core.c 169.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41
struct remote_function_call {
42 43 44 45
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
79 80 81 82
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
103 104 105 106
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
107 108 109 110 111 112 113
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
128
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
129 130
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148 149
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150 151

/*
152
 * max perf event sample rate
153
 */
P
Peter Zijlstra 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
172

173
static atomic64_t perf_event_id;
174

175 176 177 178
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
179 180 181 182 183
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
184

185
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
186

187
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
188
{
189
	return "pmu";
T
Thomas Gleixner 已提交
190 191
}

192 193 194 195 196
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
197 198 199 200 201 202 203 204
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

#ifdef CONFIG_CGROUP_PERF

205 206 207 208 209
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
277 278
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
279
	/*
280 281
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
282
	 */
283
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
284 285
		return;

286 287 288 289 290 291
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
292 293 294
}

static inline void
295 296
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
297 298 299 300
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

301 302 303 304 305 306
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
307 308 309 310
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
311
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {

		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		perf_pmu_disable(cpuctx->ctx.pmu);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
367
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
		}

		perf_pmu_enable(cpuctx->ctx.pmu);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
409 410 411 412
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
413 414 415 416

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

417 418 419
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
420 421 422 423 424 425 426 427 428
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
429
out:
S
Stephane Eranian 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
520 521
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
552
void perf_pmu_disable(struct pmu *pmu)
553
{
P
Peter Zijlstra 已提交
554 555 556
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
557 558
}

P
Peter Zijlstra 已提交
559
void perf_pmu_enable(struct pmu *pmu)
560
{
P
Peter Zijlstra 已提交
561 562 563
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
564 565
}

566 567 568 569 570 571 572
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
573
static void perf_pmu_rotate_start(struct pmu *pmu)
574
{
P
Peter Zijlstra 已提交
575
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
576
	struct list_head *head = &__get_cpu_var(rotation_list);
577

578
	WARN_ON(!irqs_disabled());
579

580 581
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
582 583
}

584
static void get_ctx(struct perf_event_context *ctx)
585
{
586
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
587 588
}

589
static void put_ctx(struct perf_event_context *ctx)
590
{
591 592 593
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
594 595
		if (ctx->task)
			put_task_struct(ctx->task);
596
		kfree_rcu(ctx, rcu_head);
597
	}
598 599
}

600
static void unclone_ctx(struct perf_event_context *ctx)
601 602 603 604 605 606 607
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

630
/*
631
 * If we inherit events we want to return the parent event id
632 633
 * to userspace.
 */
634
static u64 primary_event_id(struct perf_event *event)
635
{
636
	u64 id = event->id;
637

638 639
	if (event->parent)
		id = event->parent->id;
640 641 642 643

	return id;
}

644
/*
645
 * Get the perf_event_context for a task and lock it.
646 647 648
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
649
static struct perf_event_context *
P
Peter Zijlstra 已提交
650
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
651
{
652
	struct perf_event_context *ctx;
653 654

	rcu_read_lock();
P
Peter Zijlstra 已提交
655
retry:
P
Peter Zijlstra 已提交
656
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
657 658 659 660
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
661
		 * perf_event_task_sched_out, though the
662 663 664 665 666 667
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
668
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
669
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
670
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
671 672
			goto retry;
		}
673 674

		if (!atomic_inc_not_zero(&ctx->refcount)) {
675
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
676 677
			ctx = NULL;
		}
678 679 680 681 682 683 684 685 686 687
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
688 689
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
690
{
691
	struct perf_event_context *ctx;
692 693
	unsigned long flags;

P
Peter Zijlstra 已提交
694
	ctx = perf_lock_task_context(task, ctxn, &flags);
695 696
	if (ctx) {
		++ctx->pin_count;
697
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
698 699 700 701
	}
	return ctx;
}

702
static void perf_unpin_context(struct perf_event_context *ctx)
703 704 705
{
	unsigned long flags;

706
	raw_spin_lock_irqsave(&ctx->lock, flags);
707
	--ctx->pin_count;
708
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
709 710
}

711 712 713 714 715 716 717 718 719 720 721
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

722 723 724
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
725 726 727 728

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

729 730 731
	return ctx ? ctx->time : 0;
}

732 733 734 735 736 737 738 739 740 741 742
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
743 744 745 746 747 748 749 750 751 752 753
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
754
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
755 756
	else if (ctx->is_active)
		run_end = ctx->time;
757 758 759 760
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
761 762 763 764

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
765
		run_end = perf_event_time(event);
766 767

