core.c 255.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
T
Thomas Gleixner 已提交
49

50 51
#include "internal.h"

52 53
#include <asm/irq_regs.h>

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
69 70 71 72 73 74 75 76 77 78 79
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
100
task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 102
{
	struct remote_function_call data = {
103 104 105
		.p	= p,
		.func	= func,
		.info	= info,
106
		.ret	= -EAGAIN,
107
	};
108
	int ret;
109

110 111 112 113 114
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
115

116
	return ret;
117 118 119 120 121 122 123 124 125 126 127
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
128
static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 130
{
	struct remote_function_call data = {
131 132 133 134
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
135 136 137 138 139 140 141
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

142 143 144 145 146 147 148 149
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
150
{
151 152 153 154 155 156 157 158 159 160 161 162 163
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

164 165 166 167
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
168
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
203
	struct perf_event_context *ctx = event->ctx;
204 205
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216
		if (ctx->task != current) {
217
			ret = -ESRCH;
218 219
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
246 247
{
	struct perf_event_context *ctx = event->ctx;
248
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 250 251 252 253
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
254

P
Peter Zijlstra 已提交
255 256 257 258 259 260 261 262
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
263 264

	if (!task) {
265
		cpu_function_call(event->cpu, event_function, &efs);
266 267 268
		return;
	}

269 270 271
	if (task == TASK_TOMBSTONE)
		return;

272
again:
273
	if (!task_function_call(task, event_function, &efs))
274 275 276
		return;

	raw_spin_lock_irq(&ctx->lock);
277 278 279 280 281
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
282 283 284
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
285
	}
286 287 288 289 290
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
291 292 293
	raw_spin_unlock_irq(&ctx->lock);
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
342 343
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
344 345
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
346

347 348 349 350 351 352 353
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

354 355 356
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
357
	EVENT_TIME = 0x4,
358 359 360
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
361 362 363 364
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
365 366 367 368 369 370 371

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
372
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
375

376 377 378
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
379
static atomic_t nr_freq_events __read_mostly;
380
static atomic_t nr_switch_events __read_mostly;
381

P
Peter Zijlstra 已提交
382 383 384 385
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

386
/*
387
 * perf event paranoia level:
388 389
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
390
 *   1 - disallow cpu events for unpriv
391
 *   2 - disallow kernel profiling for unpriv
392
 */
393
int sysctl_perf_event_paranoid __read_mostly = 2;
394

395 396
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 398

/*
399
 * max perf event sample rate
400
 */
401 402 403 404 405 406 407 408 409
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
410 411
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412

413
static void update_perf_cpu_limits(void)
414 415 416 417
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
418 419 420 421 422
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423
}
P
Peter Zijlstra 已提交
424

425 426
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
427 428 429 430
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
431
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
432 433 434 435

	if (ret || !write)
		return ret;

436 437 438 439 440 441 442
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
443
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

461 462
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
463 464 465 466 467 468
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
469 470 471

	return 0;
}
472

473 474 475 476 477 478 479
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
480
static DEFINE_PER_CPU(u64, running_sample_length);
481

482 483 484
static u64 __report_avg;
static u64 __report_allowed;

485
static void perf_duration_warn(struct irq_work *w)
486
{
487
	printk_ratelimited(KERN_INFO
488 489 490 491
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
492 493 494 495 496 497
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
498 499 500 501
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
502

503
	if (max_len == 0)
504 505
		return;

506 507 508 509 510
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
511 512

	/*
513 514
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 516
	 * from having to maintain a count.
	 */
517 518
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
519 520
		return;

521 522
	__report_avg = avg_len;
	__report_allowed = max_len;
523

524 525 526 527 528 529 530 531 532
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
533

534 535 536 537 538
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539

540
	if (!irq_work_queue(&perf_duration_work)) {
541
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542
			     "kernel.perf_event_max_sample_rate to %d\n",
543
			     __report_avg, __report_allowed,
544 545
			     sysctl_perf_event_sample_rate);
	}
546 547
}

548
static atomic64_t perf_event_id;
549

550 551 552 553
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
554 555 556 557 558
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
559

560
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
561

562
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
563
{
564
	return "pmu";
T
Thomas Gleixner 已提交
565 566
}

567 568 569 570 571
static inline u64 perf_clock(void)
{
	return local_clock();
}

572 573 574 575 576
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
577 578 579 580 581 582 583 584
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
601 602 603 604
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
605
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
644 645
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
646
	/*
647 648
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
649
	 */
650
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
651 652
		return;

653
	cgrp = perf_cgroup_from_task(current, event->ctx);
654 655 656 657 658
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
659 660 661
}

static inline void
662 663
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
664 665 666 667
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

668 669 670 671 672 673
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
674 675
		return;

676
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
677
	info = this_cpu_ptr(cgrp->info);
678
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
679 680
}

681 682
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
683 684 685 686 687 688 689 690 691
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
692
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
693 694
{
	struct perf_cpu_context *cpuctx;
695
	struct list_head *list;
S
Stephane Eranian 已提交
696 697 698
	unsigned long flags;

	/*
699 700
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
701 702 703
	 */
	local_irq_save(flags);

704 705 706
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
707

708 709
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
710

711 712 713 714 715 716 717 718
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
719

720 721 722 723 724 725 726 727 728 729 730 731
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
732
		}
733 734
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
735 736 737 738 739
	}

	local_irq_restore(flags);
}

740 741
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
742
{
743 744 745
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

746
	rcu_read_lock();
747 748
	/*
	 * we come here when we know perf_cgroup_events > 0
749 750
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
751
	 */
752
	cgrp1 = perf_cgroup_from_task(task, NULL);
753
	cgrp2 = perf_cgroup_from_task(next, NULL);
754 755 756 757 758 759 760 761

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
762 763

	rcu_read_unlock();
S
Stephane Eranian 已提交
764 765
}

766 767
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
768
{
769 770 771
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

772
	rcu_read_lock();
773 774
	/*
	 * we come here when we know perf_cgroup_events > 0
775 776
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
777
	 */
778 779
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
780 781 782 783 784 785 786 787

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
788 789

	rcu_read_unlock();
S
Stephane Eranian 已提交
790 791 792 793 794 795 796 797
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
798 799
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
800

801
	if (!f.file)
S
Stephane Eranian 已提交
802 803
		return -EBADF;

A
Al Viro 已提交
804
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
805
					 &perf_event_cgrp_subsys);
806 807 808 809
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
823
out:
824
	fdput(f);
S
Stephane Eranian 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
869 870 871 872 873 874 875 876 877 878

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
879
	struct list_head *cpuctx_entry;
880 881 882 883 884 885 886 887 888 889 890 891 892

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
893 894 895 896 897 898 899 900
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
			cpuctx->cgrp = event->cgrp;
	} else {
		list_del(cpuctx_entry);
901
		cpuctx->cgrp = NULL;
902
	}
903 904
}

S
Stephane Eranian 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

934 935
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
936 937 938
{
}

939 940
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
941 942 943 944 945 946 947 948 949 950 951
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
952 953
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
982 983 984 985 986 987 988

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
989 990
#endif

991 992 993 994 995 996 997 998
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
999
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1009 1010
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1011
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1012 1013 1014
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1015

P
Peter Zijlstra 已提交
1016
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1017 1018
}

1019
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1020
{
1021
	struct hrtimer *timer = &cpuctx->hrtimer;
1022
	struct pmu *pmu = cpuctx->ctx.pmu;
1023
	u64 interval;
1024 1025 1026 1027 1028

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1029 1030 1031 1032
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1033 1034 1035
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1036

1037
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1038

P
Peter Zijlstra 已提交
1039 1040
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1041
	timer->function = perf_mux_hrtimer_handler;
1042 1043
}

1044
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1045
{
1046
	struct hrtimer *timer = &cpuctx->hrtimer;
1047
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1048
	unsigned long flags;
1049 1050 1051

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1052
		return 0;
1053

P
Peter Zijlstra 已提交
1054 1055 1056 1057 1058 1059 1060
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1061

1062
	return 0;
1063 1064
}

P
Peter Zijlstra 已提交
1065
void perf_pmu_disable(struct pmu *pmu)
1066
{
P
Peter Zijlstra 已提交
1067 1068 1069
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1070 1071
}

P
Peter Zijlstra 已提交
1072
void perf_pmu_enable(struct pmu *pmu)
1073
{
P
Peter Zijlstra 已提交
1074 1075 1076
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1077 1078
}

1079
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1080 1081

/*
1082 1083 1084 1085
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1086
 */
1087
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1088
{
1089
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1090

1091
	WARN_ON(!irqs_disabled());
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1105 1106
}

1107
static void get_ctx(struct perf_event_context *ctx)
1108
{
1109
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1110 1111
}

1112 1113 1114 1115 1116 1117 1118 1119 1120
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1121
static void put_ctx(struct perf_event_context *ctx)
1122
{
1123 1124 1125
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1126
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1127
			put_task_struct(ctx->task);
1128
		call_rcu(&ctx->rcu_head, free_ctx);
1129
	}
1130 1131
}

P
Peter Zijlstra 已提交
1132 1133 1134 1135 1136 1137 1138
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1139 1140 1141 1142
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1143 1144
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1185
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1186 1187 1188
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1189
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1190 1191 1192
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1193 1194
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1207
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1217 1218 1219 1220 1221 1222
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1223 1224 1225 1226 1227 1228 1229
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1230 1231 1232 1233 1234 1235 1236
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1237
{
1238 1239 1240 1241 1242
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1243
		ctx->parent_ctx = NULL;
1244
	ctx->generation++;
1245 1246

	return parent_ctx;
1247 1248
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1271
/*
1272
 * If we inherit events we want to return the parent event id
1273 1274
 * to userspace.
 */
1275
static u64 primary_event_id(struct perf_event *event)
1276
{
1277
	u64 id = event->id;
1278

1279 1280
	if (event->parent)
		id = event->parent->id;
1281 1282 1283 1284

	return id;
}

1285
/*
1286
 * Get the perf_event_context for a task and lock it.
1287
 *
1288 1289 1290
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1291
static struct perf_event_context *
P
Peter Zijlstra 已提交
1292
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1293
{
1294
	struct perf_event_context *ctx;
1295

P
Peter Zijlstra 已提交
1296
retry:
1297 1298 1299
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1300
	 * part of the read side critical section was irqs-enabled -- see
1301 1302 1303
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1304
	 * side critical section has interrupts disabled.
1305
	 */
1306
	local_irq_save(*flags);
1307
	rcu_read_lock();
P
Peter Zijlstra 已提交
1308
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1309 1310 1311 1312
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1313
		 * perf_event_task_sched_out, though the
1314 1315 1316 1317 1318 1319
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1320
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1321
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1322
			raw_spin_unlock(&ctx->lock);
1323
			rcu_read_unlock();
1324
			local_irq_restore(*flags);
1325 1326
			goto retry;
		}
1327

1328 1329
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1330
			raw_spin_unlock(&ctx->lock);
1331
			ctx = NULL;
P
Peter Zijlstra 已提交
1332 1333
		} else {
			WARN_ON_ONCE(ctx->task != task);
1334
		}
1335 1336
	}
	rcu_read_unlock();
1337 1338
	if (!ctx)
		local_irq_restore(*flags);
1339 1340 1341 1342 1343 1344 1345 1346
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1347 1348
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1349
{
1350
	struct perf_event_context *ctx;
1351 1352
	unsigned long flags;

P
Peter Zijlstra 已提交
1353
	ctx = perf_lock_task_context(task, ctxn, &flags);
1354 1355
	if (ctx) {
		++ctx->pin_count;
1356
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1357 1358 1359 1360
	}
	return ctx;
}

1361
static void perf_unpin_context(struct perf_event_context *ctx)
1362 1363 1364
{
	unsigned long flags;

1365
	raw_spin_lock_irqsave(&ctx->lock, flags);
1366
	--ctx->pin_count;
1367
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1381 1382 1383
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1384 1385 1386 1387

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1388 1389 1390
	return ctx ? ctx->time : 0;
}

1391 1392 1393 1394 1395 1396 1397 1398
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1399 1400
	lockdep_assert_held(&ctx->lock);

1401 1402 1403
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1404

S
Stephane Eranian 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1416
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1417 1418
	else if (ctx->is_active)
		run_end = ctx->time;
1419 1420 1421 1422
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1423 1424 1425 1426

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1427
		run_end = perf_event_time(event);
1428 1429

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1430

1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1445 1446 1447 1448 1449 1450 1451 1452 1453
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1454
/*
1455
 * Add a event from the lists for its context.
1456 1457
 * Must be called with ctx->mutex and ctx->lock held.
 */
1458
static void
1459
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1460
{
P
Peter Zijlstra 已提交
1461 1462
	lockdep_assert_held(&ctx->lock);

1463 1464
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1465 1466

	/*
1467 1468 1469
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1470
	 */
1471
	if (event->group_leader == event) {
1472 1473
		struct list_head *list;

1474
		event->group_caps = event->event_caps;
1475

1476 1477
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1478
	}
P
Peter Zijlstra 已提交
1479

1480
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1481

1482 1483 1484
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1485
		ctx->nr_stat++;
1486 1487

	ctx->generation++;
1488 1489
}

J
Jiri Olsa 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1499
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1515
		nr += nr_siblings;
1516 1517 1518 1519 1520 1521 1522
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1523
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1524 1525 1526 1527 1528 1529 1530
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1531 1532 1533 1534 1535 1536
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1537 1538 1539
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1540 1541 1542
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1543 1544 1545
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1546 1547 1548
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1549 1550 1551
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1563 1564 1565 1566 1567 1568
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1569 1570 1571 1572 1573 1574
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1575 1576 1577
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1578 1579 1580 1581 1582 1583 1584 1585 1586
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1587
	event->id_header_size = size;
1588 1589
}

P
Peter Zijlstra 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1611 1612
static void perf_group_attach(struct perf_event *event)
{
1613
	struct perf_event *group_leader = event->group_leader, *pos;
1614

1615 1616
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1617 1618 1619 1620 1621 1622
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1623 1624 1625 1626 1627
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1628 1629
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1630
	group_leader->group_caps &= event->event_caps;
1631 1632 1633

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1634 1635 1636 1637 1638

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1639 1640
}

1641
/*
1642
 * Remove a event from the lists for its context.
1643
 * Must be called with ctx->mutex and ctx->lock held.
1644
 */
1645
static void
1646
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1647
{
P
Peter Zijlstra 已提交
1648 1649 1650
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1651 1652 1653 1654
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1655
		return;
1656 1657 1658

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1659
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1660

1661 1662
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1663
		ctx->nr_stat--;
1664

1665
	list_del_rcu(&event->event_entry);
1666

1667 1668
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1669

1670
	update_group_times(event);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1681 1682

	ctx->generation++;
1683 1684
}

1685
static void perf_group_detach(struct perf_event *event)
1686 1687
{
	struct perf_event *sibling, *tmp;
1688 1689
	struct list_head *list = NULL;

1690 1691
	lockdep_assert_held(&event->ctx->lock);

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1706
		goto out;
1707 1708 1709 1710
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1711

1712
	/*
1713 1714
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1715
	 * to whatever list we are on.
1716
	 */
1717
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1718 1719
		if (list)
			list_move_tail(&sibling->group_entry, list);
1720
		sibling->group_leader = sibling;
1721 1722

		/* Inherit group flags from the previous leader */
1723
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1724 1725

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1726
	}
1727 1728 1729 1730 1731 1732

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1733 1734
}

1735 1736
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1737
	return event->state == PERF_EVENT_STATE_DEAD;
1738 1739
}

1740
static inline int __pmu_filter_match(struct perf_event *event)
1741 1742 1743 1744 1745
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1767 1768 1769
static inline int
event_filter_match(struct perf_event *event)
{
1770 1771
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1772 1773
}

1774 1775
static void
event_sched_out(struct perf_event *event,
1776
		  struct perf_cpu_context *cpuctx,
1777
		  struct perf_event_context *ctx)
1778
{
1779
	u64 tstamp = perf_event_time(event);
1780
	u64 delta;
P
Peter Zijlstra 已提交
1781 1782 1783 1784

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1785 1786 1787 1788 1789 1790
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1791 1792
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1793
		delta = tstamp - event->tstamp_stopped;
1794
		event->tstamp_running += delta;
1795
		event->tstamp_stopped = tstamp;
1796 1797
	}

