core.c 168.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126 127
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

128 129 130 131 132 133
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
134 135 136 137
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
138
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
139
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
141

142 143 144
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
145

P
Peter Zijlstra 已提交
146 147 148 149
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

150
/*
151
 * perf event paranoia level:
152 153
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
154
 *   1 - disallow cpu events for unpriv
155
 *   2 - disallow kernel profiling for unpriv
156
 */
157
int sysctl_perf_event_paranoid __read_mostly = 1;
158

159 160
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161 162

/*
163
 * max perf event sample rate
164
 */
P
Peter Zijlstra 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
183

184
static atomic64_t perf_event_id;
185

186 187 188 189
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
190 191 192 193 194
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
195

196 197 198
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

199
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
200

201
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
202
{
203
	return "pmu";
T
Thomas Gleixner 已提交
204 205
}

206 207 208 209 210
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
211 212 213 214 215 216
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
233 234
#ifdef CONFIG_CGROUP_PERF

235 236 237 238 239
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

256
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
257
{
258
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
307 308
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
309
	/*
310 311
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
312
	 */
313
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
314 315
		return;

316 317 318 319 320 321
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
322 323 324
}

static inline void
325 326
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
327 328 329 330
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

331 332 333 334 335 336
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
337 338 339 340
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
341
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
383 384
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
385 386 387 388 389 390 391 392 393 394 395

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
396
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
397 398 399 400 401 402 403
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
404 405
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
406 407 408 409 410 411 412 413
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

414 415
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
416
{
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
439 440
}

441 442
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
443
{
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
478 479 480 481
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
482 483 484 485

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

486
	/* must be done before we fput() the file */
487 488 489 490 491
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
492

S
Stephane Eranian 已提交
493 494 495 496 497 498 499 500 501
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
502
out:
S
Stephane Eranian 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

577 578
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
579 580 581
{
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584 585 586 587 588 589 590 591 592 593 594
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
595 596
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
627
void perf_pmu_disable(struct pmu *pmu)
628
{
P
Peter Zijlstra 已提交
629 630 631
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
632 633
}

P
Peter Zijlstra 已提交
634
void perf_pmu_enable(struct pmu *pmu)
635
{
P
Peter Zijlstra 已提交
636 637 638
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
639 640
}

641 642 643 644 645 646 647
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
648
static void perf_pmu_rotate_start(struct pmu *pmu)
649
{
P
Peter Zijlstra 已提交
650
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
651
	struct list_head *head = &__get_cpu_var(rotation_list);
652

653
	WARN_ON(!irqs_disabled());
654

655 656
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
657 658
}

659
static void get_ctx(struct perf_event_context *ctx)
660
{
661
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
662 663
}

664
static void put_ctx(struct perf_event_context *ctx)
665
{
666 667 668
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
669 670
		if (ctx->task)
			put_task_struct(ctx->task);
671
		kfree_rcu(ctx, rcu_head);
672
	}
673 674
}

675
static void unclone_ctx(struct perf_event_context *ctx)
676 677 678 679 680 681 682
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

705
/*
706
 * If we inherit events we want to return the parent event id
707 708
 * to userspace.
 */
709
static u64 primary_event_id(struct perf_event *event)
710
{
711
	u64 id = event->id;
712

713 714
	if (event->parent)
		id = event->parent->id;
715 716 717 718

	return id;
}

719
/*
720
 * Get the perf_event_context for a task and lock it.
721 722 723
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
724
static struct perf_event_context *
P
Peter Zijlstra 已提交
725
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
726
{
727
	struct perf_event_context *ctx;
728 729

	rcu_read_lock();
P
Peter Zijlstra 已提交
730
retry:
P
Peter Zijlstra 已提交
731
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
732 733 734 735
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
736
		 * perf_event_task_sched_out, though the
737 738 739 740 741 742
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
743
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
744
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
745
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
746 747
			goto retry;
		}
748 749

		if (!atomic_inc_not_zero(&ctx->refcount)) {
750
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
751 752
			ctx = NULL;
		}
753 754 755 756 757 758 759 760 761 762
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
763 764
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
765
{
766
	struct perf_event_context *ctx;
767 768
	unsigned long flags;

P
Peter Zijlstra 已提交
769
	ctx = perf_lock_task_context(task, ctxn, &flags);
770 771
	if (ctx) {
		++ctx->pin_count;
772
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
773 774 775 776
	}
	return ctx;
}

777
static void perf_unpin_context(struct perf_event_context *ctx)
778 779 780
{
	unsigned long flags;

781
	raw_spin_lock_irqsave(&ctx->lock, flags);
782
	--ctx->pin_count;
783
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
784 785
}

786 787 788 789 790 791 792 793 794 795 796
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

797 798 799
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
800 801 802 803

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

804 805 806
	return ctx ? ctx->time : 0;
}

807 808
/*
 * Update the total_time_enabled and total_time_running fields for a event.
809
 * The caller of this function needs to hold the ctx->lock.
810 811 812 813 814 815 816 817 818
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
819 820 821 822 823 824 825 826 827 828 829
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
830
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
831 832
	else if (ctx->is_active)
		run_end = ctx->time;
833 834 835 836
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
837 838 839 840

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
841
		run_end = perf_event_time(event);
842 843

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
844

845 846
}

847 848 849 850 851 852 853 854 855 856 857 858
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

859 860 861 862 863 864 865 866 867
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

868
/*
869
 * Add a event from the lists for its context.
870 871
 * Must be called with ctx->mutex and ctx->lock held.
 */
872
static void
873
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
874
{
875 876
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
877 878

	/*
879 880 881
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
882
	 */
883
	if (event->group_leader == event) {
884 885
		struct list_head *list;

886 887 888
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

889 890
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
891
	}
P
Peter Zijlstra 已提交
892

893
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
894 895
		ctx->nr_cgroups++;

896 897 898
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

899
	list_add_rcu(&event->event_entry, &ctx->event_list);
900
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
901
		perf_pmu_rotate_start(ctx->pmu);
902 903
	ctx->nr_events++;
	if (event->attr.inherit_stat)
904
		ctx->nr_stat++;
905 906
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

979
	event->id_header_size = size;
980 981
}

982 983
static void perf_group_attach(struct perf_event *event)
{
984
	struct perf_event *group_leader = event->group_leader, *pos;
985

P
Peter Zijlstra 已提交
986 987 988 989 990 991
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

992 993 994 995 996 997 998 999 1000 1001 1002
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1003 1004 1005 1006 1007

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1008 1009
}

1010
/*
1011
 * Remove a event from the lists for its context.
1012
 * Must be called with ctx->mutex and ctx->lock held.
1013
 */
1014
static void
1015
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1016
{
1017
	struct perf_cpu_context *cpuctx;
1018 1019 1020 1021
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1022
		return;
1023 1024 1025

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1026
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1027
		ctx->nr_cgroups--;
1028 1029 1030 1031 1032 1033 1034 1035 1036
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1037

1038 1039 1040
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1041 1042
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1043
		ctx->nr_stat--;
1044

1045
	list_del_rcu(&event->event_entry);
1046

1047 1048
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1049

1050
	update_group_times(event);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1061 1062
}

1063
static void perf_group_detach(struct perf_event *event)
1064 1065
{
	struct perf_event *sibling, *tmp;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1082
		goto out;
1083 1084 1085 1086
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1087

1088
	/*
1089 1090
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1091
	 * to whatever list we are on.
1092
	 */
1093
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1094 1095
		if (list)
			list_move_tail(&sibling->group_entry, list);
1096
		sibling->group_leader = sibling;
1097 1098 1099

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1100
	}
1101 1102 1103 1104 1105 1106

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1107 1108
}

1109 1110 1111
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1112 1113
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1114 1115
}

1116 1117
static void
event_sched_out(struct perf_event *event,
1118
		  struct perf_cpu_context *cpuctx,
1119
		  struct perf_event_context *ctx)
1120
{
1121
	u64 tstamp = perf_event_time(event);
1122 1123 1124 1125 1126 1127 1128 1129 1130
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1131
		delta = tstamp - event->tstamp_stopped;
1132
		event->tstamp_running += delta;
1133
		event->tstamp_stopped = tstamp;
1134 1135
	}

1136
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1137
		return;
1138

1139 1140 1141 1142
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1143
	}
1144
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1145
	event->pmu->del(event, 0);
1146
	event->oncpu = -1;
1147

1148
	if (!is_software_event(event))
1149 1150
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1151 1152
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1153
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1154 1155 1156
		cpuctx->exclusive = 0;
}

1157
static void
1158
group_sched_out(struct perf_event *group_event,
1159
		struct perf_cpu_context *cpuctx,
1160
		struct perf_event_context *ctx)
1161
{
1162
	struct perf_event *event;
1163
	int state = group_event->state;
1164

1165
	event_sched_out(group_event, cpuctx, ctx);
1166 1167 1168 1169

	/*
	 * Schedule out siblings (if any):
	 */
1170 1171
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1172

1173
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1174 1175 1176
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1177
/*
1178
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1179
 *
1180
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1181 1182
 * remove it from the context list.
 */
1183
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1184
{
1185 1186
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1187
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1188

1189
	raw_spin_lock(&ctx->lock);
1190 1191
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1192 1193 1194 1195
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1196
	raw_spin_unlock(&ctx->lock);
1197 1198

	return 0;
T
Thomas Gleixner 已提交
1199 1200 1201 1202
}


/*
1203
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1204
 *
1205
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1206
 * call when the task is on a CPU.
1207
 *
1208 1209
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1210 1211
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1212
 * When called from perf_event_exit_task, it's OK because the
1213
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1214
 */
1215
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1216
{
1217
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1218 1219
	struct task_struct *task = ctx->task;

1220 1221
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1222 1223
	if (!task) {
		/*
1224
		 * Per cpu events are removed via an smp call and
1225
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1226
		 */
1227
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1228 1229 1230 1231
		return;
	}

retry:
1232 1233
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1234

1235
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1236
	/*
1237 1238
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1239
	 */
1240
	if (ctx->is_active) {
1241
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1242 1243 1244 1245
		goto retry;
	}

	/*
1246 1247
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1248
	 */
1249
	list_del_event(event, ctx);
1250
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1251 1252
}

1253
/*
1254
 * Cross CPU call to disable a performance event
1255
 */
1256
int __perf_event_disable(void *info)
1257
{
1258 1259
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1260
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1261 1262

	/*
1263 1264
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1265 1266 1267
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1268
	 */
1269
	if (ctx->task && cpuctx->task_ctx != ctx)
1270
		return -EINVAL;
1271

1272
	raw_spin_lock(&ctx->lock);
1273 1274

	/*
1275
	 * If the event is on, turn it off.
1276 1277
	 * If it is in error state, leave it in error state.
	 */
1278
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1279
		update_context_time(ctx);
S
Stephane Eranian 已提交
1280
		update_cgrp_time_from_event(event);
1281 1282 1283
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1284
		else
1285 1286
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1287 1288
	}

1289
	raw_spin_unlock(&ctx->lock);
1290 1291

	return 0;
1292 1293 1294
}

/*
1295
 * Disable a event.
1296
 *
1297 1298
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1299
 * remains valid.  This condition is satisifed when called through
1300 1301 1302 1303
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1304
 * is the current context on this CPU and preemption is disabled,
1305
 * hence we can't get into perf_event_task_sched_out for this context.
1306
 */
1307
void perf_event_disable(struct perf_event *event)
1308
{
1309
	struct perf_event_context *ctx = event->ctx;
1310 1311 1312 1313
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1314
		 * Disable the event on the cpu that it's on
1315
		 */
1316
		cpu_function_call(event->cpu, __perf_event_disable, event);
1317 1318 1319
		return;
	}

P
Peter Zijlstra 已提交
1320
retry:
1321 1322
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1323

1324
	raw_spin_lock_irq(&ctx->lock);
1325
	/*
1326
	 * If the event is still active, we need to retry the cross-call.
1327
	 */
1328
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1329
		raw_spin_unlock_irq(&ctx->lock);
1330 1331 1332 1333 1334
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1335 1336 1337 1338 1339 1340 1341
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1342 1343 1344
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1345
	}
1346
	raw_spin_unlock_irq(&ctx->lock);
1347
}
1348
EXPORT_SYMBOL_GPL(perf_event_disable);
1349

S
Stephane Eranian 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1385 1386 1387 1388
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1389
static int
1390
event_sched_in(struct perf_event *event,
1391
		 struct perf_cpu_context *cpuctx,
1392
		 struct perf_event_context *ctx)
1393
{
1394 1395
	u64 tstamp = perf_event_time(event);

1396
	if (event->state <= PERF_EVENT_STATE_OFF)
1397 1398
		return 0;

1399
	event->state = PERF_EVENT_STATE_ACTIVE;
1400
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1412 1413 1414 1415 1416
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1417
	if (event->pmu->add(event, PERF_EF_START)) {
1418 1419
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1420 1421 1422
		return -EAGAIN;
	}

1423
	event->tstamp_running += tstamp - event->tstamp_stopped;
1424

S
Stephane Eranian 已提交
1425
	perf_set_shadow_time(event, ctx, tstamp);
1426

1427
	if (!is_software_event(event))
1428
		cpuctx->active_oncpu++;
1429
	ctx->nr_active++;
1430 1431
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1432

