core.c 173.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
39
#include <linux/mm_types.h>
T
Thomas Gleixner 已提交
40

41 42
#include "internal.h"

43 44
#include <asm/irq_regs.h>

45
struct remote_function_call {
46 47 48 49
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
83 84 85 86
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
107 108 109 110
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
111 112 113 114 115 116 117
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
118 119 120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

122 123 124 125 126 127 128
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

129 130 131 132 133 134
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
135 136 137 138
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
139
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
140
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
142

143 144 145
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
146

P
Peter Zijlstra 已提交
147 148 149 150
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

151
/*
152
 * perf event paranoia level:
153 154
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
155
 *   1 - disallow cpu events for unpriv
156
 *   2 - disallow kernel profiling for unpriv
157
 */
158
int sysctl_perf_event_paranoid __read_mostly = 1;
159

160 161
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162 163

/*
164
 * max perf event sample rate
165
 */
P
Peter Zijlstra 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
184

185
static atomic64_t perf_event_id;
186

187 188 189 190
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
191 192 193 194 195
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
196

197 198 199
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

200
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
201

202
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
203
{
204
	return "pmu";
T
Thomas Gleixner 已提交
205 206
}

207 208 209 210 211
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
212 213 214 215 216 217
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
234 235
#ifdef CONFIG_CGROUP_PERF

236 237 238 239 240
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

257
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
258
{
259
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
308 309
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
310
	/*
311 312
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
313
	 */
314
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
315 316
		return;

317 318 319 320 321 322
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
323 324 325
}

static inline void
326 327
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
328 329 330 331
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

332 333 334 335 336 337
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
338 339 340 341
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
342
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375 376
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
377 378 379 380 381 382 383 384 385

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
386 387
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
388 389 390 391 392 393 394 395 396 397 398

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
399
				WARN_ON_ONCE(cpuctx->cgrp);
400 401 402 403
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
404 405 406 407
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
408 409
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
410 411 412 413 414 415 416 417
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

418 419
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
420
{
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
443 444
}

445 446
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
447
{
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
466 467 468 469 470 471 472 473
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
474 475
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
476

477
	if (!f.file)
S
Stephane Eranian 已提交
478 479
		return -EBADF;

480
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
481 482 483 484
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
485 486 487 488

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

489
	/* must be done before we fput() the file */
490 491 492 493 494
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
495

S
Stephane Eranian 已提交
496 497 498 499 500 501 502 503 504
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
505
out:
506
	fdput(f);
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

580 581
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
582 583 584
{
}

585 586
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594 595 596 597
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
598 599
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
630
void perf_pmu_disable(struct pmu *pmu)
631
{
P
Peter Zijlstra 已提交
632 633 634
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
635 636
}

P
Peter Zijlstra 已提交
637
void perf_pmu_enable(struct pmu *pmu)
638
{
P
Peter Zijlstra 已提交
639 640 641
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
642 643
}

644 645 646 647 648 649 650
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
651
static void perf_pmu_rotate_start(struct pmu *pmu)
652
{
P
Peter Zijlstra 已提交
653
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
654
	struct list_head *head = &__get_cpu_var(rotation_list);
655

656
	WARN_ON(!irqs_disabled());
657

658 659
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
660 661
}

662
static void get_ctx(struct perf_event_context *ctx)
663
{
664
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
665 666
}

667
static void put_ctx(struct perf_event_context *ctx)
668
{
669 670 671
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
672 673
		if (ctx->task)
			put_task_struct(ctx->task);
674
		kfree_rcu(ctx, rcu_head);
675
	}
676 677
}

678
static void unclone_ctx(struct perf_event_context *ctx)
679 680 681 682 683 684 685
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

708
/*
709
 * If we inherit events we want to return the parent event id
710 711
 * to userspace.
 */
712
static u64 primary_event_id(struct perf_event *event)
713
{
714
	u64 id = event->id;
715

716 717
	if (event->parent)
		id = event->parent->id;
718 719 720 721

	return id;
}

722
/*
723
 * Get the perf_event_context for a task and lock it.
724 725 726
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
727
static struct perf_event_context *
P
Peter Zijlstra 已提交
728
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
729
{
730
	struct perf_event_context *ctx;
731 732

	rcu_read_lock();
P
Peter Zijlstra 已提交
733
retry:
P
Peter Zijlstra 已提交
734
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
735 736 737 738
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
739
		 * perf_event_task_sched_out, though the
740 741 742 743 744 745
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
746
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
747
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
748
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
749 750
			goto retry;
		}
751 752

		if (!atomic_inc_not_zero(&ctx->refcount)) {
753
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
754 755
			ctx = NULL;
		}
756 757 758 759 760 761 762 763 764 765
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
766 767
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
768
{
769
	struct perf_event_context *ctx;
770 771
	unsigned long flags;

P
Peter Zijlstra 已提交
772
	ctx = perf_lock_task_context(task, ctxn, &flags);
773 774
	if (ctx) {
		++ctx->pin_count;
775
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
776 777 778 779
	}
	return ctx;
}

780
static void perf_unpin_context(struct perf_event_context *ctx)
781 782 783
{
	unsigned long flags;

784
	raw_spin_lock_irqsave(&ctx->lock, flags);
785
	--ctx->pin_count;
786
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
787 788
}

789 790 791 792 793 794 795 796 797 798 799
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

800 801 802
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
803 804 805 806

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

807 808 809
	return ctx ? ctx->time : 0;
}

810 811
/*
 * Update the total_time_enabled and total_time_running fields for a event.
812
 * The caller of this function needs to hold the ctx->lock.
813 814 815 816 817 818 819 820 821
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
822 823 824 825 826 827 828 829 830 831 832
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
833
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
834 835
	else if (ctx->is_active)
		run_end = ctx->time;
836 837 838 839
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
840 841 842 843

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
844
		run_end = perf_event_time(event);
845 846

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
847

848 849
}

850 851 852 853 854 855 856 857 858 859 860 861
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

862 863 864 865 866 867 868 869 870
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

871
/*
872
 * Add a event from the lists for its context.
873 874
 * Must be called with ctx->mutex and ctx->lock held.
 */
875
static void
876
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
877
{
878 879
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
880 881

	/*
882 883 884
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
885
	 */
886
	if (event->group_leader == event) {
887 888
		struct list_head *list;

889 890 891
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

892 893
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
894
	}
P
Peter Zijlstra 已提交
895

896
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
897 898
		ctx->nr_cgroups++;

899 900 901
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

902
	list_add_rcu(&event->event_entry, &ctx->event_list);
903
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
904
		perf_pmu_rotate_start(ctx->pmu);
905 906
	ctx->nr_events++;
	if (event->attr.inherit_stat)
907
		ctx->nr_stat++;
908 909
}

J
Jiri Olsa 已提交
910 911 912 913 914 915 916 917 918
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

991
	event->id_header_size = size;
992 993
}

994 995
static void perf_group_attach(struct perf_event *event)
{
996
	struct perf_event *group_leader = event->group_leader, *pos;
997

P
Peter Zijlstra 已提交
998 999 1000 1001 1002 1003
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1015 1016 1017 1018 1019

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1020 1021
}

1022
/*
1023
 * Remove a event from the lists for its context.
1024
 * Must be called with ctx->mutex and ctx->lock held.
1025
 */
1026
static void
1027
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1028
{
1029
	struct perf_cpu_context *cpuctx;
1030 1031 1032 1033
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1034
		return;
1035 1036 1037

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1038
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1039
		ctx->nr_cgroups--;
1040 1041 1042 1043 1044 1045 1046 1047 1048
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1049

1050 1051 1052
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1053 1054
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1055
		ctx->nr_stat--;
1056

1057
	list_del_rcu(&event->event_entry);
1058

1059 1060
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1061

1062
	update_group_times(event);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1073 1074
}

1075
static void perf_group_detach(struct perf_event *event)
1076 1077
{
	struct perf_event *sibling, *tmp;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1094
		goto out;
1095 1096 1097 1098
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1099

1100
	/*
1101 1102
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1103
	 * to whatever list we are on.
1104
	 */
1105
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1106 1107
		if (list)
			list_move_tail(&sibling->group_entry, list);
1108
		sibling->group_leader = sibling;
1109 1110 1111

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1112
	}
1113 1114 1115 1116 1117 1118

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1119 1120
}

1121 1122 1123
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1124 1125
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1126 1127
}

1128 1129
static void
event_sched_out(struct perf_event *event,
1130
		  struct perf_cpu_context *cpuctx,
1131
		  struct perf_event_context *ctx)
1132
{
1133
	u64 tstamp = perf_event_time(event);
1134 1135 1136 1137 1138 1139 1140 1141 1142
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1143
		delta = tstamp - event->tstamp_stopped;
1144
		event->tstamp_running += delta;
1145
		event->tstamp_stopped = tstamp;
1146 1147
	}

1148
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1149
		return;
1150

1151 1152 1153 1154
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1155
	}
1156
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1157
	event->pmu->del(event, 0);
1158
	event->oncpu = -1;
1159

1160
	if (!is_software_event(event))
1161 1162
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1163 1164
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1165
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1166 1167 1168
		cpuctx->exclusive = 0;
}

1169
static void
1170
group_sched_out(struct perf_event *group_event,
1171
		struct perf_cpu_context *cpuctx,
1172
		struct perf_event_context *ctx)
1173
{
1174
	struct perf_event *event;
1175
	int state = group_event->state;
1176

1177
	event_sched_out(group_event, cpuctx, ctx);
1178 1179 1180 1181

	/*
	 * Schedule out siblings (if any):
	 */
1182 1183
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1184

1185
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1186 1187 1188
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1189
/*
1190
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1191
 *
1192
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1193 1194
 * remove it from the context list.
 */
1195
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1196
{
1197 1198
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1199
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1200

1201
	raw_spin_lock(&ctx->lock);
1202 1203
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1204 1205 1206 1207
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1208
	raw_spin_unlock(&ctx->lock);
1209 1210

	return 0;
T
Thomas Gleixner 已提交
1211 1212 1213 1214
}


/*
1215
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1216
 *
1217
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1218
 * call when the task is on a CPU.
1219
 *
1220 1221
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1222 1223
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1224
 * When called from perf_event_exit_task, it's OK because the
1225
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1226
 */
1227
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1228
{
1229
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1230 1231
	struct task_struct *task = ctx->task;

1232 1233
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1234 1235
	if (!task) {
		/*
1236
		 * Per cpu events are removed via an smp call and
1237
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1238
		 */
1239
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1240 1241 1242 1243
		return;
	}

retry:
1244 1245
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1246

1247
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1248
	/*
1249 1250
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1251
	 */
1252
	if (ctx->is_active) {
1253
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1254 1255 1256 1257
		goto retry;
	}

	/*
1258 1259
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1260
	 */
1261
	list_del_event(event, ctx);
1262
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1263 1264
}

1265
/*
1266
 * Cross CPU call to disable a performance event
1267
 */
1268
int __perf_event_disable(void *info)
1269
{
1270 1271
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1272
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1273 1274

	/*
1275 1276
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1277 1278 1279
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1280
	 */
1281
	if (ctx->task && cpuctx->task_ctx != ctx)
1282
		return -EINVAL;
1283

1284
	raw_spin_lock(&ctx->lock);
1285 1286

	/*
1287
	 * If the event is on, turn it off.
1288 1289
	 * If it is in error state, leave it in error state.
	 */
1290
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1291
		update_context_time(ctx);
S
Stephane Eranian 已提交
1292
		update_cgrp_time_from_event(event);
1293 1294 1295
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1296
		else
1297 1298
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1299 1300
	}

1301
	raw_spin_unlock(&ctx->lock);
1302 1303

	return 0;
1304 1305 1306
}

/*
1307
 * Disable a event.
1308
 *
1309 1310
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1311
 * remains valid.  This condition is satisifed when called through
1312 1313 1314 1315
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1316
 * is the current context on this CPU and preemption is disabled,
1317
 * hence we can't get into perf_event_task_sched_out for this context.
1318
 */
1319
void perf_event_disable(struct perf_event *event)
1320
{
1321
	struct perf_event_context *ctx = event->ctx;
1322 1323 1324 1325
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1326
		 * Disable the event on the cpu that it's on
1327
		 */
1328
		cpu_function_call(event->cpu, __perf_event_disable, event);
1329 1330 1331
		return;
	}

P
Peter Zijlstra 已提交
1332
retry:
1333 1334
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1335

1336
	raw_spin_lock_irq(&ctx->lock);
1337
	/*
1338
	 * If the event is still active, we need to retry the cross-call.
1339
	 */
1340
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1341
		raw_spin_unlock_irq(&ctx->lock);
1342 1343 1344 1345 1346
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1347 1348 1349 1350 1351 1352 1353
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1354 1355 1356
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1357
	}
1358
	raw_spin_unlock_irq(&ctx->lock);
1359
}
1360
EXPORT_SYMBOL_GPL(perf_event_disable);
1361

S
Stephane Eranian 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1397 1398 1399 1400
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1401
static int
1402
event_sched_in(struct perf_event *event,
1403
		 struct perf_cpu_context *cpuctx,
1404
		 struct perf_event_context *ctx)
1405
{
1406 1407
	u64 tstamp = perf_event_time(event);

1408
	if (event->state <= PERF_EVENT_STATE_OFF)
1409 1410
		return 0;

1411
	event->state = PERF_EVENT_STATE_ACTIVE;
1412
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1424 1425 1426 1427 1428
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1429
	if (event->pmu->add(event, PERF_EF_START)) {
1430 1431
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1432 1433 1434
		return -EAGAIN;
	}