1798
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1799
		return;
1800

1801 1802
	perf_pmu_disable(event->pmu);

1803 1804 1805
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1806 1807 1808 1809
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1810
	}
1811

1812
	if (!is_software_event(event))
1813
		cpuctx->active_oncpu--;
1814 1815
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1816 1817
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1818
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1819
		cpuctx->exclusive = 0;
1820 1821

	perf_pmu_enable(event->pmu);
1822 1823
}

1824
static void
1825
group_sched_out(struct perf_event *group_event,
1826
		struct perf_cpu_context *cpuctx,
1827
		struct perf_event_context *ctx)
1828
{
1829
	struct perf_event *event;
1830
	int state = group_event->state;
1831

1832 1833
	perf_pmu_disable(ctx->pmu);

1834
	event_sched_out(group_event, cpuctx, ctx);
1835 1836 1837 1838

	/*
	 * Schedule out siblings (if any):
	 */
1839 1840
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1841

1842 1843
	perf_pmu_enable(ctx->pmu);

1844
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1845 1846 1847
		cpuctx->exclusive = 0;
}

1848
#define DETACH_GROUP	0x01UL
1849

T
Thomas Gleixner 已提交
1850
/*
1851
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1852
 *
1853
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1854 1855
 * remove it from the context list.
 */
1856 1857 1858 1859 1860
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1861
{
1862
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1863

1864
	event_sched_out(event, cpuctx, ctx);
1865
	if (flags & DETACH_GROUP)
1866
		perf_group_detach(event);
1867
	list_del_event(event, ctx);
1868 1869

	if (!ctx->nr_events && ctx->is_active) {
1870
		ctx->is_active = 0;
1871 1872 1873 1874
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1875
	}
T
Thomas Gleixner 已提交
1876 1877 1878
}

/*
1879
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1880
 *
1881 1882
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1883 1884
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1885
 * When called from perf_event_exit_task, it's OK because the
1886
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1887
 */
1888
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1889
{
1890 1891 1892
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1893

1894
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1913 1914
}

1915
/*
1916
 * Cross CPU call to disable a performance event
1917
 */
1918 1919 1920 1921
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1922
{
1923 1924
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1925

1926 1927 1928 1929 1930 1931 1932 1933
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1934 1935
}

1936
/*
1937
 * Disable a event.
1938
 *
1939 1940
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1941
 * remains valid.  This condition is satisifed when called through
1942 1943
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1944 1945
 * goes to exit will block in perf_event_exit_event().
 *
1946
 * When called from perf_pending_event it's OK because event->ctx
1947
 * is the current context on this CPU and preemption is disabled,
1948
 * hence we can't get into perf_event_task_sched_out for this context.
1949
 */
P
Peter Zijlstra 已提交
1950
static void _perf_event_disable(struct perf_event *event)
1951
{
1952
	struct perf_event_context *ctx = event->ctx;
1953

1954
	raw_spin_lock_irq(&ctx->lock);
1955
	if (event->state <= PERF_EVENT_STATE_OFF) {
1956
		raw_spin_unlock_irq(&ctx->lock);
1957
		return;
1958
	}
1959
	raw_spin_unlock_irq(&ctx->lock);
1960

1961 1962 1963 1964 1965 1966
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1967
}
P
Peter Zijlstra 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1981
EXPORT_SYMBOL_GPL(perf_event_disable);
1982

1983 1984 1985 1986 1987 1988
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2024 2025 2026
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2027
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2028

2029
static int
2030
event_sched_in(struct perf_event *event,
2031
		 struct perf_cpu_context *cpuctx,
2032
		 struct perf_event_context *ctx)
2033
{
2034
	u64 tstamp = perf_event_time(event);
2035
	int ret = 0;
2036

2037 2038
	lockdep_assert_held(&ctx->lock);

2039
	if (event->state <= PERF_EVENT_STATE_OFF)
2040 2041
		return 0;

2042 2043 2044 2045 2046 2047 2048
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2060 2061 2062 2063 2064
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2065 2066
	perf_pmu_disable(event->pmu);

2067 2068
	perf_set_shadow_time(event, ctx, tstamp);

2069 2070
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2071
	if (event->pmu->add(event, PERF_EF_START)) {
2072 2073
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2074 2075
		ret = -EAGAIN;
		goto out;
2076 2077
	}

2078 2079
	event->tstamp_running += tstamp - event->tstamp_stopped;

2080
	if (!is_software_event(event))
2081
		cpuctx->active_oncpu++;
2082 2083
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2084 2085
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2086

2087
	if (event->attr.exclusive)
2088 2089
		cpuctx->exclusive = 1;

2090 2091 2092 2093
out:
	perf_pmu_enable(event->pmu);

	return ret;
2094 2095
}

2096
static int
2097
group_sched_in(struct perf_event *group_event,
2098
	       struct perf_cpu_context *cpuctx,
2099
	       struct perf_event_context *ctx)
2100
{
2101
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2102
	struct pmu *pmu = ctx->pmu;
2103 2104
	u64 now = ctx->time;
	bool simulate = false;
2105

2106
	if (group_event->state == PERF_EVENT_STATE_OFF)
2107 2108
		return 0;

2109
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2110

2111
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2112
		pmu->cancel_txn(pmu);
2113
		perf_mux_hrtimer_restart(cpuctx);
2114
		return -EAGAIN;
2115
	}
2116 2117 2118 2119

	/*
	 * Schedule in siblings as one group (if any):
	 */
2120
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2121
		if (event_sched_in(event, cpuctx, ctx)) {
2122
			partial_group = event;
2123 2124 2125 2126
			goto group_error;
		}
	}

2127
	if (!pmu->commit_txn(pmu))
2128
		return 0;
2129

2130 2131 2132 2133
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2144
	 */
2145 2146
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2147 2148 2149 2150 2151 2152 2153 2154
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2155
	}
2156
	event_sched_out(group_event, cpuctx, ctx);
2157

P
Peter Zijlstra 已提交
2158
	pmu->cancel_txn(pmu);
2159

2160
	perf_mux_hrtimer_restart(cpuctx);
2161

2162 2163 2164
	return -EAGAIN;
}

2165
/*
2166
 * Work out whether we can put this event group on the CPU now.
2167
 */
2168
static int group_can_go_on(struct perf_event *event,
2169 2170 2171 2172
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2173
	 * Groups consisting entirely of software events can always go on.
2174
	 */
2175
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2176 2177 2178
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2179
	 * events can go on.
2180 2181 2182 2183 2184
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2185
	 * events on the CPU, it can't go on.
2186
	 */
2187
	if (event->attr.exclusive && cpuctx->active_oncpu)
2188 2189 2190 2191 2192 2193 2194 2195
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2196 2197
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2198
{
2199 2200
	u64 tstamp = perf_event_time(event);

2201
	list_add_event(event, ctx);
2202
	perf_group_attach(event);
2203 2204 2205
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2206 2207
}

2208 2209 2210
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2211 2212 2213 2214 2215
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2216

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2241 2242
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2243
{
2244 2245 2246 2247 2248 2249
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2250 2251
}

T
Thomas Gleixner 已提交
2252
/*
2253
 * Cross CPU call to install and enable a performance event
2254
 *
2255 2256
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2257
 */
2258
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2259
{
2260 2261
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2262
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2263
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2264
	bool reprogram = true;
2265
	int ret = 0;
T
Thomas Gleixner 已提交
2266

2267
	raw_spin_lock(&cpuctx->ctx.lock);
2268
	if (ctx->task) {
2269 2270
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2271

2272
		reprogram = (ctx->task == current);
2273

2274
		/*
2275 2276 2277 2278 2279
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2280
		 */
2281 2282 2283 2284
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2285

2286
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2287 2288
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2289
	}
2290

2291
	if (reprogram) {
2292 2293 2294 2295 2296 2297 2298
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2299
unlock:
2300
	perf_ctx_unlock(cpuctx, task_ctx);
2301

2302
	return ret;
T
Thomas Gleixner 已提交
2303 2304 2305
}

/*
2306 2307 2308
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2309 2310
 */
static void
2311 2312
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2313 2314
			int cpu)
{
2315
	struct task_struct *task = READ_ONCE(ctx->task);
2316

2317 2318
	lockdep_assert_held(&ctx->mutex);

2319 2320
	if (event->cpu != -1)
		event->cpu = cpu;
2321

2322 2323 2324 2325 2326 2327
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2339 2340 2341
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2361
	 */
2362

2363
	/*
2364 2365 2366 2367
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2368
	 */
2369 2370 2371
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2372 2373 2374 2375
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2376
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2377 2378 2379 2380 2381
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2382 2383 2384
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2385
	/*
2386 2387
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2388
	 */
2389 2390 2391 2392 2393 2394
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2395 2396
}

2397
/*
2398
 * Put a event into inactive state and update time fields.
2399 2400 2401 2402 2403 2404
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2405
static void __perf_event_mark_enabled(struct perf_event *event)
2406
{
2407
	struct perf_event *sub;
2408
	u64 tstamp = perf_event_time(event);
2409

2410
	event->state = PERF_EVENT_STATE_INACTIVE;
2411
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2412
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2413 2414
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2415
	}
2416 2417
}

2418
/*
2419
 * Cross CPU call to enable a performance event
2420
 */
2421 2422 2423 2424
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2425
{
2426
	struct perf_event *leader = event->group_leader;
2427
	struct perf_event_context *task_ctx;
2428

P
Peter Zijlstra 已提交
2429 2430
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2431
		return;
2432

2433 2434 2435
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2436
	__perf_event_mark_enabled(event);
2437

2438 2439 2440
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2441
	if (!event_filter_match(event)) {
2442
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2443
			perf_cgroup_defer_enabled(event);
2444
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2445
		return;
S
Stephane Eranian 已提交
2446
	}
2447

2448
	/*
2449
	 * If the event is in a group and isn't the group leader,
2450
	 * then don't put it on unless the group is on.
2451
	 */
2452 2453
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2454
		return;
2455
	}
2456

2457 2458 2459
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2460

2461
	ctx_resched(cpuctx, task_ctx);
2462 2463
}

2464
/*
2465
 * Enable a event.
2466
 *
2467 2468
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2469
 * remains valid.  This condition is satisfied when called through
2470 2471
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2472
 */
P
Peter Zijlstra 已提交
2473
static void _perf_event_enable(struct perf_event *event)
2474
{
2475
	struct perf_event_context *ctx = event->ctx;
2476

2477
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2478 2479
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2480
		raw_spin_unlock_irq(&ctx->lock);
2481 2482 2483 2484
		return;
	}

	/*
2485
	 * If the event is in error state, clear that first.
2486 2487 2488 2489
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2490
	 */
2491 2492
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2493
	raw_spin_unlock_irq(&ctx->lock);
2494

2495
	event_function_call(event, __perf_event_enable, NULL);
2496
}
P
Peter Zijlstra 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2509
EXPORT_SYMBOL_GPL(perf_event_enable);
2510

2511 2512 2513 2514 2515
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2516 2517
static int __perf_event_stop(void *info)
{
2518 2519
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2520

2521
	/* if it's already INACTIVE, do nothing */
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2547
		event->pmu->start(event, 0);
2548

2549 2550 2551
	return 0;
}

2552
static int perf_event_stop(struct perf_event *event, int restart)
2553 2554 2555
{
	struct stop_event_data sd = {
		.event		= event,
2556
		.restart	= restart,
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2617
static int _perf_event_refresh(struct perf_event *event, int refresh)
2618
{
2619
	/*
2620
	 * not supported on inherited events
2621
	 */
2622
	if (event->attr.inherit || !is_sampling_event(event))
2623 2624
		return -EINVAL;

2625
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2626
	_perf_event_enable(event);
2627 2628

	return 0;
2629
}
P
Peter Zijlstra 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2645
EXPORT_SYMBOL_GPL(perf_event_refresh);
2646

2647 2648 2649
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2650
{
2651
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2652
	struct perf_event *event;
2653

P
Peter Zijlstra 已提交
2654
	lockdep_assert_held(&ctx->lock);
2655

2656 2657 2658 2659 2660 2661 2662
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2663
		return;
2664 2665
	}

2666
	ctx->is_active &= ~event_type;
2667 2668 2669
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2670 2671 2672 2673 2674
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2686 2687 2688 2689 2690 2691
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2692 2693
	is_active ^= ctx->is_active; /* changed bits */

2694
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2695
		return;
2696

P
Peter Zijlstra 已提交
2697
	perf_pmu_disable(ctx->pmu);
2698
	if (is_active & EVENT_PINNED) {
2699 2700
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2701
	}
2702

2703
	if (is_active & EVENT_FLEXIBLE) {
2704
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2705
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2706
	}
P
Peter Zijlstra 已提交
2707
	perf_pmu_enable(ctx->pmu);
2708 2709
}

2710
/*
2711 2712 2713 2714 2715 2716
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2717
 */
2718 2719
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2720
{
2721 2722 2723
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2746 2747
}

2748 2749
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2750 2751 2752
{
	u64 value;

2753
	if (!event->attr.inherit_stat)
2754 2755 2756
		return;

	/*
2757
	 * Update the event value, we cannot use perf_event_read()
2758 2759
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2760
	 * we know the event must be on the current CPU, therefore we
2761 2762
	 * don't need to use it.
	 */
2763 2764
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2765 2766
		event->pmu->read(event);
		/* fall-through */
2767

2768 2769
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2770 2771 2772 2773 2774 2775 2776
		break;

	default:
		break;
	}

	/*
2777
	 * In order to keep per-task stats reliable we need to flip the event
2778 2779
	 * values when we flip the contexts.
	 */
2780 2781 2782
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2783

2784 2785
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2786

2787
	/*
2788
	 * Since we swizzled the values, update the user visible data too.
2789
	 */
2790 2791
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2792 2793
}

2794 2795
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2796
{
2797
	struct perf_event *event, *next_event;
2798 2799 2800 2801

	if (!ctx->nr_stat)
		return;

2802 2803
	update_context_time(ctx);

2804 2805
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2806

2807 2808
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2809

2810 2811
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2812

2813
		__perf_event_sync_stat(event, next_event);
2814

2815 2816
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2817 2818 2819
	}
}

2820 2821
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2822
{
P
Peter Zijlstra 已提交
2823
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2824
	struct perf_event_context *next_ctx;
2825
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2826
	struct perf_cpu_context *cpuctx;
2827
	int do_switch = 1;
T
Thomas Gleixner 已提交
2828

P
Peter Zijlstra 已提交
2829 2830
	if (likely(!ctx))
		return;
2831

P
Peter Zijlstra 已提交
2832 2833
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2834 2835
		return;

2836
	rcu_read_lock();
P
Peter Zijlstra 已提交
2837
	next_ctx = next->perf_event_ctxp[ctxn];
2838 2839 2840 2841 2842 2843 2844
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2845
	if (!parent && !next_parent)
2846 2847 2848
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2849 2850 2851 2852 2853 2854 2855 2856 2857
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2858 2859
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2860
		if (context_equiv(ctx, next_ctx)) {
2861 2862
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2863 2864 2865

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2876
			do_switch = 0;
2877

2878
			perf_event_sync_stat(ctx, next_ctx);
2879
		}
2880 2881
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2882
	}
2883
unlock:
2884
	rcu_read_unlock();
2885

2886
	if (do_switch) {
2887
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2888
		task_ctx_sched_out(cpuctx, ctx);
2889
		raw_spin_unlock(&ctx->lock);
2890
	}
T
Thomas Gleixner 已提交
2891 2892
}

2893 2894
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2895 2896
void perf_sched_cb_dec(struct pmu *pmu)
{
2897 2898
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2899
	this_cpu_dec(perf_sched_cb_usages);
2900 2901 2902

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2903 2904
}

2905

2906 2907
void perf_sched_cb_inc(struct pmu *pmu)
{
2908 2909 2910 2911 2912
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2913 2914 2915 2916 2917 2918
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2919 2920 2921 2922
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2934
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2935
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2936

2937 2938
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
2939

2940 2941
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
2942

2943
		pmu->sched_task(cpuctx->task_ctx, sched_in);
2944

2945 2946
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2947 2948 2949
	}
}

2950 2951 2952
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2967 2968
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2969 2970 2971
{
	int ctxn;

2972 2973 2974
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2975 2976 2977
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2978 2979
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2980 2981 2982 2983 2984 2985

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2986
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2987
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2988 2989
}