1433
	if (event->attr.exclusive)
1434 1435
		cpuctx->exclusive = 1;

1436 1437 1438
	return 0;
}

1439
static int
1440
group_sched_in(struct perf_event *group_event,
1441
	       struct perf_cpu_context *cpuctx,
1442
	       struct perf_event_context *ctx)
1443
{
1444
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1445
	struct pmu *pmu = group_event->pmu;
1446 1447
	u64 now = ctx->time;
	bool simulate = false;
1448

1449
	if (group_event->state == PERF_EVENT_STATE_OFF)
1450 1451
		return 0;

P
Peter Zijlstra 已提交
1452
	pmu->start_txn(pmu);
1453

1454
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1455
		pmu->cancel_txn(pmu);
1456
		return -EAGAIN;
1457
	}
1458 1459 1460 1461

	/*
	 * Schedule in siblings as one group (if any):
	 */
1462
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1463
		if (event_sched_in(event, cpuctx, ctx)) {
1464
			partial_group = event;
1465 1466 1467 1468
			goto group_error;
		}
	}

1469
	if (!pmu->commit_txn(pmu))
1470
		return 0;
1471

1472 1473 1474 1475
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1486
	 */
1487 1488
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1489 1490 1491 1492 1493 1494 1495 1496
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1497
	}
1498
	event_sched_out(group_event, cpuctx, ctx);
1499

P
Peter Zijlstra 已提交
1500
	pmu->cancel_txn(pmu);
1501

1502 1503 1504
	return -EAGAIN;
}

1505
/*
1506
 * Work out whether we can put this event group on the CPU now.
1507
 */
1508
static int group_can_go_on(struct perf_event *event,
1509 1510 1511 1512
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1513
	 * Groups consisting entirely of software events can always go on.
1514
	 */
1515
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1516 1517 1518
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1519
	 * events can go on.
1520 1521 1522 1523 1524
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1525
	 * events on the CPU, it can't go on.
1526
	 */
1527
	if (event->attr.exclusive && cpuctx->active_oncpu)
1528 1529 1530 1531 1532 1533 1534 1535
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1536 1537
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1538
{
1539 1540
	u64 tstamp = perf_event_time(event);

1541
	list_add_event(event, ctx);
1542
	perf_group_attach(event);
1543 1544 1545
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1546 1547
}

1548 1549 1550 1551 1552 1553
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1567
/*
1568
 * Cross CPU call to install and enable a performance event
1569 1570
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1571
 */
1572
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1573
{
1574 1575
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1576
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1577 1578 1579
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1580
	perf_ctx_lock(cpuctx, task_ctx);
1581
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1582 1583

	/*
1584
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1585
	 */
1586
	if (task_ctx)
1587
		task_ctx_sched_out(task_ctx);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1602 1603
		task = task_ctx->task;
	}
1604

1605
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1606

1607
	update_context_time(ctx);
S
Stephane Eranian 已提交
1608 1609 1610 1611 1612 1613
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1614

1615
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1616

1617
	/*
1618
	 * Schedule everything back in
1619
	 */
1620
	perf_event_sched_in(cpuctx, task_ctx, task);
1621 1622 1623

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1624 1625

	return 0;
T
Thomas Gleixner 已提交
1626 1627 1628
}

/*
1629
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1630
 *
1631 1632
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1633
 *
1634
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1635 1636 1637 1638
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1639 1640
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1641 1642 1643 1644
			int cpu)
{
	struct task_struct *task = ctx->task;

1645 1646
	lockdep_assert_held(&ctx->mutex);

1647
	event->ctx = ctx;
1648 1649
	if (event->cpu != -1)
		event->cpu = cpu;
1650

T
Thomas Gleixner 已提交
1651 1652
	if (!task) {
		/*
1653
		 * Per cpu events are installed via an smp call and
1654
		 * the install is always successful.
T
Thomas Gleixner 已提交
1655
		 */
1656
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1657 1658 1659 1660
		return;
	}

retry:
1661 1662
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1663

1664
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1665
	/*
1666 1667
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1668
	 */
1669
	if (ctx->is_active) {
1670
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1671 1672 1673 1674
		goto retry;
	}

	/*
1675 1676
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1677
	 */
1678
	add_event_to_ctx(event, ctx);
1679
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1680 1681
}

1682
/*
1683
 * Put a event into inactive state and update time fields.
1684 1685 1686 1687 1688 1689
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1690
static void __perf_event_mark_enabled(struct perf_event *event)
1691
{
1692
	struct perf_event *sub;
1693
	u64 tstamp = perf_event_time(event);
1694

1695
	event->state = PERF_EVENT_STATE_INACTIVE;
1696
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1697
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1698 1699
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1700
	}
1701 1702
}

1703
/*
1704
 * Cross CPU call to enable a performance event
1705
 */
1706
static int __perf_event_enable(void *info)
1707
{
1708 1709 1710
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1711
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1712
	int err;
1713

1714 1715
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1716

1717
	raw_spin_lock(&ctx->lock);
1718
	update_context_time(ctx);
1719

1720
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1721
		goto unlock;
S
Stephane Eranian 已提交
1722 1723 1724 1725

	/*
	 * set current task's cgroup time reference point
	 */
1726
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1727

1728
	__perf_event_mark_enabled(event);
1729

S
Stephane Eranian 已提交
1730 1731 1732
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1733
		goto unlock;
S
Stephane Eranian 已提交
1734
	}
1735

1736
	/*
1737
	 * If the event is in a group and isn't the group leader,
1738
	 * then don't put it on unless the group is on.
1739
	 */
1740
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1741
		goto unlock;
1742

1743
	if (!group_can_go_on(event, cpuctx, 1)) {
1744
		err = -EEXIST;
1745
	} else {
1746
		if (event == leader)
1747
			err = group_sched_in(event, cpuctx, ctx);
1748
		else
1749
			err = event_sched_in(event, cpuctx, ctx);
1750
	}
1751 1752 1753

	if (err) {
		/*
1754
		 * If this event can't go on and it's part of a
1755 1756
		 * group, then the whole group has to come off.
		 */
1757
		if (leader != event)
1758
			group_sched_out(leader, cpuctx, ctx);
1759
		if (leader->attr.pinned) {
1760
			update_group_times(leader);
1761
			leader->state = PERF_EVENT_STATE_ERROR;
1762
		}
1763 1764
	}

P
Peter Zijlstra 已提交
1765
unlock:
1766
	raw_spin_unlock(&ctx->lock);
1767 1768

	return 0;
1769 1770 1771
}

/*
1772
 * Enable a event.
1773
 *
1774 1775
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1776
 * remains valid.  This condition is satisfied when called through
1777 1778
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1779
 */
1780
void perf_event_enable(struct perf_event *event)
1781
{
1782
	struct perf_event_context *ctx = event->ctx;
1783 1784 1785 1786
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1787
		 * Enable the event on the cpu that it's on
1788
		 */
1789
		cpu_function_call(event->cpu, __perf_event_enable, event);
1790 1791 1792
		return;
	}

1793
	raw_spin_lock_irq(&ctx->lock);
1794
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1795 1796 1797
		goto out;

	/*
1798 1799
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1800 1801 1802 1803
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1804 1805
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1806

P
Peter Zijlstra 已提交
1807
retry:
1808
	if (!ctx->is_active) {
1809
		__perf_event_mark_enabled(event);
1810 1811 1812
		goto out;
	}

1813
	raw_spin_unlock_irq(&ctx->lock);
1814 1815 1816

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1817

1818
	raw_spin_lock_irq(&ctx->lock);
1819 1820

	/*
1821
	 * If the context is active and the event is still off,
1822 1823
	 * we need to retry the cross-call.
	 */
1824 1825 1826 1827 1828 1829
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1830
		goto retry;
1831
	}
1832

P
Peter Zijlstra 已提交
1833
out:
1834
	raw_spin_unlock_irq(&ctx->lock);
1835
}
1836
EXPORT_SYMBOL_GPL(perf_event_enable);
1837

1838
int perf_event_refresh(struct perf_event *event, int refresh)
1839
{
1840
	/*
1841
	 * not supported on inherited events
1842
	 */
1843
	if (event->attr.inherit || !is_sampling_event(event))
1844 1845
		return -EINVAL;

1846 1847
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1848 1849

	return 0;
1850
}
1851
EXPORT_SYMBOL_GPL(perf_event_refresh);
1852

1853 1854 1855
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1856
{
1857
	struct perf_event *event;
1858
	int is_active = ctx->is_active;
1859

1860
	ctx->is_active &= ~event_type;
1861
	if (likely(!ctx->nr_events))
1862 1863
		return;

1864
	update_context_time(ctx);
S
Stephane Eranian 已提交
1865
	update_cgrp_time_from_cpuctx(cpuctx);
1866
	if (!ctx->nr_active)
1867
		return;
1868

P
Peter Zijlstra 已提交
1869
	perf_pmu_disable(ctx->pmu);
1870
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1871 1872
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1873
	}
1874

1875
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1876
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1877
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1878
	}
P
Peter Zijlstra 已提交
1879
	perf_pmu_enable(ctx->pmu);
1880 1881
}

1882 1883 1884
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1885 1886 1887 1888
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1889
 * in them directly with an fd; we can only enable/disable all
1890
 * events via prctl, or enable/disable all events in a family
1891 1892
 * via ioctl, which will have the same effect on both contexts.
 */
1893 1894
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1895 1896
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1897
		&& ctx1->parent_gen == ctx2->parent_gen
1898
		&& !ctx1->pin_count && !ctx2->pin_count;
1899 1900
}

1901 1902
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1903 1904 1905
{
	u64 value;

1906
	if (!event->attr.inherit_stat)
1907 1908 1909
		return;

	/*
1910
	 * Update the event value, we cannot use perf_event_read()
1911 1912
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1913
	 * we know the event must be on the current CPU, therefore we
1914 1915
	 * don't need to use it.
	 */
1916 1917
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1918 1919
		event->pmu->read(event);
		/* fall-through */
1920

1921 1922
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1923 1924 1925 1926 1927 1928 1929
		break;

	default:
		break;
	}

	/*
1930
	 * In order to keep per-task stats reliable we need to flip the event
1931 1932
	 * values when we flip the contexts.
	 */
1933 1934 1935
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1936

1937 1938
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1939

1940
	/*
1941
	 * Since we swizzled the values, update the user visible data too.
1942
	 */
1943 1944
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1945 1946 1947 1948 1949
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1950 1951
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1952
{
1953
	struct perf_event *event, *next_event;
1954 1955 1956 1957

	if (!ctx->nr_stat)
		return;

1958 1959
	update_context_time(ctx);

1960 1961
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1962

1963 1964
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1965

1966 1967
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1968

1969
		__perf_event_sync_stat(event, next_event);
1970

1971 1972
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1973 1974 1975
	}
}

1976 1977
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1978
{
P
Peter Zijlstra 已提交
1979
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1980 1981
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1982
	struct perf_cpu_context *cpuctx;
1983
	int do_switch = 1;
T
Thomas Gleixner 已提交
1984

P
Peter Zijlstra 已提交
1985 1986
	if (likely(!ctx))
		return;
1987

P
Peter Zijlstra 已提交
1988 1989
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1990 1991
		return;

1992 1993
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1994
	next_ctx = next->perf_event_ctxp[ctxn];
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2006 2007
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2008
		if (context_equiv(ctx, next_ctx)) {
2009 2010
			/*
			 * XXX do we need a memory barrier of sorts
2011
			 * wrt to rcu_dereference() of perf_event_ctxp
2012
			 */
P
Peter Zijlstra 已提交
2013 2014
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2015 2016 2017
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2018

2019
			perf_event_sync_stat(ctx, next_ctx);
2020
		}
2021 2022
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2023
	}
2024
	rcu_read_unlock();
2025

2026
	if (do_switch) {
2027
		raw_spin_lock(&ctx->lock);
2028
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2029
		cpuctx->task_ctx = NULL;
2030
		raw_spin_unlock(&ctx->lock);
2031
	}
T
Thomas Gleixner 已提交
2032 2033
}

P
Peter Zijlstra 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2048 2049
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2050 2051 2052 2053 2054
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2055 2056 2057 2058 2059 2060 2061

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2062
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2063 2064
}

2065
static void task_ctx_sched_out(struct perf_event_context *ctx)
2066
{
P
Peter Zijlstra 已提交
2067
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2068

2069 2070
	if (!cpuctx->task_ctx)
		return;
2071 2072 2073 2074

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2075
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2076 2077 2078
	cpuctx->task_ctx = NULL;
}

2079 2080 2081 2082 2083 2084 2085
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2086 2087
}

2088
static void
2089
ctx_pinned_sched_in(struct perf_event_context *ctx,
2090
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2091
{
2092
	struct perf_event *event;
T
Thomas Gleixner 已提交
2093

2094 2095
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2096
			continue;
2097
		if (!event_filter_match(event))
2098 2099
			continue;

S
Stephane Eranian 已提交
2100 2101 2102 2103
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2104
		if (group_can_go_on(event, cpuctx, 1))
2105
			group_sched_in(event, cpuctx, ctx);
2106 2107 2108 2109 2110

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2111 2112 2113
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2114
		}
2115
	}
2116 2117 2118 2119
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2120
		      struct perf_cpu_context *cpuctx)
2121 2122 2123
{
	struct perf_event *event;
	int can_add_hw = 1;
2124