1435
	event->tstamp_running += tstamp - event->tstamp_stopped;
1436

S
Stephane Eranian 已提交
1437
	perf_set_shadow_time(event, ctx, tstamp);
1438

1439
	if (!is_software_event(event))
1440
		cpuctx->active_oncpu++;
1441
	ctx->nr_active++;
1442 1443
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1444

1445
	if (event->attr.exclusive)
1446 1447
		cpuctx->exclusive = 1;

1448 1449 1450
	return 0;
}

1451
static int
1452
group_sched_in(struct perf_event *group_event,
1453
	       struct perf_cpu_context *cpuctx,
1454
	       struct perf_event_context *ctx)
1455
{
1456
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1457
	struct pmu *pmu = group_event->pmu;
1458 1459
	u64 now = ctx->time;
	bool simulate = false;
1460

1461
	if (group_event->state == PERF_EVENT_STATE_OFF)
1462 1463
		return 0;

P
Peter Zijlstra 已提交
1464
	pmu->start_txn(pmu);
1465

1466
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1467
		pmu->cancel_txn(pmu);
1468
		return -EAGAIN;
1469
	}
1470 1471 1472 1473

	/*
	 * Schedule in siblings as one group (if any):
	 */
1474
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1475
		if (event_sched_in(event, cpuctx, ctx)) {
1476
			partial_group = event;
1477 1478 1479 1480
			goto group_error;
		}
	}

1481
	if (!pmu->commit_txn(pmu))
1482
		return 0;
1483

1484 1485 1486 1487
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1498
	 */
1499 1500
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1501 1502 1503 1504 1505 1506 1507 1508
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1509
	}
1510
	event_sched_out(group_event, cpuctx, ctx);
1511

P
Peter Zijlstra 已提交
1512
	pmu->cancel_txn(pmu);
1513

1514 1515 1516
	return -EAGAIN;
}

1517
/*
1518
 * Work out whether we can put this event group on the CPU now.
1519
 */
1520
static int group_can_go_on(struct perf_event *event,
1521 1522 1523 1524
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1525
	 * Groups consisting entirely of software events can always go on.
1526
	 */
1527
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1528 1529 1530
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1531
	 * events can go on.
1532 1533 1534 1535 1536
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1537
	 * events on the CPU, it can't go on.
1538
	 */
1539
	if (event->attr.exclusive && cpuctx->active_oncpu)
1540 1541 1542 1543 1544 1545 1546 1547
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1548 1549
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1550
{
1551 1552
	u64 tstamp = perf_event_time(event);

1553
	list_add_event(event, ctx);
1554
	perf_group_attach(event);
1555 1556 1557
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1558 1559
}

1560 1561 1562 1563 1564 1565
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1579
/*
1580
 * Cross CPU call to install and enable a performance event
1581 1582
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1583
 */
1584
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1585
{
1586 1587
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1588
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1589 1590 1591
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1592
	perf_ctx_lock(cpuctx, task_ctx);
1593
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1594 1595

	/*
1596
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1597
	 */
1598
	if (task_ctx)
1599
		task_ctx_sched_out(task_ctx);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1614 1615
		task = task_ctx->task;
	}
1616

1617
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1618

1619
	update_context_time(ctx);
S
Stephane Eranian 已提交
1620 1621 1622 1623 1624 1625
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1626

1627
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1628

1629
	/*
1630
	 * Schedule everything back in
1631
	 */
1632
	perf_event_sched_in(cpuctx, task_ctx, task);
1633 1634 1635

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1636 1637

	return 0;
T
Thomas Gleixner 已提交
1638 1639 1640
}

/*
1641
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1642
 *
1643 1644
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1645
 *
1646
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1647 1648 1649 1650
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1651 1652
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1653 1654 1655 1656
			int cpu)
{
	struct task_struct *task = ctx->task;

1657 1658
	lockdep_assert_held(&ctx->mutex);

1659
	event->ctx = ctx;
1660 1661
	if (event->cpu != -1)
		event->cpu = cpu;
1662

T
Thomas Gleixner 已提交
1663 1664
	if (!task) {
		/*
1665
		 * Per cpu events are installed via an smp call and
1666
		 * the install is always successful.
T
Thomas Gleixner 已提交
1667
		 */
1668
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1669 1670 1671 1672
		return;
	}

retry:
1673 1674
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1675

1676
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1677
	/*
1678 1679
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1680
	 */
1681
	if (ctx->is_active) {
1682
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1683 1684 1685 1686
		goto retry;
	}

	/*
1687 1688
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1689
	 */
1690
	add_event_to_ctx(event, ctx);
1691
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1692 1693
}

1694
/*
1695
 * Put a event into inactive state and update time fields.
1696 1697 1698 1699 1700 1701
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1702
static void __perf_event_mark_enabled(struct perf_event *event)
1703
{
1704
	struct perf_event *sub;
1705
	u64 tstamp = perf_event_time(event);
1706

1707
	event->state = PERF_EVENT_STATE_INACTIVE;
1708
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1709
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1710 1711
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1712
	}
1713 1714
}

1715
/*
1716
 * Cross CPU call to enable a performance event
1717
 */
1718
static int __perf_event_enable(void *info)
1719
{
1720 1721 1722
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1723
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1724
	int err;
1725

1726 1727
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1728

1729
	raw_spin_lock(&ctx->lock);
1730
	update_context_time(ctx);
1731

1732
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1733
		goto unlock;
S
Stephane Eranian 已提交
1734 1735 1736 1737

	/*
	 * set current task's cgroup time reference point
	 */
1738
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1739

1740
	__perf_event_mark_enabled(event);
1741

S
Stephane Eranian 已提交
1742 1743 1744
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1745
		goto unlock;
S
Stephane Eranian 已提交
1746
	}
1747

1748
	/*
1749
	 * If the event is in a group and isn't the group leader,
1750
	 * then don't put it on unless the group is on.
1751
	 */
1752
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1753
		goto unlock;
1754

1755
	if (!group_can_go_on(event, cpuctx, 1)) {
1756
		err = -EEXIST;
1757
	} else {
1758
		if (event == leader)
1759
			err = group_sched_in(event, cpuctx, ctx);
1760
		else
1761
			err = event_sched_in(event, cpuctx, ctx);
1762
	}
1763 1764 1765

	if (err) {
		/*
1766
		 * If this event can't go on and it's part of a
1767 1768
		 * group, then the whole group has to come off.
		 */
1769
		if (leader != event)
1770
			group_sched_out(leader, cpuctx, ctx);
1771
		if (leader->attr.pinned) {
1772
			update_group_times(leader);
1773
			leader->state = PERF_EVENT_STATE_ERROR;
1774
		}
1775 1776
	}

P
Peter Zijlstra 已提交
1777
unlock:
1778
	raw_spin_unlock(&ctx->lock);
1779 1780

	return 0;
1781 1782 1783
}

/*
1784
 * Enable a event.
1785
 *
1786 1787
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1788
 * remains valid.  This condition is satisfied when called through
1789 1790
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1791
 */
1792
void perf_event_enable(struct perf_event *event)
1793
{
1794
	struct perf_event_context *ctx = event->ctx;
1795 1796 1797 1798
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1799
		 * Enable the event on the cpu that it's on
1800
		 */
1801
		cpu_function_call(event->cpu, __perf_event_enable, event);
1802 1803 1804
		return;
	}

1805
	raw_spin_lock_irq(&ctx->lock);
1806
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1807 1808 1809
		goto out;

	/*
1810 1811
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1812 1813 1814 1815
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1816 1817
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1818

P
Peter Zijlstra 已提交
1819
retry:
1820
	if (!ctx->is_active) {
1821
		__perf_event_mark_enabled(event);
1822 1823 1824
		goto out;
	}

1825
	raw_spin_unlock_irq(&ctx->lock);
1826 1827 1828

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1829

1830
	raw_spin_lock_irq(&ctx->lock);
1831 1832

	/*
1833
	 * If the context is active and the event is still off,
1834 1835
	 * we need to retry the cross-call.
	 */
1836 1837 1838 1839 1840 1841
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1842
		goto retry;
1843
	}
1844

P
Peter Zijlstra 已提交
1845
out:
1846
	raw_spin_unlock_irq(&ctx->lock);
1847
}
1848
EXPORT_SYMBOL_GPL(perf_event_enable);
1849

1850
int perf_event_refresh(struct perf_event *event, int refresh)
1851
{
1852
	/*
1853
	 * not supported on inherited events
1854
	 */
1855
	if (event->attr.inherit || !is_sampling_event(event))
1856 1857
		return -EINVAL;

1858 1859
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1860 1861

	return 0;
1862
}
1863
EXPORT_SYMBOL_GPL(perf_event_refresh);
1864

1865 1866 1867
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1868
{
1869
	struct perf_event *event;
1870
	int is_active = ctx->is_active;
1871

1872
	ctx->is_active &= ~event_type;
1873
	if (likely(!ctx->nr_events))
1874 1875
		return;

1876
	update_context_time(ctx);
S
Stephane Eranian 已提交
1877
	update_cgrp_time_from_cpuctx(cpuctx);
1878
	if (!ctx->nr_active)
1879
		return;
1880

P
Peter Zijlstra 已提交
1881
	perf_pmu_disable(ctx->pmu);
1882
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1883 1884
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1885
	}
1886

1887
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1888
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1889
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1890
	}
P
Peter Zijlstra 已提交
1891
	perf_pmu_enable(ctx->pmu);
1892 1893
}

1894 1895 1896
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1897 1898 1899 1900
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1901
 * in them directly with an fd; we can only enable/disable all
1902
 * events via prctl, or enable/disable all events in a family
1903 1904
 * via ioctl, which will have the same effect on both contexts.
 */
1905 1906
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1907 1908
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1909
		&& ctx1->parent_gen == ctx2->parent_gen
1910
		&& !ctx1->pin_count && !ctx2->pin_count;
1911 1912
}

1913 1914
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1915 1916 1917
{
	u64 value;

1918
	if (!event->attr.inherit_stat)
1919 1920 1921
		return;

	/*
1922
	 * Update the event value, we cannot use perf_event_read()
1923 1924
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1925
	 * we know the event must be on the current CPU, therefore we
1926 1927
	 * don't need to use it.
	 */
1928 1929
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1930 1931
		event->pmu->read(event);
		/* fall-through */
1932

1933 1934
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1935 1936 1937 1938 1939 1940 1941
		break;

	default:
		break;
	}

	/*
1942
	 * In order to keep per-task stats reliable we need to flip the event
1943 1944
	 * values when we flip the contexts.
	 */
1945 1946 1947
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1948

1949 1950
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1951

1952
	/*
1953
	 * Since we swizzled the values, update the user visible data too.
1954
	 */
1955 1956
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1957 1958 1959 1960 1961
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1962 1963
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1964
{
1965
	struct perf_event *event, *next_event;
1966 1967 1968 1969

	if (!ctx->nr_stat)
		return;

1970 1971
	update_context_time(ctx);

1972 1973
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1974

1975 1976
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1977

1978 1979
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1980

1981
		__perf_event_sync_stat(event, next_event);
1982

1983 1984
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1985 1986 1987
	}
}

1988 1989
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1990
{
P
Peter Zijlstra 已提交
1991
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1992 1993
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1994
	struct perf_cpu_context *cpuctx;
1995
	int do_switch = 1;
T
Thomas Gleixner 已提交
1996

P
Peter Zijlstra 已提交
1997 1998
	if (likely(!ctx))
		return;
1999

P
Peter Zijlstra 已提交
2000 2001
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2002 2003
		return;

2004 2005
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2006
	next_ctx = next->perf_event_ctxp[ctxn];
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2018 2019
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2020
		if (context_equiv(ctx, next_ctx)) {
2021 2022
			/*
			 * XXX do we need a memory barrier of sorts
2023
			 * wrt to rcu_dereference() of perf_event_ctxp
2024
			 */
P
Peter Zijlstra 已提交
2025 2026
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2027 2028 2029
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2030

2031
			perf_event_sync_stat(ctx, next_ctx);
2032
		}
2033 2034
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2035
	}
2036
	rcu_read_unlock();
2037

2038
	if (do_switch) {
2039
		raw_spin_lock(&ctx->lock);
2040
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2041
		cpuctx->task_ctx = NULL;
2042
		raw_spin_unlock(&ctx->lock);
2043
	}
T
Thomas Gleixner 已提交
2044 2045
}

P
Peter Zijlstra 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2060 2061
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2062 2063 2064 2065 2066
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2067 2068 2069 2070 2071 2072 2073

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2074
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2075 2076
}

2077
static void task_ctx_sched_out(struct perf_event_context *ctx)
2078
{
P
Peter Zijlstra 已提交
2079
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080

2081 2082
	if (!cpuctx->task_ctx)
		return;
2083 2084 2085 2086

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2087
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2088 2089 2090
	cpuctx->task_ctx = NULL;
}

2091 2092 2093 2094 2095 2096 2097
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2098 2099
}

2100
static void
2101
ctx_pinned_sched_in(struct perf_event_context *ctx,
2102
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2103
{
2104
	struct perf_event *event;
T
Thomas Gleixner 已提交
2105

2106 2107
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2108
			continue;
2109
		if (!event_filter_match(event))
2110 2111
			continue;

S
Stephane Eranian 已提交
2112 2113 2114 2115
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2116
		if (group_can_go_on(event, cpuctx, 1))
2117
			group_sched_in(event, cpuctx, ctx);
2118 2119 2120 2121 2122

