 8857 8858 8859 8860 8861 8862

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8863
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8864
{
8865
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8866

P
Peter Zijlstra 已提交
8867 8868
	perf_event_exit_cpu_context(cpu);

8869
	mutex_lock(&swhash->hlist_mutex);
8870
	swhash->online = false;
8871 8872
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8873 8874
}
#else
8875
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8876 8877
#endif

P
Peter Zijlstra 已提交
8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8898
static int
T
Thomas Gleixner 已提交
8899 8900 8901 8902
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8903
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8904 8905

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8906
	case CPU_DOWN_FAILED:
8907
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8908 8909
		break;

P
Peter Zijlstra 已提交
8910
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8911
	case CPU_DOWN_PREPARE:
8912
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8913 8914 8915 8916 8917 8918 8919 8920
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8921
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8922
{
8923 8924
	int ret;

P
Peter Zijlstra 已提交
8925 8926
	idr_init(&pmu_idr);

8927
	perf_event_init_all_cpus();
8928
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8929 8930 8931
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8932 8933
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8934
	register_reboot_notifier(&perf_reboot_notifier);
8935 8936 8937

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8938 8939 8940

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8941 8942 8943 8944 8945 8946 8947

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8948
}
P
Peter Zijlstra 已提交
8949

8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8989 8990

#ifdef CONFIG_CGROUP_PERF
8991 8992
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8993 8994 8995
{
	struct perf_cgroup *jc;

8996
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9009
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9010
{
9011 9012
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9024 9025
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9026
{
9027 9028
	struct task_struct *task;

9029
	cgroup_taskset_for_each(task, tset)
9030
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9031 9032
}

9033 9034
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9035
			     struct task_struct *task)
S
Stephane Eranian 已提交
9036 9037 9038 9039 9040 9041 9042 9043 9044
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

9045
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9046 9047
}

9048
struct cgroup_subsys perf_event_cgrp_subsys = {
9049 9050
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9051
	.exit		= perf_cgroup_exit,
9052
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9053 9054
};
#endif /* CONFIG_CGROUP_PERF */