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
768

769 770
}

771 772 773 774 775 776 777 778 779 780 781 782
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

783 784 785 786 787 788 789 790 791
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

792
/*
793
 * Add a event from the lists for its context.
794 795
 * Must be called with ctx->mutex and ctx->lock held.
 */
796
static void
797
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
798
{
799 800
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
801 802

	/*
803 804 805
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
806
	 */
807
	if (event->group_leader == event) {
808 809
		struct list_head *list;

810 811 812
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

813 814
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
815
	}
P
Peter Zijlstra 已提交
816

817
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
818 819
		ctx->nr_cgroups++;

820
	list_add_rcu(&event->event_entry, &ctx->event_list);
821
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
822
		perf_pmu_rotate_start(ctx->pmu);
823 824
	ctx->nr_events++;
	if (event->attr.inherit_stat)
825
		ctx->nr_stat++;
826 827
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

900
	event->id_header_size = size;
901 902
}

903 904
static void perf_group_attach(struct perf_event *event)
{
905
	struct perf_event *group_leader = event->group_leader, *pos;
906

P
Peter Zijlstra 已提交
907 908 909 910 911 912
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

913 914 915 916 917 918 919 920 921 922 923
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
924 925 926 927 928

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
929 930
}

931
/*
932
 * Remove a event from the lists for its context.
933
 * Must be called with ctx->mutex and ctx->lock held.
934
 */
935
static void
936
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
937
{
938
	struct perf_cpu_context *cpuctx;
939 940 941 942
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
943
		return;
944 945 946

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

947
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
948
		ctx->nr_cgroups--;
949 950 951 952 953 954 955 956 957
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
958

959 960
	ctx->nr_events--;
	if (event->attr.inherit_stat)
961
		ctx->nr_stat--;
962

963
	list_del_rcu(&event->event_entry);
964

965 966
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
967

968
	update_group_times(event);
969 970 971 972 973 974 975 976 977 978

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
979 980
}

981
static void perf_group_detach(struct perf_event *event)
982 983
{
	struct perf_event *sibling, *tmp;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1000
		goto out;
1001 1002 1003 1004
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1005

1006
	/*
1007 1008
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1009
	 * to whatever list we are on.
1010
	 */
1011
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1012 1013
		if (list)
			list_move_tail(&sibling->group_entry, list);
1014
		sibling->group_leader = sibling;
1015 1016 1017

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1018
	}
1019 1020 1021 1022 1023 1024

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1025 1026
}

1027 1028 1029
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1030 1031
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1032 1033
}

1034 1035
static void
event_sched_out(struct perf_event *event,
1036
		  struct perf_cpu_context *cpuctx,
1037
		  struct perf_event_context *ctx)
1038
{
1039
	u64 tstamp = perf_event_time(event);
1040 1041 1042 1043 1044 1045 1046 1047 1048
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1049
		delta = tstamp - event->tstamp_stopped;
1050
		event->tstamp_running += delta;
1051
		event->tstamp_stopped = tstamp;
1052 1053
	}

1054
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1055
		return;
1056

1057 1058 1059 1060
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1061
	}
1062
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1063
	event->pmu->del(event, 0);
1064
	event->oncpu = -1;
1065

1066
	if (!is_software_event(event))
1067 1068
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1069
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1070 1071 1072
		cpuctx->exclusive = 0;
}

1073
static void
1074
group_sched_out(struct perf_event *group_event,
1075
		struct perf_cpu_context *cpuctx,
1076
		struct perf_event_context *ctx)
1077
{
1078
	struct perf_event *event;
1079
	int state = group_event->state;
1080

1081
	event_sched_out(group_event, cpuctx, ctx);
1082 1083 1084 1085

	/*
	 * Schedule out siblings (if any):
	 */
1086 1087
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1088

1089
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1090 1091 1092
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1093
/*
1094
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1095
 *
1096
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1097 1098
 * remove it from the context list.
 */
1099
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1100
{
1101 1102
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1103
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1104

1105
	raw_spin_lock(&ctx->lock);
1106 1107
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1108
	raw_spin_unlock(&ctx->lock);
1109 1110

	return 0;
T
Thomas Gleixner 已提交
1111 1112 1113 1114
}


/*
1115
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1116
 *
1117
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1118
 * call when the task is on a CPU.
1119
 *
1120 1121
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1122 1123
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1124
 * When called from perf_event_exit_task, it's OK because the
1125
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1126
 */
1127
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1128
{
1129
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1130 1131
	struct task_struct *task = ctx->task;