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2123 2124 2125
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2126
		}
2127
	}
2128 2129 2130 2131
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2132
		      struct perf_cpu_context *cpuctx)
2133 2134 2135
{
	struct perf_event *event;
	int can_add_hw = 1;
2136

2137 2138 2139
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2140
			continue;
2141 2142
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2143
		 * of events:
2144
		 */
2145
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2146 2147
			continue;

S
Stephane Eranian 已提交
2148 2149 2150 2151
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2152
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2153
			if (group_sched_in(event, cpuctx, ctx))
2154
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2155
		}
T
Thomas Gleixner 已提交
2156
	}
2157 2158 2159 2160 2161
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2162 2163
	     enum event_type_t event_type,
	     struct task_struct *task)
2164
{
S
Stephane Eranian 已提交
2165
	u64 now;
2166
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2167

2168
	ctx->is_active |= event_type;
2169
	if (likely(!ctx->nr_events))
2170
		return;
2171

S
Stephane Eranian 已提交
2172 2173
	now = perf_clock();
	ctx->timestamp = now;
2174
	perf_cgroup_set_timestamp(task, ctx);
2175 2176 2177 2178
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2179
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2180
		ctx_pinned_sched_in(ctx, cpuctx);
2181 2182

	/* Then walk through the lower prio flexible groups */
2183
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2184
		ctx_flexible_sched_in(ctx, cpuctx);
2185 2186
}

2187
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2188 2189
			     enum event_type_t event_type,
			     struct task_struct *task)
2190 2191 2192
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2193
	ctx_sched_in(ctx, cpuctx, event_type, task);
2194 2195
}

S
Stephane Eranian 已提交
2196 2197
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2198
{
P
Peter Zijlstra 已提交
2199
	struct perf_cpu_context *cpuctx;
2200

P
Peter Zijlstra 已提交
2201
	cpuctx = __get_cpu_context(ctx);
2202 2203 2204
	if (cpuctx->task_ctx == ctx)
		return;

2205
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2206
	perf_pmu_disable(ctx->pmu);
2207 2208 2209 2210 2211 2212 2213
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2214 2215
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2216

2217 2218
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2219 2220 2221
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2222 2223 2224 2225
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2226
	perf_pmu_rotate_start(ctx->pmu);
2227 2228
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2300 2301
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2311
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2312
	}
S
Stephane Eranian 已提交
2313 2314 2315 2316 2317 2318
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2319
		perf_cgroup_sched_in(prev, task);
2320 2321 2322 2323

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2324 2325
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2353
#define REDUCE_FLS(a, b)		\
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2393 2394 2395
	if (!divisor)
		return dividend;

2396 2397 2398
	return div64_u64(dividend, divisor);
}

2399 2400 2401
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2402
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2403
{
2404
	struct hw_perf_event *hwc = &event->hw;
2405
	s64 period, sample_period;
2406 2407
	s64 delta;

2408
	period = perf_calculate_period(event, nsec, count);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2419

2420
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2421 2422 2423
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2424
		local64_set(&hwc->period_left, 0);
2425 2426 2427

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2428
	}
2429 2430
}

2431 2432 2433 2434 2435 2436 2437
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2438
{
2439 2440
	struct perf_event *event;
	struct hw_perf_event *hwc;
2441
	u64 now, period = TICK_NSEC;
2442
	s64 delta;
2443

2444 2445 2446 2447 2448 2449
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2450 2451
		return;

2452
	raw_spin_lock(&ctx->lock);
2453
	perf_pmu_disable(ctx->pmu);
2454

2455
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2456
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2457 2458
			continue;

2459
		if (!event_filter_match(event))
2460 2461
			continue;

2462
		hwc = &event->hw;
2463

2464 2465
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2466
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2467
			event->pmu->start(event, 0);
2468 2469
		}

2470
		if (!event->attr.freq || !event->attr.sample_freq)
2471 2472
			continue;

2473 2474 2475 2476 2477
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2478
		now = local64_read(&event->count);
2479 2480
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2481

2482 2483 2484
		/*
		 * restart the event
		 * reload only if value has changed
2485 2486 2487
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2488
		 */
2489
		if (delta > 0)
2490
			perf_adjust_period(event, period, delta, false);
2491 2492

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2493
	}
2494

2495
	perf_pmu_enable(ctx->pmu);
2496
	raw_spin_unlock(&ctx->lock);
2497 2498
}

2499
/*
2500
 * Round-robin a context's events:
2501
 */
2502
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2503
{
2504 2505 2506 2507 2508 2509
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2510 2511
}

2512
/*
2513 2514 2515
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2516
 */
2517
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2518
{
P
Peter Zijlstra 已提交
2519
	struct perf_event_context *ctx = NULL;
2520
	int rotate = 0, remove = 1;
2521

2522
	if (cpuctx->ctx.nr_events) {
2523
		remove = 0;
2524 2525 2526
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2527

P
Peter Zijlstra 已提交
2528
	ctx = cpuctx->task_ctx;
2529
	if (ctx && ctx->nr_events) {
2530
		remove = 0;
2531 2532 2533
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2534

2535
	if (!rotate)
2536 2537
		goto done;

2538
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2539
	perf_pmu_disable(cpuctx->ctx.pmu);
2540

2541 2542 2543
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2544

2545 2546 2547
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2548

2549
	perf_event_sched_in(cpuctx, ctx, current);
2550

2551 2552
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2553
done:
2554 2555 2556 2557 2558 2559 2560 2561
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2562 2563
	struct perf_event_context *ctx;
	int throttled;
2564

2565 2566
	WARN_ON(!irqs_disabled());

2567 2568 2569
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2570
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2571 2572 2573 2574 2575 2576 2577
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2578 2579 2580 2581
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2582 2583
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2594
	__perf_event_mark_enabled(event);
2595 2596 2597 2598

	return 1;
}

2599
/*
2600
 * Enable all of a task's events that have been marked enable-on-exec.
2601 2602
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2603
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2604
{
2605
	struct perf_event *event;
2606 2607
	unsigned long flags;
	int enabled = 0;
2608
	int ret;
2609 2610

	local_irq_save(flags);
2611
	if (!ctx || !ctx->nr_events)
2612 2613
		goto out;

2614 2615 2616 2617 2618 2619 2620
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2621
	perf_cgroup_sched_out(current, NULL);
2622

2623
	raw_spin_lock(&ctx->lock);
2624
	task_ctx_sched_out(ctx);
2625

2626
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2627 2628 2629
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2630 2631 2632
	}

	/*
2633
	 * Unclone this context if we enabled any event.
2634
	 */
2635 2636
	if (enabled)
		unclone_ctx(ctx);
2637

2638
	raw_spin_unlock(&ctx->lock);
2639

2640 2641 2642
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2643
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2644
out:
2645 2646 2647
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2648
/*
2649
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2650
 */
2651
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2652
{
2653 2654
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2655
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2656

2657 2658 2659 2660
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2661 2662
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2663 2664 2665 2666
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2667
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2668
	if (ctx->is_active) {
2669
		update_context_time(ctx);
S
Stephane Eranian 已提交
2670 2671
		update_cgrp_time_from_event(event);
	}
2672
	update_event_times(event);
2673 2674
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2675
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2676 2677
}

P
Peter Zijlstra 已提交
2678 2679
static inline u64 perf_event_count(struct perf_event *event)
{
2680
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2681 2682
}

2683
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2684 2685
{
	/*
2686 2687
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2688
	 */
2689 2690 2691 2692
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2693 2694 2695
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2696
		raw_spin_lock_irqsave(&ctx->lock, flags);
2697 2698 2699 2700 2701
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2702
		if (ctx->is_active) {
2703
			update_context_time(ctx);
S
Stephane Eranian 已提交
2704 2705
			update_cgrp_time_from_event(event);
		}
2706
		update_event_times(event);
2707
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2708 2709
	}

P
Peter Zijlstra 已提交
2710
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2711 2712
}

2713
/*
2714
 * Initialize the perf_event context in a task_struct:
2715
 */
2716
static void __perf_event_init_context(struct perf_event_context *ctx)
2717
{
2718
	raw_spin_lock_init(&ctx->lock);
2719
	mutex_init(&ctx->mutex);
2720 2721
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2722 2723
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2739
	}
2740 2741 2742
	ctx->pmu = pmu;

	return ctx;
2743 2744
}

2745 2746 2747 2748 2749
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2750 2751

	rcu_read_lock();
2752
	if (!vpid)
T
Thomas Gleixner 已提交
2753 2754
		task = current;
	else
2755
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2756 2757 2758 2759 2760 2761 2762 2763
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2764 2765 2766 2767
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2768 2769 2770 2771 2772 2773 2774
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2775 2776 2777
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2778
static struct perf_event_context *
M
Matt Helsley 已提交
2779
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2780
{
2781
	struct perf_event_context *ctx;
2782
	struct perf_cpu_context *cpuctx;
2783
	unsigned long flags;
P
Peter Zijlstra 已提交
2784
	int ctxn, err;
T
Thomas Gleixner 已提交
2785

2786
	if (!task) {
2787
		/* Must be root to operate on a CPU event: */
2788
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2789 2790 2791
			return ERR_PTR(-EACCES);

		/*
2792
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2793 2794 2795
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2796
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2797 2798
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2799
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2800
		ctx = &cpuctx->ctx;
2801
		get_ctx(ctx);
2802
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2803 2804 2805 2806

		return ctx;
	}

P
Peter Zijlstra 已提交
2807 2808 2809 2810 2811
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2812
retry:
P
Peter Zijlstra 已提交
2813
	ctx = perf_lock_task_context(task, ctxn, &flags);
2814
	if (ctx) {
2815
		unclone_ctx(ctx);
2816
		++ctx->pin_count;
2817
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2818
	} else {
2819
		ctx = alloc_perf_context(pmu, task);
2820 2821 2822
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2823

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2834
		else {
2835
			get_ctx(ctx);
2836
			++ctx->pin_count;
2837
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2838
		}
2839 2840 2841
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2842
			put_ctx(ctx);
2843 2844 2845 2846

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2847 2848 2849
		}
	}

T
Thomas Gleixner 已提交
2850
	return ctx;
2851

P
Peter Zijlstra 已提交
2852
errout:
2853
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2854 2855
}

L
Li Zefan 已提交
2856 2857
static void perf_event_free_filter(struct perf_event *event);

2858
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2859
{
2860
	struct perf_event *event;
P
Peter Zijlstra 已提交
2861

2862 2863 2864
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2865
	perf_event_free_filter(event);
2866
	kfree(event);
P
Peter Zijlstra 已提交
2867 2868
}

2869
static void ring_buffer_put(struct ring_buffer *rb);
2870

2871
static void free_event(struct perf_event *event)
2872
{
2873
	irq_work_sync(&event->pending);
2874

2875
	if (!event->parent) {
2876
		if (event->attach_state & PERF_ATTACH_TASK)
2877
			static_key_slow_dec_deferred(&perf_sched_events);
2878
		if (event->attr.mmap || event->attr.mmap_data)
2879 2880 2881 2882 2883
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2884 2885
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2886 2887
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2888
			static_key_slow_dec_deferred(&perf_sched_events);
2889
		}
2890 2891 2892 2893 2894 2895 2896 2897

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2898
	}
2899

2900 2901 2902
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2903 2904
	}

S
Stephane Eranian 已提交
2905 2906 2907
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2908 2909
	if (event->destroy)
		event->destroy(event);
2910

P
Peter Zijlstra 已提交
2911 2912 2913
	if (event->ctx)
		put_ctx(event->ctx);

2914
	call_rcu(&event->rcu_head, free_event_rcu);
2915 2916
}

2917
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2918
{
2919
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2920

2921
	WARN_ON_ONCE(ctx->parent_ctx);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2935
	raw_spin_lock_irq(&ctx->lock);
2936
	perf_group_detach(event);
2937
	raw_spin_unlock_irq(&ctx->lock);
2938
	perf_remove_from_context(event);
2939
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2940

2941
	free_event(event);
T
Thomas Gleixner 已提交
2942 2943 2944

	return 0;
}
2945
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2946

2947 2948 2949
/*
 * Called when the last reference to the file is gone.
 */
2950
static void put_event(struct perf_event *event)
2951
{
P
Peter Zijlstra 已提交
2952
	struct task_struct *owner;
2953

2954 2955
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
2956

P
Peter Zijlstra 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2990 2991 2992 2993 2994 2995 2996
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
2997 2998
}

2999
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3000
{
3001
	struct perf_event *child;
3002 3003
	u64 total = 0;

3004 3005 3006
	*enabled = 0;
	*running = 0;

3007
	mutex_lock(&event->child_mutex);
3008
	total += perf_event_read(event);
3009 3010 3011 3012 3013 3014
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3015
		total += perf_event_read(child);
3016 3017 3018
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3019
	mutex_unlock(&event->child_mutex);
3020 3021 3022

	return total;
}
3023
EXPORT_SYMBOL_GPL(perf_event_read_value);
3024

3025
static int perf_event_read_group(struct perf_event *event,
3026 3027
				   u64 read_format, char __user *buf)
{
3028
	struct perf_event *leader = event->group_leader, *sub;
3029 3030
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3031
	u64 values[5];
3032
	u64 count, enabled, running;
3033

3034
	mutex_lock(&ctx->mutex);
3035
	count = perf_event_read_value(leader, &enabled, &running);
3036 3037

	values[n++] = 1 + leader->nr_siblings;
3038 3039 3040 3041
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3042 3043 3044
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3045 3046 3047 3048