2990 2991 2992 2993 2994 2995 2996
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2997 2998
}

2999
static void
3000
ctx_pinned_sched_in(struct perf_event_context *ctx,
3001
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
3002
{
3003
	struct perf_event *event;
T
Thomas Gleixner 已提交
3004

3005 3006
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3007
			continue;
3008
		if (!event_filter_match(event))
3009 3010
			continue;

S
Stephane Eranian 已提交
3011 3012 3013 3014
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

3015
		if (group_can_go_on(event, cpuctx, 1))
3016
			group_sched_in(event, cpuctx, ctx);
3017 3018 3019 3020 3021

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3022 3023 3024
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
3025
		}
3026
	}
3027 3028 3029 3030
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3031
		      struct perf_cpu_context *cpuctx)
3032 3033 3034
{
	struct perf_event *event;
	int can_add_hw = 1;
3035

3036 3037 3038
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3039
			continue;
3040 3041
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3042
		 * of events:
3043
		 */
3044
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3045 3046
			continue;

S
Stephane Eranian 已提交
3047 3048 3049 3050
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3051
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3052
			if (group_sched_in(event, cpuctx, ctx))
3053
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3054
		}
T
Thomas Gleixner 已提交
3055
	}
3056 3057 3058 3059 3060
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3061 3062
	     enum event_type_t event_type,
	     struct task_struct *task)
3063
{
3064
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3065 3066 3067
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3068

3069
	if (likely(!ctx->nr_events))
3070
		return;
3071

3072
	ctx->is_active |= (event_type | EVENT_TIME);
3073 3074 3075 3076 3077 3078 3079
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3080 3081 3082 3083 3084 3085 3086 3087 3088
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3089 3090 3091 3092
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3093
	if (is_active & EVENT_PINNED)
3094
		ctx_pinned_sched_in(ctx, cpuctx);
3095 3096

	/* Then walk through the lower prio flexible groups */
3097
	if (is_active & EVENT_FLEXIBLE)
3098
		ctx_flexible_sched_in(ctx, cpuctx);
3099 3100
}

3101
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3102 3103
			     enum event_type_t event_type,
			     struct task_struct *task)
3104 3105 3106
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3107
	ctx_sched_in(ctx, cpuctx, event_type, task);
3108 3109
}

S
Stephane Eranian 已提交
3110 3111
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3112
{
P
Peter Zijlstra 已提交
3113
	struct perf_cpu_context *cpuctx;
3114

P
Peter Zijlstra 已提交
3115
	cpuctx = __get_cpu_context(ctx);
3116 3117 3118
	if (cpuctx->task_ctx == ctx)
		return;

3119
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3120
	perf_pmu_disable(ctx->pmu);
3121 3122 3123 3124
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3125 3126 3127
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3128
	 */
3129 3130
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3131
	perf_event_sched_in(cpuctx, ctx, task);
3132 3133
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3134 3135
}

P
Peter Zijlstra 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3147 3148
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3149 3150 3151 3152
{
	struct perf_event_context *ctx;
	int ctxn;

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3163 3164 3165 3166 3167
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3168
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3169
	}
3170

3171 3172 3173
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3174 3175
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3176 3177
}

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3205
#define REDUCE_FLS(a, b)		\
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3245 3246 3247
	if (!divisor)
		return dividend;

3248 3249 3250
	return div64_u64(dividend, divisor);
}

3251 3252 3253
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3254
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3255
{
3256
	struct hw_perf_event *hwc = &event->hw;
3257
	s64 period, sample_period;
3258 3259
	s64 delta;

3260
	period = perf_calculate_period(event, nsec, count);
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3271

3272
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3273 3274 3275
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3276
		local64_set(&hwc->period_left, 0);
3277 3278 3279

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3280
	}
3281 3282
}

3283 3284 3285 3286 3287 3288 3289
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3290
{
3291 3292
	struct perf_event *event;
	struct hw_perf_event *hwc;
3293
	u64 now, period = TICK_NSEC;
3294
	s64 delta;
3295

3296 3297 3298 3299 3300 3301
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3302 3303
		return;

3304
	raw_spin_lock(&ctx->lock);
3305
	perf_pmu_disable(ctx->pmu);
3306

3307
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3308
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3309 3310
			continue;

3311
		if (!event_filter_match(event))
3312 3313
			continue;

3314 3315
		perf_pmu_disable(event->pmu);

3316
		hwc = &event->hw;
3317

3318
		if (hwc->interrupts == MAX_INTERRUPTS) {
3319
			hwc->interrupts = 0;
3320
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3321
			event->pmu->start(event, 0);
3322 3323
		}

3324
		if (!event->attr.freq || !event->attr.sample_freq)
3325
			goto next;
3326

3327 3328 3329 3330 3331
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3332
		now = local64_read(&event->count);
3333 3334
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3335

3336 3337 3338
		/*
		 * restart the event
		 * reload only if value has changed
3339 3340 3341
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3342
		 */
3343
		if (delta > 0)
3344
			perf_adjust_period(event, period, delta, false);
3345 3346

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3347 3348
	next:
		perf_pmu_enable(event->pmu);
3349
	}
3350

3351
	perf_pmu_enable(ctx->pmu);
3352
	raw_spin_unlock(&ctx->lock);
3353 3354
}

3355
/*
3356
 * Round-robin a context's events:
3357
 */
3358
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3359
{
3360 3361 3362 3363 3364 3365
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3366 3367
}

3368
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3369
{
P
Peter Zijlstra 已提交
3370
	struct perf_event_context *ctx = NULL;
3371
	int rotate = 0;
3372

3373 3374 3375 3376
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3377

P
Peter Zijlstra 已提交
3378
	ctx = cpuctx->task_ctx;
3379 3380 3381 3382
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3383

3384
	if (!rotate)
3385 3386
		goto done;

3387
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3388
	perf_pmu_disable(cpuctx->ctx.pmu);
3389

3390 3391 3392
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3393

3394 3395 3396
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3397

3398
	perf_event_sched_in(cpuctx, ctx, current);
3399

3400 3401
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3402
done:
3403 3404

	return rotate;
3405 3406 3407 3408
}

void perf_event_task_tick(void)
{
3409 3410
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3411
	int throttled;
3412

3413 3414
	WARN_ON(!irqs_disabled());

3415 3416
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3417
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3418

3419
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3420
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3421 3422
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3433
	__perf_event_mark_enabled(event);
3434 3435 3436 3437

	return 1;
}

3438
/*
3439
 * Enable all of a task's events that have been marked enable-on-exec.
3440 3441
 * This expects task == current.
 */
3442
static void perf_event_enable_on_exec(int ctxn)
3443
{
3444
	struct perf_event_context *ctx, *clone_ctx = NULL;
3445
	struct perf_cpu_context *cpuctx;
3446
	struct perf_event *event;
3447 3448 3449 3450
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3451
	ctx = current->perf_event_ctxp[ctxn];
3452
	if (!ctx || !ctx->nr_events)
3453 3454
		goto out;

3455 3456
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3457
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3458 3459
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3460 3461

	/*
3462
	 * Unclone and reschedule this context if we enabled any event.
3463
	 */
3464
	if (enabled) {
3465
		clone_ctx = unclone_ctx(ctx);
3466 3467 3468
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3469

P
Peter Zijlstra 已提交
3470
out:
3471
	local_irq_restore(flags);
3472 3473 3474

	if (clone_ctx)
		put_ctx(clone_ctx);
3475 3476
}

3477 3478 3479
struct perf_read_data {
	struct perf_event *event;
	bool group;
3480
	int ret;
3481 3482
};

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
static int find_cpu_to_read(struct perf_event *event, int local_cpu)
{
	int event_cpu = event->oncpu;
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
		event_pkg =  topology_physical_package_id(event_cpu);
		local_pkg =  topology_physical_package_id(local_cpu);

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3499
/*
3500
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3501
 */
3502
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3503
{
3504 3505
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3506
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3507
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3508
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3509

3510 3511 3512 3513
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3514 3515
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3516 3517 3518 3519
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3520
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3521
	if (ctx->is_active) {
3522
		update_context_time(ctx);
S
Stephane Eranian 已提交
3523 3524
		update_cgrp_time_from_event(event);
	}
3525

3526
	update_event_times(event);
3527 3528
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3529

3530 3531 3532
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3533
		goto unlock;
3534 3535 3536 3537 3538
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3539 3540 3541

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3542 3543 3544 3545 3546
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3547
			sub->pmu->read(sub);
3548
		}
3549
	}
3550 3551

	data->ret = pmu->commit_txn(pmu);
3552 3553

unlock:
3554
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3555 3556
}

P
Peter Zijlstra 已提交
3557 3558
static inline u64 perf_event_count(struct perf_event *event)
{
3559 3560 3561 3562
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3563 3564
}

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3618
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3619
{
3620
	int ret = 0, cpu_to_read, local_cpu;
3621

T
Thomas Gleixner 已提交
3622
	/*
3623 3624
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3625
	 */
3626
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3627 3628 3629
		struct perf_read_data data = {
			.event = event,
			.group = group,
3630
			.ret = 0,
3631
		};
3632 3633 3634 3635 3636

		local_cpu = get_cpu();
		cpu_to_read = find_cpu_to_read(event, local_cpu);
		put_cpu();

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
		 * If event->oncpu isn't a valid CPU it means the event got
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3647
		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3648
		ret = data.ret;
3649
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3650 3651 3652
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3653
		raw_spin_lock_irqsave(&ctx->lock, flags);
3654 3655 3656 3657 3658
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3659
		if (ctx->is_active) {
3660
			update_context_time(ctx);
S
Stephane Eranian 已提交
3661 3662
			update_cgrp_time_from_event(event);
		}
3663 3664 3665 3666
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3667
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3668
	}
3669 3670

	return ret;
T
Thomas Gleixner 已提交
3671 3672
}

3673
/*
3674
 * Initialize the perf_event context in a task_struct:
3675
 */
3676
static void __perf_event_init_context(struct perf_event_context *ctx)
3677
{
3678
	raw_spin_lock_init(&ctx->lock);
3679
	mutex_init(&ctx->mutex);
3680
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3681 3682
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3683 3684
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3700
	}
3701 3702 3703
	ctx->pmu = pmu;

	return ctx;
3704 3705
}

3706 3707 3708 3709
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3710 3711

	rcu_read_lock();
3712
	if (!vpid)
T
Thomas Gleixner 已提交
3713 3714
		task = current;
	else
3715
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3716 3717 3718 3719 3720 3721 3722
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3723 3724 3725
	return task;
}

3726 3727 3728
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3729
static struct perf_event_context *
3730 3731
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3732
{
3733
	struct perf_event_context *ctx, *clone_ctx = NULL;
3734
	struct perf_cpu_context *cpuctx;
3735
	void *task_ctx_data = NULL;
3736
	unsigned long flags;
P
Peter Zijlstra 已提交
3737
	int ctxn, err;
3738
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3739

3740
	if (!task) {
3741
		/* Must be root to operate on a CPU event: */
3742
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3743 3744 3745
			return ERR_PTR(-EACCES);

		/*
3746
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3747 3748 3749
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3750
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3751 3752
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3753
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3754
		ctx = &cpuctx->ctx;
3755
		get_ctx(ctx);
3756
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3757 3758 3759 3760

		return ctx;
	}

P
Peter Zijlstra 已提交
3761 3762 3763 3764 3765
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3766 3767 3768 3769 3770 3771 3772 3773
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3774
retry:
P
Peter Zijlstra 已提交
3775
	ctx = perf_lock_task_context(task, ctxn, &flags);
3776
	if (ctx) {
3777
		clone_ctx = unclone_ctx(ctx);
3778
		++ctx->pin_count;
3779 3780 3781 3782 3783

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3784
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3785 3786 3787

		if (clone_ctx)
			put_ctx(clone_ctx);
3788
	} else {
3789
		ctx = alloc_perf_context(pmu, task);
3790 3791 3792
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3793

3794 3795 3796 3797 3798
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3809
		else {
3810
			get_ctx(ctx);
3811
			++ctx->pin_count;
3812
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3813
		}
3814 3815 3816
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3817
			put_ctx(ctx);
3818 3819 3820 3821

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3822 3823 3824
		}
	}

3825
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3826
	return ctx;
3827

P
Peter Zijlstra 已提交
3828
errout:
3829
	kfree(task_ctx_data);
3830
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3831 3832
}

L
Li Zefan 已提交
3833
static void perf_event_free_filter(struct perf_event *event);
3834
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3835

3836
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3837
{
3838
	struct perf_event *event;
P
Peter Zijlstra 已提交
3839

3840 3841 3842
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3843
	perf_event_free_filter(event);
3844
	kfree(event);
P
Peter Zijlstra 已提交
3845 3846
}

3847 3848
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3849

3850 3851 3852 3853 3854 3855 3856 3857 3858
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3859
static bool is_sb_event(struct perf_event *event)
3860
{
3861 3862
	struct perf_event_attr *attr = &event->attr;

3863
	if (event->parent)
3864
		return false;
3865 3866

	if (event->attach_state & PERF_ATTACH_TASK)
3867
		return false;
3868

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3881 3882
}

3883
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3884
{
3885 3886 3887 3888 3889 3890
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3891

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3914 3915
static void unaccount_event(struct perf_event *event)
{
3916 3917
	bool dec = false;

3918 3919 3920 3921
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3922
		dec = true;
3923 3924 3925 3926 3927 3928
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3929
	if (event->attr.freq)
3930
		unaccount_freq_event();
3931
	if (event->attr.context_switch) {
3932
		dec = true;
3933 3934
		atomic_dec(&nr_switch_events);
	}
3935
	if (is_cgroup_event(event))
3936
		dec = true;
3937
	if (has_branch_stack(event))
3938 3939
		dec = true;

3940 3941 3942 3943
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3944 3945

	unaccount_event_cpu(event, event->cpu);
3946 3947

	unaccount_pmu_sb_event(event);
3948
}
3949

3950 3951 3952 3953 3954 3955 3956 3957
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3968
 * _free_event()), the latter -- before the first perf_install_in_context().
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4017
	if ((e1->pmu == e2->pmu) &&
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4043 4044 4045
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4046
static void _free_event(struct perf_event *event)
4047
{
4048
	irq_work_sync(&event->pending);
4049

4050
	unaccount_event(event);
4051

4052
	if (event->rb) {
4053 4054 4055 4056 4057 4058 4059
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4060
		ring_buffer_attach(event, NULL);
4061
		mutex_unlock(&event->mmap_mutex);
4062 4063
	}

S
Stephane Eranian 已提交
4064 4065 4066
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4067 4068 4069 4070 4071 4072
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4073 4074
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4075 4076 4077 4078 4079 4080 4081

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4082 4083
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4084 4085

	call_rcu(&event->rcu_head, free_event_rcu);
4086 4087
}

P
Peter Zijlstra 已提交
4088 4089 4090 4091 4092
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4093
{
P
Peter Zijlstra 已提交
4094 4095 4096 4097 4098 4099
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4100

P
Peter Zijlstra 已提交
4101
	_free_event(event);
T
Thomas Gleixner 已提交
4102 4103
}

4104
/*
4105
 * Remove user event from the owner task.
4106
 */
4107
static void perf_remove_from_owner(struct perf_event *event)
4108
{
P
Peter Zijlstra 已提交
4109
	struct task_struct *owner;
4110

P
Peter Zijlstra 已提交
4111 4112
	rcu_read_lock();
	/*
4113 4114 4115
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4116 4117
	 * owner->perf_event_mutex.
	 */
4118
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4140 4141 4142 4143 4144 4145
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4146
		if (event->owner) {
P
Peter Zijlstra 已提交
4147
			list_del_init(&event->owner_entry);
4148 4149
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4150 4151 4152
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4153 4154 4155 4156 4157 4158 4159
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4170
	struct perf_event_context *ctx = event->ctx;
4171 4172
	struct perf_event *child, *tmp;

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4183 4184
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4185

4186
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4187
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4188
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4189

P
Peter Zijlstra 已提交
4190
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4191
	/*
P
Peter Zijlstra 已提交
4192 4193
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
4194
	 *
P
Peter Zijlstra 已提交
4195 4196 4197
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4198
	 *
4199 4200
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4201
	 */
P
Peter Zijlstra 已提交
4202 4203 4204 4205
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4206