1132 1133
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1134 1135
	if (!task) {
		/*
1136
		 * Per cpu events are removed via an smp call and
1137
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1138
		 */
1139
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1140 1141 1142 1143
		return;
	}

retry:
1144 1145
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1146

1147
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1148
	/*
1149 1150
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1151
	 */
1152
	if (ctx->is_active) {
1153
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1154 1155 1156 1157
		goto retry;
	}

	/*
1158 1159
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1160
	 */
1161
	list_del_event(event, ctx);
1162
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1163 1164
}

1165
/*
1166
 * Cross CPU call to disable a performance event
1167
 */
1168
static int __perf_event_disable(void *info)
1169
{
1170 1171
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1172
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1173 1174

	/*
1175 1176
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1177 1178 1179
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1180
	 */
1181
	if (ctx->task && cpuctx->task_ctx != ctx)
1182
		return -EINVAL;
1183

1184
	raw_spin_lock(&ctx->lock);
1185 1186

	/*
1187
	 * If the event is on, turn it off.
1188 1189
	 * If it is in error state, leave it in error state.
	 */
1190
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1191
		update_context_time(ctx);
S
Stephane Eranian 已提交
1192
		update_cgrp_time_from_event(event);
1193 1194 1195
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1196
		else
1197 1198
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1199 1200
	}

1201
	raw_spin_unlock(&ctx->lock);
1202 1203

	return 0;
1204 1205 1206
}

/*
1207
 * Disable a event.
1208
 *
1209 1210
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1211
 * remains valid.  This condition is satisifed when called through
1212 1213 1214 1215
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1216
 * is the current context on this CPU and preemption is disabled,
1217
 * hence we can't get into perf_event_task_sched_out for this context.
1218
 */
1219
void perf_event_disable(struct perf_event *event)
1220
{
1221
	struct perf_event_context *ctx = event->ctx;
1222 1223 1224 1225
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1226
		 * Disable the event on the cpu that it's on
1227
		 */
1228
		cpu_function_call(event->cpu, __perf_event_disable, event);
1229 1230 1231
		return;
	}

P
Peter Zijlstra 已提交
1232
retry:
1233 1234
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1235

1236
	raw_spin_lock_irq(&ctx->lock);
1237
	/*
1238
	 * If the event is still active, we need to retry the cross-call.
1239
	 */
1240
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1241
		raw_spin_unlock_irq(&ctx->lock);
1242 1243 1244 1245 1246
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1247 1248 1249 1250 1251 1252 1253
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1254 1255 1256
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1257
	}
1258
	raw_spin_unlock_irq(&ctx->lock);
1259 1260
}

S
Stephane Eranian 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1296 1297 1298 1299
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1300
static int
1301
event_sched_in(struct perf_event *event,
1302
		 struct perf_cpu_context *cpuctx,
1303
		 struct perf_event_context *ctx)
1304
{
1305 1306
	u64 tstamp = perf_event_time(event);

1307
	if (event->state <= PERF_EVENT_STATE_OFF)
1308 1309
		return 0;

1310
	event->state = PERF_EVENT_STATE_ACTIVE;
1311
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1323 1324 1325 1326 1327
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1328
	if (event->pmu->add(event, PERF_EF_START)) {
1329 1330
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1331 1332 1333
		return -EAGAIN;
	}

1334
	event->tstamp_running += tstamp - event->tstamp_stopped;
1335

S
Stephane Eranian 已提交
1336
	perf_set_shadow_time(event, ctx, tstamp);
1337

1338
	if (!is_software_event(event))
1339
		cpuctx->active_oncpu++;
1340 1341
	ctx->nr_active++;

1342
	if (event->attr.exclusive)
1343 1344
		cpuctx->exclusive = 1;

1345 1346 1347
	return 0;
}

1348
static int
1349
group_sched_in(struct perf_event *group_event,
1350
	       struct perf_cpu_context *cpuctx,
1351
	       struct perf_event_context *ctx)
1352
{
1353
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1354
	struct pmu *pmu = group_event->pmu;
1355 1356
	u64 now = ctx->time;
	bool simulate = false;
1357

1358
	if (group_event->state == PERF_EVENT_STATE_OFF)
1359 1360
		return 0;

P
Peter Zijlstra 已提交
1361
	pmu->start_txn(pmu);
1362

1363
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1364
		pmu->cancel_txn(pmu);
1365
		return -EAGAIN;
1366
	}
1367 1368 1369 1370

	/*
	 * Schedule in siblings as one group (if any):
	 */
1371
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1372
		if (event_sched_in(event, cpuctx, ctx)) {
1373
			partial_group = event;
1374 1375 1376 1377
			goto group_error;
		}
	}