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3049
		goto unlock;
3050

3051
	ret = size;
3052

3053
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3054
		n = 0;
3055

3056
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3057 3058 3059 3060 3061
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3062
		if (copy_to_user(buf + ret, values, size)) {
3063 3064 3065
			ret = -EFAULT;
			goto unlock;
		}
3066 3067

		ret += size;
3068
	}
3069 3070
unlock:
	mutex_unlock(&ctx->mutex);
3071

3072
	return ret;
3073 3074
}

3075
static int perf_event_read_one(struct perf_event *event,
3076 3077
				 u64 read_format, char __user *buf)
{
3078
	u64 enabled, running;
3079 3080 3081
	u64 values[4];
	int n = 0;

3082 3083 3084 3085 3086
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3087
	if (read_format & PERF_FORMAT_ID)
3088
		values[n++] = primary_event_id(event);
3089 3090 3091 3092 3093 3094 3095

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3096
/*
3097
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3098 3099
 */
static ssize_t
3100
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3101
{
3102
	u64 read_format = event->attr.read_format;
3103
	int ret;
T
Thomas Gleixner 已提交
3104

3105
	/*
3106
	 * Return end-of-file for a read on a event that is in
3107 3108 3109
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3110
	if (event->state == PERF_EVENT_STATE_ERROR)
3111 3112
		return 0;

3113
	if (count < event->read_size)
3114 3115
		return -ENOSPC;

3116
	WARN_ON_ONCE(event->ctx->parent_ctx);
3117
	if (read_format & PERF_FORMAT_GROUP)
3118
		ret = perf_event_read_group(event, read_format, buf);
3119
	else
3120
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3121

3122
	return ret;
T
Thomas Gleixner 已提交
3123 3124 3125 3126 3127
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3128
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3129

3130
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3131 3132 3133 3134
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3135
	struct perf_event *event = file->private_data;
3136
	struct ring_buffer *rb;
3137
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3138

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3156
	rcu_read_lock();
3157
	rb = rcu_dereference(event->rb);
3158 3159
	if (rb) {
		ring_buffer_attach(event, rb);
3160
		events = atomic_xchg(&rb->poll, 0);
3161
	}
P
Peter Zijlstra 已提交
3162
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3163

3164 3165
	mutex_unlock(&event->mmap_mutex);

3166
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3167 3168 3169 3170

	return events;
}

3171
static void perf_event_reset(struct perf_event *event)
3172
{
3173
	(void)perf_event_read(event);
3174
	local64_set(&event->count, 0);
3175
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3176 3177
}

3178
/*
3179 3180 3181 3182
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3183
 */
3184 3185
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3186
{
3187
	struct perf_event *child;
P
Peter Zijlstra 已提交
3188

3189 3190 3191 3192
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3193
		func(child);
3194
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3195 3196
}

3197 3198
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3199
{
3200 3201
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3202

3203 3204
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3205
	event = event->group_leader;
3206

3207 3208
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3209
		perf_event_for_each_child(sibling, func);
3210
	mutex_unlock(&ctx->mutex);
3211 3212
}

3213
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3214
{
3215
	struct perf_event_context *ctx = event->ctx;
3216 3217 3218
	int ret = 0;
	u64 value;

3219
	if (!is_sampling_event(event))
3220 3221
		return -EINVAL;

3222
	if (copy_from_user(&value, arg, sizeof(value)))
3223 3224 3225 3226 3227
		return -EFAULT;

	if (!value)
		return -EINVAL;

3228
	raw_spin_lock_irq(&ctx->lock);
3229 3230
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3231 3232 3233 3234
			ret = -EINVAL;
			goto unlock;
		}

3235
		event->attr.sample_freq = value;
3236
	} else {
3237 3238
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3239 3240
	}
unlock:
3241
	raw_spin_unlock_irq(&ctx->lock);
3242 3243 3244 3245

	return ret;
}

3246 3247
static const struct file_operations perf_fops;

3248
static inline int perf_fget_light(int fd, struct fd *p)
3249
{
3250 3251 3252
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3253

3254 3255 3256
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3257
	}
3258 3259
	*p = f;
	return 0;
3260 3261 3262 3263
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3264
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3265

3266 3267
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3268 3269
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3270
	u32 flags = arg;
3271 3272

	switch (cmd) {
3273 3274
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3275
		break;
3276 3277
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3278
		break;
3279 3280
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3281
		break;
P
Peter Zijlstra 已提交
3282

3283 3284
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3285

3286 3287
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3288

3289
	case PERF_EVENT_IOC_SET_OUTPUT:
3290 3291 3292
	{
		int ret;
		if (arg != -1) {
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3303 3304 3305
		}
		return ret;
	}
3306

L
Li Zefan 已提交
3307 3308 3309
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3310
	default:
P
Peter Zijlstra 已提交
3311
		return -ENOTTY;
3312
	}
P
Peter Zijlstra 已提交
3313 3314

	if (flags & PERF_IOC_FLAG_GROUP)
3315
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3316
	else
3317
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3318 3319

	return 0;
3320 3321
}

3322
int perf_event_task_enable(void)
3323
{
3324
	struct perf_event *event;
3325

3326 3327 3328 3329
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3330 3331 3332 3333

	return 0;
}

3334
int perf_event_task_disable(void)
3335
{
3336
	struct perf_event *event;
3337

3338 3339 3340 3341
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3342 3343 3344 3345

	return 0;
}

3346
static int perf_event_index(struct perf_event *event)
3347
{
P
Peter Zijlstra 已提交
3348 3349 3350
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3351
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3352 3353
		return 0;

3354
	return event->pmu->event_idx(event);
3355 3356
}

3357
static void calc_timer_values(struct perf_event *event,
3358
				u64 *now,
3359 3360
				u64 *enabled,
				u64 *running)
3361
{
3362
	u64 ctx_time;
3363

3364 3365
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3366 3367 3368 3369
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3370
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3371 3372 3373
{
}

3374 3375 3376 3377 3378
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3379
void perf_event_update_userpage(struct perf_event *event)
3380
{
3381
	struct perf_event_mmap_page *userpg;
3382
	struct ring_buffer *rb;
3383
	u64 enabled, running, now;
3384 3385

	rcu_read_lock();
3386 3387 3388 3389 3390 3391 3392 3393 3394
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3395
	calc_timer_values(event, &now, &enabled, &running);
3396 3397
	rb = rcu_dereference(event->rb);
	if (!rb)
3398 3399
		goto unlock;

3400
	userpg = rb->user_page;
3401

3402 3403 3404 3405 3406
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3407
	++userpg->lock;
3408
	barrier();
3409
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3410
	userpg->offset = perf_event_count(event);
3411
	if (userpg->index)
3412
		userpg->offset -= local64_read(&event->hw.prev_count);
3413

3414
	userpg->time_enabled = enabled +
3415
			atomic64_read(&event->child_total_time_enabled);
3416

3417
	userpg->time_running = running +
3418
			atomic64_read(&event->child_total_time_running);
3419

3420
	arch_perf_update_userpage(userpg, now);
3421

3422
	barrier();
3423
	++userpg->lock;
3424
	preempt_enable();
3425
unlock:
3426
	rcu_read_unlock();
3427 3428
}

3429 3430 3431
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3432
	struct ring_buffer *rb;
3433 3434 3435 3436 3437 3438 3439 3440 3441
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3442 3443
	rb = rcu_dereference(event->rb);
	if (!rb)
3444 3445 3446 3447 3448
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3449
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3501 3502 3503 3504
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3505
		wake_up_all(&event->waitq);
3506 3507

unlock:
3508 3509 3510
	rcu_read_unlock();
}

3511
static void rb_free_rcu(struct rcu_head *rcu_head)
3512
{
3513
	struct ring_buffer *rb;
3514

3515 3516
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3517 3518
}

3519
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3520
{
3521
	struct ring_buffer *rb;
3522

3523
	rcu_read_lock();
3524 3525 3526 3527
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3528 3529 3530
	}
	rcu_read_unlock();

3531
	return rb;
3532 3533
}

3534
static void ring_buffer_put(struct ring_buffer *rb)
3535
{
3536 3537 3538
	struct perf_event *event, *n;
	unsigned long flags;

3539
	if (!atomic_dec_and_test(&rb->refcount))
3540
		return;
3541

3542 3543 3544 3545 3546 3547 3548
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3549
	call_rcu(&rb->rcu_head, rb_free_rcu);
3550 3551 3552 3553
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3554
	struct perf_event *event = vma->vm_file->private_data;
3555

3556
	atomic_inc(&event->mmap_count);
3557 3558 3559 3560
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3561
	struct perf_event *event = vma->vm_file->private_data;
3562

3563
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3564
		unsigned long size = perf_data_size(event->rb);
3565
		struct user_struct *user = event->mmap_user;
3566
		struct ring_buffer *rb = event->rb;
3567

3568
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3569
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3570
		rcu_assign_pointer(event->rb, NULL);
3571
		ring_buffer_detach(event, rb);
3572
		mutex_unlock(&event->mmap_mutex);
3573

3574
		ring_buffer_put(rb);
3575
		free_uid(user);
3576
	}
3577 3578
}

3579
static const struct vm_operations_struct perf_mmap_vmops = {
3580 3581 3582 3583
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3584 3585 3586 3587
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3588
	struct perf_event *event = file->private_data;
3589
	unsigned long user_locked, user_lock_limit;
3590
	struct user_struct *user = current_user();
3591
	unsigned long locked, lock_limit;
3592
	struct ring_buffer *rb;
3593 3594
	unsigned long vma_size;
	unsigned long nr_pages;
3595
	long user_extra, extra;
3596
	int ret = 0, flags = 0;
3597

3598 3599 3600
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3601
	 * same rb.
3602 3603 3604 3605
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3606
	if (!(vma->vm_flags & VM_SHARED))
3607
		return -EINVAL;
3608 3609 3610 3611

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3612
	/*
3613
	 * If we have rb pages ensure they're a power-of-two number, so we
3614 3615 3616
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3617 3618
		return -EINVAL;

3619
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3620 3621
		return -EINVAL;

3622 3623
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3624

3625 3626
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3627 3628 3629
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3630
		else
3631 3632 3633 3634
			ret = -EINVAL;
		goto unlock;
	}

3635
	user_extra = nr_pages + 1;
3636
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3637 3638 3639 3640 3641 3642

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3643
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3644

3645 3646 3647
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3648

3649
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3650
	lock_limit >>= PAGE_SHIFT;
3651
	locked = vma->vm_mm->pinned_vm + extra;
3652

3653 3654
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3655 3656 3657
		ret = -EPERM;
		goto unlock;
	}
3658

3659
	WARN_ON(event->rb);
3660

3661
	if (vma->vm_flags & VM_WRITE)
3662
		flags |= RING_BUFFER_WRITABLE;
3663

3664 3665 3666 3667
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3668
	if (!rb) {
3669
		ret = -ENOMEM;
3670
		goto unlock;
3671
	}
3672
	rcu_assign_pointer(event->rb, rb);
3673

3674 3675 3676
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3677
	vma->vm_mm->pinned_vm += event->mmap_locked;
3678

3679 3680
	perf_event_update_userpage(event);

3681
unlock:
3682 3683
	if (!ret)
		atomic_inc(&event->mmap_count);
3684
	mutex_unlock(&event->mmap_mutex);
3685

3686
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3687
	vma->vm_ops = &perf_mmap_vmops;
3688 3689

	return ret;
3690 3691
}

P
Peter Zijlstra 已提交
3692 3693
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3694
	struct inode *inode = file_inode(filp);
3695
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3696 3697 3698
	int retval;

	mutex_lock(&inode->i_mutex);
3699
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3700 3701 3702 3703 3704 3705 3706 3707
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3708
static const struct file_operations perf_fops = {
3709
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3710 3711 3712
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3713 3714
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3715
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3716
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3717 3718
};

3719
/*
3720
 * Perf event wakeup
3721 3722 3723 3724 3725
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3726
void perf_event_wakeup(struct perf_event *event)
3727
{
3728
	ring_buffer_wakeup(event);
3729

3730 3731 3732
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3733
	}
3734 3735
}

3736
static void perf_pending_event(struct irq_work *entry)
3737
{
3738 3739
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3740

3741 3742 3743
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3744 3745
	}

3746 3747 3748
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3749 3750 3751
	}
}

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3899 3900 3901
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3929 3930 3931
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3958 3959 3960
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3961 3962 3963 3964 3965
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3966
static void perf_output_read_one(struct perf_output_handle *handle,
3967 3968
				 struct perf_event *event,
				 u64 enabled, u64 running)
3969
{
3970
	u64 read_format = event->attr.read_format;
3971 3972 3973
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3974
	values[n++] = perf_event_count(event);
3975
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3976
		values[n++] = enabled +
3977
			atomic64_read(&event->child_total_time_enabled);
3978 3979
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3980
		values[n++] = running +
3981
			atomic64_read(&event->child_total_time_running);
3982 3983
	}
	if (read_format & PERF_FORMAT_ID)
3984
		values[n++] = primary_event_id(event);
3985

3986
	__output_copy(handle, values, n * sizeof(u64));
3987 3988 3989
}

/*
3990
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3991 3992
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3993 3994
			    struct perf_event *event,
			    u64 enabled, u64 running)
3995
{
3996 3997
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3998 3999 4000 4001 4002 4003
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4004
		values[n++] = enabled;
4005 4006

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4007
		values[n++] = running;
4008

4009
	if (leader != event)
4010 4011
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4012
	values[n++] = perf_event_count(leader);
4013
	if (read_format & PERF_FORMAT_ID)
4014
		values[n++] = primary_event_id(leader);
4015