2125 2126 2127
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2128
			continue;
2129 2130
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2131
		 * of events:
2132
		 */
2133
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2134 2135
			continue;

S
Stephane Eranian 已提交
2136 2137 2138 2139
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2140
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2141
			if (group_sched_in(event, cpuctx, ctx))
2142
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2143
		}
T
Thomas Gleixner 已提交
2144
	}
2145 2146 2147 2148 2149
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2150 2151
	     enum event_type_t event_type,
	     struct task_struct *task)
2152
{
S
Stephane Eranian 已提交
2153
	u64 now;
2154
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2155

2156
	ctx->is_active |= event_type;
2157
	if (likely(!ctx->nr_events))
2158
		return;
2159

S
Stephane Eranian 已提交
2160 2161
	now = perf_clock();
	ctx->timestamp = now;
2162
	perf_cgroup_set_timestamp(task, ctx);
2163 2164 2165 2166
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2167
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2168
		ctx_pinned_sched_in(ctx, cpuctx);
2169 2170

	/* Then walk through the lower prio flexible groups */
2171
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2172
		ctx_flexible_sched_in(ctx, cpuctx);
2173 2174
}

2175
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2176 2177
			     enum event_type_t event_type,
			     struct task_struct *task)
2178 2179 2180
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2181
	ctx_sched_in(ctx, cpuctx, event_type, task);
2182 2183
}

S
Stephane Eranian 已提交
2184 2185
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2186
{
P
Peter Zijlstra 已提交
2187
	struct perf_cpu_context *cpuctx;
2188

P
Peter Zijlstra 已提交
2189
	cpuctx = __get_cpu_context(ctx);
2190 2191 2192
	if (cpuctx->task_ctx == ctx)
		return;

2193
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2194
	perf_pmu_disable(ctx->pmu);
2195 2196 2197 2198 2199 2200 2201
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2202 2203
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2204

2205 2206
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2207 2208 2209
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2210 2211 2212 2213
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2214
	perf_pmu_rotate_start(ctx->pmu);
2215 2216
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2288 2289
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2299
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2300
	}
S
Stephane Eranian 已提交
2301 2302 2303 2304 2305 2306
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2307
		perf_cgroup_sched_in(prev, task);
2308 2309 2310 2311

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2312 2313
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2341
#define REDUCE_FLS(a, b)		\
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2381 2382 2383
	if (!divisor)
		return dividend;

2384 2385 2386
	return div64_u64(dividend, divisor);
}

2387 2388 2389
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2390
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2391
{
2392
	struct hw_perf_event *hwc = &event->hw;
2393
	s64 period, sample_period;
2394 2395
	s64 delta;

2396
	period = perf_calculate_period(event, nsec, count);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2407

2408
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2409 2410 2411
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2412
		local64_set(&hwc->period_left, 0);
2413 2414 2415

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2416
	}
2417 2418
}

2419 2420 2421 2422 2423 2424 2425
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2426
{
2427 2428
	struct perf_event *event;
	struct hw_perf_event *hwc;
2429
	u64 now, period = TICK_NSEC;
2430
	s64 delta;
2431

2432 2433 2434 2435 2436 2437
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2438 2439
		return;

2440
	raw_spin_lock(&ctx->lock);
2441
	perf_pmu_disable(ctx->pmu);
2442

2443
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2444
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2445 2446
			continue;

2447
		if (!event_filter_match(event))
2448 2449
			continue;

2450
		hwc = &event->hw;
2451

2452 2453
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2454
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2455
			event->pmu->start(event, 0);
2456 2457
		}

2458
		if (!event->attr.freq || !event->attr.sample_freq)
2459 2460
			continue;

2461 2462 2463 2464 2465
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2466
		now = local64_read(&event->count);
2467 2468
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2469

2470 2471 2472
		/*
		 * restart the event
		 * reload only if value has changed
2473 2474 2475
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2476
		 */
2477
		if (delta > 0)
2478
			perf_adjust_period(event, period, delta, false);
2479 2480

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2481
	}
2482

2483
	perf_pmu_enable(ctx->pmu);
2484
	raw_spin_unlock(&ctx->lock);
2485 2486
}

2487
/*
2488
 * Round-robin a context's events:
2489
 */
2490
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2491
{
2492 2493 2494 2495 2496 2497
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2498 2499
}

2500
/*
2501 2502 2503
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2504
 */
2505
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2506
{
P
Peter Zijlstra 已提交
2507
	struct perf_event_context *ctx = NULL;
2508
	int rotate = 0, remove = 1;
2509

2510
	if (cpuctx->ctx.nr_events) {
2511
		remove = 0;
2512 2513 2514
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2515

P
Peter Zijlstra 已提交
2516
	ctx = cpuctx->task_ctx;
2517
	if (ctx && ctx->nr_events) {
2518
		remove = 0;
2519 2520 2521
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2522

2523
	if (!rotate)
2524 2525
		goto done;

2526
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2527
	perf_pmu_disable(cpuctx->ctx.pmu);
2528

2529 2530 2531
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2532

2533 2534 2535
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2536

2537
	perf_event_sched_in(cpuctx, ctx, current);
2538

2539 2540
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2541
done:
2542 2543 2544 2545 2546 2547 2548 2549
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2550 2551
	struct perf_event_context *ctx;
	int throttled;
2552

2553 2554
	WARN_ON(!irqs_disabled());

2555 2556 2557
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2558
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2559 2560 2561 2562 2563 2564 2565
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2566 2567 2568 2569
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2570 2571
}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2582
	__perf_event_mark_enabled(event);
2583 2584 2585 2586

	return 1;
}

2587
/*
2588
 * Enable all of a task's events that have been marked enable-on-exec.
2589 2590
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2591
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2592
{
2593
	struct perf_event *event;
2594 2595
	unsigned long flags;
	int enabled = 0;
2596
	int ret;
2597 2598

	local_irq_save(flags);
2599
	if (!ctx || !ctx->nr_events)
2600 2601
		goto out;

2602 2603 2604 2605 2606 2607 2608
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2609
	perf_cgroup_sched_out(current, NULL);
2610

2611
	raw_spin_lock(&ctx->lock);
2612
	task_ctx_sched_out(ctx);
2613

2614
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2615 2616 2617
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2618 2619 2620
	}

	/*
2621
	 * Unclone this context if we enabled any event.
2622
	 */
2623 2624
	if (enabled)
		unclone_ctx(ctx);
2625

2626
	raw_spin_unlock(&ctx->lock);
2627

2628 2629 2630
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2631
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2632
out:
2633 2634 2635
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2636
/*
2637
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2638
 */
2639
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2640
{
2641 2642
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2643
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2644

2645 2646 2647 2648
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2649 2650
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2651 2652 2653 2654
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2655
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2656
	if (ctx->is_active) {
2657
		update_context_time(ctx);
S
Stephane Eranian 已提交
2658 2659
		update_cgrp_time_from_event(event);
	}
2660
	update_event_times(event);
2661 2662
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2663
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2664 2665
}

P
Peter Zijlstra 已提交
2666 2667
static inline u64 perf_event_count(struct perf_event *event)
{
2668
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2669 2670
}

2671
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2672 2673
{
	/*
2674 2675
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2676
	 */
2677 2678 2679 2680
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2681 2682 2683
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2684
		raw_spin_lock_irqsave(&ctx->lock, flags);
2685 2686 2687 2688 2689
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2690
		if (ctx->is_active) {
2691
			update_context_time(ctx);
S
Stephane Eranian 已提交
2692 2693
			update_cgrp_time_from_event(event);
		}
2694
		update_event_times(event);
2695
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2696 2697
	}

P
Peter Zijlstra 已提交
2698
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2699 2700
}

2701
/*
2702
 * Initialize the perf_event context in a task_struct:
2703
 */
2704
static void __perf_event_init_context(struct perf_event_context *ctx)
2705
{
2706
	raw_spin_lock_init(&ctx->lock);
2707
	mutex_init(&ctx->mutex);
2708 2709
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2710 2711
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2727
	}
2728 2729 2730
	ctx->pmu = pmu;

	return ctx;
2731 2732
}

2733 2734 2735 2736 2737
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2738 2739

	rcu_read_lock();
2740
	if (!vpid)
T
Thomas Gleixner 已提交
2741 2742
		task = current;
	else
2743
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2744 2745 2746 2747 2748 2749 2750 2751
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2752 2753 2754 2755
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2756 2757 2758 2759 2760 2761 2762
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2763 2764 2765
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2766
static struct perf_event_context *
M
Matt Helsley 已提交
2767
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2768
{
2769
	struct perf_event_context *ctx;
2770
	struct perf_cpu_context *cpuctx;
2771
	unsigned long flags;
P
Peter Zijlstra 已提交
2772
	int ctxn, err;
T
Thomas Gleixner 已提交
2773

2774
	if (!task) {
2775
		/* Must be root to operate on a CPU event: */
2776
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2777 2778 2779
			return ERR_PTR(-EACCES);

		/*
2780
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2781 2782 2783
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2784
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2785 2786
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2787
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2788
		ctx = &cpuctx->ctx;
2789
		get_ctx(ctx);
2790
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2791 2792 2793 2794

		return ctx;
	}

P
Peter Zijlstra 已提交
2795 2796 2797 2798 2799
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2800
retry:
P
Peter Zijlstra 已提交
2801
	ctx = perf_lock_task_context(task, ctxn, &flags);
2802
	if (ctx) {
2803
		unclone_ctx(ctx);
2804
		++ctx->pin_count;
2805
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2806
	} else {
2807
		ctx = alloc_perf_context(pmu, task);
2808 2809 2810
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2822
		else {
2823
			get_ctx(ctx);
2824
			++ctx->pin_count;
2825
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2826
		}
2827 2828 2829
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2830
			put_ctx(ctx);
2831 2832 2833 2834

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2835 2836 2837
		}
	}

T
Thomas Gleixner 已提交
2838
	return ctx;
2839

P
Peter Zijlstra 已提交
2840
errout:
2841
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2842 2843
}

L
Li Zefan 已提交
2844 2845
static void perf_event_free_filter(struct perf_event *event);

2846
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2847
{
2848
	struct perf_event *event;
P
Peter Zijlstra 已提交
2849

2850 2851 2852
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2853
	perf_event_free_filter(event);
2854
	kfree(event);
P
Peter Zijlstra 已提交
2855 2856
}

2857
static void ring_buffer_put(struct ring_buffer *rb);
2858

2859
static void free_event(struct perf_event *event)
2860
{
2861
	irq_work_sync(&event->pending);
2862

2863
	if (!event->parent) {
2864
		if (event->attach_state & PERF_ATTACH_TASK)
2865
			static_key_slow_dec_deferred(&perf_sched_events);
2866
		if (event->attr.mmap || event->attr.mmap_data)
2867 2868 2869 2870 2871
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2872 2873
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2874 2875
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2876
			static_key_slow_dec_deferred(&perf_sched_events);
2877
		}
2878 2879 2880 2881 2882 2883 2884 2885

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2886
	}
2887

2888 2889 2890
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2891 2892
	}

S
Stephane Eranian 已提交
2893 2894 2895
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2896 2897
	if (event->destroy)
		event->destroy(event);
2898

P
Peter Zijlstra 已提交
2899 2900 2901
	if (event->ctx)
		put_ctx(event->ctx);

2902
	call_rcu(&event->rcu_head, free_event_rcu);
2903 2904
}

2905
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2906
{
2907
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2908

2909
	WARN_ON_ONCE(ctx->parent_ctx);
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2923
	raw_spin_lock_irq(&ctx->lock);
2924
	perf_group_detach(event);
2925
	raw_spin_unlock_irq(&ctx->lock);
2926
	perf_remove_from_context(event);
2927
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2928

2929
	free_event(event);
T
Thomas Gleixner 已提交
2930 2931 2932

	return 0;
}
2933
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2934

2935 2936 2937
/*
 * Called when the last reference to the file is gone.
 */
2938
static void put_event(struct perf_event *event)
2939
{
P
Peter Zijlstra 已提交
2940
	struct task_struct *owner;
2941

2942 2943
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
2944

P
Peter Zijlstra 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2978 2979 2980 2981 2982 2983 2984
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
2985 2986
}

2987
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2988
{
2989
	struct perf_event *child;
2990 2991
	u64 total = 0;

2992 2993 2994
	*enabled = 0;
	*running = 0;

2995
	mutex_lock(&event->child_mutex);
2996
	total += perf_event_read(event);
2997 2998 2999 3000 3001 3002
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3003
		total += perf_event_read(child);
3004 3005 3006
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3007
	mutex_unlock(&event->child_mutex);
3008 3009 3010

	return total;
}
3011
EXPORT_SYMBOL_GPL(perf_event_read_value);
3012

3013
static int perf_event_read_group(struct perf_event *event,
3014 3015
				   u64 read_format, char __user *buf)
{
3016
	struct perf_event *leader = event->group_leader, *sub;
3017 3018
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3019
	u64 values[5];
3020
	u64 count, enabled, running;
3021

3022
	mutex_lock(&ctx->mutex);
3023
	count = perf_event_read_value(leader, &enabled, &running);
3024 3025

	values[n++] = 1 + leader->nr_siblings;
3026 3027 3028 3029
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3030 3031 3032
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3033 3034 3035 3036