4207 4208 4209
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4260 4261
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4262 4263 4264 4265
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4266 4267 4268
/*
 * Called when the last reference to the file is gone.
 */
4269 4270
static int perf_release(struct inode *inode, struct file *file)
{
4271
	perf_event_release_kernel(file->private_data);
4272
	return 0;
4273 4274
}

4275
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4276
{
4277
	struct perf_event *child;
4278 4279
	u64 total = 0;

4280 4281 4282
	*enabled = 0;
	*running = 0;

4283
	mutex_lock(&event->child_mutex);
4284

4285
	(void)perf_event_read(event, false);
4286 4287
	total += perf_event_count(event);

4288 4289 4290 4291 4292 4293
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4294
		(void)perf_event_read(child, false);
4295
		total += perf_event_count(child);
4296 4297 4298
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4299
	mutex_unlock(&event->child_mutex);
4300 4301 4302

	return total;
}
4303
EXPORT_SYMBOL_GPL(perf_event_read_value);
4304

4305
static int __perf_read_group_add(struct perf_event *leader,
4306
					u64 read_format, u64 *values)
4307
{
4308 4309
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4310
	int ret;
P
Peter Zijlstra 已提交
4311

4312 4313 4314
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4315

4316 4317 4318 4319 4320 4321 4322 4323 4324
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4325

4326 4327 4328 4329 4330 4331 4332 4333 4334
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4335 4336
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4337

4338 4339 4340 4341 4342
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4343 4344

	return 0;
4345
}
4346

4347 4348 4349 4350 4351
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4352
	int ret;
4353
	u64 *values;
4354

4355
	lockdep_assert_held(&ctx->mutex);
4356

4357 4358 4359
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4360

4361 4362 4363 4364 4365 4366 4367
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4368

4369 4370 4371 4372 4373 4374 4375 4376 4377
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4378

4379
	mutex_unlock(&leader->child_mutex);
4380

4381
	ret = event->read_size;
4382 4383
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4384
	goto out;
4385

4386 4387 4388
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4389
	kfree(values);
4390
	return ret;
4391 4392
}

4393
static int perf_read_one(struct perf_event *event,
4394 4395
				 u64 read_format, char __user *buf)
{
4396
	u64 enabled, running;
4397 4398 4399
	u64 values[4];
	int n = 0;

4400 4401 4402 4403 4404
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4405
	if (read_format & PERF_FORMAT_ID)
4406
		values[n++] = primary_event_id(event);
4407 4408 4409 4410 4411 4412 4413

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4414 4415 4416 4417
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4418
	if (event->state > PERF_EVENT_STATE_EXIT)
4419 4420 4421 4422 4423 4424 4425 4426
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4427
/*
4428
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4429 4430
 */
static ssize_t
4431
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4432
{
4433
	u64 read_format = event->attr.read_format;
4434
	int ret;
T
Thomas Gleixner 已提交
4435

4436
	/*
4437
	 * Return end-of-file for a read on a event that is in
4438 4439 4440
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4441
	if (event->state == PERF_EVENT_STATE_ERROR)
4442 4443
		return 0;

4444
	if (count < event->read_size)
4445 4446
		return -ENOSPC;

4447
	WARN_ON_ONCE(event->ctx->parent_ctx);
4448
	if (read_format & PERF_FORMAT_GROUP)
4449
		ret = perf_read_group(event, read_format, buf);
4450
	else
4451
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4452

4453
	return ret;
T
Thomas Gleixner 已提交
4454 4455 4456 4457 4458
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4459
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4460 4461
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4462

P
Peter Zijlstra 已提交
4463
	ctx = perf_event_ctx_lock(event);
4464
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4465 4466 4467
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4468 4469 4470 4471
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4472
	struct perf_event *event = file->private_data;
4473
	struct ring_buffer *rb;
4474
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4475

4476
	poll_wait(file, &event->waitq, wait);
4477

4478
	if (is_event_hup(event))
4479
		return events;
P
Peter Zijlstra 已提交
4480

4481
	/*
4482 4483
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4484 4485
	 */
	mutex_lock(&event->mmap_mutex);
4486 4487
	rb = event->rb;
	if (rb)
4488
		events = atomic_xchg(&rb->poll, 0);
4489
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4490 4491 4492
	return events;
}

P
Peter Zijlstra 已提交
4493
static void _perf_event_reset(struct perf_event *event)
4494
{
4495
	(void)perf_event_read(event, false);
4496
	local64_set(&event->count, 0);
4497
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4498 4499
}

4500
/*
4501 4502
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4503
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4504
 * task existence requirements of perf_event_enable/disable.
4505
 */
4506 4507
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4508
{
4509
	struct perf_event *child;
P
Peter Zijlstra 已提交
4510

4511
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4512

4513 4514 4515
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4516
		func(child);
4517
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4518 4519
}

4520 4521
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4522
{
4523 4524
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4525

P
Peter Zijlstra 已提交
4526 4527
	lockdep_assert_held(&ctx->mutex);

4528
	event = event->group_leader;
4529

4530 4531
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4532
		perf_event_for_each_child(sibling, func);
4533 4534
}

4535 4536 4537 4538
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4539
{
4540
	u64 value = *((u64 *)info);
4541
	bool active;
4542

4543 4544
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4545
	} else {
4546 4547
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4548
	}
4549 4550 4551 4552

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4553 4554 4555 4556 4557 4558 4559 4560
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4561 4562 4563 4564 4565 4566 4567 4568 4569
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4588
	event_function_call(event, __perf_event_period, &value);
4589

4590
	return 0;
4591 4592
}

4593 4594
static const struct file_operations perf_fops;

4595
static inline int perf_fget_light(int fd, struct fd *p)
4596
{
4597 4598 4599
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4600

4601 4602 4603
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4604
	}
4605 4606
	*p = f;
	return 0;
4607 4608 4609 4610
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4611
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4612
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4613

P
Peter Zijlstra 已提交
4614
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4615
{
4616
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4617
	u32 flags = arg;
4618 4619

	switch (cmd) {
4620
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4621
		func = _perf_event_enable;
4622
		break;
4623
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4624
		func = _perf_event_disable;
4625
		break;
4626
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4627
		func = _perf_event_reset;
4628
		break;
P
Peter Zijlstra 已提交
4629

4630
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4631
		return _perf_event_refresh(event, arg);
4632

4633 4634
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4635

4636 4637 4638 4639 4640 4641 4642 4643 4644
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4645
	case PERF_EVENT_IOC_SET_OUTPUT:
4646 4647 4648
	{
		int ret;
		if (arg != -1) {
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4659 4660 4661
		}
		return ret;
	}
4662

L
Li Zefan 已提交
4663 4664 4665
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4666 4667 4668
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4682
	default:
P
Peter Zijlstra 已提交
4683
		return -ENOTTY;
4684
	}
P
Peter Zijlstra 已提交
4685 4686

	if (flags & PERF_IOC_FLAG_GROUP)
4687
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4688
	else
4689
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4690 4691

	return 0;
4692 4693
}

P
Peter Zijlstra 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4727
int perf_event_task_enable(void)
4728
{
P
Peter Zijlstra 已提交
4729
	struct perf_event_context *ctx;
4730
	struct perf_event *event;
4731

4732
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4733 4734 4735 4736 4737
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4738
	mutex_unlock(&current->perf_event_mutex);
4739 4740 4741 4742

	return 0;
}

4743
int perf_event_task_disable(void)
4744
{
P
Peter Zijlstra 已提交
4745
	struct perf_event_context *ctx;
4746
	struct perf_event *event;
4747

4748
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4749 4750 4751 4752 4753
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4754
	mutex_unlock(&current->perf_event_mutex);
4755 4756 4757 4758

	return 0;
}

4759
static int perf_event_index(struct perf_event *event)
4760
{
P
Peter Zijlstra 已提交
4761 4762 4763
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4764
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4765 4766
		return 0;

4767
	return event->pmu->event_idx(event);
4768 4769
}

4770
static void calc_timer_values(struct perf_event *event,
4771
				u64 *now,
4772 4773
				u64 *enabled,
				u64 *running)
4774
{
4775
	u64 ctx_time;
4776

4777 4778
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4779 4780 4781 4782
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4798 4799
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4800 4801 4802 4803 4804

unlock:
	rcu_read_unlock();
}

4805 4806
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4807 4808 4809
{
}

4810 4811 4812 4813 4814
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4815
void perf_event_update_userpage(struct perf_event *event)
4816
{
4817
	struct perf_event_mmap_page *userpg;
4818
	struct ring_buffer *rb;
4819
	u64 enabled, running, now;
4820 4821

	rcu_read_lock();
4822 4823 4824 4825
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4826 4827 4828 4829 4830 4831 4832 4833 4834
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4835
	calc_timer_values(event, &now, &enabled, &running);
4836

4837
	userpg = rb->user_page;
4838 4839 4840 4841 4842
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4843
	++userpg->lock;
4844
	barrier();
4845
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4846
	userpg->offset = perf_event_count(event);
4847
	if (userpg->index)
4848
		userpg->offset -= local64_read(&event->hw.prev_count);
4849

4850
	userpg->time_enabled = enabled +
4851
			atomic64_read(&event->child_total_time_enabled);
4852

4853
	userpg->time_running = running +
4854
			atomic64_read(&event->child_total_time_running);
4855

4856
	arch_perf_update_userpage(event, userpg, now);
4857

4858
	barrier();
4859
	++userpg->lock;
4860
	preempt_enable();
4861
unlock:
4862
	rcu_read_unlock();
4863 4864
}

4865 4866 4867
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4868
	struct ring_buffer *rb;
4869 4870 4871 4872 4873 4874 4875 4876 4877
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4878 4879
	rb = rcu_dereference(event->rb);
	if (!rb)
4880 4881 4882 4883 4884
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4885
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4900 4901 4902
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4903
	struct ring_buffer *old_rb = NULL;
4904 4905
	unsigned long flags;

4906 4907 4908 4909 4910 4911
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4912

4913 4914 4915 4916
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4917

4918 4919
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4920
	}
4921

4922
	if (rb) {
4923 4924 4925 4926 4927
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4928 4929 4930 4931 4932
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4957 4958 4959 4960 4961 4962 4963 4964
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4965 4966 4967 4968
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4969 4970 4971
	rcu_read_unlock();
}

4972
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4973
{
4974
	struct ring_buffer *rb;
4975

4976
	rcu_read_lock();
4977 4978 4979 4980
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4981 4982 4983
	}
	rcu_read_unlock();

4984
	return rb;
4985 4986
}

4987
void ring_buffer_put(struct ring_buffer *rb)
4988
{
4989
	if (!atomic_dec_and_test(&rb->refcount))
4990
		return;
4991

4992
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4993

4994
	call_rcu(&rb->rcu_head, rb_free_rcu);
4995 4996 4997 4998
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4999
	struct perf_event *event = vma->vm_file->private_data;
5000

5001
	atomic_inc(&event->mmap_count);
5002
	atomic_inc(&event->rb->mmap_count);
5003

5004 5005 5006
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5007 5008
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
5009 5010
}

5011 5012
static void perf_pmu_output_stop(struct perf_event *event);

5013 5014 5015 5016 5017 5018 5019 5020
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5021 5022
static void perf_mmap_close(struct vm_area_struct *vma)
{
5023
	struct perf_event *event = vma->vm_file->private_data;
5024

5025
	struct ring_buffer *rb = ring_buffer_get(event);
5026 5027 5028
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5029

5030 5031 5032
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

5033 5034 5035 5036 5037 5038 5039
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5040 5041 5042 5043 5044 5045 5046 5047 5048
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5049 5050 5051
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5052
		/* this has to be the last one */
5053
		rb_free_aux(rb);
5054 5055
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5056 5057 5058
		mutex_unlock(&event->mmap_mutex);
	}

5059 5060 5061
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5062
		goto out_put;
5063

5064
	ring_buffer_attach(event, NULL);
5065 5066 5067
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5068 5069
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5070

5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5087

5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5099 5100 5101
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5102
		mutex_unlock(&event->mmap_mutex);
5103
		put_event(event);
5104

5105 5106 5107 5108 5109
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5110
	}
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5126
out_put:
5127
	ring_buffer_put(rb); /* could be last */
5128 5129
}

5130
static const struct vm_operations_struct perf_mmap_vmops = {
5131
	.open		= perf_mmap_open,
5132
	.close		= perf_mmap_close, /* non mergable */
5133 5134
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5135 5136 5137 5138
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5139
	struct perf_event *event = file->private_data;
5140
	unsigned long user_locked, user_lock_limit;
5141
	struct user_struct *user = current_user();
5142
	unsigned long locked, lock_limit;
5143
	struct ring_buffer *rb = NULL;
5144 5145
	unsigned long vma_size;
	unsigned long nr_pages;
5146
	long user_extra = 0, extra = 0;
5147
	int ret = 0, flags = 0;
5148

5149 5150 5151
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5152
	 * same rb.
5153 5154 5155 5156
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5157
	if (!(vma->vm_flags & VM_SHARED))
5158
		return -EINVAL;
5159 5160

	vma_size = vma->vm_end - vma->vm_start;
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5221

5222
	/*
5223
	 * If we have rb pages ensure they're a power-of-two number, so we
5224 5225
	 * can do bitmasks instead of modulo.
	 */
5226
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5227 5228
		return -EINVAL;

5229
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5230 5231
		return -EINVAL;

5232
	WARN_ON_ONCE(event->ctx->parent_ctx);
5233
again:
5234
	mutex_lock(&event->mmap_mutex);
5235
	if (event->rb) {
5236
		if (event->rb->nr_pages != nr_pages) {
5237
			ret = -EINVAL;
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5251 5252 5253
		goto unlock;
	}

5254
	user_extra = nr_pages + 1;
5255 5256

accounting:
5257
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5258 5259 5260 5261 5262 5263

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5264
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5265

5266 5267
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5268

5269
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5270
	lock_limit >>= PAGE_SHIFT;
5271
	locked = vma->vm_mm->pinned_vm + extra;
5272

5273 5274
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5275 5276 5277
		ret = -EPERM;
		goto unlock;
	}
5278

5279
	WARN_ON(!rb && event->rb);
5280

5281
	if (vma->vm_flags & VM_WRITE)
5282
		flags |= RING_BUFFER_WRITABLE;
5283

5284
	if (!rb) {
5285 5286 5287
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5288

5289 5290 5291 5292
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5293

5294 5295 5296
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5297

5298
		ring_buffer_attach(event, rb);
5299

5300 5301 5302
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5303 5304
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5305 5306 5307
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5308

5309
unlock:
5310 5311 5312 5313
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5314
		atomic_inc(&event->mmap_count);
5315 5316 5317 5318
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5319
	mutex_unlock(&event->mmap_mutex);
5320

5321 5322 5323 5324
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5325
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5326
	vma->vm_ops = &perf_mmap_vmops;
5327

5328 5329 5330
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5331
	return ret;
5332 5333
}

P
Peter Zijlstra 已提交
5334 5335
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5336
	struct inode *inode = file_inode(filp);
5337
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5338 5339
	int retval;

A
Al Viro 已提交
5340
	inode_lock(inode);
5341
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5342
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5343 5344 5345 5346 5347 5348 5349

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5350
static const struct file_operations perf_fops = {
5351
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5352 5353 5354
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5355
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5356
	.compat_ioctl		= perf_compat_ioctl,
5357
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5358
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5359 5360
};

5361
/*
5362
 * Perf event wakeup
5363 5364 5365 5366 5367
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5368 5369 5370 5371 5372 5373 5374 5375
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5376
void perf_event_wakeup(struct perf_event *event)
5377
{
5378
	ring_buffer_wakeup(event);
5379

5380
	if (event->pending_kill) {
5381
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5382
		event->pending_kill = 0;
5383
	}
5384 5385
}

5386
static void perf_pending_event(struct irq_work *entry)
5387
{
5388 5389
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5390 5391 5392 5393 5394 5395 5396
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5397

5398 5399
	if (event->pending_disable) {
		event->pending_disable = 0;
5400
		perf_event_disable_local(event);
5401 5402
	}

5403 5404 5405
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5406
	}
5407 5408 5409

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5410 5411
}

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5433 5434 5435 5436 5437
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5438
	DECLARE_BITMAP(_mask, 64);
5439

5440 5441
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5442 5443 5444 5445 5446 5447 5448
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5449
static void perf_sample_regs_user(struct perf_regs *regs_user,
5450 5451
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5452
{
5453 5454
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5455
		regs_user->regs = regs;
5456 5457
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5458 5459 5460
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5461 5462 5463
	}
}