4016
	__output_copy(handle, values, n * sizeof(u64));
4017

4018
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4019 4020
		n = 0;

4021
		if (sub != event)
4022 4023
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4024
		values[n++] = perf_event_count(sub);
4025
		if (read_format & PERF_FORMAT_ID)
4026
			values[n++] = primary_event_id(sub);
4027

4028
		__output_copy(handle, values, n * sizeof(u64));
4029 4030 4031
	}
}

4032 4033 4034
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4035
static void perf_output_read(struct perf_output_handle *handle,
4036
			     struct perf_event *event)
4037
{
4038
	u64 enabled = 0, running = 0, now;
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4050
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4051
		calc_timer_values(event, &now, &enabled, &running);
4052

4053
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4054
		perf_output_read_group(handle, event, enabled, running);
4055
	else
4056
		perf_output_read_one(handle, event, enabled, running);
4057 4058
}

4059 4060 4061
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4062
			struct perf_event *event)
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4093
		perf_output_read(handle, event);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4104
			__output_copy(handle, data->callchain, size);
4105 4106 4107 4108 4109 4110 4111 4112 4113
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4114 4115
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4176 4177 4178 4179 4180

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4181 4182 4183 4184
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4185
			 struct perf_event *event,
4186
			 struct pt_regs *regs)
4187
{
4188
	u64 sample_type = event->attr.sample_type;
4189

4190
	header->type = PERF_RECORD_SAMPLE;
4191
	header->size = sizeof(*header) + event->header_size;
4192 4193 4194

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4195

4196
	__perf_event_header__init_id(header, data, event);
4197

4198
	if (sample_type & PERF_SAMPLE_IP)
4199 4200
		data->ip = perf_instruction_pointer(regs);

4201
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4202
		int size = 1;
4203

4204
		data->callchain = perf_callchain(event, regs);
4205 4206 4207 4208 4209

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4210 4211
	}

4212
	if (sample_type & PERF_SAMPLE_RAW) {
4213 4214 4215 4216 4217 4218 4219 4220
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4221
		header->size += size;
4222
	}
4223 4224 4225 4226 4227 4228 4229 4230 4231

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4275
}
4276

4277
static void perf_event_output(struct perf_event *event,
4278 4279 4280 4281 4282
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4283

4284 4285 4286
	/* protect the callchain buffers */
	rcu_read_lock();

4287
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4288

4289
	if (perf_output_begin(&handle, event, header.size))
4290
		goto exit;
4291

4292
	perf_output_sample(&handle, &header, data, event);
4293

4294
	perf_output_end(&handle);
4295 4296 4297

exit:
	rcu_read_unlock();
4298 4299
}

4300
/*
4301
 * read event_id
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4312
perf_event_read_event(struct perf_event *event,
4313 4314 4315
			struct task_struct *task)
{
	struct perf_output_handle handle;
4316
	struct perf_sample_data sample;
4317
	struct perf_read_event read_event = {
4318
		.header = {
4319
			.type = PERF_RECORD_READ,
4320
			.misc = 0,
4321
			.size = sizeof(read_event) + event->read_size,
4322
		},
4323 4324
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4325
	};
4326
	int ret;
4327

4328
	perf_event_header__init_id(&read_event.header, &sample, event);
4329
	ret = perf_output_begin(&handle, event, read_event.header.size);
4330 4331 4332
	if (ret)
		return;

4333
	perf_output_put(&handle, read_event);
4334
	perf_output_read(&handle, event);
4335
	perf_event__output_id_sample(event, &handle, &sample);
4336

4337 4338 4339
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4340
/*
P
Peter Zijlstra 已提交
4341 4342
 * task tracking -- fork/exit
 *
4343
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4344 4345
 */

P
Peter Zijlstra 已提交
4346
struct perf_task_event {
4347
	struct task_struct		*task;
4348
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4349 4350 4351 4352 4353 4354

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4355 4356
		u32				tid;
		u32				ptid;
4357
		u64				time;
4358
	} event_id;
P
Peter Zijlstra 已提交
4359 4360
};

4361
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4362
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4363 4364
{
	struct perf_output_handle handle;
4365
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4366
	struct task_struct *task = task_event->task;
4367
	int ret, size = task_event->event_id.header.size;
4368

4369
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4370

4371
	ret = perf_output_begin(&handle, event,
4372
				task_event->event_id.header.size);
4373
	if (ret)
4374
		goto out;
P
Peter Zijlstra 已提交
4375

4376 4377
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4378

4379 4380
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4381

4382
	perf_output_put(&handle, task_event->event_id);
4383

4384 4385
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4386
	perf_output_end(&handle);
4387 4388
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4389 4390
}

4391
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4392
{
P
Peter Zijlstra 已提交
4393
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4394 4395
		return 0;

4396
	if (!event_filter_match(event))
4397 4398
		return 0;

4399 4400
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4401 4402 4403 4404 4405
		return 1;

	return 0;
}

4406
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4407
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4408
{
4409
	struct perf_event *event;
P
Peter Zijlstra 已提交
4410

4411 4412 4413
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4414 4415 4416
	}
}

4417
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4418 4419
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4420
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4421
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4422
	int ctxn;
P
Peter Zijlstra 已提交
4423

4424
	rcu_read_lock();
P
Peter Zijlstra 已提交
4425
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4426
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4427
		if (cpuctx->unique_pmu != pmu)
4428
			goto next;
P
Peter Zijlstra 已提交
4429
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4430 4431 4432 4433 4434

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4435
				goto next;
P
Peter Zijlstra 已提交
4436
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4437 4438
			if (ctx)
				perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
4439
		}
4440 4441
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4442
	}
4443 4444 4445
	if (task_event->task_ctx)
		perf_event_task_ctx(task_event->task_ctx, task_event);

P
Peter Zijlstra 已提交
4446 4447 4448
	rcu_read_unlock();
}

4449 4450
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4451
			      int new)
P
Peter Zijlstra 已提交
4452
{
P
Peter Zijlstra 已提交
4453
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4454

4455 4456 4457
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4458 4459
		return;

P
Peter Zijlstra 已提交
4460
	task_event = (struct perf_task_event){
4461 4462
		.task	  = task,
		.task_ctx = task_ctx,
4463
		.event_id    = {
P
Peter Zijlstra 已提交
4464
			.header = {
4465
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4466
				.misc = 0,
4467
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4468
			},
4469 4470
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4471 4472
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4473
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4474 4475 4476
		},
	};

4477
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4478 4479
}

4480
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4481
{
4482
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4483 4484
}

4485 4486 4487 4488 4489
/*
 * comm tracking
 */

struct perf_comm_event {
4490 4491
	struct task_struct	*task;
	char			*comm;
4492 4493 4494 4495 4496 4497 4498
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4499
	} event_id;
4500 4501
};

4502
static void perf_event_comm_output(struct perf_event *event,
4503 4504 4505
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4506
	struct perf_sample_data sample;
4507
	int size = comm_event->event_id.header.size;
4508 4509 4510 4511
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4512
				comm_event->event_id.header.size);
4513 4514

	if (ret)
4515
		goto out;
4516

4517 4518
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4519

4520
	perf_output_put(&handle, comm_event->event_id);
4521
	__output_copy(&handle, comm_event->comm,
4522
				   comm_event->comm_size);
4523 4524 4525

	perf_event__output_id_sample(event, &handle, &sample);

4526
	perf_output_end(&handle);
4527 4528
out:
	comm_event->event_id.header.size = size;
4529 4530
}

4531
static int perf_event_comm_match(struct perf_event *event)
4532
{
P
Peter Zijlstra 已提交
4533
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4534 4535
		return 0;

4536
	if (!event_filter_match(event))
4537 4538
		return 0;

4539
	if (event->attr.comm)
4540 4541 4542 4543 4544
		return 1;

	return 0;
}

4545
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4546 4547
				  struct perf_comm_event *comm_event)
{
4548
	struct perf_event *event;
4549

4550 4551 4552
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4553 4554 4555
	}
}

4556
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4557 4558
{
	struct perf_cpu_context *cpuctx;
4559
	struct perf_event_context *ctx;
4560
	char comm[TASK_COMM_LEN];
4561
	unsigned int size;
P
Peter Zijlstra 已提交
4562
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4563
	int ctxn;
4564

4565
	memset(comm, 0, sizeof(comm));
4566
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4567
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4568 4569 4570 4571

	comm_event->comm = comm;
	comm_event->comm_size = size;

4572
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4573
	rcu_read_lock();
P
Peter Zijlstra 已提交
4574
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4575
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4576
		if (cpuctx->unique_pmu != pmu)
4577
			goto next;
P
Peter Zijlstra 已提交
4578
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4579 4580 4581

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4582
			goto next;
P
Peter Zijlstra 已提交
4583 4584 4585 4586

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4587 4588
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4589
	}
4590
	rcu_read_unlock();
4591 4592
}

4593
void perf_event_comm(struct task_struct *task)
4594
{
4595
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4596 4597
	struct perf_event_context *ctx;
	int ctxn;
4598

P
Peter Zijlstra 已提交
4599 4600 4601 4602
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4603

P
Peter Zijlstra 已提交
4604 4605
		perf_event_enable_on_exec(ctx);
	}
4606

4607
	if (!atomic_read(&nr_comm_events))
4608
		return;
4609

4610
	comm_event = (struct perf_comm_event){
4611
		.task	= task,
4612 4613
		/* .comm      */
		/* .comm_size */
4614
		.event_id  = {
4615
			.header = {
4616
				.type = PERF_RECORD_COMM,
4617 4618 4619 4620 4621
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4622 4623 4624
		},
	};

4625
	perf_event_comm_event(&comm_event);
4626 4627
}

4628 4629 4630 4631 4632
/*
 * mmap tracking
 */

struct perf_mmap_event {
4633 4634 4635 4636
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4637 4638 4639 4640 4641 4642 4643 4644 4645

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4646
	} event_id;
4647 4648
};

4649
static void perf_event_mmap_output(struct perf_event *event,
4650 4651 4652
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4653
	struct perf_sample_data sample;
4654
	int size = mmap_event->event_id.header.size;
4655
	int ret;
4656

4657 4658
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4659
				mmap_event->event_id.header.size);
4660
	if (ret)
4661
		goto out;
4662

4663 4664
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4665

4666
	perf_output_put(&handle, mmap_event->event_id);
4667
	__output_copy(&handle, mmap_event->file_name,
4668
				   mmap_event->file_size);
4669 4670 4671

	perf_event__output_id_sample(event, &handle, &sample);

4672
	perf_output_end(&handle);
4673 4674
out:
	mmap_event->event_id.header.size = size;
4675 4676
}

4677
static int perf_event_mmap_match(struct perf_event *event,
4678 4679
				   struct perf_mmap_event *mmap_event,
				   int executable)
4680
{
P
Peter Zijlstra 已提交
4681
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4682 4683
		return 0;

4684
	if (!event_filter_match(event))
4685 4686
		return 0;

4687 4688
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4689 4690 4691 4692 4693
		return 1;

	return 0;
}

4694
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4695 4696
				  struct perf_mmap_event *mmap_event,
				  int executable)
4697
{
4698
	struct perf_event *event;
4699

4700
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4701
		if (perf_event_mmap_match(event, mmap_event, executable))
4702
			perf_event_mmap_output(event, mmap_event);
4703 4704 4705
	}
}

4706
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4707 4708
{
	struct perf_cpu_context *cpuctx;
4709
	struct perf_event_context *ctx;
4710 4711
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4712 4713 4714
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4715
	const char *name;
P
Peter Zijlstra 已提交
4716
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4717
	int ctxn;
4718

4719 4720
	memset(tmp, 0, sizeof(tmp));

4721
	if (file) {
4722
		/*
4723
		 * d_path works from the end of the rb backwards, so we
4724 4725 4726 4727
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4728 4729 4730 4731
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4732
		name = d_path(&file->f_path, buf, PATH_MAX);
4733 4734 4735 4736 4737
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4738 4739
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4740 4741
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
4742
			goto got_name;
4743
		}
4744 4745 4746 4747

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4748 4749 4750 4751 4752 4753 4754 4755
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4756 4757
		}

4758 4759 4760 4761 4762
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4763
	size = ALIGN(strlen(name)+1, sizeof(u64));
4764 4765 4766 4767

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4768
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4769

4770
	rcu_read_lock();
P
Peter Zijlstra 已提交
4771
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4772
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4773
		if (cpuctx->unique_pmu != pmu)
4774
			goto next;
P
Peter Zijlstra 已提交
4775 4776
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4777 4778 4779

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4780
			goto next;
P
Peter Zijlstra 已提交
4781 4782 4783 4784 4785 4786

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4787 4788
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4789
	}
4790 4791
	rcu_read_unlock();

4792 4793 4794
	kfree(buf);
}

4795
void perf_event_mmap(struct vm_area_struct *vma)
4796
{
4797 4798
	struct perf_mmap_event mmap_event;

4799
	if (!atomic_read(&nr_mmap_events))
4800 4801 4802
		return;

	mmap_event = (struct perf_mmap_event){
4803
		.vma	= vma,
4804 4805
		/* .file_name */
		/* .file_size */
4806
		.event_id  = {
4807
			.header = {
4808
				.type = PERF_RECORD_MMAP,
4809
				.misc = PERF_RECORD_MISC_USER,
4810 4811 4812 4813
				/* .size */
			},
			/* .pid */
			/* .tid */
4814 4815
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4816
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4817 4818 4819
		},
	};