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3037
		goto unlock;
3038

3039
	ret = size;
3040

3041
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3042
		n = 0;
3043

3044
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3045 3046 3047 3048 3049
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3050
		if (copy_to_user(buf + ret, values, size)) {
3051 3052 3053
			ret = -EFAULT;
			goto unlock;
		}
3054 3055

		ret += size;
3056
	}
3057 3058
unlock:
	mutex_unlock(&ctx->mutex);
3059

3060
	return ret;
3061 3062
}

3063
static int perf_event_read_one(struct perf_event *event,
3064 3065
				 u64 read_format, char __user *buf)
{
3066
	u64 enabled, running;
3067 3068 3069
	u64 values[4];
	int n = 0;

3070 3071 3072 3073 3074
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3075
	if (read_format & PERF_FORMAT_ID)
3076
		values[n++] = primary_event_id(event);
3077 3078 3079 3080 3081 3082 3083

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3084
/*
3085
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3086 3087
 */
static ssize_t
3088
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3089
{
3090
	u64 read_format = event->attr.read_format;
3091
	int ret;
T
Thomas Gleixner 已提交
3092

3093
	/*
3094
	 * Return end-of-file for a read on a event that is in
3095 3096 3097
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3098
	if (event->state == PERF_EVENT_STATE_ERROR)
3099 3100
		return 0;

3101
	if (count < event->read_size)
3102 3103
		return -ENOSPC;

3104
	WARN_ON_ONCE(event->ctx->parent_ctx);
3105
	if (read_format & PERF_FORMAT_GROUP)
3106
		ret = perf_event_read_group(event, read_format, buf);
3107
	else
3108
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3109

3110
	return ret;
T
Thomas Gleixner 已提交
3111 3112 3113 3114 3115
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3116
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3117

3118
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3119 3120 3121 3122
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3123
	struct perf_event *event = file->private_data;
3124
	struct ring_buffer *rb;
3125
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3144
	rcu_read_lock();
3145
	rb = rcu_dereference(event->rb);
3146 3147
	if (rb) {
		ring_buffer_attach(event, rb);
3148
		events = atomic_xchg(&rb->poll, 0);
3149
	}
P
Peter Zijlstra 已提交
3150
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3151

3152 3153
	mutex_unlock(&event->mmap_mutex);

3154
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3155 3156 3157 3158

	return events;
}

3159
static void perf_event_reset(struct perf_event *event)
3160
{
3161
	(void)perf_event_read(event);
3162
	local64_set(&event->count, 0);
3163
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3164 3165
}

3166
/*
3167 3168 3169 3170
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3171
 */
3172 3173
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3174
{
3175
	struct perf_event *child;
P
Peter Zijlstra 已提交
3176

3177 3178 3179 3180
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3181
		func(child);
3182
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3183 3184
}

3185 3186
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3187
{
3188 3189
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3190

3191 3192
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3193
	event = event->group_leader;
3194

3195 3196
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3197
		perf_event_for_each_child(sibling, func);
3198
	mutex_unlock(&ctx->mutex);
3199 3200
}

3201
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3202
{
3203
	struct perf_event_context *ctx = event->ctx;
3204 3205 3206
	int ret = 0;
	u64 value;

3207
	if (!is_sampling_event(event))
3208 3209
		return -EINVAL;

3210
	if (copy_from_user(&value, arg, sizeof(value)))
3211 3212 3213 3214 3215
		return -EFAULT;

	if (!value)
		return -EINVAL;

3216
	raw_spin_lock_irq(&ctx->lock);
3217 3218
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3219 3220 3221 3222
			ret = -EINVAL;
			goto unlock;
		}

3223
		event->attr.sample_freq = value;
3224
	} else {
3225 3226
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3227 3228
	}
unlock:
3229
	raw_spin_unlock_irq(&ctx->lock);
3230 3231 3232 3233

	return ret;
}

3234 3235
static const struct file_operations perf_fops;

3236
static struct file *perf_fget_light(int fd, int *fput_needed)
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

3250
	return file;
3251 3252 3253 3254
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3255
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3256

3257 3258
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3259 3260
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3261
	u32 flags = arg;
3262 3263

	switch (cmd) {
3264 3265
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3266
		break;
3267 3268
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3269
		break;
3270 3271
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3272
		break;
P
Peter Zijlstra 已提交
3273

3274 3275
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3276

3277 3278
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3279

3280
	case PERF_EVENT_IOC_SET_OUTPUT:
3281
	{
3282
		struct file *output_file = NULL;
3283 3284 3285 3286 3287
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
3288 3289 3290 3291
			output_file = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_file))
				return PTR_ERR(output_file);
			output_event = output_file->private_data;
3292 3293 3294 3295
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
3296
			fput_light(output_file, fput_needed);
3297 3298 3299

		return ret;
	}
3300

L
Li Zefan 已提交
3301 3302 3303
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3304
	default:
P
Peter Zijlstra 已提交
3305
		return -ENOTTY;
3306
	}
P
Peter Zijlstra 已提交
3307 3308

	if (flags & PERF_IOC_FLAG_GROUP)
3309
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3310
	else
3311
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3312 3313

	return 0;
3314 3315
}

3316
int perf_event_task_enable(void)
3317
{
3318
	struct perf_event *event;
3319

3320 3321 3322 3323
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3324 3325 3326 3327

	return 0;
}

3328
int perf_event_task_disable(void)
3329
{
3330
	struct perf_event *event;
3331

3332 3333 3334 3335
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3336 3337 3338 3339

	return 0;
}

3340
static int perf_event_index(struct perf_event *event)
3341
{
P
Peter Zijlstra 已提交
3342 3343 3344
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3345
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3346 3347
		return 0;

3348
	return event->pmu->event_idx(event);
3349 3350
}

3351
static void calc_timer_values(struct perf_event *event,
3352
				u64 *now,
3353 3354
				u64 *enabled,
				u64 *running)
3355
{
3356
	u64 ctx_time;
3357

3358 3359
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3360 3361 3362 3363
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3364
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3365 3366 3367
{
}

3368 3369 3370 3371 3372
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3373
void perf_event_update_userpage(struct perf_event *event)
3374
{
3375
	struct perf_event_mmap_page *userpg;
3376
	struct ring_buffer *rb;
3377
	u64 enabled, running, now;
3378 3379

	rcu_read_lock();
3380 3381 3382 3383 3384 3385 3386 3387 3388
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3389
	calc_timer_values(event, &now, &enabled, &running);
3390 3391
	rb = rcu_dereference(event->rb);
	if (!rb)
3392 3393
		goto unlock;

3394
	userpg = rb->user_page;
3395

3396 3397 3398 3399 3400
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3401
	++userpg->lock;
3402
	barrier();
3403
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3404
	userpg->offset = perf_event_count(event);
3405
	if (userpg->index)
3406
		userpg->offset -= local64_read(&event->hw.prev_count);
3407

3408
	userpg->time_enabled = enabled +
3409
			atomic64_read(&event->child_total_time_enabled);
3410

3411
	userpg->time_running = running +
3412
			atomic64_read(&event->child_total_time_running);
3413

3414
	arch_perf_update_userpage(userpg, now);
3415

3416
	barrier();
3417
	++userpg->lock;
3418
	preempt_enable();
3419
unlock:
3420
	rcu_read_unlock();
3421 3422
}

3423 3424 3425
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3426
	struct ring_buffer *rb;
3427 3428 3429 3430 3431 3432 3433 3434 3435
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3436 3437
	rb = rcu_dereference(event->rb);
	if (!rb)
3438 3439 3440 3441 3442
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3443
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3495 3496 3497 3498
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3499
		wake_up_all(&event->waitq);
3500 3501

unlock:
3502 3503 3504
	rcu_read_unlock();
}

3505
static void rb_free_rcu(struct rcu_head *rcu_head)
3506
{
3507
	struct ring_buffer *rb;
3508

3509 3510
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3511 3512
}

3513
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3514
{
3515
	struct ring_buffer *rb;
3516

3517
	rcu_read_lock();
3518 3519 3520 3521
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3522 3523 3524
	}
	rcu_read_unlock();

3525
	return rb;
3526 3527
}

3528
static void ring_buffer_put(struct ring_buffer *rb)
3529
{
3530 3531 3532
	struct perf_event *event, *n;
	unsigned long flags;

3533
	if (!atomic_dec_and_test(&rb->refcount))
3534
		return;
3535

3536 3537 3538 3539 3540 3541 3542
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3543
	call_rcu(&rb->rcu_head, rb_free_rcu);
3544 3545 3546 3547
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3548
	struct perf_event *event = vma->vm_file->private_data;
3549

3550
	atomic_inc(&event->mmap_count);
3551 3552 3553 3554
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3555
	struct perf_event *event = vma->vm_file->private_data;
3556

3557
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3558
		unsigned long size = perf_data_size(event->rb);
3559
		struct user_struct *user = event->mmap_user;
3560
		struct ring_buffer *rb = event->rb;
3561

3562
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3563
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3564
		rcu_assign_pointer(event->rb, NULL);
3565
		ring_buffer_detach(event, rb);
3566
		mutex_unlock(&event->mmap_mutex);
3567

3568
		ring_buffer_put(rb);
3569
		free_uid(user);
3570
	}
3571 3572
}

3573
static const struct vm_operations_struct perf_mmap_vmops = {
3574 3575 3576 3577
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3578 3579 3580 3581
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3582
	struct perf_event *event = file->private_data;
3583
	unsigned long user_locked, user_lock_limit;
3584
	struct user_struct *user = current_user();
3585
	unsigned long locked, lock_limit;
3586
	struct ring_buffer *rb;
3587 3588
	unsigned long vma_size;
	unsigned long nr_pages;
3589
	long user_extra, extra;
3590
	int ret = 0, flags = 0;
3591

3592 3593 3594
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3595
	 * same rb.
3596 3597 3598 3599
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3600
	if (!(vma->vm_flags & VM_SHARED))
3601
		return -EINVAL;
3602 3603 3604 3605

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3606
	/*
3607
	 * If we have rb pages ensure they're a power-of-two number, so we
3608 3609 3610
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3611 3612
		return -EINVAL;

3613
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3614 3615
		return -EINVAL;

3616 3617
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3618

3619 3620
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3621 3622 3623
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3624
		else
3625 3626 3627 3628
			ret = -EINVAL;
		goto unlock;
	}

3629
	user_extra = nr_pages + 1;
3630
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3631 3632 3633 3634 3635 3636

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3637
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3638

3639 3640 3641
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3642

3643
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3644
	lock_limit >>= PAGE_SHIFT;
3645
	locked = vma->vm_mm->pinned_vm + extra;
3646

3647 3648
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3649 3650 3651
		ret = -EPERM;
		goto unlock;
	}
3652

3653
	WARN_ON(event->rb);
3654

3655
	if (vma->vm_flags & VM_WRITE)
3656
		flags |= RING_BUFFER_WRITABLE;
3657

3658 3659 3660 3661
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3662
	if (!rb) {
3663
		ret = -ENOMEM;
3664
		goto unlock;
3665
	}
3666
	rcu_assign_pointer(event->rb, rb);
3667

3668 3669 3670
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3671
	vma->vm_mm->pinned_vm += event->mmap_locked;
3672

3673 3674
	perf_event_update_userpage(event);

3675
unlock:
3676 3677
	if (!ret)
		atomic_inc(&event->mmap_count);
3678
	mutex_unlock(&event->mmap_mutex);
3679 3680 3681

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3682 3683

	return ret;
3684 3685
}

P
Peter Zijlstra 已提交
3686 3687 3688
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3689
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3690 3691 3692
	int retval;

	mutex_lock(&inode->i_mutex);
3693
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3694 3695 3696 3697 3698 3699 3700 3701
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3702
static const struct file_operations perf_fops = {
3703
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3704 3705 3706
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3707 3708
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3709
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3710
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3711 3712
};

3713
/*
3714
 * Perf event wakeup
3715 3716 3717 3718 3719
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3720
void perf_event_wakeup(struct perf_event *event)
3721
{
3722
	ring_buffer_wakeup(event);
3723

3724 3725 3726
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3727
	}
3728 3729
}

3730
static void perf_pending_event(struct irq_work *entry)
3731
{
3732 3733
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3734

3735 3736 3737
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3738 3739
	}

3740 3741 3742
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3743 3744 3745
	}
}

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3767 3768 3769
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3797 3798 3799
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3826 3827 3828
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3829 3830 3831 3832 3833
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3834
static void perf_output_read_one(struct perf_output_handle *handle,
3835 3836
				 struct perf_event *event,
				 u64 enabled, u64 running)
3837
{
3838
	u64 read_format = event->attr.read_format;
3839 3840 3841
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3842
	values[n++] = perf_event_count(event);
3843
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3844
		values[n++] = enabled +
3845
			atomic64_read(&event->child_total_time_enabled);
3846 3847
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3848
		values[n++] = running +
3849
			atomic64_read(&event->child_total_time_running);
3850 3851
	}
	if (read_format & PERF_FORMAT_ID)
3852
		values[n++] = primary_event_id(event);
3853

3854
	__output_copy(handle, values, n * sizeof(u64));
3855 3856 3857
}

/*
3858
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3859 3860
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3861 3862
			    struct perf_event *event,
			    u64 enabled, u64 running)
3863
{
3864 3865
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3866 3867 3868 3869 3870 3871
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3872
		values[n++] = enabled;
3873 3874