5464 5465 5466 5467 5468 5469 5470 5471
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5567 5568 5569
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5583
		data->time = perf_event_clock(event);
5584

5585
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5597 5598 5599
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5624 5625 5626

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5627 5628
}

5629 5630 5631
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5632 5633 5634 5635 5636
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5637
static void perf_output_read_one(struct perf_output_handle *handle,
5638 5639
				 struct perf_event *event,
				 u64 enabled, u64 running)
5640
{
5641
	u64 read_format = event->attr.read_format;
5642 5643 5644
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5645
	values[n++] = perf_event_count(event);
5646
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5647
		values[n++] = enabled +
5648
			atomic64_read(&event->child_total_time_enabled);
5649 5650
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5651
		values[n++] = running +
5652
			atomic64_read(&event->child_total_time_running);
5653 5654
	}
	if (read_format & PERF_FORMAT_ID)
5655
		values[n++] = primary_event_id(event);
5656

5657
	__output_copy(handle, values, n * sizeof(u64));
5658 5659 5660
}

/*
5661
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5662 5663
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5664 5665
			    struct perf_event *event,
			    u64 enabled, u64 running)
5666
{
5667 5668
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5669 5670 5671 5672 5673 5674
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5675
		values[n++] = enabled;
5676 5677

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5678
		values[n++] = running;
5679

5680
	if (leader != event)
5681 5682
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5683
	values[n++] = perf_event_count(leader);
5684
	if (read_format & PERF_FORMAT_ID)
5685
		values[n++] = primary_event_id(leader);
5686

5687
	__output_copy(handle, values, n * sizeof(u64));
5688

5689
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5690 5691
		n = 0;

5692 5693
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5694 5695
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5696
		values[n++] = perf_event_count(sub);
5697
		if (read_format & PERF_FORMAT_ID)
5698
			values[n++] = primary_event_id(sub);
5699

5700
		__output_copy(handle, values, n * sizeof(u64));
5701 5702 5703
	}
}

5704 5705 5706
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5707
static void perf_output_read(struct perf_output_handle *handle,
5708
			     struct perf_event *event)
5709
{
5710
	u64 enabled = 0, running = 0, now;
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5722
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5723
		calc_timer_values(event, &now, &enabled, &running);
5724

5725
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5726
		perf_output_read_group(handle, event, enabled, running);
5727
	else
5728
		perf_output_read_one(handle, event, enabled, running);
5729 5730
}

5731 5732 5733
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5734
			struct perf_event *event)
5735 5736 5737 5738 5739
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5740 5741 5742
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5768
		perf_output_read(handle, event);
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5779
			__output_copy(handle, data->callchain, size);
5780 5781 5782 5783 5784 5785 5786
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5818

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5853

5854
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5855 5856 5857
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5858
	}
A
Andi Kleen 已提交
5859 5860 5861

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5862 5863 5864

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5865

A
Andi Kleen 已提交
5866 5867 5868
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5899 5900 5901 5902
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5903
			 struct perf_event *event,
5904
			 struct pt_regs *regs)
5905
{
5906
	u64 sample_type = event->attr.sample_type;
5907

5908
	header->type = PERF_RECORD_SAMPLE;
5909
	header->size = sizeof(*header) + event->header_size;
5910 5911 5912

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5913

5914
	__perf_event_header__init_id(header, data, event);
5915

5916
	if (sample_type & PERF_SAMPLE_IP)
5917 5918
		data->ip = perf_instruction_pointer(regs);

5919
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5920
		int size = 1;
5921

5922
		data->callchain = perf_callchain(event, regs);
5923 5924 5925 5926 5927

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5928 5929
	}

5930
	if (sample_type & PERF_SAMPLE_RAW) {
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
5951

5952
		header->size += size;
5953
	}
5954 5955 5956 5957 5958 5959 5960 5961 5962

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5963

5964
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5965 5966
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5967

5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5991
						     data->regs_user.regs);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6019
}
6020

6021 6022 6023 6024 6025 6026 6027
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6028 6029 6030
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6031

6032 6033 6034
	/* protect the callchain buffers */
	rcu_read_lock();

6035
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6036

6037
	if (output_begin(&handle, event, header.size))
6038
		goto exit;
6039

6040
	perf_output_sample(&handle, &header, data, event);
6041

6042
	perf_output_end(&handle);
6043 6044 6045

exit:
	rcu_read_unlock();
6046 6047
}

6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6072
/*
6073
 * read event_id
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6084
perf_event_read_event(struct perf_event *event,
6085 6086 6087
			struct task_struct *task)
{
	struct perf_output_handle handle;
6088
	struct perf_sample_data sample;
6089
	struct perf_read_event read_event = {
6090
		.header = {
6091
			.type = PERF_RECORD_READ,
6092
			.misc = 0,
6093
			.size = sizeof(read_event) + event->read_size,
6094
		},
6095 6096
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6097
	};
6098
	int ret;
6099

6100
	perf_event_header__init_id(&read_event.header, &sample, event);
6101
	ret = perf_output_begin(&handle, event, read_event.header.size);
6102 6103 6104
	if (ret)
		return;

6105
	perf_output_put(&handle, read_event);
6106
	perf_output_read(&handle, event);
6107
	perf_event__output_id_sample(event, &handle, &sample);
6108

6109 6110 6111
	perf_output_end(&handle);
}

6112
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6113 6114

static void
6115 6116
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6117
		   void *data, bool all)
6118 6119 6120 6121
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6122 6123 6124 6125 6126 6127 6128
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6129
		output(event, data);
6130 6131 6132
	}
}

6133
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6134 6135 6136 6137 6138
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6139 6140 6141 6142 6143 6144 6145 6146
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6147 6148 6149 6150 6151 6152 6153 6154
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6155 6156 6157 6158 6159 6160
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6161
static void
6162
perf_iterate_sb(perf_iterate_f output, void *data,
6163 6164 6165 6166 6167
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6168 6169 6170
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6171
	/*
6172 6173
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6174 6175 6176
	 * context.
	 */
	if (task_ctx) {
6177 6178
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6179 6180
	}

6181
	perf_iterate_sb_cpu(output, data);
6182 6183

	for_each_task_context_nr(ctxn) {
6184 6185
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6186
			perf_iterate_ctx(ctx, output, data, false);
6187
	}
6188
done:
6189
	preempt_enable();
6190
	rcu_read_unlock();
6191 6192
}

6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6222
		perf_event_stop(event, 1);
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6238
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6239 6240 6241 6242 6243
				   true);
	}
	rcu_read_unlock();
}

6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6254 6255 6256
	struct stop_event_data sd = {
		.event	= event,
	};
6257 6258 6259 6260 6261 6262 6263 6264 6265

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6266 6267 6268 6269 6270 6271 6272
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6273 6274
	 */
	if (rcu_dereference(parent->rb) == rb)
6275
		ro->err = __perf_event_stop(&sd);
6276 6277 6278 6279 6280 6281
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6282
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6283 6284 6285 6286 6287
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6288
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6289
	if (cpuctx->task_ctx)
6290
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6291
				   &ro, false);
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6325 6326
}

P
Peter Zijlstra 已提交
6327
/*
P
Peter Zijlstra 已提交
6328 6329
 * task tracking -- fork/exit
 *
6330
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6331 6332
 */

P
Peter Zijlstra 已提交
6333
struct perf_task_event {
6334
	struct task_struct		*task;
6335
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6336 6337 6338 6339 6340 6341

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6342 6343
		u32				tid;
		u32				ptid;
6344
		u64				time;
6345
	} event_id;
P
Peter Zijlstra 已提交
6346 6347
};

6348 6349
static int perf_event_task_match(struct perf_event *event)
{
6350 6351 6352
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6353 6354
}

6355
static void perf_event_task_output(struct perf_event *event,
6356
				   void *data)
P
Peter Zijlstra 已提交
6357
{
6358
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6359
	struct perf_output_handle handle;
6360
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6361
	struct task_struct *task = task_event->task;
6362
	int ret, size = task_event->event_id.header.size;
6363

6364 6365 6366
	if (!perf_event_task_match(event))
		return;

6367
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6368

6369
	ret = perf_output_begin(&handle, event,
6370
				task_event->event_id.header.size);
6371
	if (ret)
6372
		goto out;
P
Peter Zijlstra 已提交
6373

6374 6375
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6376

6377 6378
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6379

6380 6381
	task_event->event_id.time = perf_event_clock(event);

6382
	perf_output_put(&handle, task_event->event_id);
6383

6384 6385
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6386
	perf_output_end(&handle);
6387 6388
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6389 6390
}

6391 6392
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6393
			      int new)
P
Peter Zijlstra 已提交
6394
{
P
Peter Zijlstra 已提交
6395
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6396

6397 6398 6399
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6400 6401
		return;

P
Peter Zijlstra 已提交
6402
	task_event = (struct perf_task_event){
6403 6404
		.task	  = task,
		.task_ctx = task_ctx,
6405
		.event_id    = {
P
Peter Zijlstra 已提交
6406
			.header = {
6407
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6408
				.misc = 0,
6409
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6410
			},
6411 6412
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6413 6414
			/* .tid  */
			/* .ptid */
6415
			/* .time */
P
Peter Zijlstra 已提交
6416 6417 6418
		},
	};

6419
	perf_iterate_sb(perf_event_task_output,
6420 6421
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6422 6423
}

6424
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6425
{
6426
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
6427 6428
}

6429 6430 6431 6432 6433
/*
 * comm tracking
 */

struct perf_comm_event {
6434 6435
	struct task_struct	*task;
	char			*comm;
6436 6437 6438 6439 6440 6441 6442
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6443
	} event_id;
6444 6445
};

6446 6447 6448 6449 6450
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6451
static void perf_event_comm_output(struct perf_event *event,
6452
				   void *data)
6453
{
6454
	struct perf_comm_event *comm_event = data;
6455
	struct perf_output_handle handle;
6456
	struct perf_sample_data sample;
6457
	int size = comm_event->event_id.header.size;
6458 6459
	int ret;

6460 6461 6462
	if (!perf_event_comm_match(event))
		return;

6463 6464
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6465
				comm_event->event_id.header.size);
6466 6467

	if (ret)
6468
		goto out;
6469

6470 6471
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6472

6473
	perf_output_put(&handle, comm_event->event_id);
6474
	__output_copy(&handle, comm_event->comm,
6475
				   comm_event->comm_size);
6476 6477 6478

	perf_event__output_id_sample(event, &handle, &sample);

6479
	perf_output_end(&handle);
6480 6481
out:
	comm_event->event_id.header.size = size;
6482 6483
}

6484
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6485
{
6486
	char comm[TASK_COMM_LEN];
6487 6488
	unsigned int size;

6489
	memset(comm, 0, sizeof(comm));
6490
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6491
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6492 6493 6494 6495

	comm_event->comm = comm;
	comm_event->comm_size = size;

6496
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6497

6498
	perf_iterate_sb(perf_event_comm_output,
6499 6500
		       comm_event,
		       NULL);
6501 6502
}

6503
void perf_event_comm(struct task_struct *task, bool exec)
6504
{
6505 6506
	struct perf_comm_event comm_event;

6507
	if (!atomic_read(&nr_comm_events))
6508
		return;
6509

6510
	comm_event = (struct perf_comm_event){
6511
		.task	= task,
6512 6513
		/* .comm      */
		/* .comm_size */
6514
		.event_id  = {
6515
			.header = {
6516
				.type = PERF_RECORD_COMM,
6517
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6518 6519 6520 6521
				/* .size */
			},
			/* .pid */
			/* .tid */
6522 6523 6524
		},
	};

6525
	perf_event_comm_event(&comm_event);
6526 6527
}

6528 6529 6530 6531 6532
/*
 * mmap tracking
 */

struct perf_mmap_event {
6533 6534 6535 6536
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6537 6538 6539
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6540
	u32			prot, flags;
6541 6542 6543 6544 6545 6546 6547 6548 6549

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6550
	} event_id;
6551 6552
};

6553 6554 6555 6556 6557 6558 6559 6560
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6561
	       (executable && (event->attr.mmap || event->attr.mmap2));
6562 6563
}

6564
static void perf_event_mmap_output(struct perf_event *event,
6565
				   void *data)
6566
{
6567
	struct perf_mmap_event *mmap_event = data;
6568
	struct perf_output_handle handle;
6569
	struct perf_sample_data sample;
6570
	int size = mmap_event->event_id.header.size;
6571
	int ret;
6572

6573 6574 6575
	if (!perf_event_mmap_match(event, data))
		return;

6576 6577 6578 6579 6580
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6581
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6582 6583
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6584 6585
	}

6586 6587
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6588
				mmap_event->event_id.header.size);
6589
	if (ret)
6590
		goto out;
6591

6592 6593
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6594

6595
	perf_output_put(&handle, mmap_event->event_id);
6596 6597 6598 6599 6600 6601

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6602 6603
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6604 6605
	}

6606
	__output_copy(&handle, mmap_event->file_name,
6607
				   mmap_event->file_size);
6608 6609 6610

	perf_event__output_id_sample(event, &handle, &sample);

6611
	perf_output_end(&handle);
6612 6613
out:
	mmap_event->event_id.header.size = size;
6614 6615
}

6616
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6617
{
6618 6619
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6620 6621
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6622
	u32 prot = 0, flags = 0;
6623 6624 6625
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6626
	char *name;
6627

6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6649
	if (file) {
6650 6651
		struct inode *inode;
		dev_t dev;
6652

6653
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6654
		if (!buf) {
6655 6656
			name = "//enomem";
			goto cpy_name;
6657
		}
6658
		/*
6659
		 * d_path() works from the end of the rb backwards, so we
6660 6661 6662
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6663
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6664
		if (IS_ERR(name)) {
6665 6666
			name = "//toolong";
			goto cpy_name;
6667
		}
6668 6669 6670 6671 6672 6673
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6674

6675
		goto got_name;
6676
	} else {
6677 6678 6679 6680 6681 6682
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6683
		name = (char *)arch_vma_name(vma);
6684 6685
		if (name)
			goto cpy_name;
6686

6687
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6688
				vma->vm_end >= vma->vm_mm->brk) {
6689 6690
			name = "[heap]";
			goto cpy_name;
6691 6692
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6693
				vma->vm_end >= vma->vm_mm->start_stack) {
6694 6695
			name = "[stack]";
			goto cpy_name;
6696 6697
		}

6698 6699
		name = "//anon";
		goto cpy_name;
6700 6701
	}

6702 6703 6704
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6705
got_name:
6706 6707 6708 6709 6710 6711 6712 6713
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6714 6715 6716

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6717 6718 6719 6720
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6721 6722
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6723

6724 6725 6726
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6727
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6728

6729
	perf_iterate_sb(perf_event_mmap_output,
6730 6731
		       mmap_event,
		       NULL);
6732

6733 6734 6735
	kfree(buf);
}

6736 6737 6738 6739 6740 6741 6742
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
6743
	if (filter->inode != file_inode(file))
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6786
		perf_event_stop(event, 1);
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

6797 6798 6799 6800 6801 6802 6803
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

6804 6805 6806 6807 6808 6809
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

6810
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6811 6812 6813 6814
	}
	rcu_read_unlock();
}

6815
void perf_event_mmap(struct vm_area_struct *vma)
6816
{
6817 6818
	struct perf_mmap_event mmap_event;

6819
	if (!atomic_read(&nr_mmap_events))
6820 6821 6822
		return;

	mmap_event = (struct perf_mmap_event){
6823
		.vma	= vma,
6824 6825
		/* .file_name */
		/* .file_size */
6826
		.event_id  = {
6827
			.header = {
6828
				.type = PERF_RECORD_MMAP,
6829
				.misc = PERF_RECORD_MISC_USER,
6830 6831 6832 6833
				/* .size */
			},
			/* .pid */
			/* .tid */
6834 6835
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6836
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6837
		},
6838 6839 6840 6841
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6842 6843
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6844 6845
	};

6846
	perf_addr_filters_adjust(vma);
6847
	perf_event_mmap_event(&mmap_event);
6848 6849
}

A
Alexander Shishkin 已提交
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

6997
	perf_iterate_sb(perf_event_switch_output,
6998 6999 7000 7001
		       &switch_event,
		       NULL);
}