4820
	perf_event_mmap_event(&mmap_event);
4821 4822
}

4823 4824 4825 4826
/*
 * IRQ throttle logging
 */

4827
static void perf_log_throttle(struct perf_event *event, int enable)
4828 4829
{
	struct perf_output_handle handle;
4830
	struct perf_sample_data sample;
4831 4832 4833 4834 4835
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4836
		u64				id;
4837
		u64				stream_id;
4838 4839
	} throttle_event = {
		.header = {
4840
			.type = PERF_RECORD_THROTTLE,
4841 4842 4843
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4844
		.time		= perf_clock(),
4845 4846
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4847 4848
	};

4849
	if (enable)
4850
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4851

4852 4853 4854
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4855
				throttle_event.header.size);
4856 4857 4858 4859
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4860
	perf_event__output_id_sample(event, &handle, &sample);
4861 4862 4863
	perf_output_end(&handle);
}

4864
/*
4865
 * Generic event overflow handling, sampling.
4866 4867
 */

4868
static int __perf_event_overflow(struct perf_event *event,
4869 4870
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4871
{
4872 4873
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4874
	u64 seq;
4875 4876
	int ret = 0;

4877 4878 4879 4880 4881 4882 4883
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4884 4885 4886 4887 4888 4889 4890 4891 4892
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4893 4894
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4895 4896
			ret = 1;
		}
4897
	}
4898

4899
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4900
		u64 now = perf_clock();
4901
		s64 delta = now - hwc->freq_time_stamp;
4902

4903
		hwc->freq_time_stamp = now;
4904

4905
		if (delta > 0 && delta < 2*TICK_NSEC)
4906
			perf_adjust_period(event, delta, hwc->last_period, true);
4907 4908
	}

4909 4910
	/*
	 * XXX event_limit might not quite work as expected on inherited
4911
	 * events
4912 4913
	 */

4914 4915
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4916
		ret = 1;
4917
		event->pending_kill = POLL_HUP;
4918 4919
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4920 4921
	}

4922
	if (event->overflow_handler)
4923
		event->overflow_handler(event, data, regs);
4924
	else
4925
		perf_event_output(event, data, regs);
4926

P
Peter Zijlstra 已提交
4927
	if (event->fasync && event->pending_kill) {
4928 4929
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4930 4931
	}

4932
	return ret;
4933 4934
}

4935
int perf_event_overflow(struct perf_event *event,
4936 4937
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4938
{
4939
	return __perf_event_overflow(event, 1, data, regs);
4940 4941
}

4942
/*
4943
 * Generic software event infrastructure
4944 4945
 */

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4957
/*
4958 4959
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4960 4961 4962 4963
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4964
static u64 perf_swevent_set_period(struct perf_event *event)
4965
{
4966
	struct hw_perf_event *hwc = &event->hw;
4967 4968 4969 4970 4971
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4972 4973

again:
4974
	old = val = local64_read(&hwc->period_left);
4975 4976
	if (val < 0)
		return 0;
4977

4978 4979 4980
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4981
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4982
		goto again;
4983

4984
	return nr;
4985 4986
}

4987
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4988
				    struct perf_sample_data *data,
4989
				    struct pt_regs *regs)
4990
{
4991
	struct hw_perf_event *hwc = &event->hw;
4992
	int throttle = 0;
4993

4994 4995
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4996

4997 4998
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4999

5000
	for (; overflow; overflow--) {
5001
		if (__perf_event_overflow(event, throttle,
5002
					    data, regs)) {
5003 5004 5005 5006 5007 5008
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5009
		throttle = 1;
5010
	}
5011 5012
}

P
Peter Zijlstra 已提交
5013
static void perf_swevent_event(struct perf_event *event, u64 nr,
5014
			       struct perf_sample_data *data,
5015
			       struct pt_regs *regs)
5016
{
5017
	struct hw_perf_event *hwc = &event->hw;
5018

5019
	local64_add(nr, &event->count);
5020

5021 5022 5023
	if (!regs)
		return;

5024
	if (!is_sampling_event(event))
5025
		return;
5026

5027 5028 5029 5030 5031 5032
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5033
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5034
		return perf_swevent_overflow(event, 1, data, regs);
5035

5036
	if (local64_add_negative(nr, &hwc->period_left))
5037
		return;
5038

5039
	perf_swevent_overflow(event, 0, data, regs);
5040 5041
}

5042 5043 5044
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5045
	if (event->hw.state & PERF_HES_STOPPED)
5046
		return 1;
P
Peter Zijlstra 已提交
5047

5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5059
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5060
				enum perf_type_id type,
L
Li Zefan 已提交
5061 5062 5063
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5064
{
5065
	if (event->attr.type != type)
5066
		return 0;
5067

5068
	if (event->attr.config != event_id)
5069 5070
		return 0;

5071 5072
	if (perf_exclude_event(event, regs))
		return 0;
5073 5074 5075 5076

	return 1;
}

5077 5078 5079 5080 5081 5082 5083
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5084 5085
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5086
{
5087 5088 5089 5090
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5091

5092 5093
/* For the read side: events when they trigger */
static inline struct hlist_head *
5094
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5095 5096
{
	struct swevent_hlist *hlist;
5097

5098
	hlist = rcu_dereference(swhash->swevent_hlist);
5099 5100 5101
	if (!hlist)
		return NULL;

5102 5103 5104 5105 5106
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5107
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5118
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5119 5120 5121 5122 5123
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5124 5125 5126
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5127
				    u64 nr,
5128 5129
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5130
{
5131
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5132
	struct perf_event *event;
5133
	struct hlist_head *head;
5134

5135
	rcu_read_lock();
5136
	head = find_swevent_head_rcu(swhash, type, event_id);
5137 5138 5139
	if (!head)
		goto end;

5140
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5141
		if (perf_swevent_match(event, type, event_id, data, regs))
5142
			perf_swevent_event(event, nr, data, regs);
5143
	}
5144 5145
end:
	rcu_read_unlock();
5146 5147
}

5148
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5149
{
5150
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5151

5152
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5153
}
I
Ingo Molnar 已提交
5154
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5155

5156
inline void perf_swevent_put_recursion_context(int rctx)
5157
{
5158
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5159

5160
	put_recursion_context(swhash->recursion, rctx);
5161
}
5162

5163
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5164
{
5165
	struct perf_sample_data data;
5166 5167
	int rctx;

5168
	preempt_disable_notrace();
5169 5170 5171
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5172

5173
	perf_sample_data_init(&data, addr, 0);
5174

5175
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5176 5177

	perf_swevent_put_recursion_context(rctx);
5178
	preempt_enable_notrace();
5179 5180
}

5181
static void perf_swevent_read(struct perf_event *event)
5182 5183 5184
{
}

P
Peter Zijlstra 已提交
5185
static int perf_swevent_add(struct perf_event *event, int flags)
5186
{
5187
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5188
	struct hw_perf_event *hwc = &event->hw;
5189 5190
	struct hlist_head *head;

5191
	if (is_sampling_event(event)) {
5192
		hwc->last_period = hwc->sample_period;
5193
		perf_swevent_set_period(event);
5194
	}
5195

P
Peter Zijlstra 已提交
5196 5197
	hwc->state = !(flags & PERF_EF_START);

5198
	head = find_swevent_head(swhash, event);
5199 5200 5201 5202 5203
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5204 5205 5206
	return 0;
}

P
Peter Zijlstra 已提交
5207
static void perf_swevent_del(struct perf_event *event, int flags)
5208
{
5209
	hlist_del_rcu(&event->hlist_entry);
5210 5211
}

P
Peter Zijlstra 已提交
5212
static void perf_swevent_start(struct perf_event *event, int flags)
5213
{
P
Peter Zijlstra 已提交
5214
	event->hw.state = 0;
5215
}
I
Ingo Molnar 已提交
5216

P
Peter Zijlstra 已提交
5217
static void perf_swevent_stop(struct perf_event *event, int flags)
5218
{
P
Peter Zijlstra 已提交
5219
	event->hw.state = PERF_HES_STOPPED;
5220 5221
}

5222 5223
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5224
swevent_hlist_deref(struct swevent_htable *swhash)
5225
{
5226 5227
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5228 5229
}

5230
static void swevent_hlist_release(struct swevent_htable *swhash)
5231
{
5232
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5233

5234
	if (!hlist)
5235 5236
		return;

5237
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5238
	kfree_rcu(hlist, rcu_head);
5239 5240 5241 5242
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5243
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5244

5245
	mutex_lock(&swhash->hlist_mutex);
5246

5247 5248
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5249

5250
	mutex_unlock(&swhash->hlist_mutex);
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5268
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5269 5270
	int err = 0;

5271
	mutex_lock(&swhash->hlist_mutex);
5272

5273
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5274 5275 5276 5277 5278 5279 5280
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5281
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5282
	}
5283
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5284
exit:
5285
	mutex_unlock(&swhash->hlist_mutex);
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5309
fail:
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5320
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5321

5322 5323 5324
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5325

5326 5327
	WARN_ON(event->parent);

5328
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5339 5340 5341 5342 5343 5344
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5345 5346 5347 5348 5349 5350 5351 5352 5353
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5354
	if (event_id >= PERF_COUNT_SW_MAX)
5355 5356 5357 5358 5359 5360 5361 5362 5363
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5364
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5365 5366 5367 5368 5369 5370
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5371 5372 5373 5374 5375
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5376
static struct pmu perf_swevent = {
5377
	.task_ctx_nr	= perf_sw_context,
5378

5379
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5380 5381 5382 5383
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5384
	.read		= perf_swevent_read,
5385 5386

	.event_idx	= perf_swevent_event_idx,
5387 5388
};

5389 5390
#ifdef CONFIG_EVENT_TRACING

5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5405 5406
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5407 5408 5409 5410
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5411 5412 5413 5414 5415 5416 5417 5418 5419
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5420 5421
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5422 5423
{
	struct perf_sample_data data;
5424 5425
	struct perf_event *event;

5426 5427 5428 5429 5430
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5431
	perf_sample_data_init(&data, addr, 0);
5432 5433
	data.raw = &raw;

5434
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5435
		if (perf_tp_event_match(event, &data, regs))
5436
			perf_swevent_event(event, count, &data, regs);
5437
	}
5438

5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5464
	perf_swevent_put_recursion_context(rctx);
5465 5466 5467
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5468
static void tp_perf_event_destroy(struct perf_event *event)
5469
{
5470
	perf_trace_destroy(event);
5471 5472
}

5473
static int perf_tp_event_init(struct perf_event *event)
5474
{
5475 5476
	int err;

5477 5478 5479
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5480 5481 5482 5483 5484 5485
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5486 5487
	err = perf_trace_init(event);
	if (err)
5488
		return err;
5489

5490
	event->destroy = tp_perf_event_destroy;
5491

5492 5493 5494 5495
	return 0;
}

static struct pmu perf_tracepoint = {
5496 5497
	.task_ctx_nr	= perf_sw_context,

5498
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5499 5500 5501 5502
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5503
	.read		= perf_swevent_read,
5504 5505

	.event_idx	= perf_swevent_event_idx,
5506 5507 5508 5509
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5510
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5511
}
L
Li Zefan 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5536
#else
L
Li Zefan 已提交
5537

5538
static inline void perf_tp_register(void)
5539 5540
{
}
L
Li Zefan 已提交
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5551
#endif /* CONFIG_EVENT_TRACING */
5552

5553
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5554
void perf_bp_event(struct perf_event *bp, void *data)
5555
{
5556 5557 5558
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5559
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5560

P
Peter Zijlstra 已提交
5561
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5562
		perf_swevent_event(bp, 1, &sample, regs);
5563 5564 5565
}
#endif

5566 5567 5568
/*
 * hrtimer based swevent callback
 */
5569

5570
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5571
{
5572 5573 5574 5575 5576
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5577

5578
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5579 5580 5581 5582

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5583
	event->pmu->read(event);
5584

5585
	perf_sample_data_init(&data, 0, event->hw.last_period);
5586 5587 5588
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5589
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5590
			if (__perf_event_overflow(event, 1, &data, regs))
5591 5592
				ret = HRTIMER_NORESTART;
	}
5593

5594 5595
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5596

5597
	return ret;
5598 5599
}

5600
static void perf_swevent_start_hrtimer(struct perf_event *event)
5601
{
5602
	struct hw_perf_event *hwc = &event->hw;
5603 5604 5605 5606
	s64 period;

	if (!is_sampling_event(event))
		return;
5607

5608 5609 5610 5611
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5612

5613 5614 5615 5616 5617
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5618
				ns_to_ktime(period), 0,
5619
				HRTIMER_MODE_REL_PINNED, 0);
5620
}
5621 5622

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5623
{
5624 5625
	struct hw_perf_event *hwc = &event->hw;

5626
	if (is_sampling_event(event)) {
5627
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5628
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5629 5630 5631

		hrtimer_cancel(&hwc->hrtimer);
	}
5632 5633
}

P
Peter Zijlstra 已提交
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5654
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5655 5656 5657 5658
		event->attr.freq = 0;
	}
}

5659 5660 5661 5662 5663
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5664
{
5665 5666 5667
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5668
	now = local_clock();
5669 5670
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5671 5672
}

P
Peter Zijlstra 已提交
5673
static void cpu_clock_event_start(struct perf_event *event, int flags)
5674
{
P
Peter Zijlstra 已提交
5675
	local64_set(&event->hw.prev_count, local_clock());
5676 5677 5678
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5679
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5680
{
5681 5682 5683
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5684

P
Peter Zijlstra 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5698 5699 5700 5701
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5702

5703 5704 5705 5706 5707 5708 5709 5710
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5711 5712 5713 5714 5715 5716
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5717 5718
	perf_swevent_init_hrtimer(event);