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3875
		values[n++] = running;
3876

3877
	if (leader != event)
3878 3879
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3880
	values[n++] = perf_event_count(leader);
3881
	if (read_format & PERF_FORMAT_ID)
3882
		values[n++] = primary_event_id(leader);
3883

3884
	__output_copy(handle, values, n * sizeof(u64));
3885

3886
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3887 3888
		n = 0;

3889
		if (sub != event)
3890 3891
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3892
		values[n++] = perf_event_count(sub);
3893
		if (read_format & PERF_FORMAT_ID)
3894
			values[n++] = primary_event_id(sub);
3895

3896
		__output_copy(handle, values, n * sizeof(u64));
3897 3898 3899
	}
}

3900 3901 3902
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3903
static void perf_output_read(struct perf_output_handle *handle,
3904
			     struct perf_event *event)
3905
{
3906
	u64 enabled = 0, running = 0, now;
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3918
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3919
		calc_timer_values(event, &now, &enabled, &running);
3920

3921
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3922
		perf_output_read_group(handle, event, enabled, running);
3923
	else
3924
		perf_output_read_one(handle, event, enabled, running);
3925 3926
}

3927 3928 3929
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3930
			struct perf_event *event)
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3961
		perf_output_read(handle, event);
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3972
			__output_copy(handle, data->callchain, size);
3973 3974 3975 3976 3977 3978 3979 3980 3981
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3982 3983
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4027 4028 4029 4030
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4031
			 struct perf_event *event,
4032
			 struct pt_regs *regs)
4033
{
4034
	u64 sample_type = event->attr.sample_type;
4035

4036
	header->type = PERF_RECORD_SAMPLE;
4037
	header->size = sizeof(*header) + event->header_size;
4038 4039 4040

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4041

4042
	__perf_event_header__init_id(header, data, event);
4043

4044
	if (sample_type & PERF_SAMPLE_IP)
4045 4046
		data->ip = perf_instruction_pointer(regs);

4047
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4048
		int size = 1;
4049

4050
		data->callchain = perf_callchain(event, regs);
4051 4052 4053 4054 4055

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4056 4057
	}

4058
	if (sample_type & PERF_SAMPLE_RAW) {
4059 4060 4061 4062 4063 4064 4065 4066
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4067
		header->size += size;
4068
	}
4069 4070 4071 4072 4073 4074 4075 4076 4077

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4078
}
4079

4080
static void perf_event_output(struct perf_event *event,
4081 4082 4083 4084 4085
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4086

4087 4088 4089
	/* protect the callchain buffers */
	rcu_read_lock();

4090
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4091

4092
	if (perf_output_begin(&handle, event, header.size))
4093
		goto exit;
4094

4095
	perf_output_sample(&handle, &header, data, event);
4096

4097
	perf_output_end(&handle);
4098 4099 4100

exit:
	rcu_read_unlock();
4101 4102
}

4103
/*
4104
 * read event_id
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4115
perf_event_read_event(struct perf_event *event,
4116 4117 4118
			struct task_struct *task)
{
	struct perf_output_handle handle;
4119
	struct perf_sample_data sample;
4120
	struct perf_read_event read_event = {
4121
		.header = {
4122
			.type = PERF_RECORD_READ,
4123
			.misc = 0,
4124
			.size = sizeof(read_event) + event->read_size,
4125
		},
4126 4127
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4128
	};
4129
	int ret;
4130

4131
	perf_event_header__init_id(&read_event.header, &sample, event);
4132
	ret = perf_output_begin(&handle, event, read_event.header.size);
4133 4134 4135
	if (ret)
		return;

4136
	perf_output_put(&handle, read_event);
4137
	perf_output_read(&handle, event);
4138
	perf_event__output_id_sample(event, &handle, &sample);
4139

4140 4141 4142
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4143
/*
P
Peter Zijlstra 已提交
4144 4145
 * task tracking -- fork/exit
 *
4146
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4147 4148
 */

P
Peter Zijlstra 已提交
4149
struct perf_task_event {
4150
	struct task_struct		*task;
4151
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4152 4153 4154 4155 4156 4157

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4158 4159
		u32				tid;
		u32				ptid;
4160
		u64				time;
4161
	} event_id;
P
Peter Zijlstra 已提交
4162 4163
};

4164
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4165
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4166 4167
{
	struct perf_output_handle handle;
4168
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4169
	struct task_struct *task = task_event->task;
4170
	int ret, size = task_event->event_id.header.size;
4171

4172
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4173

4174
	ret = perf_output_begin(&handle, event,
4175
				task_event->event_id.header.size);
4176
	if (ret)
4177
		goto out;
P
Peter Zijlstra 已提交
4178

4179 4180
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4181

4182 4183
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4184

4185
	perf_output_put(&handle, task_event->event_id);
4186

4187 4188
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4189
	perf_output_end(&handle);
4190 4191
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4192 4193
}

4194
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4195
{
P
Peter Zijlstra 已提交
4196
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4197 4198
		return 0;

4199
	if (!event_filter_match(event))
4200 4201
		return 0;

4202 4203
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4204 4205 4206 4207 4208
		return 1;

	return 0;
}

4209
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4210
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4211
{
4212
	struct perf_event *event;
P
Peter Zijlstra 已提交
4213

4214 4215 4216
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4217 4218 4219
	}
}

4220
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4221 4222
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4223
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4224
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4225
	int ctxn;
P
Peter Zijlstra 已提交
4226

4227
	rcu_read_lock();
P
Peter Zijlstra 已提交
4228
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4229
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4230 4231
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4232
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4233 4234 4235 4236 4237

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4238
				goto next;
P
Peter Zijlstra 已提交
4239 4240 4241 4242
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4243 4244
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4245
	}
P
Peter Zijlstra 已提交
4246 4247 4248
	rcu_read_unlock();
}

4249 4250
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4251
			      int new)
P
Peter Zijlstra 已提交
4252
{
P
Peter Zijlstra 已提交
4253
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4254

4255 4256 4257
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4258 4259
		return;

P
Peter Zijlstra 已提交
4260
	task_event = (struct perf_task_event){
4261 4262
		.task	  = task,
		.task_ctx = task_ctx,
4263
		.event_id    = {
P
Peter Zijlstra 已提交
4264
			.header = {
4265
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4266
				.misc = 0,
4267
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4268
			},
4269 4270
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4271 4272
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4273
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4274 4275 4276
		},
	};

4277
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4278 4279
}

4280
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4281
{
4282
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4283 4284
}

4285 4286 4287 4288 4289
/*
 * comm tracking
 */

struct perf_comm_event {
4290 4291
	struct task_struct	*task;
	char			*comm;
4292 4293 4294 4295 4296 4297 4298
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4299
	} event_id;
4300 4301
};

4302
static void perf_event_comm_output(struct perf_event *event,
4303 4304 4305
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4306
	struct perf_sample_data sample;
4307
	int size = comm_event->event_id.header.size;
4308 4309 4310 4311
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4312
				comm_event->event_id.header.size);
4313 4314

	if (ret)
4315
		goto out;
4316

4317 4318
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4319

4320
	perf_output_put(&handle, comm_event->event_id);
4321
	__output_copy(&handle, comm_event->comm,
4322
				   comm_event->comm_size);
4323 4324 4325

	perf_event__output_id_sample(event, &handle, &sample);

4326
	perf_output_end(&handle);
4327 4328
out:
	comm_event->event_id.header.size = size;
4329 4330
}

4331
static int perf_event_comm_match(struct perf_event *event)
4332
{
P
Peter Zijlstra 已提交
4333
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4334 4335
		return 0;

4336
	if (!event_filter_match(event))
4337 4338
		return 0;

4339
	if (event->attr.comm)
4340 4341 4342 4343 4344
		return 1;

	return 0;
}

4345
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4346 4347
				  struct perf_comm_event *comm_event)
{
4348
	struct perf_event *event;
4349

4350 4351 4352
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4353 4354 4355
	}
}

4356
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4357 4358
{
	struct perf_cpu_context *cpuctx;
4359
	struct perf_event_context *ctx;
4360
	char comm[TASK_COMM_LEN];
4361
	unsigned int size;
P
Peter Zijlstra 已提交
4362
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4363
	int ctxn;
4364

4365
	memset(comm, 0, sizeof(comm));
4366
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4367
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4368 4369 4370 4371

	comm_event->comm = comm;
	comm_event->comm_size = size;

4372
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4373
	rcu_read_lock();
P
Peter Zijlstra 已提交
4374
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4375
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4376 4377
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4378
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4379 4380 4381

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4382
			goto next;
P
Peter Zijlstra 已提交
4383 4384 4385 4386

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4387 4388
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4389
	}
4390
	rcu_read_unlock();
4391 4392
}

4393
void perf_event_comm(struct task_struct *task)
4394
{
4395
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4396 4397
	struct perf_event_context *ctx;
	int ctxn;
4398

P
Peter Zijlstra 已提交
4399 4400 4401 4402
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4403

P
Peter Zijlstra 已提交
4404 4405
		perf_event_enable_on_exec(ctx);
	}
4406

4407
	if (!atomic_read(&nr_comm_events))
4408
		return;
4409

4410
	comm_event = (struct perf_comm_event){
4411
		.task	= task,
4412 4413
		/* .comm      */
		/* .comm_size */
4414
		.event_id  = {
4415
			.header = {
4416
				.type = PERF_RECORD_COMM,
4417 4418 4419 4420 4421
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4422 4423 4424
		},
	};

4425
	perf_event_comm_event(&comm_event);
4426 4427
}

4428 4429 4430 4431 4432
/*
 * mmap tracking
 */

struct perf_mmap_event {
4433 4434 4435 4436
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4437 4438 4439 4440 4441 4442 4443 4444 4445

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4446
	} event_id;
4447 4448
};

4449
static void perf_event_mmap_output(struct perf_event *event,
4450 4451 4452
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4453
	struct perf_sample_data sample;
4454
	int size = mmap_event->event_id.header.size;
4455
	int ret;
4456

4457 4458
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4459
				mmap_event->event_id.header.size);
4460
	if (ret)
4461
		goto out;
4462

4463 4464
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4465

4466
	perf_output_put(&handle, mmap_event->event_id);
4467
	__output_copy(&handle, mmap_event->file_name,
4468
				   mmap_event->file_size);
4469 4470 4471

	perf_event__output_id_sample(event, &handle, &sample);

4472
	perf_output_end(&handle);
4473 4474
out:
	mmap_event->event_id.header.size = size;
4475 4476
}

4477
static int perf_event_mmap_match(struct perf_event *event,
4478 4479
				   struct perf_mmap_event *mmap_event,
				   int executable)
4480
{
P
Peter Zijlstra 已提交
4481
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4482 4483
		return 0;

4484
	if (!event_filter_match(event))
4485 4486
		return 0;

4487 4488
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4489 4490 4491 4492 4493
		return 1;

	return 0;
}

4494
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4495 4496
				  struct perf_mmap_event *mmap_event,
				  int executable)
4497
{
4498
	struct perf_event *event;
4499

4500
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4501
		if (perf_event_mmap_match(event, mmap_event, executable))
4502
			perf_event_mmap_output(event, mmap_event);
4503 4504 4505
	}
}

4506
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4507 4508
{
	struct perf_cpu_context *cpuctx;
4509
	struct perf_event_context *ctx;
4510 4511
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4512 4513 4514
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4515
	const char *name;
P
Peter Zijlstra 已提交
4516
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4517
	int ctxn;
4518

4519 4520
	memset(tmp, 0, sizeof(tmp));

4521
	if (file) {
4522
		/*
4523
		 * d_path works from the end of the rb backwards, so we
4524 4525 4526 4527
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4528 4529 4530 4531
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4532
		name = d_path(&file->f_path, buf, PATH_MAX);
4533 4534 4535 4536 4537
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4538 4539 4540
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4541
			goto got_name;
4542
		}
4543 4544 4545 4546

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4547 4548 4549 4550 4551 4552 4553 4554
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4555 4556
		}

4557 4558 4559 4560 4561
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4562
	size = ALIGN(strlen(name)+1, sizeof(u64));
4563 4564 4565 4566

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4567
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4568

4569
	rcu_read_lock();
P
Peter Zijlstra 已提交
4570
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4571
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4572 4573
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4574 4575
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4576 4577 4578

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4579
			goto next;
P
Peter Zijlstra 已提交
4580 4581 4582 4583 4584 4585

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4586 4587
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4588
	}
4589 4590
	rcu_read_unlock();

4591 4592 4593
	kfree(buf);
}

4594
void perf_event_mmap(struct vm_area_struct *vma)
4595
{
4596 4597
	struct perf_mmap_event mmap_event;

4598
	if (!atomic_read(&nr_mmap_events))
4599 4600 4601
		return;

	mmap_event = (struct perf_mmap_event){
4602
		.vma	= vma,
4603 4604
		/* .file_name */
		/* .file_size */
4605
		.event_id  = {
4606
			.header = {
4607
				.type = PERF_RECORD_MMAP,
4608
				.misc = PERF_RECORD_MISC_USER,
4609 4610 4611 4612
				/* .size */
			},
			/* .pid */
			/* .tid */
4613 4614
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4615
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4616 4617 4618
		},
	};