7002 7003 7004 7005
/*
 * IRQ throttle logging
 */

7006
static void perf_log_throttle(struct perf_event *event, int enable)
7007 7008
{
	struct perf_output_handle handle;
7009
	struct perf_sample_data sample;
7010 7011 7012 7013 7014
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7015
		u64				id;
7016
		u64				stream_id;
7017 7018
	} throttle_event = {
		.header = {
7019
			.type = PERF_RECORD_THROTTLE,
7020 7021 7022
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7023
		.time		= perf_event_clock(event),
7024 7025
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7026 7027
	};

7028
	if (enable)
7029
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7030

7031 7032 7033
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7034
				throttle_event.header.size);
7035 7036 7037 7038
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7039
	perf_event__output_id_sample(event, &handle, &sample);
7040 7041 7042
	perf_output_end(&handle);
}

7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7079 7080
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7081
{
7082
	struct hw_perf_event *hwc = &event->hw;
7083
	int ret = 0;
7084
	u64 seq;
7085

7086 7087 7088 7089 7090 7091 7092 7093 7094
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7095
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7096 7097
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7098 7099
			ret = 1;
		}
7100
	}
7101

7102
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7103
		u64 now = perf_clock();
7104
		s64 delta = now - hwc->freq_time_stamp;
7105

7106
		hwc->freq_time_stamp = now;
7107

7108
		if (delta > 0 && delta < 2*TICK_NSEC)
7109
			perf_adjust_period(event, delta, hwc->last_period, true);
7110 7111
	}

7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);

7140 7141
	/*
	 * XXX event_limit might not quite work as expected on inherited
7142
	 * events
7143 7144
	 */

7145 7146
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7147
		ret = 1;
7148
		event->pending_kill = POLL_HUP;
7149 7150

		perf_event_disable_inatomic(event);
7151 7152
	}

7153
	READ_ONCE(event->overflow_handler)(event, data, regs);
7154

7155
	if (*perf_event_fasync(event) && event->pending_kill) {
7156 7157
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7158 7159
	}

7160
	return ret;
7161 7162
}

7163
int perf_event_overflow(struct perf_event *event,
7164 7165
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7166
{
7167
	return __perf_event_overflow(event, 1, data, regs);
7168 7169
}

7170
/*
7171
 * Generic software event infrastructure
7172 7173
 */

7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7185
/*
7186 7187
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7188 7189 7190 7191
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7192
u64 perf_swevent_set_period(struct perf_event *event)
7193
{
7194
	struct hw_perf_event *hwc = &event->hw;
7195 7196 7197 7198 7199
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7200 7201

again:
7202
	old = val = local64_read(&hwc->period_left);
7203 7204
	if (val < 0)
		return 0;
7205

7206 7207 7208
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7209
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7210
		goto again;
7211

7212
	return nr;
7213 7214
}

7215
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7216
				    struct perf_sample_data *data,
7217
				    struct pt_regs *regs)
7218
{
7219
	struct hw_perf_event *hwc = &event->hw;
7220
	int throttle = 0;
7221

7222 7223
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7224

7225 7226
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7227

7228
	for (; overflow; overflow--) {
7229
		if (__perf_event_overflow(event, throttle,
7230
					    data, regs)) {
7231 7232 7233 7234 7235 7236
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7237
		throttle = 1;
7238
	}
7239 7240
}

P
Peter Zijlstra 已提交
7241
static void perf_swevent_event(struct perf_event *event, u64 nr,
7242
			       struct perf_sample_data *data,
7243
			       struct pt_regs *regs)
7244
{
7245
	struct hw_perf_event *hwc = &event->hw;
7246

7247
	local64_add(nr, &event->count);
7248

7249 7250 7251
	if (!regs)
		return;

7252
	if (!is_sampling_event(event))
7253
		return;
7254

7255 7256 7257 7258 7259 7260
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7261
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7262
		return perf_swevent_overflow(event, 1, data, regs);
7263

7264
	if (local64_add_negative(nr, &hwc->period_left))
7265
		return;
7266

7267
	perf_swevent_overflow(event, 0, data, regs);
7268 7269
}

7270 7271 7272
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7273
	if (event->hw.state & PERF_HES_STOPPED)
7274
		return 1;
P
Peter Zijlstra 已提交
7275

7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7287
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7288
				enum perf_type_id type,
L
Li Zefan 已提交
7289 7290 7291
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7292
{
7293
	if (event->attr.type != type)
7294
		return 0;
7295

7296
	if (event->attr.config != event_id)
7297 7298
		return 0;

7299 7300
	if (perf_exclude_event(event, regs))
		return 0;
7301 7302 7303 7304

	return 1;
}

7305 7306 7307 7308 7309 7310 7311
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7312 7313
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7314
{
7315 7316 7317 7318
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7319

7320 7321
/* For the read side: events when they trigger */
static inline struct hlist_head *
7322
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7323 7324
{
	struct swevent_hlist *hlist;
7325

7326
	hlist = rcu_dereference(swhash->swevent_hlist);
7327 7328 7329
	if (!hlist)
		return NULL;

7330 7331 7332 7333 7334
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7335
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7346
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7347 7348 7349 7350 7351
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7352 7353 7354
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7355
				    u64 nr,
7356 7357
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7358
{
7359
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7360
	struct perf_event *event;
7361
	struct hlist_head *head;
7362

7363
	rcu_read_lock();
7364
	head = find_swevent_head_rcu(swhash, type, event_id);
7365 7366 7367
	if (!head)
		goto end;

7368
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7369
		if (perf_swevent_match(event, type, event_id, data, regs))
7370
			perf_swevent_event(event, nr, data, regs);
7371
	}
7372 7373
end:
	rcu_read_unlock();
7374 7375
}

7376 7377
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7378
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7379
{
7380
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7381

7382
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7383
}
I
Ingo Molnar 已提交
7384
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7385

7386
void perf_swevent_put_recursion_context(int rctx)
7387
{
7388
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7389

7390
	put_recursion_context(swhash->recursion, rctx);
7391
}
7392

7393
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7394
{
7395
	struct perf_sample_data data;
7396

7397
	if (WARN_ON_ONCE(!regs))
7398
		return;
7399

7400
	perf_sample_data_init(&data, addr, 0);
7401
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7414 7415

	perf_swevent_put_recursion_context(rctx);
7416
fail:
7417
	preempt_enable_notrace();
7418 7419
}

7420
static void perf_swevent_read(struct perf_event *event)
7421 7422 7423
{
}

P
Peter Zijlstra 已提交
7424
static int perf_swevent_add(struct perf_event *event, int flags)
7425
{
7426
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7427
	struct hw_perf_event *hwc = &event->hw;
7428 7429
	struct hlist_head *head;

7430
	if (is_sampling_event(event)) {
7431
		hwc->last_period = hwc->sample_period;
7432
		perf_swevent_set_period(event);
7433
	}
7434

P
Peter Zijlstra 已提交
7435 7436
	hwc->state = !(flags & PERF_EF_START);

7437
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7438
	if (WARN_ON_ONCE(!head))
7439 7440 7441
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7442
	perf_event_update_userpage(event);
7443

7444 7445 7446
	return 0;
}

P
Peter Zijlstra 已提交
7447
static void perf_swevent_del(struct perf_event *event, int flags)
7448
{
7449
	hlist_del_rcu(&event->hlist_entry);
7450 7451
}

P
Peter Zijlstra 已提交
7452
static void perf_swevent_start(struct perf_event *event, int flags)
7453
{
P
Peter Zijlstra 已提交
7454
	event->hw.state = 0;
7455
}
I
Ingo Molnar 已提交
7456

P
Peter Zijlstra 已提交
7457
static void perf_swevent_stop(struct perf_event *event, int flags)
7458
{
P
Peter Zijlstra 已提交
7459
	event->hw.state = PERF_HES_STOPPED;
7460 7461
}

7462 7463
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7464
swevent_hlist_deref(struct swevent_htable *swhash)
7465
{
7466 7467
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7468 7469
}

7470
static void swevent_hlist_release(struct swevent_htable *swhash)
7471
{
7472
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7473

7474
	if (!hlist)
7475 7476
		return;

7477
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7478
	kfree_rcu(hlist, rcu_head);
7479 7480
}

7481
static void swevent_hlist_put_cpu(int cpu)
7482
{
7483
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7484

7485
	mutex_lock(&swhash->hlist_mutex);
7486

7487 7488
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7489

7490
	mutex_unlock(&swhash->hlist_mutex);
7491 7492
}

7493
static void swevent_hlist_put(void)
7494 7495 7496 7497
{
	int cpu;

	for_each_possible_cpu(cpu)
7498
		swevent_hlist_put_cpu(cpu);
7499 7500
}

7501
static int swevent_hlist_get_cpu(int cpu)
7502
{
7503
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7504 7505
	int err = 0;

7506 7507
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7508 7509 7510 7511 7512 7513 7514
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7515
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7516
	}
7517
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7518
exit:
7519
	mutex_unlock(&swhash->hlist_mutex);
7520 7521 7522 7523

	return err;
}

7524
static int swevent_hlist_get(void)
7525
{
7526
	int err, cpu, failed_cpu;
7527 7528 7529

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7530
		err = swevent_hlist_get_cpu(cpu);
7531 7532 7533 7534 7535 7536 7537 7538
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7539
fail:
7540 7541 7542
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7543
		swevent_hlist_put_cpu(cpu);
7544 7545 7546 7547 7548 7549
	}

	put_online_cpus();
	return err;
}

7550
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7551

7552 7553 7554
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7555

7556 7557
	WARN_ON(event->parent);

7558
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7559
	swevent_hlist_put();
7560 7561 7562 7563
}

static int perf_swevent_init(struct perf_event *event)
{
7564
	u64 event_id = event->attr.config;
7565 7566 7567 7568

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7569 7570 7571 7572 7573 7574
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7575 7576 7577 7578 7579 7580 7581 7582 7583
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7584
	if (event_id >= PERF_COUNT_SW_MAX)
7585 7586 7587 7588 7589
		return -ENOENT;

	if (!event->parent) {
		int err;

7590
		err = swevent_hlist_get();
7591 7592 7593
		if (err)
			return err;

7594
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7595 7596 7597 7598 7599 7600 7601
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7602
	.task_ctx_nr	= perf_sw_context,
7603

7604 7605
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7606
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7607 7608 7609 7610
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7611 7612 7613
	.read		= perf_swevent_read,
};

7614 7615
#ifdef CONFIG_EVENT_TRACING

7616 7617 7618
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7619
	void *record = data->raw->frag.data;
7620

7621 7622 7623 7624
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7625 7626 7627 7628 7629 7630 7631 7632 7633
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7634 7635
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7636 7637 7638 7639
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7640 7641 7642 7643 7644 7645 7646 7647
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7667
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7668 7669
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7670 7671
{
	struct perf_sample_data data;
7672 7673
	struct perf_event *event;

7674
	struct perf_raw_record raw = {
7675 7676 7677 7678
		.frag = {
			.size = entry_size,
			.data = record,
		},
7679 7680
	};

7681
	perf_sample_data_init(&data, 0, 0);
7682 7683
	data.raw = &raw;

7684 7685
	perf_trace_buf_update(record, event_type);

7686
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7687
		if (perf_tp_event_match(event, &data, regs))
7688
			perf_swevent_event(event, count, &data, regs);
7689
	}
7690

7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7716
	perf_swevent_put_recursion_context(rctx);
7717 7718 7719
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7720
static void tp_perf_event_destroy(struct perf_event *event)
7721
{
7722
	perf_trace_destroy(event);
7723 7724
}

7725
static int perf_tp_event_init(struct perf_event *event)
7726
{
7727 7728
	int err;

7729 7730 7731
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7732 7733 7734 7735 7736 7737
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7738 7739
	err = perf_trace_init(event);
	if (err)
7740
		return err;
7741

7742
	event->destroy = tp_perf_event_destroy;
7743

7744 7745 7746 7747
	return 0;
}

static struct pmu perf_tracepoint = {
7748 7749
	.task_ctx_nr	= perf_sw_context,

7750
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7751 7752 7753 7754
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7755 7756 7757 7758 7759
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7760
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7761
}
L
Li Zefan 已提交
7762 7763 7764 7765 7766 7767

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
7783
	ret = BPF_PROG_RUN(event->prog, &ctx);
7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

7836 7837
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
7838
	bool is_kprobe, is_tracepoint;
7839 7840
	struct bpf_prog *prog;

7841 7842 7843 7844
	if (event->attr.type == PERF_TYPE_HARDWARE ||
	    event->attr.type == PERF_TYPE_SOFTWARE)
		return perf_event_set_bpf_handler(event, prog_fd);

7845 7846 7847 7848 7849 7850
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7851 7852 7853 7854
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
7855 7856 7857 7858 7859 7860
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7861 7862
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7863 7864 7865 7866 7867
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

7868 7869 7870 7871 7872 7873 7874 7875
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
7876 7877 7878 7879 7880 7881 7882 7883 7884
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

7885 7886
	perf_event_free_bpf_handler(event);

7887 7888 7889 7890 7891 7892
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
7893
		bpf_prog_put(prog);
7894 7895 7896
	}
}

7897
#else
L
Li Zefan 已提交
7898

7899
static inline void perf_tp_register(void)
7900 7901
{
}
L
Li Zefan 已提交
7902 7903 7904 7905 7906

static void perf_event_free_filter(struct perf_event *event)
{
}

7907 7908 7909 7910 7911 7912 7913 7914
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7915
#endif /* CONFIG_EVENT_TRACING */
7916

7917
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7918
void perf_bp_event(struct perf_event *bp, void *data)
7919
{
7920 7921 7922
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7923
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7924

P
Peter Zijlstra 已提交
7925
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7926
		perf_swevent_event(bp, 1, &sample, regs);
7927 7928 7929
}
#endif

7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8045 8046 8047 8048 8049
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8064
	perf_event_stop(event, 1);
8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8086
	IF_ACT_NONE = -1,
8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8110
	{ IF_ACT_NONE,		NULL },
8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8182 8183 8184 8185
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	/*
	 * For now, we only support filtering in per-task events; doing so
	 * for CPU-wide events requires additional context switching trickery,
	 * since same object code will be mapped at different virtual
	 * addresses in different processes.
	 */
	if (!event->ctx->task)
		return -EOPNOTSUPP;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
		return ret;

	ret = event->pmu->addr_filters_validate(&filters);
	if (ret) {
		free_filters_list(&filters);
		return ret;
	}

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

	return ret;
}

8294 8295 8296 8297 8298
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8299 8300 8301
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8312 8313
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8314 8315 8316 8317 8318

	kfree(filter_str);
	return ret;
}

8319 8320 8321
/*
 * hrtimer based swevent callback
 */
8322

8323
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8324
{
8325 8326 8327 8328 8329
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8330

8331
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8332 8333 8334 8335

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8336
	event->pmu->read(event);
8337

8338
	perf_sample_data_init(&data, 0, event->hw.last_period);
8339 8340 8341
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8342
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8343
			if (__perf_event_overflow(event, 1, &data, regs))
8344 8345
				ret = HRTIMER_NORESTART;
	}
8346

8347 8348
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8349

8350
	return ret;
8351 8352
}

8353
static void perf_swevent_start_hrtimer(struct perf_event *event)
8354
{
8355
	struct hw_perf_event *hwc = &event->hw;
8356 8357 8358 8359
	s64 period;

	if (!is_sampling_event(event))
		return;
8360

8361 8362 8363 8364
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8365

8366 8367 8368 8369
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8370 8371
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8372
}
8373 8374

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8375
{
8376 8377
	struct hw_perf_event *hwc = &event->hw;

8378
	if (is_sampling_event(event)) {
8379
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8380
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8381 8382 8383

		hrtimer_cancel(&hwc->hrtimer);
	}
8384 8385
}

P
Peter Zijlstra 已提交
8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8406
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8407 8408 8409 8410
		event->attr.freq = 0;
	}
}

8411 8412 8413 8414 8415
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8416
{
8417 8418 8419
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8420
	now = local_clock();
8421 8422
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8423 8424
}

P
Peter Zijlstra 已提交
8425
static void cpu_clock_event_start(struct perf_event *event, int flags)
8426
{
P
Peter Zijlstra 已提交
8427
	local64_set(&event->hw.prev_count, local_clock());
8428 8429 8430
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8431
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8432
{
8433 8434 8435
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8436

P
Peter Zijlstra 已提交
8437 8438 8439 8440
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8441
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8442 8443 8444 8445 8446 8447 8448 8449 8450