5719
	return 0;
5720 5721
}

5722
static struct pmu perf_cpu_clock = {
5723 5724
	.task_ctx_nr	= perf_sw_context,

5725
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5726 5727 5728 5729
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5730
	.read		= cpu_clock_event_read,
5731 5732

	.event_idx	= perf_swevent_event_idx,
5733 5734 5735 5736 5737 5738 5739
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5740
{
5741 5742
	u64 prev;
	s64 delta;
5743

5744 5745 5746 5747
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5748

P
Peter Zijlstra 已提交
5749
static void task_clock_event_start(struct perf_event *event, int flags)
5750
{
P
Peter Zijlstra 已提交
5751
	local64_set(&event->hw.prev_count, event->ctx->time);
5752 5753 5754
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5755
static void task_clock_event_stop(struct perf_event *event, int flags)
5756 5757 5758
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5759 5760 5761 5762 5763 5764
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5765

P
Peter Zijlstra 已提交
5766 5767 5768 5769 5770 5771
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5772 5773 5774 5775
}

static void task_clock_event_read(struct perf_event *event)
{
5776 5777 5778
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5779 5780 5781 5782 5783

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5784
{
5785 5786 5787 5788 5789 5790
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5791 5792 5793 5794 5795 5796
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5797 5798
	perf_swevent_init_hrtimer(event);

5799
	return 0;
L
Li Zefan 已提交
5800 5801
}

5802
static struct pmu perf_task_clock = {
5803 5804
	.task_ctx_nr	= perf_sw_context,

5805
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5806 5807 5808 5809
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5810
	.read		= task_clock_event_read,
5811 5812

	.event_idx	= perf_swevent_event_idx,
5813
};
L
Li Zefan 已提交
5814

P
Peter Zijlstra 已提交
5815
static void perf_pmu_nop_void(struct pmu *pmu)
5816 5817
{
}
L
Li Zefan 已提交
5818

P
Peter Zijlstra 已提交
5819
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5820
{
P
Peter Zijlstra 已提交
5821
	return 0;
L
Li Zefan 已提交
5822 5823
}

P
Peter Zijlstra 已提交
5824
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5825
{
P
Peter Zijlstra 已提交
5826
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5827 5828
}

P
Peter Zijlstra 已提交
5829 5830 5831 5832 5833
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5834

P
Peter Zijlstra 已提交
5835
static void perf_pmu_cancel_txn(struct pmu *pmu)
5836
{
P
Peter Zijlstra 已提交
5837
	perf_pmu_enable(pmu);
5838 5839
}

5840 5841 5842 5843 5844
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5845 5846 5847 5848 5849
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5850
{
P
Peter Zijlstra 已提交
5851
	struct pmu *pmu;
5852

P
Peter Zijlstra 已提交
5853 5854
	if (ctxn < 0)
		return NULL;
5855

P
Peter Zijlstra 已提交
5856 5857 5858 5859
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5860

P
Peter Zijlstra 已提交
5861
	return NULL;
5862 5863
}

5864
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5865
{
5866 5867 5868 5869 5870 5871 5872
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5873 5874
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5875 5876 5877 5878 5879 5880
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5881

P
Peter Zijlstra 已提交
5882
	mutex_lock(&pmus_lock);
5883
	/*
P
Peter Zijlstra 已提交
5884
	 * Like a real lame refcount.
5885
	 */
5886 5887 5888
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5889
			goto out;
5890
		}
P
Peter Zijlstra 已提交
5891
	}
5892

5893
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5894 5895
out:
	mutex_unlock(&pmus_lock);
5896
}
P
Peter Zijlstra 已提交
5897
static struct idr pmu_idr;
5898

P
Peter Zijlstra 已提交
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5931
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5952
static struct lock_class_key cpuctx_mutex;
5953
static struct lock_class_key cpuctx_lock;
5954

P
Peter Zijlstra 已提交
5955
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5956
{
P
Peter Zijlstra 已提交
5957
	int cpu, ret;
5958

5959
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5960 5961 5962 5963
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5964

P
Peter Zijlstra 已提交
5965 5966 5967 5968 5969 5970
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
5971 5972 5973
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
5974 5975 5976 5977 5978
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5979 5980 5981 5982 5983 5984
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5985
skip_type:
P
Peter Zijlstra 已提交
5986 5987 5988
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5989

W
Wei Yongjun 已提交
5990
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
5991 5992
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5993
		goto free_dev;
5994

P
Peter Zijlstra 已提交
5995 5996 5997 5998
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5999
		__perf_event_init_context(&cpuctx->ctx);
6000
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6001
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6002
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6003
		cpuctx->ctx.pmu = pmu;
6004 6005
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6006
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6007
	}
6008

P
Peter Zijlstra 已提交
6009
got_cpu_context:
P
Peter Zijlstra 已提交
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6024
		}
6025
	}
6026

P
Peter Zijlstra 已提交
6027 6028 6029 6030 6031
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6032 6033 6034
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6035
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6036 6037
	ret = 0;
unlock:
6038 6039
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6040
	return ret;
P
Peter Zijlstra 已提交
6041

P
Peter Zijlstra 已提交
6042 6043 6044 6045
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6046 6047 6048 6049
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6050 6051 6052
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6053 6054
}

6055
void perf_pmu_unregister(struct pmu *pmu)
6056
{
6057 6058 6059
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6060

6061
	/*
P
Peter Zijlstra 已提交
6062 6063
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6064
	 */
6065
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6066
	synchronize_rcu();
6067

P
Peter Zijlstra 已提交
6068
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6069 6070
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6071 6072
	device_del(pmu->dev);
	put_device(pmu->dev);
6073
	free_pmu_context(pmu);
6074
}
6075

6076 6077 6078 6079
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6080
	int ret;
6081 6082

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6083 6084 6085 6086

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6087
	if (pmu) {
6088
		event->pmu = pmu;
6089 6090 6091
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6092
		goto unlock;
6093
	}
P
Peter Zijlstra 已提交
6094

6095
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6096
		event->pmu = pmu;
6097
		ret = pmu->event_init(event);
6098
		if (!ret)
P
Peter Zijlstra 已提交
6099
			goto unlock;
6100

6101 6102
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6103
			goto unlock;
6104
		}
6105
	}
P
Peter Zijlstra 已提交
6106 6107
	pmu = ERR_PTR(-ENOENT);
unlock:
6108
	srcu_read_unlock(&pmus_srcu, idx);
6109

6110
	return pmu;
6111 6112
}

T
Thomas Gleixner 已提交
6113
/*
6114
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6115
 */
6116
static struct perf_event *
6117
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6118 6119 6120
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6121 6122
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6123
{
P
Peter Zijlstra 已提交
6124
	struct pmu *pmu;
6125 6126
	struct perf_event *event;
	struct hw_perf_event *hwc;
6127
	long err;
T
Thomas Gleixner 已提交
6128

6129 6130 6131 6132 6133
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6134
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6135
	if (!event)
6136
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6137

6138
	/*
6139
	 * Single events are their own group leaders, with an
6140 6141 6142
	 * empty sibling list:
	 */
	if (!group_leader)
6143
		group_leader = event;
6144

6145 6146
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6147

6148 6149 6150
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6151 6152
	INIT_LIST_HEAD(&event->rb_entry);

6153
	init_waitqueue_head(&event->waitq);
6154
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6155

6156
	mutex_init(&event->mmap_mutex);
6157

6158
	atomic_long_set(&event->refcount, 1);
6159 6160 6161 6162 6163
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6164

6165
	event->parent		= parent_event;
6166

6167
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6168
	event->id		= atomic64_inc_return(&perf_event_id);
6169

6170
	event->state		= PERF_EVENT_STATE_INACTIVE;
6171

6172 6173
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6174 6175 6176

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6177 6178 6179 6180
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6181
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6182 6183 6184 6185
			event->hw.bp_target = task;
#endif
	}

6186
	if (!overflow_handler && parent_event) {
6187
		overflow_handler = parent_event->overflow_handler;
6188 6189
		context = parent_event->overflow_handler_context;
	}
6190

6191
	event->overflow_handler	= overflow_handler;
6192
	event->overflow_handler_context = context;
6193

J
Jiri Olsa 已提交
6194
	perf_event__state_init(event);
6195

6196
	pmu = NULL;
6197

6198
	hwc = &event->hw;
6199
	hwc->sample_period = attr->sample_period;
6200
	if (attr->freq && attr->sample_freq)
6201
		hwc->sample_period = 1;
6202
	hwc->last_period = hwc->sample_period;
6203

6204
	local64_set(&hwc->period_left, hwc->sample_period);
6205

6206
	/*
6207
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6208
	 */
6209
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6210 6211
		goto done;

6212
	pmu = perf_init_event(event);
6213

6214 6215
done:
	err = 0;
6216
	if (!pmu)
6217
		err = -EINVAL;
6218 6219
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6220

6221
	if (err) {
6222 6223 6224
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6225
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6226
	}
6227

6228
	if (!event->parent) {
6229
		if (event->attach_state & PERF_ATTACH_TASK)
6230
			static_key_slow_inc(&perf_sched_events.key);
6231
		if (event->attr.mmap || event->attr.mmap_data)
6232 6233 6234 6235 6236
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6237 6238 6239 6240 6241 6242 6243
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6244 6245 6246 6247 6248 6249
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6250
	}
6251

6252
	return event;
T
Thomas Gleixner 已提交
6253 6254
}

6255 6256
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6257 6258
{
	u32 size;
6259
	int ret;
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6284 6285 6286
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6287 6288
	 */
	if (size > sizeof(*attr)) {
6289 6290 6291
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6292

6293 6294
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6295

6296
		for (; addr < end; addr++) {
6297 6298 6299 6300 6301 6302
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6303
		size = sizeof(*attr);
6304 6305 6306 6307 6308 6309
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6310
	if (attr->__reserved_1)
6311 6312 6313 6314 6315 6316 6317 6318
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6353

6354
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6355
		ret = perf_reg_validate(attr->sample_regs_user);
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6374

6375 6376 6377 6378 6379 6380 6381 6382 6383
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6384 6385
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6386
{
6387
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6388 6389
	int ret = -EINVAL;

6390
	if (!output_event)
6391 6392
		goto set;

6393 6394
	/* don't allow circular references */
	if (event == output_event)
6395 6396
		goto out;

6397 6398 6399 6400 6401 6402 6403
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6404
	 * If its not a per-cpu rb, it must be the same task.
6405 6406 6407 6408
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6409
set:
6410
	mutex_lock(&event->mmap_mutex);
6411 6412 6413
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6414

6415
	if (output_event) {
6416 6417 6418
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6419
			goto unlock;
6420 6421
	}

6422 6423
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6424 6425
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6426
	ret = 0;
6427 6428 6429
unlock:
	mutex_unlock(&event->mmap_mutex);

6430 6431
	if (old_rb)
		ring_buffer_put(old_rb);
6432 6433 6434 6435
out:
	return ret;
}

T
Thomas Gleixner 已提交
6436
/**
6437
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6438
 *
6439
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6440
 * @pid:		target pid
I
Ingo Molnar 已提交
6441
 * @cpu:		target cpu
6442
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6443
 */
6444 6445
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6446
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6447
{
6448 6449
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6450 6451 6452
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6453
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6454
	struct task_struct *task = NULL;
6455
	struct pmu *pmu;
6456
	int event_fd;
6457
	int move_group = 0;
6458
	int err;
T
Thomas Gleixner 已提交
6459

6460
	/* for future expandability... */
S
Stephane Eranian 已提交
6461
	if (flags & ~PERF_FLAG_ALL)
6462 6463
		return -EINVAL;

6464 6465 6466
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6467

6468 6469 6470 6471 6472
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6473
	if (attr.freq) {
6474
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6475 6476 6477
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6478 6479 6480 6481 6482 6483 6484 6485 6486
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6487
	event_fd = get_unused_fd();
6488 6489 6490
	if (event_fd < 0)
		return event_fd;

6491
	if (group_fd != -1) {
6492 6493
		err = perf_fget_light(group_fd, &group);
		if (err)
6494
			goto err_fd;
6495
		group_leader = group.file->private_data;
6496 6497 6498 6499 6500 6501
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6502
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6503 6504 6505 6506 6507 6508 6509
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6510 6511
	get_online_cpus();

6512 6513
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6514 6515
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6516
		goto err_task;
6517 6518
	}

S
Stephane Eranian 已提交
6519 6520 6521 6522
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6523 6524 6525 6526 6527 6528
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6529
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6530 6531
	}

6532 6533 6534 6535 6536
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6560 6561 6562 6563

	/*
	 * Get the target context (task or percpu):
	 */
6564
	ctx = find_get_context(pmu, task, event->cpu);
6565 6566
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6567
		goto err_alloc;
6568 6569
	}

6570 6571 6572 6573 6574
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6575
	/*
6576
	 * Look up the group leader (we will attach this event to it):
6577
	 */
6578
	if (group_leader) {
6579
		err = -EINVAL;
6580 6581

		/*
I
Ingo Molnar 已提交
6582 6583 6584 6585
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6586
			goto err_context;
I
Ingo Molnar 已提交
6587 6588 6589
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6590
		 */
6591 6592 6593 6594 6595 6596 6597 6598
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6599 6600 6601
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6602
		if (attr.exclusive || attr.pinned)
6603
			goto err_context;
6604 6605 6606 6607 6608
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6609
			goto err_context;
6610
	}
T
Thomas Gleixner 已提交
6611

6612 6613 6614
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6615
		goto err_context;
6616
	}
6617