4619
	perf_event_mmap_event(&mmap_event);
4620 4621
}

4622 4623 4624 4625
/*
 * IRQ throttle logging
 */

4626
static void perf_log_throttle(struct perf_event *event, int enable)
4627 4628
{
	struct perf_output_handle handle;
4629
	struct perf_sample_data sample;
4630 4631 4632 4633 4634
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4635
		u64				id;
4636
		u64				stream_id;
4637 4638
	} throttle_event = {
		.header = {
4639
			.type = PERF_RECORD_THROTTLE,
4640 4641 4642
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4643
		.time		= perf_clock(),
4644 4645
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4646 4647
	};

4648
	if (enable)
4649
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4650

4651 4652 4653
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4654
				throttle_event.header.size);
4655 4656 4657 4658
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4659
	perf_event__output_id_sample(event, &handle, &sample);
4660 4661 4662
	perf_output_end(&handle);
}

4663
/*
4664
 * Generic event overflow handling, sampling.
4665 4666
 */

4667
static int __perf_event_overflow(struct perf_event *event,
4668 4669
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4670
{
4671 4672
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4673
	u64 seq;
4674 4675
	int ret = 0;

4676 4677 4678 4679 4680 4681 4682
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4683 4684 4685 4686 4687 4688 4689 4690 4691
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4692 4693
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4694 4695
			ret = 1;
		}
4696
	}
4697

4698
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4699
		u64 now = perf_clock();
4700
		s64 delta = now - hwc->freq_time_stamp;
4701

4702
		hwc->freq_time_stamp = now;
4703

4704
		if (delta > 0 && delta < 2*TICK_NSEC)
4705
			perf_adjust_period(event, delta, hwc->last_period, true);
4706 4707
	}

4708 4709
	/*
	 * XXX event_limit might not quite work as expected on inherited
4710
	 * events
4711 4712
	 */

4713 4714
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4715
		ret = 1;
4716
		event->pending_kill = POLL_HUP;
4717 4718
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4719 4720
	}

4721
	if (event->overflow_handler)
4722
		event->overflow_handler(event, data, regs);
4723
	else
4724
		perf_event_output(event, data, regs);
4725

P
Peter Zijlstra 已提交
4726
	if (event->fasync && event->pending_kill) {
4727 4728
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4729 4730
	}

4731
	return ret;
4732 4733
}

4734
int perf_event_overflow(struct perf_event *event,
4735 4736
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4737
{
4738
	return __perf_event_overflow(event, 1, data, regs);
4739 4740
}

4741
/*
4742
 * Generic software event infrastructure
4743 4744
 */

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4756
/*
4757 4758
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4759 4760 4761 4762
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4763
static u64 perf_swevent_set_period(struct perf_event *event)
4764
{
4765
	struct hw_perf_event *hwc = &event->hw;
4766 4767 4768 4769 4770
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4771 4772

again:
4773
	old = val = local64_read(&hwc->period_left);
4774 4775
	if (val < 0)
		return 0;
4776

4777 4778 4779
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4780
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4781
		goto again;
4782

4783
	return nr;
4784 4785
}

4786
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4787
				    struct perf_sample_data *data,
4788
				    struct pt_regs *regs)
4789
{
4790
	struct hw_perf_event *hwc = &event->hw;
4791
	int throttle = 0;
4792

4793 4794
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4795

4796 4797
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4798

4799
	for (; overflow; overflow--) {
4800
		if (__perf_event_overflow(event, throttle,
4801
					    data, regs)) {
4802 4803 4804 4805 4806 4807
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4808
		throttle = 1;
4809
	}
4810 4811
}

P
Peter Zijlstra 已提交
4812
static void perf_swevent_event(struct perf_event *event, u64 nr,
4813
			       struct perf_sample_data *data,
4814
			       struct pt_regs *regs)
4815
{
4816
	struct hw_perf_event *hwc = &event->hw;
4817

4818
	local64_add(nr, &event->count);
4819

4820 4821 4822
	if (!regs)
		return;

4823
	if (!is_sampling_event(event))
4824
		return;
4825

4826 4827 4828 4829 4830 4831
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

4832
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4833
		return perf_swevent_overflow(event, 1, data, regs);
4834

4835
	if (local64_add_negative(nr, &hwc->period_left))
4836
		return;
4837

4838
	perf_swevent_overflow(event, 0, data, regs);
4839 4840
}

4841 4842 4843
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4844
	if (event->hw.state & PERF_HES_STOPPED)
4845
		return 1;
P
Peter Zijlstra 已提交
4846

4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4858
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4859
				enum perf_type_id type,
L
Li Zefan 已提交
4860 4861 4862
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4863
{
4864
	if (event->attr.type != type)
4865
		return 0;
4866

4867
	if (event->attr.config != event_id)
4868 4869
		return 0;

4870 4871
	if (perf_exclude_event(event, regs))
		return 0;
4872 4873 4874 4875

	return 1;
}

4876 4877 4878 4879 4880 4881 4882
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4883 4884
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4885
{
4886 4887 4888 4889
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4890

4891 4892
/* For the read side: events when they trigger */
static inline struct hlist_head *
4893
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4894 4895
{
	struct swevent_hlist *hlist;
4896

4897
	hlist = rcu_dereference(swhash->swevent_hlist);
4898 4899 4900
	if (!hlist)
		return NULL;

4901 4902 4903 4904 4905
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4906
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4917
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4918 4919 4920 4921 4922
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4923 4924 4925
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4926
				    u64 nr,
4927 4928
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4929
{
4930
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4931
	struct perf_event *event;
4932 4933
	struct hlist_node *node;
	struct hlist_head *head;
4934

4935
	rcu_read_lock();
4936
	head = find_swevent_head_rcu(swhash, type, event_id);
4937 4938 4939 4940
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4941
		if (perf_swevent_match(event, type, event_id, data, regs))
4942
			perf_swevent_event(event, nr, data, regs);
4943
	}
4944 4945
end:
	rcu_read_unlock();
4946 4947
}

4948
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4949
{
4950
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4951

4952
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4953
}
I
Ingo Molnar 已提交
4954
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4955

4956
inline void perf_swevent_put_recursion_context(int rctx)
4957
{
4958
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4959

4960
	put_recursion_context(swhash->recursion, rctx);
4961
}
4962

4963
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4964
{
4965
	struct perf_sample_data data;
4966 4967
	int rctx;

4968
	preempt_disable_notrace();
4969 4970 4971
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4972

4973
	perf_sample_data_init(&data, addr, 0);
4974

4975
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4976 4977

	perf_swevent_put_recursion_context(rctx);
4978
	preempt_enable_notrace();
4979 4980
}

4981
static void perf_swevent_read(struct perf_event *event)
4982 4983 4984
{
}

P
Peter Zijlstra 已提交
4985
static int perf_swevent_add(struct perf_event *event, int flags)
4986
{
4987
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4988
	struct hw_perf_event *hwc = &event->hw;
4989 4990
	struct hlist_head *head;

4991
	if (is_sampling_event(event)) {
4992
		hwc->last_period = hwc->sample_period;
4993
		perf_swevent_set_period(event);
4994
	}
4995

P
Peter Zijlstra 已提交
4996 4997
	hwc->state = !(flags & PERF_EF_START);

4998
	head = find_swevent_head(swhash, event);
4999 5000 5001 5002 5003
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5004 5005 5006
	return 0;
}

P
Peter Zijlstra 已提交
5007
static void perf_swevent_del(struct perf_event *event, int flags)
5008
{
5009
	hlist_del_rcu(&event->hlist_entry);
5010 5011
}

P
Peter Zijlstra 已提交
5012
static void perf_swevent_start(struct perf_event *event, int flags)
5013
{
P
Peter Zijlstra 已提交
5014
	event->hw.state = 0;
5015
}
I
Ingo Molnar 已提交
5016

P
Peter Zijlstra 已提交
5017
static void perf_swevent_stop(struct perf_event *event, int flags)
5018
{
P
Peter Zijlstra 已提交
5019
	event->hw.state = PERF_HES_STOPPED;
5020 5021
}

5022 5023
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5024
swevent_hlist_deref(struct swevent_htable *swhash)
5025
{
5026 5027
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5028 5029
}

5030
static void swevent_hlist_release(struct swevent_htable *swhash)
5031
{
5032
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5033

5034
	if (!hlist)
5035 5036
		return;

5037
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5038
	kfree_rcu(hlist, rcu_head);
5039 5040 5041 5042
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5043
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5044

5045
	mutex_lock(&swhash->hlist_mutex);
5046

5047 5048
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5049

5050
	mutex_unlock(&swhash->hlist_mutex);
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5068
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5069 5070
	int err = 0;

5071
	mutex_lock(&swhash->hlist_mutex);
5072

5073
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5074 5075 5076 5077 5078 5079 5080
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5081
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5082
	}
5083
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5084
exit:
5085
	mutex_unlock(&swhash->hlist_mutex);
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5109
fail:
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5120
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5121

5122 5123 5124
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5125

5126 5127
	WARN_ON(event->parent);

5128
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5139 5140 5141 5142 5143 5144
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5145 5146 5147 5148 5149 5150 5151 5152 5153
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5154
	if (event_id >= PERF_COUNT_SW_MAX)
5155 5156 5157 5158 5159 5160 5161 5162 5163
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5164
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5165 5166 5167 5168 5169 5170
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5171 5172 5173 5174 5175
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5176
static struct pmu perf_swevent = {
5177
	.task_ctx_nr	= perf_sw_context,
5178

5179
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5180 5181 5182 5183
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5184
	.read		= perf_swevent_read,
5185 5186

	.event_idx	= perf_swevent_event_idx,
5187 5188
};

5189 5190
#ifdef CONFIG_EVENT_TRACING

5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5205 5206
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5207 5208 5209 5210
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5211 5212 5213 5214 5215 5216 5217 5218 5219
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5220 5221
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5222 5223
{
	struct perf_sample_data data;
5224 5225 5226
	struct perf_event *event;
	struct hlist_node *node;

5227 5228 5229 5230 5231
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5232
	perf_sample_data_init(&data, addr, 0);
5233 5234
	data.raw = &raw;

5235 5236
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5237
			perf_swevent_event(event, count, &data, regs);
5238
	}
5239

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5265
	perf_swevent_put_recursion_context(rctx);
5266 5267 5268
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5269
static void tp_perf_event_destroy(struct perf_event *event)
5270
{
5271
	perf_trace_destroy(event);
5272 5273
}

5274
static int perf_tp_event_init(struct perf_event *event)
5275
{
5276 5277
	int err;

5278 5279 5280
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5281 5282 5283 5284 5285 5286
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5287 5288
	err = perf_trace_init(event);
	if (err)
5289
		return err;
5290

5291
	event->destroy = tp_perf_event_destroy;
5292

5293 5294 5295 5296
	return 0;
}

static struct pmu perf_tracepoint = {
5297 5298
	.task_ctx_nr	= perf_sw_context,

5299
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5300 5301 5302 5303
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5304
	.read		= perf_swevent_read,
5305 5306

	.event_idx	= perf_swevent_event_idx,
5307 5308 5309 5310
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5311
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5312
}
L
Li Zefan 已提交
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5337
#else
L
Li Zefan 已提交
5338

5339
static inline void perf_tp_register(void)
5340 5341
{
}
L
Li Zefan 已提交
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5352
#endif /* CONFIG_EVENT_TRACING */
5353

5354
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5355
void perf_bp_event(struct perf_event *bp, void *data)
5356
{
5357 5358 5359
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5360
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5361

P
Peter Zijlstra 已提交
5362
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5363
		perf_swevent_event(bp, 1, &sample, regs);
5364 5365 5366
}
#endif

5367 5368 5369
/*
 * hrtimer based swevent callback
 */
5370

5371
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5372
{
5373 5374 5375 5376 5377
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5378

5379
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5380 5381 5382 5383

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5384
	event->pmu->read(event);
5385

5386
	perf_sample_data_init(&data, 0, event->hw.last_period);
5387 5388 5389
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5390
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5391
			if (__perf_event_overflow(event, 1, &data, regs))
5392 5393
				ret = HRTIMER_NORESTART;
	}
5394

5395 5396
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5397

5398
	return ret;
5399 5400
}

5401
static void perf_swevent_start_hrtimer(struct perf_event *event)
5402
{
5403
	struct hw_perf_event *hwc = &event->hw;
5404 5405 5406 5407
	s64 period;

	if (!is_sampling_event(event))
		return;
5408

5409 5410 5411 5412
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5413

5414 5415 5416 5417 5418
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5419
				ns_to_ktime(period), 0,
5420
				HRTIMER_MODE_REL_PINNED, 0);
5421
}
5422 5423

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5424
{
5425 5426
	struct hw_perf_event *hwc = &event->hw;

5427
	if (is_sampling_event(event)) {
5428
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5429
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5430 5431 5432

		hrtimer_cancel(&hwc->hrtimer);
	}
5433 5434
}

P
Peter Zijlstra 已提交
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5459 5460 5461 5462 5463
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5464
{
5465 5466 5467
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5468
	now = local_clock();
5469 5470
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5471 5472
}