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8451 8452 8453 8454
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8455

8456 8457 8458 8459 8460 8461 8462 8463
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8464 8465 8466 8467 8468 8469
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8470 8471
	perf_swevent_init_hrtimer(event);

8472
	return 0;
8473 8474
}

8475
static struct pmu perf_cpu_clock = {
8476 8477
	.task_ctx_nr	= perf_sw_context,

8478 8479
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8480
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8481 8482 8483 8484
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8485 8486 8487 8488 8489 8490 8491 8492
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8493
{
8494 8495
	u64 prev;
	s64 delta;
8496

8497 8498 8499 8500
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8501

P
Peter Zijlstra 已提交
8502
static void task_clock_event_start(struct perf_event *event, int flags)
8503
{
P
Peter Zijlstra 已提交
8504
	local64_set(&event->hw.prev_count, event->ctx->time);
8505 8506 8507
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8508
static void task_clock_event_stop(struct perf_event *event, int flags)
8509 8510 8511
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8512 8513 8514 8515 8516 8517
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8518
	perf_event_update_userpage(event);
8519

P
Peter Zijlstra 已提交
8520 8521 8522 8523 8524 8525
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8526 8527 8528 8529
}

static void task_clock_event_read(struct perf_event *event)
{
8530 8531 8532
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8533 8534 8535 8536 8537

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8538
{
8539 8540 8541 8542 8543 8544
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8545 8546 8547 8548 8549 8550
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8551 8552
	perf_swevent_init_hrtimer(event);

8553
	return 0;
L
Li Zefan 已提交
8554 8555
}

8556
static struct pmu perf_task_clock = {
8557 8558
	.task_ctx_nr	= perf_sw_context,

8559 8560
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8561
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8562 8563 8564 8565
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8566 8567
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8568

P
Peter Zijlstra 已提交
8569
static void perf_pmu_nop_void(struct pmu *pmu)
8570 8571
{
}
L
Li Zefan 已提交
8572

8573 8574 8575 8576
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8577
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8578
{
P
Peter Zijlstra 已提交
8579
	return 0;
L
Li Zefan 已提交
8580 8581
}

8582
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8583 8584

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8585
{
8586 8587 8588 8589 8590
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8591
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8592 8593
}

P
Peter Zijlstra 已提交
8594 8595
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8596 8597 8598 8599 8600 8601 8602
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8603 8604 8605
	perf_pmu_enable(pmu);
	return 0;
}
8606

P
Peter Zijlstra 已提交
8607
static void perf_pmu_cancel_txn(struct pmu *pmu)
8608
{
8609 8610 8611 8612 8613 8614 8615
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8616
	perf_pmu_enable(pmu);
8617 8618
}

8619 8620
static int perf_event_idx_default(struct perf_event *event)
{
8621
	return 0;
8622 8623
}

P
Peter Zijlstra 已提交
8624 8625 8626 8627
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8628
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8629
{
P
Peter Zijlstra 已提交
8630
	struct pmu *pmu;
8631

P
Peter Zijlstra 已提交
8632 8633
	if (ctxn < 0)
		return NULL;
8634

P
Peter Zijlstra 已提交
8635 8636 8637 8638
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8639

P
Peter Zijlstra 已提交
8640
	return NULL;
8641 8642
}

8643 8644
static void free_pmu_context(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
8645
	mutex_lock(&pmus_lock);
8646
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8647
	mutex_unlock(&pmus_lock);
8648
}
8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8663
static struct idr pmu_idr;
8664

P
Peter Zijlstra 已提交
8665 8666 8667 8668 8669 8670 8671
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8672
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8673

8674 8675 8676 8677 8678 8679 8680 8681 8682 8683
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8684 8685
static DEFINE_MUTEX(mux_interval_mutex);

8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8705
	mutex_lock(&mux_interval_mutex);
8706 8707 8708
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8709 8710
	get_online_cpus();
	for_each_online_cpu(cpu) {
8711 8712 8713 8714
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8715 8716
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8717
	}
8718 8719
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
8720 8721 8722

	return count;
}
8723
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8724

8725 8726 8727 8728
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8729
};
8730
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8731 8732 8733 8734

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8735
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8751
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8764 8765 8766 8767 8768 8769 8770
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8771 8772 8773
out:
	return ret;

8774 8775 8776
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8777 8778 8779 8780 8781
free_dev:
	put_device(pmu->dev);
	goto out;
}

8782
static struct lock_class_key cpuctx_mutex;
8783
static struct lock_class_key cpuctx_lock;
8784

8785
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8786
{
P
Peter Zijlstra 已提交
8787
	int cpu, ret;
8788

8789
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
8790 8791 8792 8793
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
8794

P
Peter Zijlstra 已提交
8795 8796 8797 8798 8799 8800
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
8801 8802 8803
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
8804 8805 8806 8807 8808
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
8809 8810 8811 8812 8813 8814
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
8815
skip_type:
8816 8817 8818
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

8819 8820 8821 8822 8823 8824 8825
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8826 8827 8828 8829 8830
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
8831 8832 8833
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
8834

W
Wei Yongjun 已提交
8835
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
8836 8837
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
8838
		goto free_dev;
8839

P
Peter Zijlstra 已提交
8840 8841 8842 8843
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8844
		__perf_event_init_context(&cpuctx->ctx);
8845
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8846
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
8847
		cpuctx->ctx.pmu = pmu;
8848

8849
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
8850
	}
8851

P
Peter Zijlstra 已提交
8852
got_cpu_context:
P
Peter Zijlstra 已提交
8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
8864
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
8865 8866
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
8867
		}
8868
	}
8869

P
Peter Zijlstra 已提交
8870 8871 8872 8873 8874
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

8875 8876 8877
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

8878
	list_add_rcu(&pmu->entry, &pmus);
8879
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
8880 8881
	ret = 0;
unlock:
8882 8883
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
8884
	return ret;
P
Peter Zijlstra 已提交
8885

P
Peter Zijlstra 已提交
8886 8887 8888 8889
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
8890 8891 8892 8893
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
8894 8895 8896
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
8897
}
8898
EXPORT_SYMBOL_GPL(perf_pmu_register);
8899

8900
void perf_pmu_unregister(struct pmu *pmu)
8901
{
8902 8903
	int remove_device;

8904
	mutex_lock(&pmus_lock);
8905
	remove_device = pmu_bus_running;
8906 8907
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
8908

8909
	/*
P
Peter Zijlstra 已提交
8910 8911
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
8912
	 */
8913
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
8914
	synchronize_rcu();
8915

P
Peter Zijlstra 已提交
8916
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
8917 8918
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
8919 8920 8921 8922 8923 8924
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
8925
	free_pmu_context(pmu);
8926
}
8927
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8928

8929 8930
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
8931
	struct perf_event_context *ctx = NULL;
8932 8933 8934 8935
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
8936 8937

	if (event->group_leader != event) {
8938 8939 8940 8941 8942 8943
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
8944 8945 8946
		BUG_ON(!ctx);
	}

8947 8948
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
8949 8950 8951 8952

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

8953 8954 8955 8956 8957 8958
	if (ret)
		module_put(pmu->module);

	return ret;
}

8959
static struct pmu *perf_init_event(struct perf_event *event)
8960 8961 8962
{
	struct pmu *pmu = NULL;
	int idx;
8963
	int ret;
8964 8965

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
8966 8967 8968 8969

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
8970
	if (pmu) {
8971
		ret = perf_try_init_event(pmu, event);
8972 8973
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8974
		goto unlock;
8975
	}
P
Peter Zijlstra 已提交
8976

8977
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8978
		ret = perf_try_init_event(pmu, event);
8979
		if (!ret)
P
Peter Zijlstra 已提交
8980
			goto unlock;
8981

8982 8983
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8984
			goto unlock;
8985
		}
8986
	}
P
Peter Zijlstra 已提交
8987 8988
	pmu = ERR_PTR(-ENOENT);
unlock:
8989
	srcu_read_unlock(&pmus_srcu, idx);
8990

8991
	return pmu;
8992 8993
}

8994 8995 8996 8997 8998 8999 9000 9001 9002
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9003 9004 9005 9006 9007 9008 9009
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9010 9011
static void account_pmu_sb_event(struct perf_event *event)
{
9012
	if (is_sb_event(event))
9013 9014 9015
		attach_sb_event(event);
}

9016 9017 9018 9019 9020 9021 9022 9023 9024
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9046 9047
static void account_event(struct perf_event *event)
{
9048 9049
	bool inc = false;

9050 9051 9052
	if (event->parent)
		return;

9053
	if (event->attach_state & PERF_ATTACH_TASK)
9054
		inc = true;
9055 9056 9057 9058 9059 9060
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9061 9062
	if (event->attr.freq)
		account_freq_event();
9063 9064
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9065
		inc = true;
9066
	}
9067
	if (has_branch_stack(event))
9068
		inc = true;
9069
	if (is_cgroup_event(event))
9070 9071
		inc = true;

9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9094 9095

	account_event_cpu(event, event->cpu);
9096 9097

	account_pmu_sb_event(event);
9098 9099
}

T
Thomas Gleixner 已提交
9100
/*
9101
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9102
 */
9103
static struct perf_event *
9104
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9105 9106 9107
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9108
		 perf_overflow_handler_t overflow_handler,
9109
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9110
{
P
Peter Zijlstra 已提交
9111
	struct pmu *pmu;
9112 9113
	struct perf_event *event;
	struct hw_perf_event *hwc;
9114
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9115

9116 9117 9118 9119 9120
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9121
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9122
	if (!event)
9123
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9124

9125
	/*
9126
	 * Single events are their own group leaders, with an
9127 9128 9129
	 * empty sibling list:
	 */
	if (!group_leader)
9130
		group_leader = event;
9131

9132 9133
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9134

9135 9136 9137
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9138
	INIT_LIST_HEAD(&event->rb_entry);
9139
	INIT_LIST_HEAD(&event->active_entry);
9140
	INIT_LIST_HEAD(&event->addr_filters.list);
9141 9142
	INIT_HLIST_NODE(&event->hlist_entry);

9143

9144
	init_waitqueue_head(&event->waitq);
9145
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9146

9147
	mutex_init(&event->mmap_mutex);
9148
	raw_spin_lock_init(&event->addr_filters.lock);
9149

9150
	atomic_long_set(&event->refcount, 1);
9151 9152 9153 9154 9155
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9156

9157
	event->parent		= parent_event;
9158

9159
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9160
	event->id		= atomic64_inc_return(&perf_event_id);
9161

9162
	event->state		= PERF_EVENT_STATE_INACTIVE;
9163

9164 9165 9166
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9167 9168 9169
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9170
		 */
9171
		event->hw.target = task;
9172 9173
	}

9174 9175 9176 9177
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9178
	if (!overflow_handler && parent_event) {
9179
		overflow_handler = parent_event->overflow_handler;
9180
		context = parent_event->overflow_handler_context;
9181
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9194
	}
9195

9196 9197 9198
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9199 9200 9201
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9202
	} else {
9203
		event->overflow_handler = perf_event_output_forward;
9204 9205
		event->overflow_handler_context = NULL;
	}
9206

J
Jiri Olsa 已提交
9207
	perf_event__state_init(event);
9208

9209
	pmu = NULL;
9210

9211
	hwc = &event->hw;
9212
	hwc->sample_period = attr->sample_period;
9213
	if (attr->freq && attr->sample_freq)
9214
		hwc->sample_period = 1;
9215
	hwc->last_period = hwc->sample_period;
9216

9217
	local64_set(&hwc->period_left, hwc->sample_period);
9218

9219
	/*
9220
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9221
	 */
9222
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9223
		goto err_ns;
9224 9225 9226

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9227

9228 9229 9230 9231 9232 9233
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9234
	pmu = perf_init_event(event);
9235
	if (!pmu)
9236 9237
		goto err_ns;
	else if (IS_ERR(pmu)) {
9238
		err = PTR_ERR(pmu);
9239
		goto err_ns;
I
Ingo Molnar 已提交
9240
	}
9241

9242 9243 9244 9245
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
		if (!event->addr_filters_offs)
			goto err_per_task;

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9257
	if (!event->parent) {
9258
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9259
			err = get_callchain_buffers(attr->sample_max_stack);
9260
			if (err)
9261
				goto err_addr_filters;
9262
		}
9263
	}
9264

9265 9266 9267
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9268
	return event;
9269

9270 9271 9272
err_addr_filters:
	kfree(event->addr_filters_offs);

9273 9274 9275
err_per_task:
	exclusive_event_destroy(event);

9276 9277 9278
err_pmu:
	if (event->destroy)
		event->destroy(event);
9279
	module_put(pmu->module);
9280
err_ns:
9281 9282
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9283 9284 9285 9286 9287
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9288 9289
}

9290 9291
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9292 9293
{
	u32 size;
9294
	int ret;
9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9319 9320 9321
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9322 9323
	 */
	if (size > sizeof(*attr)) {
9324 9325 9326
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9327

9328 9329
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9330

9331
		for (; addr < end; addr++) {
9332 9333 9334 9335 9336 9337
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9338
		size = sizeof(*attr);
9339 9340 9341 9342 9343 9344
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9345
	if (attr->__reserved_1)
9346 9347 9348 9349 9350 9351 9352 9353
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9382 9383
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9384 9385
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9386
	}
9387

9388
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9389
		ret = perf_reg_validate(attr->sample_regs_user);
9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9408

9409 9410
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9411 9412 9413 9414 9415 9416 9417 9418 9419
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9420 9421
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9422
{
9423
	struct ring_buffer *rb = NULL;
9424 9425
	int ret = -EINVAL;

9426
	if (!output_event)
9427 9428
		goto set;

9429 9430
	/* don't allow circular references */
	if (event == output_event)
9431 9432
		goto out;

9433 9434 9435 9436 9437 9438 9439
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9440
	 * If its not a per-cpu rb, it must be the same task.
9441 9442 9443 9444
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9445 9446 9447 9448 9449 9450
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9451 9452 9453 9454 9455 9456 9457
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9458 9459 9460 9461 9462 9463 9464
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9465
set:
9466
	mutex_lock(&event->mmap_mutex);
9467 9468 9469
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9470

9471
	if (output_event) {
9472 9473 9474
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9475
			goto unlock;
9476 9477
	}

9478
	ring_buffer_attach(event, rb);
9479

9480
	ret = 0;
9481 9482 9483
unlock:
	mutex_unlock(&event->mmap_mutex);

9484 9485 9486 9487
out:
	return ret;
}

P
Peter Zijlstra 已提交
9488 9489 9490 9491 9492 9493 9494 9495 9496
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9565
/**
9566
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9567
 *
9568
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9569
 * @pid:		target pid
I
Ingo Molnar 已提交
9570
 * @cpu:		target cpu
9571
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9572
 */
9573 9574
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9575
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9576
{
9577 9578
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9579
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9580
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9581
	struct file *event_file = NULL;
9582
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9583
	struct task_struct *task = NULL;
9584
	struct pmu *pmu;
9585
	int event_fd;
9586
	int move_group = 0;
9587
	int err;
9588
	int f_flags = O_RDWR;
9589
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9590

9591
	/* for future expandability... */
S
Stephane Eranian 已提交
9592
	if (flags & ~PERF_FLAG_ALL)
9593 9594
		return -EINVAL;

9595 9596 9597
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9598

9599 9600 9601 9602 9603
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9604
	if (attr.freq) {
9605
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9606
			return -EINVAL;
9607 9608 9609
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9610 9611
	}

9612 9613 9614
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9615 9616 9617 9618 9619 9620 9621 9622 9623
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9624 9625 9626 9627
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9628 9629 9630
	if (event_fd < 0)
		return event_fd;

9631
	if (group_fd != -1) {
9632 9633
		err = perf_fget_light(group_fd, &group);
		if (err)
9634
			goto err_fd;
9635
		group_leader = group.file->private_data;
9636 9637 9638 9639 9640 9641
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9642
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9643 9644 9645 9646 9647 9648 9649
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9650 9651 9652 9653 9654 9655
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9656 9657
	get_online_cpus();

9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9676 9677 9678
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9679
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9680
				 NULL, NULL, cgroup_fd);
9681 9682
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9683
		goto err_cred;
9684 9685
	}

9686 9687
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9688
			err = -EOPNOTSUPP;
9689 9690 9691 9692
			goto err_alloc;
		}
	}