6618 6619 6620 6621
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6622
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6623 6624 6625 6626 6627 6628 6629

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6630 6631
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6632
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6633
			perf_event__state_init(sibling);
6634 6635 6636 6637
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6638
	}
6639

6640
	WARN_ON_ONCE(ctx->parent_ctx);
6641
	mutex_lock(&ctx->mutex);
6642 6643

	if (move_group) {
6644
		synchronize_rcu();
6645
		perf_install_in_context(ctx, group_leader, event->cpu);
6646 6647 6648
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6649
			perf_install_in_context(ctx, sibling, event->cpu);
6650 6651 6652 6653
			get_ctx(ctx);
		}
	}

6654
	perf_install_in_context(ctx, event, event->cpu);
6655
	++ctx->generation;
6656
	perf_unpin_context(ctx);
6657
	mutex_unlock(&ctx->mutex);
6658

6659 6660
	put_online_cpus();

6661
	event->owner = current;
P
Peter Zijlstra 已提交
6662

6663 6664 6665
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6666

6667 6668 6669 6670
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6671
	perf_event__id_header_size(event);
6672

6673 6674 6675 6676 6677 6678
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6679
	fdput(group);
6680 6681
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6682

6683
err_context:
6684
	perf_unpin_context(ctx);
6685
	put_ctx(ctx);
6686
err_alloc:
6687
	free_event(event);
P
Peter Zijlstra 已提交
6688
err_task:
6689
	put_online_cpus();
P
Peter Zijlstra 已提交
6690 6691
	if (task)
		put_task_struct(task);
6692
err_group_fd:
6693
	fdput(group);
6694 6695
err_fd:
	put_unused_fd(event_fd);
6696
	return err;
T
Thomas Gleixner 已提交
6697 6698
}

6699 6700 6701 6702 6703
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6704
 * @task: task to profile (NULL for percpu)
6705 6706 6707
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6708
				 struct task_struct *task,
6709 6710
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6711 6712
{
	struct perf_event_context *ctx;
6713
	struct perf_event *event;
6714
	int err;
6715

6716 6717 6718
	/*
	 * Get the target context (task or percpu):
	 */
6719

6720 6721
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6722 6723 6724 6725
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6726

M
Matt Helsley 已提交
6727
	ctx = find_get_context(event->pmu, task, cpu);
6728 6729
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6730
		goto err_free;
6731
	}
6732 6733 6734 6735 6736

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6737
	perf_unpin_context(ctx);
6738 6739 6740 6741
	mutex_unlock(&ctx->mutex);

	return event;

6742 6743 6744
err_free:
	free_event(event);
err:
6745
	return ERR_PTR(err);
6746
}
6747
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6748

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6782
static void sync_child_event(struct perf_event *child_event,
6783
			       struct task_struct *child)
6784
{
6785
	struct perf_event *parent_event = child_event->parent;
6786
	u64 child_val;
6787

6788 6789
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6790

P
Peter Zijlstra 已提交
6791
	child_val = perf_event_count(child_event);
6792 6793 6794 6795

	/*
	 * Add back the child's count to the parent's count:
	 */
6796
	atomic64_add(child_val, &parent_event->child_count);
6797 6798 6799 6800
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6801 6802

	/*
6803
	 * Remove this event from the parent's list
6804
	 */
6805 6806 6807 6808
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6809 6810

	/*
6811
	 * Release the parent event, if this was the last
6812 6813
	 * reference to it.
	 */
6814
	put_event(parent_event);
6815 6816
}

6817
static void
6818 6819
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6820
			 struct task_struct *child)
6821
{
6822 6823 6824 6825 6826
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6827

6828
	perf_remove_from_context(child_event);
6829

6830
	/*
6831
	 * It can happen that the parent exits first, and has events
6832
	 * that are still around due to the child reference. These
6833
	 * events need to be zapped.
6834
	 */
6835
	if (child_event->parent) {
6836 6837
		sync_child_event(child_event, child);
		free_event(child_event);
6838
	}
6839 6840
}

P
Peter Zijlstra 已提交
6841
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6842
{
6843 6844
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6845
	unsigned long flags;
6846

P
Peter Zijlstra 已提交
6847
	if (likely(!child->perf_event_ctxp[ctxn])) {
6848
		perf_event_task(child, NULL, 0);
6849
		return;
P
Peter Zijlstra 已提交
6850
	}
6851

6852
	local_irq_save(flags);
6853 6854 6855 6856 6857 6858
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6859
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6860 6861 6862

	/*
	 * Take the context lock here so that if find_get_context is
6863
	 * reading child->perf_event_ctxp, we wait until it has
6864 6865
	 * incremented the context's refcount before we do put_ctx below.
	 */
6866
	raw_spin_lock(&child_ctx->lock);
6867
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6868
	child->perf_event_ctxp[ctxn] = NULL;
6869 6870 6871
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6872
	 * the events from it.
6873 6874
	 */
	unclone_ctx(child_ctx);
6875
	update_context_time(child_ctx);
6876
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6877 6878

	/*
6879 6880 6881
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6882
	 */
6883
	perf_event_task(child, child_ctx, 0);
6884

6885 6886 6887
	/*
	 * We can recurse on the same lock type through:
	 *
6888 6889
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6890 6891
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6892 6893 6894
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6895
	mutex_lock(&child_ctx->mutex);
6896

6897
again:
6898 6899 6900 6901 6902
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6903
				 group_entry)
6904
		__perf_event_exit_task(child_event, child_ctx, child);
6905 6906

	/*
6907
	 * If the last event was a group event, it will have appended all
6908 6909 6910
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6911 6912
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6913
		goto again;
6914 6915 6916 6917

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6918 6919
}

P
Peter Zijlstra 已提交
6920 6921 6922 6923 6924
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6925
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6926 6927
	int ctxn;

P
Peter Zijlstra 已提交
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6943 6944 6945 6946
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6959
	put_event(parent);
6960

6961
	perf_group_detach(event);
6962 6963 6964 6965
	list_del_event(event, ctx);
	free_event(event);
}

6966 6967
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6968
 * perf_event_init_task below, used by fork() in case of fail.
6969
 */
6970
void perf_event_free_task(struct task_struct *task)
6971
{
P
Peter Zijlstra 已提交
6972
	struct perf_event_context *ctx;
6973
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6974
	int ctxn;
6975

P
Peter Zijlstra 已提交
6976 6977 6978 6979
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6980

P
Peter Zijlstra 已提交
6981
		mutex_lock(&ctx->mutex);
6982
again:
P
Peter Zijlstra 已提交
6983 6984 6985
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6986

P
Peter Zijlstra 已提交
6987 6988 6989
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6990

P
Peter Zijlstra 已提交
6991 6992 6993
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6994

P
Peter Zijlstra 已提交
6995
		mutex_unlock(&ctx->mutex);
6996

P
Peter Zijlstra 已提交
6997 6998
		put_ctx(ctx);
	}
6999 7000
}

7001 7002 7003 7004 7005 7006 7007 7008
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7021
	unsigned long flags;
P
Peter Zijlstra 已提交
7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7034
					   child,
P
Peter Zijlstra 已提交
7035
					   group_leader, parent_event,
7036
				           NULL, NULL);
P
Peter Zijlstra 已提交
7037 7038
	if (IS_ERR(child_event))
		return child_event;
7039 7040 7041 7042 7043 7044

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7069 7070
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7071

7072 7073 7074 7075
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7076
	perf_event__id_header_size(child_event);
7077

P
Peter Zijlstra 已提交
7078 7079 7080
	/*
	 * Link it up in the child's context:
	 */
7081
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7082
	add_event_to_ctx(child_event, child_ctx);
7083
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7117 7118 7119 7120 7121
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7122
		   struct task_struct *child, int ctxn,
7123 7124 7125
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7126
	struct perf_event_context *child_ctx;
7127 7128 7129 7130

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7131 7132
	}

7133
	child_ctx = child->perf_event_ctxp[ctxn];
7134 7135 7136 7137 7138 7139 7140
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7141

7142
		child_ctx = alloc_perf_context(event->pmu, child);
7143 7144
		if (!child_ctx)
			return -ENOMEM;
7145

P
Peter Zijlstra 已提交
7146
		child->perf_event_ctxp[ctxn] = child_ctx;
7147 7148 7149 7150 7151 7152 7153 7154 7155
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7156 7157
}

7158
/*
7159
 * Initialize the perf_event context in task_struct
7160
 */
P
Peter Zijlstra 已提交
7161
int perf_event_init_context(struct task_struct *child, int ctxn)
7162
{
7163
	struct perf_event_context *child_ctx, *parent_ctx;
7164 7165
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7166
	struct task_struct *parent = current;
7167
	int inherited_all = 1;
7168
	unsigned long flags;
7169
	int ret = 0;
7170

P
Peter Zijlstra 已提交
7171
	if (likely(!parent->perf_event_ctxp[ctxn]))
7172 7173
		return 0;

7174
	/*
7175 7176
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7177
	 */
P
Peter Zijlstra 已提交
7178
	parent_ctx = perf_pin_task_context(parent, ctxn);
7179

7180 7181 7182 7183 7184 7185 7186
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7187 7188 7189 7190
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7191
	mutex_lock(&parent_ctx->mutex);
7192 7193 7194 7195 7196

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7197
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7198 7199
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7200 7201 7202
		if (ret)
			break;
	}
7203

7204 7205 7206 7207 7208 7209 7210 7211 7212
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7213
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7214 7215
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7216
		if (ret)
7217
			break;
7218 7219
	}

7220 7221 7222
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7223
	child_ctx = child->perf_event_ctxp[ctxn];
7224

7225
	if (child_ctx && inherited_all) {
7226 7227 7228
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7229 7230 7231
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7232
		 */
P
Peter Zijlstra 已提交
7233
		cloned_ctx = parent_ctx->parent_ctx;
7234 7235
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7236
			child_ctx->parent_gen = parent_ctx->parent_gen;
7237 7238 7239 7240 7241
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7242 7243
	}

P
Peter Zijlstra 已提交
7244
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7245
	mutex_unlock(&parent_ctx->mutex);
7246

7247
	perf_unpin_context(parent_ctx);
7248
	put_ctx(parent_ctx);
7249

7250
	return ret;
7251 7252
}

P
Peter Zijlstra 已提交
7253 7254 7255 7256 7257 7258 7259
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7260 7261 7262 7263
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7264 7265 7266 7267 7268 7269 7270 7271 7272
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7273 7274
static void __init perf_event_init_all_cpus(void)
{
7275
	struct swevent_htable *swhash;
7276 7277 7278
	int cpu;

	for_each_possible_cpu(cpu) {
7279 7280
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7281
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7282 7283 7284
	}
}

7285
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7286
{
P
Peter Zijlstra 已提交
7287
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7288

7289
	mutex_lock(&swhash->hlist_mutex);
7290
	if (swhash->hlist_refcount > 0) {
7291 7292
		struct swevent_hlist *hlist;

7293 7294 7295
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7296
	}
7297
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7298 7299
}

P
Peter Zijlstra 已提交
7300
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7301
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7302
{
7303 7304 7305 7306 7307 7308 7309
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7310
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7311
{
P
Peter Zijlstra 已提交
7312
	struct perf_event_context *ctx = __info;
7313
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7314

P
Peter Zijlstra 已提交
7315
	perf_pmu_rotate_stop(ctx->pmu);
7316

7317
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7318
		__perf_remove_from_context(event);
7319
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7320
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7321
}
P
Peter Zijlstra 已提交
7322 7323 7324 7325 7326 7327 7328 7329 7330

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7331
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7332 7333 7334 7335 7336 7337 7338 7339

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7340
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7341
{
7342
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7343

7344 7345 7346
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7347

P
Peter Zijlstra 已提交
7348
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7349 7350
}
#else
7351
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7352 7353
#endif

P
Peter Zijlstra 已提交
7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7374 7375 7376 7377 7378
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7379
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7380 7381

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7382
	case CPU_DOWN_FAILED:
7383
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7384 7385
		break;

P
Peter Zijlstra 已提交
7386
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7387
	case CPU_DOWN_PREPARE:
7388
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7389 7390 7391 7392 7393 7394 7395 7396 7397
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7398
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7399
{
7400 7401
	int ret;

P
Peter Zijlstra 已提交
7402 7403
	idr_init(&pmu_idr);

7404
	perf_event_init_all_cpus();
7405
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7406 7407 7408
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7409 7410
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7411
	register_reboot_notifier(&perf_reboot_notifier);
7412 7413 7414

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7415 7416 7417

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7418 7419 7420 7421 7422 7423 7424

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7425
}
P
Peter Zijlstra 已提交
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7454 7455

#ifdef CONFIG_CGROUP_PERF
7456
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7457 7458 7459
{
	struct perf_cgroup *jc;

7460
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7473
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7489
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7490
{
7491 7492 7493 7494
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7495 7496
}

7497 7498
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7499 7500 7501 7502 7503 7504 7505 7506 7507
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7508
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7509 7510 7511
}

struct cgroup_subsys perf_subsys = {
7512 7513
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7514 7515
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7516
	.exit		= perf_cgroup_exit,
7517
	.attach		= perf_cgroup_attach,
7518 7519 7520 7521 7522 7523 7524

	/*
	 * perf_event cgroup doesn't handle nesting correctly.
	 * ctx->nr_cgroups adjustments should be propagated through the
	 * cgroup hierarchy.  Fix it and remove the following.
	 */
	.broken_hierarchy = true,
S
Stephane Eranian 已提交
7525 7526
};
#endif /* CONFIG_CGROUP_PERF */