P
Peter Zijlstra 已提交
5473
static void cpu_clock_event_start(struct perf_event *event, int flags)
5474
{
P
Peter Zijlstra 已提交
5475
	local64_set(&event->hw.prev_count, local_clock());
5476 5477 5478
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5479
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5480
{
5481 5482 5483
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5484

P
Peter Zijlstra 已提交
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5498 5499 5500 5501
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5502

5503 5504 5505 5506 5507 5508 5509 5510
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5511 5512 5513 5514 5515 5516
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5517 5518
	perf_swevent_init_hrtimer(event);

5519
	return 0;
5520 5521
}

5522
static struct pmu perf_cpu_clock = {
5523 5524
	.task_ctx_nr	= perf_sw_context,

5525
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5526 5527 5528 5529
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5530
	.read		= cpu_clock_event_read,
5531 5532

	.event_idx	= perf_swevent_event_idx,
5533 5534 5535 5536 5537 5538 5539
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5540
{
5541 5542
	u64 prev;
	s64 delta;
5543

5544 5545 5546 5547
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5548

P
Peter Zijlstra 已提交
5549
static void task_clock_event_start(struct perf_event *event, int flags)
5550
{
P
Peter Zijlstra 已提交
5551
	local64_set(&event->hw.prev_count, event->ctx->time);
5552 5553 5554
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5555
static void task_clock_event_stop(struct perf_event *event, int flags)
5556 5557 5558
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5559 5560 5561 5562 5563 5564
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5565

P
Peter Zijlstra 已提交
5566 5567 5568 5569 5570 5571
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5572 5573 5574 5575
}

static void task_clock_event_read(struct perf_event *event)
{
5576 5577 5578
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5579 5580 5581 5582 5583

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5584
{
5585 5586 5587 5588 5589 5590
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5591 5592 5593 5594 5595 5596
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5597 5598
	perf_swevent_init_hrtimer(event);

5599
	return 0;
L
Li Zefan 已提交
5600 5601
}

5602
static struct pmu perf_task_clock = {
5603 5604
	.task_ctx_nr	= perf_sw_context,

5605
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5606 5607 5608 5609
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5610
	.read		= task_clock_event_read,
5611 5612

	.event_idx	= perf_swevent_event_idx,
5613
};
L
Li Zefan 已提交
5614

P
Peter Zijlstra 已提交
5615
static void perf_pmu_nop_void(struct pmu *pmu)
5616 5617
{
}
L
Li Zefan 已提交
5618

P
Peter Zijlstra 已提交
5619
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5620
{
P
Peter Zijlstra 已提交
5621
	return 0;
L
Li Zefan 已提交
5622 5623
}

P
Peter Zijlstra 已提交
5624
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5625
{
P
Peter Zijlstra 已提交
5626
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5627 5628
}

P
Peter Zijlstra 已提交
5629 5630 5631 5632 5633
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5634

P
Peter Zijlstra 已提交
5635
static void perf_pmu_cancel_txn(struct pmu *pmu)
5636
{
P
Peter Zijlstra 已提交
5637
	perf_pmu_enable(pmu);
5638 5639
}

5640 5641 5642 5643 5644
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5645 5646 5647 5648 5649
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5650
{
P
Peter Zijlstra 已提交
5651
	struct pmu *pmu;
5652

P
Peter Zijlstra 已提交
5653 5654
	if (ctxn < 0)
		return NULL;
5655

P
Peter Zijlstra 已提交
5656 5657 5658 5659
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5660

P
Peter Zijlstra 已提交
5661
	return NULL;
5662 5663
}

5664
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5665
{
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5681

P
Peter Zijlstra 已提交
5682
	mutex_lock(&pmus_lock);
5683
	/*
P
Peter Zijlstra 已提交
5684
	 * Like a real lame refcount.
5685
	 */
5686 5687 5688
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5689
			goto out;
5690
		}
P
Peter Zijlstra 已提交
5691
	}
5692

5693
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5694 5695
out:
	mutex_unlock(&pmus_lock);
5696
}
P
Peter Zijlstra 已提交
5697
static struct idr pmu_idr;
5698

P
Peter Zijlstra 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5731
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5752
static struct lock_class_key cpuctx_mutex;
5753
static struct lock_class_key cpuctx_lock;
5754

P
Peter Zijlstra 已提交
5755
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5756
{
P
Peter Zijlstra 已提交
5757
	int cpu, ret;
5758

5759
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5760 5761 5762 5763
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5764

P
Peter Zijlstra 已提交
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5783 5784 5785 5786 5787 5788
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5789
skip_type:
P
Peter Zijlstra 已提交
5790 5791 5792
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5793

P
Peter Zijlstra 已提交
5794 5795
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5796
		goto free_dev;
5797

P
Peter Zijlstra 已提交
5798 5799 5800 5801
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5802
		__perf_event_init_context(&cpuctx->ctx);
5803
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5804
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5805
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5806
		cpuctx->ctx.pmu = pmu;
5807 5808
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5809
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5810
	}
5811

P
Peter Zijlstra 已提交
5812
got_cpu_context:
P
Peter Zijlstra 已提交
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5827
		}
5828
	}
5829

P
Peter Zijlstra 已提交
5830 5831 5832 5833 5834
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5835 5836 5837
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

5838
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5839 5840
	ret = 0;
unlock:
5841 5842
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5843
	return ret;
P
Peter Zijlstra 已提交
5844

P
Peter Zijlstra 已提交
5845 5846 5847 5848
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5849 5850 5851 5852
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5853 5854 5855
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5856 5857
}

5858
void perf_pmu_unregister(struct pmu *pmu)
5859
{
5860 5861 5862
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5863

5864
	/*
P
Peter Zijlstra 已提交
5865 5866
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5867
	 */
5868
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5869
	synchronize_rcu();
5870

P
Peter Zijlstra 已提交
5871
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5872 5873
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5874 5875
	device_del(pmu->dev);
	put_device(pmu->dev);
5876
	free_pmu_context(pmu);
5877
}
5878

5879 5880 5881 5882
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5883
	int ret;
5884 5885

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5886 5887 5888 5889

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5890
	if (pmu) {
5891
		event->pmu = pmu;
5892 5893 5894
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5895
		goto unlock;
5896
	}
P
Peter Zijlstra 已提交
5897

5898
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5899
		event->pmu = pmu;
5900
		ret = pmu->event_init(event);
5901
		if (!ret)
P
Peter Zijlstra 已提交
5902
			goto unlock;
5903

5904 5905
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5906
			goto unlock;
5907
		}
5908
	}
P
Peter Zijlstra 已提交
5909 5910
	pmu = ERR_PTR(-ENOENT);
unlock:
5911
	srcu_read_unlock(&pmus_srcu, idx);
5912

5913
	return pmu;
5914 5915
}

T
Thomas Gleixner 已提交
5916
/*
5917
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5918
 */
5919
static struct perf_event *
5920
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5921 5922 5923
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5924 5925
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5926
{
P
Peter Zijlstra 已提交
5927
	struct pmu *pmu;
5928 5929
	struct perf_event *event;
	struct hw_perf_event *hwc;
5930
	long err;
T
Thomas Gleixner 已提交
5931

5932 5933 5934 5935 5936
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5937
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5938
	if (!event)
5939
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5940

5941
	/*
5942
	 * Single events are their own group leaders, with an
5943 5944 5945
	 * empty sibling list:
	 */
	if (!group_leader)
5946
		group_leader = event;
5947

5948 5949
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5950

5951 5952 5953
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
5954 5955
	INIT_LIST_HEAD(&event->rb_entry);

5956
	init_waitqueue_head(&event->waitq);
5957
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5958

5959
	mutex_init(&event->mmap_mutex);
5960

5961
	atomic_long_set(&event->refcount, 1);
5962 5963 5964 5965 5966
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5967

5968
	event->parent		= parent_event;
5969

5970 5971
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5972

5973
	event->state		= PERF_EVENT_STATE_INACTIVE;
5974

5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5986
	if (!overflow_handler && parent_event) {
5987
		overflow_handler = parent_event->overflow_handler;
5988 5989
		context = parent_event->overflow_handler_context;
	}
5990

5991
	event->overflow_handler	= overflow_handler;
5992
	event->overflow_handler_context = context;
5993

5994
	if (attr->disabled)
5995
		event->state = PERF_EVENT_STATE_OFF;
5996

5997
	pmu = NULL;
5998

5999
	hwc = &event->hw;
6000
	hwc->sample_period = attr->sample_period;
6001
	if (attr->freq && attr->sample_freq)
6002
		hwc->sample_period = 1;
6003
	hwc->last_period = hwc->sample_period;
6004

6005
	local64_set(&hwc->period_left, hwc->sample_period);
6006

6007
	/*
6008
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6009
	 */
6010
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6011 6012
		goto done;

6013
	pmu = perf_init_event(event);
6014

6015 6016
done:
	err = 0;
6017
	if (!pmu)
6018
		err = -EINVAL;
6019 6020
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6021

6022
	if (err) {
6023 6024 6025
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6026
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6027
	}
6028

6029
	if (!event->parent) {
6030
		if (event->attach_state & PERF_ATTACH_TASK)
6031
			static_key_slow_inc(&perf_sched_events.key);
6032
		if (event->attr.mmap || event->attr.mmap_data)
6033 6034 6035 6036 6037
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6038 6039 6040 6041 6042 6043 6044
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6045 6046 6047 6048 6049 6050
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6051
	}
6052

6053
	return event;
T
Thomas Gleixner 已提交
6054 6055
}

6056 6057
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6058 6059
{
	u32 size;
6060
	int ret;
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6085 6086 6087
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6088 6089
	 */
	if (size > sizeof(*attr)) {
6090 6091 6092
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6093

6094 6095
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6096

6097
		for (; addr < end; addr++) {
6098 6099 6100 6101 6102 6103
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6104
		size = sizeof(*attr);
6105 6106 6107 6108 6109 6110
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6111
	if (attr->__reserved_1)
6112 6113 6114 6115 6116 6117 6118 6119
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6154 6155 6156 6157 6158 6159 6160 6161 6162
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6163 6164
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6165
{
6166
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6167 6168
	int ret = -EINVAL;

6169
	if (!output_event)
6170 6171
		goto set;

6172 6173
	/* don't allow circular references */
	if (event == output_event)
6174 6175
		goto out;

6176 6177 6178 6179 6180 6181 6182
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6183
	 * If its not a per-cpu rb, it must be the same task.
6184 6185 6186 6187
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6188
set:
6189
	mutex_lock(&event->mmap_mutex);
6190 6191 6192
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6193

6194
	if (output_event) {
6195 6196 6197
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6198
			goto unlock;
6199 6200
	}

6201 6202
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6203 6204
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6205
	ret = 0;
6206 6207 6208
unlock:
	mutex_unlock(&event->mmap_mutex);

6209 6210
	if (old_rb)
		ring_buffer_put(old_rb);
6211 6212 6213 6214
out:
	return ret;
}

T
Thomas Gleixner 已提交
6215
/**
6216
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6217
 *
6218
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6219
 * @pid:		target pid
I
Ingo Molnar 已提交
6220
 * @cpu:		target cpu
6221
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6222
 */
6223 6224
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6225
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6226
{
6227 6228
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6229 6230 6231
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6232
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6233
	struct task_struct *task = NULL;
6234
	struct pmu *pmu;
6235
	int event_fd;
6236
	int move_group = 0;
6237
	int fput_needed = 0;
6238
	int err;
T
Thomas Gleixner 已提交
6239

6240
	/* for future expandability... */
S
Stephane Eranian 已提交
6241
	if (flags & ~PERF_FLAG_ALL)
6242 6243
		return -EINVAL;

6244 6245 6246
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6247

6248 6249 6250 6251 6252
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6253
	if (attr.freq) {
6254
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6255 6256 6257
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6258 6259 6260 6261 6262 6263 6264 6265 6266
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6267
	event_fd = get_unused_fd();
6268 6269 6270
	if (event_fd < 0)
		return event_fd;

6271
	if (group_fd != -1) {
6272 6273 6274
		group_file = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_file)) {
			err = PTR_ERR(group_file);
6275
			goto err_fd;
6276
		}
6277
		group_leader = group_file->private_data;
6278 6279 6280 6281 6282 6283
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6284
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6285 6286 6287 6288 6289 6290 6291
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6292 6293
	get_online_cpus();

6294 6295
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6296 6297
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6298
		goto err_task;
6299 6300
	}

S
Stephane Eranian 已提交
6301 6302 6303 6304
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6305 6306 6307 6308 6309 6310
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6311
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6312 6313
	}

6314 6315 6316 6317 6318
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6342 6343 6344 6345

	/*
	 * Get the target context (task or percpu):
	 */
6346
	ctx = find_get_context(pmu, task, event->cpu);
6347 6348
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6349
		goto err_alloc;
6350 6351
	}

6352 6353 6354 6355 6356
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6357
	/*
6358
	 * Look up the group leader (we will attach this event to it):
6359
	 */
6360
	if (group_leader) {
6361
		err = -EINVAL;
6362 6363

		/*
I
Ingo Molnar 已提交
6364 6365 6366 6367
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6368
			goto err_context;
I
Ingo Molnar 已提交
6369 6370 6371
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6372
		 */
6373 6374 6375 6376 6377 6378 6379 6380
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6381 6382 6383
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6384
		if (attr.exclusive || attr.pinned)
6385
			goto err_context;
6386 6387 6388 6389 6390
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6391
			goto err_context;
6392
	}
T
Thomas Gleixner 已提交
6393