1378
	if (!pmu->commit_txn(pmu))
1379
		return 0;
1380

1381 1382 1383 1384
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1395
	 */
1396 1397
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1398 1399 1400 1401 1402 1403 1404 1405
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1406
	}
1407
	event_sched_out(group_event, cpuctx, ctx);
1408

P
Peter Zijlstra 已提交
1409
	pmu->cancel_txn(pmu);
1410

1411 1412 1413
	return -EAGAIN;
}

1414
/*
1415
 * Work out whether we can put this event group on the CPU now.
1416
 */
1417
static int group_can_go_on(struct perf_event *event,
1418 1419 1420 1421
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1422
	 * Groups consisting entirely of software events can always go on.
1423
	 */
1424
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1425 1426 1427
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1428
	 * events can go on.
1429 1430 1431 1432 1433
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1434
	 * events on the CPU, it can't go on.
1435
	 */
1436
	if (event->attr.exclusive && cpuctx->active_oncpu)
1437 1438 1439 1440 1441 1442 1443 1444
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1445 1446
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1447
{
1448 1449
	u64 tstamp = perf_event_time(event);

1450
	list_add_event(event, ctx);
1451
	perf_group_attach(event);
1452 1453 1454
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1455 1456
}

S
Stephane Eranian 已提交
1457 1458
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *tsk);
1459

T
Thomas Gleixner 已提交
1460
/*
1461
 * Cross CPU call to install and enable a performance event
1462 1463
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1464
 */
1465
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1466
{
1467 1468 1469
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1470
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1471
	int err;
T
Thomas Gleixner 已提交
1472 1473

	/*
1474 1475 1476
	 * In case we're installing a new context to an already running task,
	 * could also happen before perf_event_task_sched_in() on architectures
	 * which do context switches with IRQs enabled.
T
Thomas Gleixner 已提交
1477
	 */
1478
	if (ctx->task && !cpuctx->task_ctx)
S
Stephane Eranian 已提交
1479
		perf_event_context_sched_in(ctx, ctx->task);
T
Thomas Gleixner 已提交
1480

1481
	raw_spin_lock(&ctx->lock);
1482
	ctx->is_active = 1;
1483
	update_context_time(ctx);
S
Stephane Eranian 已提交
1484 1485 1486 1487 1488 1489
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1490

1491
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1492

1493
	if (!event_filter_match(event))
1494 1495
		goto unlock;

1496
	/*
1497
	 * Don't put the event on if it is disabled or if
1498 1499
	 * it is in a group and the group isn't on.
	 */
1500 1501
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1502 1503
		goto unlock;

1504
	/*
1505 1506 1507
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
1508
	 */
1509
	if (!group_can_go_on(event, cpuctx, 1))
1510 1511
		err = -EEXIST;
	else
1512
		err = event_sched_in(event, cpuctx, ctx);
1513

1514 1515
	if (err) {
		/*
1516
		 * This event couldn't go on.  If it is in a group
1517
		 * then we have to pull the whole group off.
1518
		 * If the event group is pinned then put it in error state.
1519
		 */
1520
		if (leader != event)
1521
			group_sched_out(leader, cpuctx, ctx);
1522
		if (leader->attr.pinned) {
1523
			update_group_times(leader);
1524
			leader->state = PERF_EVENT_STATE_ERROR;
1525
		}
1526
	}
T
Thomas Gleixner 已提交
1527

P
Peter Zijlstra 已提交
1528
unlock:
1529
	raw_spin_unlock(&ctx->lock);
1530 1531

	return 0;
T
Thomas Gleixner 已提交
1532 1533 1534
}

/*
1535
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1536
 *
1537 1538
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1539
 *
1540
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1541 1542 1543 1544
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1545 1546
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1547 1548 1549 1550
			int cpu)
{
	struct task_struct *task = ctx->task;

1551 1552
	lockdep_assert_held(&ctx->mutex);

1553 1554
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1555 1556
	if (!task) {
		/*
1557
		 * Per cpu events are installed via an smp call and
1558
		 * the install is always successful.
T
Thomas Gleixner 已提交
1559
		 */
1560
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1561 1562 1563 1564
		return;
	}

retry:
1565 1566
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1567

1568
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1569
	/*
1570 1571
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1572
	 */
1573
	if (ctx->is_active) {
1574
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1575 1576 1577 1578
		goto retry;
	}

	/*
1579 1580
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1581
	 */
1582
	add_event_to_ctx(event, ctx);
1583
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1584 1585
}