9693 9694 9695 9696 9697
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9698

9699 9700 9701 9702 9703 9704
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9705 9706 9707
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9721
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9722 9723 9724 9725 9726 9727 9728 9729
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9730 9731 9732 9733

	/*
	 * Get the target context (task or percpu):
	 */
9734
	ctx = find_get_context(pmu, task, event);
9735 9736
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9737
		goto err_alloc;
9738 9739
	}

9740 9741 9742 9743 9744
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9745
	/*
9746
	 * Look up the group leader (we will attach this event to it):
9747
	 */
9748
	if (group_leader) {
9749
		err = -EINVAL;
9750 9751

		/*
I
Ingo Molnar 已提交
9752 9753 9754 9755
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9756
			goto err_context;
9757 9758 9759 9760 9761

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9762 9763 9764
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9765
		 */
9766
		if (move_group) {
9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
9780 9781 9782 9783 9784 9785
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

9786 9787 9788
		/*
		 * Only a group leader can be exclusive or pinned
		 */
9789
		if (attr.exclusive || attr.pinned)
9790
			goto err_context;
9791 9792 9793 9794 9795
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
9796
			goto err_context;
9797
	}
T
Thomas Gleixner 已提交
9798

9799 9800
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
9801 9802
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
9803
		event_file = NULL;
9804
		goto err_context;
9805
	}
9806

9807
	if (move_group) {
9808 9809
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

9810 9811 9812 9813
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
9833 9834 9835 9836
	} else {
		mutex_lock(&ctx->mutex);
	}

9837 9838 9839 9840 9841
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
9842 9843 9844 9845 9846
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

9847 9848 9849 9850 9851 9852 9853
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
9854

9855 9856 9857
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
9858

9859 9860
	WARN_ON_ONCE(ctx->parent_ctx);

9861 9862 9863 9864 9865
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

9866
	if (move_group) {
P
Peter Zijlstra 已提交
9867 9868 9869 9870
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
9871
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
9872

9873 9874
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9875
			perf_remove_from_context(sibling, 0);
9876 9877 9878
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
9879 9880 9881 9882
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
9883
		synchronize_rcu();
P
Peter Zijlstra 已提交
9884

9885 9886 9887 9888 9889 9890 9891 9892 9893 9894
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
9895 9896
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9897
			perf_event__state_init(sibling);
9898
			perf_install_in_context(ctx, sibling, sibling->cpu);
9899 9900
			get_ctx(ctx);
		}
9901 9902 9903 9904 9905 9906 9907 9908 9909

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
9910

9911 9912 9913 9914 9915 9916
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
9917 9918
	}

9919 9920 9921 9922 9923 9924 9925 9926 9927
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
9928 9929
	event->owner = current;

9930
	perf_install_in_context(ctx, event, event->cpu);
9931
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
9932

9933
	if (move_group)
9934
		perf_event_ctx_unlock(group_leader, gctx);
9935
	mutex_unlock(&ctx->mutex);
9936

9937 9938 9939 9940 9941
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

9942 9943
	put_online_cpus();

9944 9945 9946
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
9947

9948 9949 9950 9951 9952 9953
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
9954
	fdput(group);
9955 9956
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
9957

9958 9959
err_locked:
	if (move_group)
9960
		perf_event_ctx_unlock(group_leader, gctx);
9961 9962 9963
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
9964
err_context:
9965
	perf_unpin_context(ctx);
9966
	put_ctx(ctx);
9967
err_alloc:
P
Peter Zijlstra 已提交
9968 9969 9970 9971 9972 9973
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
9974 9975 9976
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
9977
err_cpus:
9978
	put_online_cpus();
9979
err_task:
P
Peter Zijlstra 已提交
9980 9981
	if (task)
		put_task_struct(task);
9982
err_group_fd:
9983
	fdput(group);
9984 9985
err_fd:
	put_unused_fd(event_fd);
9986
	return err;
T
Thomas Gleixner 已提交
9987 9988
}

9989 9990 9991 9992 9993
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
9994
 * @task: task to profile (NULL for percpu)
9995 9996 9997
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
9998
				 struct task_struct *task,
9999 10000
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10001 10002
{
	struct perf_event_context *ctx;
10003
	struct perf_event *event;
10004
	int err;
10005

10006 10007 10008
	/*
	 * Get the target context (task or percpu):
	 */
10009

10010
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10011
				 overflow_handler, context, -1);
10012 10013 10014 10015
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10016

10017
	/* Mark owner so we could distinguish it from user events. */
10018
	event->owner = TASK_TOMBSTONE;
10019

10020
	ctx = find_get_context(event->pmu, task, event);
10021 10022
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10023
		goto err_free;
10024
	}
10025 10026 10027

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10028 10029 10030 10031 10032
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10033 10034
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10035
		goto err_unlock;
10036 10037
	}

10038
	perf_install_in_context(ctx, event, cpu);
10039
	perf_unpin_context(ctx);
10040 10041 10042 10043
	mutex_unlock(&ctx->mutex);

	return event;

10044 10045 10046 10047
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10048 10049 10050
err_free:
	free_event(event);
err:
10051
	return ERR_PTR(err);
10052
}
10053
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10054

10055 10056 10057 10058 10059 10060 10061 10062 10063 10064
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10065 10066 10067 10068 10069
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10070 10071
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10072
		perf_remove_from_context(event, 0);
10073
		unaccount_event_cpu(event, src_cpu);
10074
		put_ctx(src_ctx);
10075
		list_add(&event->migrate_entry, &events);
10076 10077
	}

10078 10079 10080
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10081 10082
	synchronize_rcu();

10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10107 10108
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10109 10110
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10111
		account_event_cpu(event, dst_cpu);
10112 10113 10114 10115
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10116
	mutex_unlock(&src_ctx->mutex);
10117 10118 10119
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10120
static void sync_child_event(struct perf_event *child_event,
10121
			       struct task_struct *child)
10122
{
10123
	struct perf_event *parent_event = child_event->parent;
10124
	u64 child_val;
10125

10126 10127
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10128

P
Peter Zijlstra 已提交
10129
	child_val = perf_event_count(child_event);
10130 10131 10132 10133

	/*
	 * Add back the child's count to the parent's count:
	 */
10134
	atomic64_add(child_val, &parent_event->child_count);
10135 10136 10137 10138
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10139 10140
}

10141
static void
10142 10143 10144
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10145
{
10146 10147
	struct perf_event *parent_event = child_event->parent;

10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10160 10161 10162
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10163
	if (parent_event)
10164 10165
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10166
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10167
	raw_spin_unlock_irq(&child_ctx->lock);
10168

10169
	/*
10170
	 * Parent events are governed by their filedesc, retain them.
10171
	 */
10172
	if (!parent_event) {
10173
		perf_event_wakeup(child_event);
10174
		return;
10175
	}
10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10196 10197
}

P
Peter Zijlstra 已提交
10198
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10199
{
10200
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10201 10202 10203
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10204

10205
	child_ctx = perf_pin_task_context(child, ctxn);
10206
	if (!child_ctx)
10207 10208
		return;

10209
	/*
10210 10211 10212 10213 10214 10215 10216 10217
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10218
	 */
10219
	mutex_lock(&child_ctx->mutex);
10220 10221

	/*
10222 10223 10224
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10225
	 */
10226
	raw_spin_lock_irq(&child_ctx->lock);
10227
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10228

10229
	/*
10230 10231
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10232
	 */
10233 10234 10235 10236
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10237

10238
	clone_ctx = unclone_ctx(child_ctx);
10239
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10240

10241 10242
	if (clone_ctx)
		put_ctx(clone_ctx);
10243

P
Peter Zijlstra 已提交
10244
	/*
10245 10246 10247
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10248
	 */
10249
	perf_event_task(child, child_ctx, 0);
10250

10251
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10252
		perf_event_exit_event(child_event, child_ctx, child);
10253

10254 10255 10256
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10257 10258
}

P
Peter Zijlstra 已提交
10259 10260
/*
 * When a child task exits, feed back event values to parent events.
10261 10262 10263
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10264 10265 10266
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10267
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10268 10269
	int ctxn;

P
Peter Zijlstra 已提交
10270 10271 10272 10273 10274 10275 10276 10277 10278 10279
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10280
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10281 10282 10283
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10284 10285
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10286 10287 10288 10289 10290 10291 10292 10293

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10294 10295
}

10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10308
	put_event(parent);
10309

P
Peter Zijlstra 已提交
10310
	raw_spin_lock_irq(&ctx->lock);
10311
	perf_group_detach(event);
10312
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10313
	raw_spin_unlock_irq(&ctx->lock);
10314 10315 10316
	free_event(event);
}

10317
/*
P
Peter Zijlstra 已提交
10318
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10319
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10320 10321 10322
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10323
 */
10324
void perf_event_free_task(struct task_struct *task)
10325
{
P
Peter Zijlstra 已提交
10326
	struct perf_event_context *ctx;
10327
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10328
	int ctxn;
10329

P
Peter Zijlstra 已提交
10330 10331 10332 10333
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10334

P
Peter Zijlstra 已提交
10335
		mutex_lock(&ctx->mutex);
10336
again:
P
Peter Zijlstra 已提交
10337 10338 10339
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
10340

P
Peter Zijlstra 已提交
10341 10342 10343
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
10344

P
Peter Zijlstra 已提交
10345 10346 10347
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
10348

P
Peter Zijlstra 已提交
10349
		mutex_unlock(&ctx->mutex);
10350

P
Peter Zijlstra 已提交
10351 10352
		put_ctx(ctx);
	}
10353 10354
}

10355 10356 10357 10358 10359 10360 10361 10362
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10363
struct file *perf_event_get(unsigned int fd)
10364
{
10365
	struct file *file;
10366

10367 10368 10369
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10370

10371 10372 10373 10374
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10375

10376
	return file;
10377 10378 10379 10380 10381 10382 10383 10384 10385 10386
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10398
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10399
	struct perf_event *child_event;
10400
	unsigned long flags;
P
Peter Zijlstra 已提交
10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10413
					   child,
P
Peter Zijlstra 已提交
10414
					   group_leader, parent_event,
10415
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10416 10417
	if (IS_ERR(child_event))
		return child_event;
10418

10419 10420 10421 10422 10423 10424 10425
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10426 10427
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10428
		mutex_unlock(&parent_event->child_mutex);
10429 10430 10431 10432
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10433 10434 10435 10436 10437 10438 10439
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10440
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10457 10458
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10459

10460 10461 10462 10463
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10464
	perf_event__id_header_size(child_event);
10465

P
Peter Zijlstra 已提交
10466 10467 10468
	/*
	 * Link it up in the child's context:
	 */
10469
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10470
	add_event_to_ctx(child_event, child_ctx);
10471
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10503 10504 10505 10506 10507
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10508
		   struct task_struct *child, int ctxn,
10509 10510 10511
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10512
	struct perf_event_context *child_ctx;
10513 10514 10515 10516

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10517 10518
	}

10519
	child_ctx = child->perf_event_ctxp[ctxn];
10520 10521 10522 10523 10524 10525 10526
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10527

10528
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10529 10530
		if (!child_ctx)
			return -ENOMEM;
10531

P
Peter Zijlstra 已提交
10532
		child->perf_event_ctxp[ctxn] = child_ctx;
10533 10534 10535 10536 10537 10538 10539 10540 10541
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10542 10543
}

10544
/*
10545
 * Initialize the perf_event context in task_struct
10546
 */
10547
static int perf_event_init_context(struct task_struct *child, int ctxn)
10548
{
10549
	struct perf_event_context *child_ctx, *parent_ctx;
10550 10551
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10552
	struct task_struct *parent = current;
10553
	int inherited_all = 1;
10554
	unsigned long flags;
10555
	int ret = 0;
10556

P
Peter Zijlstra 已提交
10557
	if (likely(!parent->perf_event_ctxp[ctxn]))
10558 10559
		return 0;

10560
	/*
10561 10562
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10563
	 */
P
Peter Zijlstra 已提交
10564
	parent_ctx = perf_pin_task_context(parent, ctxn);
10565 10566
	if (!parent_ctx)
		return 0;
10567

10568 10569 10570 10571 10572 10573 10574
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10575 10576 10577 10578
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10579
	mutex_lock(&parent_ctx->mutex);
10580 10581 10582 10583 10584

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10585
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10586 10587
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10588 10589 10590
		if (ret)
			break;
	}
10591

10592 10593 10594 10595 10596 10597 10598 10599 10600
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10601
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10602 10603
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10604
		if (ret)
10605
			break;
10606 10607
	}

10608 10609 10610
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10611
	child_ctx = child->perf_event_ctxp[ctxn];
10612

10613
	if (child_ctx && inherited_all) {
10614 10615 10616
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10617 10618 10619
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10620
		 */
P
Peter Zijlstra 已提交
10621
		cloned_ctx = parent_ctx->parent_ctx;
10622 10623
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10624
			child_ctx->parent_gen = parent_ctx->parent_gen;
10625 10626 10627 10628 10629
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10630 10631
	}

P
Peter Zijlstra 已提交
10632
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10633
	mutex_unlock(&parent_ctx->mutex);
10634

10635
	perf_unpin_context(parent_ctx);
10636
	put_ctx(parent_ctx);
10637

10638
	return ret;
10639 10640
}

P
Peter Zijlstra 已提交
10641 10642 10643 10644 10645 10646 10647
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10648 10649 10650 10651
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10652 10653
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10654 10655
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10656
			return ret;
P
Peter Zijlstra 已提交
10657
		}
P
Peter Zijlstra 已提交
10658 10659 10660 10661 10662
	}

	return 0;
}

10663 10664
static void __init perf_event_init_all_cpus(void)
{
10665
	struct swevent_htable *swhash;
10666 10667 10668
	int cpu;

	for_each_possible_cpu(cpu) {
10669 10670
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10671
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10672 10673 10674

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10675

10676 10677 10678
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
10679
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10680 10681 10682
	}
}

10683
int perf_event_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10684
{
P
Peter Zijlstra 已提交
10685
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10686

10687
	mutex_lock(&swhash->hlist_mutex);
10688
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10689 10690
		struct swevent_hlist *hlist;

10691 10692 10693
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10694
	}
10695
	mutex_unlock(&swhash->hlist_mutex);
10696
	return 0;
T
Thomas Gleixner 已提交
10697 10698
}

10699
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10700
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10701
{
P
Peter Zijlstra 已提交
10702
	struct perf_event_context *ctx = __info;
10703 10704
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10705

10706 10707
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10708
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10709
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10710
}
P
Peter Zijlstra 已提交
10711 10712 10713 10714 10715 10716 10717 10718 10719

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
10720
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
10721 10722 10723 10724 10725 10726 10727

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}
10728 10729 10730 10731 10732
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
10733

10734
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10735
{
P
Peter Zijlstra 已提交
10736
	perf_event_exit_cpu_context(cpu);
10737
	return 0;
T
Thomas Gleixner 已提交
10738 10739
}

P
Peter Zijlstra 已提交
10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

10760
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
10761
{
10762 10763
	int ret;

P
Peter Zijlstra 已提交
10764 10765
	idr_init(&pmu_idr);

10766
	perf_event_init_all_cpus();
10767
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
10768 10769 10770
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
10771
	perf_tp_register();
10772
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
10773
	register_reboot_notifier(&perf_reboot_notifier);
10774 10775 10776

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10777

10778 10779 10780 10781 10782 10783
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
10784
}
P
Peter Zijlstra 已提交
10785

10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
10797
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10798

P
Peter Zijlstra 已提交
10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
10826 10827

#ifdef CONFIG_CGROUP_PERF
10828 10829
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
10830 10831 10832
{
	struct perf_cgroup *jc;

10833
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

10846
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
10847
{
10848 10849
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
10850 10851 10852 10853 10854 10855 10856
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
10857
	rcu_read_lock();
S
Stephane Eranian 已提交
10858
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10859
	rcu_read_unlock();
S
Stephane Eranian 已提交
10860 10861 10862
	return 0;
}

10863
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
10864
{
10865
	struct task_struct *task;
10866
	struct cgroup_subsys_state *css;
10867

10868
	cgroup_taskset_for_each(task, css, tset)
10869
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
10870 10871
}

10872
struct cgroup_subsys perf_event_cgrp_subsys = {
10873 10874
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
10875
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
10876 10877
};
#endif /* CONFIG_CGROUP_PERF */