6394 6395 6396
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6397
		goto err_context;
6398
	}
6399

6400 6401 6402 6403
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6404
		perf_remove_from_context(group_leader);
6405 6406
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6407
			perf_remove_from_context(sibling);
6408 6409 6410 6411
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6412
	}
6413

6414
	WARN_ON_ONCE(ctx->parent_ctx);
6415
	mutex_lock(&ctx->mutex);
6416 6417

	if (move_group) {
6418
		synchronize_rcu();
6419
		perf_install_in_context(ctx, group_leader, event->cpu);
6420 6421 6422
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6423
			perf_install_in_context(ctx, sibling, event->cpu);
6424 6425 6426 6427
			get_ctx(ctx);
		}
	}

6428
	perf_install_in_context(ctx, event, event->cpu);
6429
	++ctx->generation;
6430
	perf_unpin_context(ctx);
6431
	mutex_unlock(&ctx->mutex);
6432

6433 6434
	put_online_cpus();

6435
	event->owner = current;
P
Peter Zijlstra 已提交
6436

6437 6438 6439
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6440

6441 6442 6443 6444
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6445
	perf_event__id_header_size(event);
6446

6447 6448 6449 6450 6451 6452
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6453 6454 6455
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6456

6457
err_context:
6458
	perf_unpin_context(ctx);
6459
	put_ctx(ctx);
6460
err_alloc:
6461
	free_event(event);
P
Peter Zijlstra 已提交
6462
err_task:
6463
	put_online_cpus();
P
Peter Zijlstra 已提交
6464 6465
	if (task)
		put_task_struct(task);
6466
err_group_fd:
6467
	fput_light(group_file, fput_needed);
6468 6469
err_fd:
	put_unused_fd(event_fd);
6470
	return err;
T
Thomas Gleixner 已提交
6471 6472
}

6473 6474 6475 6476 6477
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6478
 * @task: task to profile (NULL for percpu)
6479 6480 6481
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6482
				 struct task_struct *task,
6483 6484
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6485 6486
{
	struct perf_event_context *ctx;
6487
	struct perf_event *event;
6488
	int err;
6489

6490 6491 6492
	/*
	 * Get the target context (task or percpu):
	 */
6493

6494 6495
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6496 6497 6498 6499
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6500

M
Matt Helsley 已提交
6501
	ctx = find_get_context(event->pmu, task, cpu);
6502 6503
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6504
		goto err_free;
6505
	}
6506 6507 6508 6509 6510

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6511
	perf_unpin_context(ctx);
6512 6513 6514 6515
	mutex_unlock(&ctx->mutex);

	return event;

6516 6517 6518
err_free:
	free_event(event);
err:
6519
	return ERR_PTR(err);
6520
}
6521
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6522

6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6556
static void sync_child_event(struct perf_event *child_event,
6557
			       struct task_struct *child)
6558
{
6559
	struct perf_event *parent_event = child_event->parent;
6560
	u64 child_val;
6561

6562 6563
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6564

P
Peter Zijlstra 已提交
6565
	child_val = perf_event_count(child_event);
6566 6567 6568 6569

	/*
	 * Add back the child's count to the parent's count:
	 */
6570
	atomic64_add(child_val, &parent_event->child_count);
6571 6572 6573 6574
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6575 6576

	/*
6577
	 * Remove this event from the parent's list
6578
	 */
6579 6580 6581 6582
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6583 6584

	/*
6585
	 * Release the parent event, if this was the last
6586 6587
	 * reference to it.
	 */
6588
	put_event(parent_event);
6589 6590
}

6591
static void
6592 6593
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6594
			 struct task_struct *child)
6595
{
6596 6597 6598 6599 6600
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6601

6602
	perf_remove_from_context(child_event);
6603

6604
	/*
6605
	 * It can happen that the parent exits first, and has events
6606
	 * that are still around due to the child reference. These
6607
	 * events need to be zapped.
6608
	 */
6609
	if (child_event->parent) {
6610 6611
		sync_child_event(child_event, child);
		free_event(child_event);
6612
	}
6613 6614
}

P
Peter Zijlstra 已提交
6615
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6616
{
6617 6618
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6619
	unsigned long flags;
6620

P
Peter Zijlstra 已提交
6621
	if (likely(!child->perf_event_ctxp[ctxn])) {
6622
		perf_event_task(child, NULL, 0);
6623
		return;
P
Peter Zijlstra 已提交
6624
	}
6625

6626
	local_irq_save(flags);
6627 6628 6629 6630 6631 6632
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6633
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6634 6635 6636

	/*
	 * Take the context lock here so that if find_get_context is
6637
	 * reading child->perf_event_ctxp, we wait until it has
6638 6639
	 * incremented the context's refcount before we do put_ctx below.
	 */
6640
	raw_spin_lock(&child_ctx->lock);
6641
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6642
	child->perf_event_ctxp[ctxn] = NULL;
6643 6644 6645
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6646
	 * the events from it.
6647 6648
	 */
	unclone_ctx(child_ctx);
6649
	update_context_time(child_ctx);
6650
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6651 6652

	/*
6653 6654 6655
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6656
	 */
6657
	perf_event_task(child, child_ctx, 0);
6658

6659 6660 6661
	/*
	 * We can recurse on the same lock type through:
	 *
6662 6663
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6664 6665
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6666 6667 6668
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6669
	mutex_lock(&child_ctx->mutex);
6670

6671
again:
6672 6673 6674 6675 6676
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6677
				 group_entry)
6678
		__perf_event_exit_task(child_event, child_ctx, child);
6679 6680

	/*
6681
	 * If the last event was a group event, it will have appended all
6682 6683 6684
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6685 6686
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6687
		goto again;
6688 6689 6690 6691

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6692 6693
}

P
Peter Zijlstra 已提交
6694 6695 6696 6697 6698
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6699
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6700 6701
	int ctxn;

P
Peter Zijlstra 已提交
6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6717 6718 6719 6720
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6733
	put_event(parent);
6734

6735
	perf_group_detach(event);
6736 6737 6738 6739
	list_del_event(event, ctx);
	free_event(event);
}

6740 6741
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6742
 * perf_event_init_task below, used by fork() in case of fail.
6743
 */
6744
void perf_event_free_task(struct task_struct *task)
6745
{
P
Peter Zijlstra 已提交
6746
	struct perf_event_context *ctx;
6747
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6748
	int ctxn;
6749

P
Peter Zijlstra 已提交
6750 6751 6752 6753
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6754

P
Peter Zijlstra 已提交
6755
		mutex_lock(&ctx->mutex);
6756
again:
P
Peter Zijlstra 已提交
6757 6758 6759
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6760

P
Peter Zijlstra 已提交
6761 6762 6763
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6764

P
Peter Zijlstra 已提交
6765 6766 6767
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6768

P
Peter Zijlstra 已提交
6769
		mutex_unlock(&ctx->mutex);
6770

P
Peter Zijlstra 已提交
6771 6772
		put_ctx(ctx);
	}
6773 6774
}

6775 6776 6777 6778 6779 6780 6781 6782
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6795
	unsigned long flags;
P
Peter Zijlstra 已提交
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6808
					   child,
P
Peter Zijlstra 已提交
6809
					   group_leader, parent_event,
6810
				           NULL, NULL);
P
Peter Zijlstra 已提交
6811 6812
	if (IS_ERR(child_event))
		return child_event;
6813 6814 6815 6816 6817 6818

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6843 6844
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6845

6846 6847 6848 6849
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6850
	perf_event__id_header_size(child_event);
6851

P
Peter Zijlstra 已提交
6852 6853 6854
	/*
	 * Link it up in the child's context:
	 */
6855
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6856
	add_event_to_ctx(child_event, child_ctx);
6857
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6891 6892 6893 6894 6895
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6896
		   struct task_struct *child, int ctxn,
6897 6898 6899
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6900
	struct perf_event_context *child_ctx;
6901 6902 6903 6904

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6905 6906
	}

6907
	child_ctx = child->perf_event_ctxp[ctxn];
6908 6909 6910 6911 6912 6913 6914
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6915

6916
		child_ctx = alloc_perf_context(event->pmu, child);
6917 6918
		if (!child_ctx)
			return -ENOMEM;
6919

P
Peter Zijlstra 已提交
6920
		child->perf_event_ctxp[ctxn] = child_ctx;
6921 6922 6923 6924 6925 6926 6927 6928 6929
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6930 6931
}

6932
/*
6933
 * Initialize the perf_event context in task_struct
6934
 */
P
Peter Zijlstra 已提交
6935
int perf_event_init_context(struct task_struct *child, int ctxn)
6936
{
6937
	struct perf_event_context *child_ctx, *parent_ctx;
6938 6939
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6940
	struct task_struct *parent = current;
6941
	int inherited_all = 1;
6942
	unsigned long flags;
6943
	int ret = 0;
6944

P
Peter Zijlstra 已提交
6945
	if (likely(!parent->perf_event_ctxp[ctxn]))
6946 6947
		return 0;

6948
	/*
6949 6950
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6951
	 */
P
Peter Zijlstra 已提交
6952
	parent_ctx = perf_pin_task_context(parent, ctxn);
6953

6954 6955 6956 6957 6958 6959 6960
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6961 6962 6963 6964
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6965
	mutex_lock(&parent_ctx->mutex);
6966 6967 6968 6969 6970

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6971
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6972 6973
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6974 6975 6976
		if (ret)
			break;
	}
6977

6978 6979 6980 6981 6982 6983 6984 6985 6986
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6987
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6988 6989
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6990
		if (ret)
6991
			break;
6992 6993
	}

6994 6995 6996
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6997
	child_ctx = child->perf_event_ctxp[ctxn];
6998

6999
	if (child_ctx && inherited_all) {
7000 7001 7002
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7003 7004 7005
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7006
		 */
P
Peter Zijlstra 已提交
7007
		cloned_ctx = parent_ctx->parent_ctx;
7008 7009
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7010
			child_ctx->parent_gen = parent_ctx->parent_gen;
7011 7012 7013 7014 7015
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7016 7017
	}

P
Peter Zijlstra 已提交
7018
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7019
	mutex_unlock(&parent_ctx->mutex);
7020

7021
	perf_unpin_context(parent_ctx);
7022
	put_ctx(parent_ctx);
7023

7024
	return ret;
7025 7026
}

P
Peter Zijlstra 已提交
7027 7028 7029 7030 7031 7032 7033
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7034 7035 7036 7037
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7047 7048
static void __init perf_event_init_all_cpus(void)
{
7049
	struct swevent_htable *swhash;
7050 7051 7052
	int cpu;

	for_each_possible_cpu(cpu) {
7053 7054
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7055
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7056 7057 7058
	}
}

7059
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7060
{
P
Peter Zijlstra 已提交
7061
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7062

7063
	mutex_lock(&swhash->hlist_mutex);
7064
	if (swhash->hlist_refcount > 0) {
7065 7066
		struct swevent_hlist *hlist;

7067 7068 7069
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7070
	}
7071
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7072 7073
}

P
Peter Zijlstra 已提交
7074
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7075
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7076
{
7077 7078 7079 7080 7081 7082 7083
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7084
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7085
{
P
Peter Zijlstra 已提交
7086
	struct perf_event_context *ctx = __info;
7087
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7088

P
Peter Zijlstra 已提交
7089
	perf_pmu_rotate_stop(ctx->pmu);
7090

7091
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7092
		__perf_remove_from_context(event);
7093
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7094
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7095
}
P
Peter Zijlstra 已提交
7096 7097 7098 7099 7100 7101 7102 7103 7104

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7105
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7106 7107 7108 7109 7110 7111 7112 7113

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7114
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7115
{
7116
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7117

7118 7119 7120
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7121

P
Peter Zijlstra 已提交
7122
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7123 7124
}
#else
7125
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7126 7127
#endif

P
Peter Zijlstra 已提交
7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7148 7149 7150 7151 7152
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7153
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7154 7155

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7156
	case CPU_DOWN_FAILED:
7157
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7158 7159
		break;

P
Peter Zijlstra 已提交
7160
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7161
	case CPU_DOWN_PREPARE:
7162
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7172
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7173
{
7174 7175
	int ret;

P
Peter Zijlstra 已提交
7176 7177
	idr_init(&pmu_idr);

7178
	perf_event_init_all_cpus();
7179
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7180 7181 7182
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7183 7184
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7185
	register_reboot_notifier(&perf_reboot_notifier);
7186 7187 7188

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7189 7190 7191

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7192 7193 7194 7195 7196 7197 7198

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7199
}
P
Peter Zijlstra 已提交
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7228 7229

#ifdef CONFIG_CGROUP_PERF
7230
static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
S
Stephane Eranian 已提交
7231 7232 7233
{
	struct perf_cgroup *jc;

7234
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7247
static void perf_cgroup_destroy(struct cgroup *cont)
S
Stephane Eranian 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7263
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7264
{
7265 7266 7267 7268
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7269 7270
}

7271 7272
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7273 7274 7275 7276 7277 7278 7279 7280 7281
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7282
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7283 7284 7285
}

struct cgroup_subsys perf_subsys = {
7286 7287 7288 7289 7290
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7291
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7292 7293
};
#endif /* CONFIG_CGROUP_PERF */