1586
/*
1587
 * Put a event into inactive state and update time fields.
1588 1589 1590 1591 1592 1593
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1594 1595
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1596
{
1597
	struct perf_event *sub;
1598
	u64 tstamp = perf_event_time(event);
1599

1600
	event->state = PERF_EVENT_STATE_INACTIVE;
1601
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1602
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1603 1604
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1605
	}
1606 1607
}

1608
/*
1609
 * Cross CPU call to enable a performance event
1610
 */
1611
static int __perf_event_enable(void *info)
1612
{
1613 1614 1615
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1616
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1617
	int err;
1618

1619 1620
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1621

1622
	raw_spin_lock(&ctx->lock);
1623
	update_context_time(ctx);
1624

1625
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1626
		goto unlock;
S
Stephane Eranian 已提交
1627 1628 1629 1630

	/*
	 * set current task's cgroup time reference point
	 */
1631
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1632

1633
	__perf_event_mark_enabled(event, ctx);
1634

S
Stephane Eranian 已提交
1635 1636 1637
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1638
		goto unlock;
S
Stephane Eranian 已提交
1639
	}
1640

1641
	/*
1642
	 * If the event is in a group and isn't the group leader,
1643
	 * then don't put it on unless the group is on.
1644
	 */
1645
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1646
		goto unlock;
1647

1648
	if (!group_can_go_on(event, cpuctx, 1)) {
1649
		err = -EEXIST;
1650
	} else {
1651
		if (event == leader)
1652
			err = group_sched_in(event, cpuctx, ctx);
1653
		else
1654
			err = event_sched_in(event, cpuctx, ctx);
1655
	}
1656 1657 1658

	if (err) {
		/*
1659
		 * If this event can't go on and it's part of a
1660 1661
		 * group, then the whole group has to come off.
		 */
1662
		if (leader != event)
1663
			group_sched_out(leader, cpuctx, ctx);
1664
		if (leader->attr.pinned) {
1665
			update_group_times(leader);
1666
			leader->state = PERF_EVENT_STATE_ERROR;
1667
		}
1668 1669
	}

P
Peter Zijlstra 已提交
1670
unlock:
1671
	raw_spin_unlock(&ctx->lock);
1672 1673

	return 0;
1674 1675 1676
}

/*
1677
 * Enable a event.
1678
 *
1679 1680
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1681
 * remains valid.  This condition is satisfied when called through
1682 1683
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1684
 */
1685
void perf_event_enable(struct perf_event *event)
1686
{
1687
	struct perf_event_context *ctx = event->ctx;
1688 1689 1690 1691
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1692
		 * Enable the event on the cpu that it's on
1693
		 */
1694
		cpu_function_call(event->cpu, __perf_event_enable, event);
1695 1696 1697
		return;
	}

1698
	raw_spin_lock_irq(&ctx->lock);
1699
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1700 1701 1702
		goto out;

	/*
1703 1704
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1705 1706 1707 1708
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1709 1710
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1711

P
Peter Zijlstra 已提交
1712
retry:
1713 1714 1715 1716 1717
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1718
	raw_spin_unlock_irq(&ctx->lock);
1719 1720 1721

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1722

1723
	raw_spin_lock_irq(&ctx->lock);
1724 1725

	/*
1726
	 * If the context is active and the event is still off,
1727 1728
	 * we need to retry the cross-call.
	 */
1729 1730 1731 1732 1733 1734
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1735
		goto retry;
1736
	}
1737

P
Peter Zijlstra 已提交
1738
out:
1739
	raw_spin_unlock_irq(&ctx->lock);
1740 1741
}

1742
static int perf_event_refresh(struct perf_event *event, int refresh)
1743
{
1744
	/*
1745
	 * not supported on inherited events
1746
	 */
1747
	if (event->attr.inherit || !is_sampling_event(event))
1748 1749
		return -EINVAL;

1750 1751
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1752 1753

	return 0;
1754 1755
}

1756 1757 1758
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1759
{
1760
	struct perf_event *event;
1761

1762
	raw_spin_lock(&ctx->lock);
1763
	ctx->is_active = 0;
1764
	if (likely(!ctx->nr_events))
1765
		goto out;
1766
	update_context_time(ctx);
S
Stephane Eranian 已提交
1767
	update_cgrp_time_from_cpuctx(cpuctx);
1768

1769
	if (!ctx->nr_active)
1770
		goto out;
1771

P
Peter Zijlstra 已提交
1772
	perf_pmu_disable(ctx->pmu);
P
Peter Zijlstra 已提交
1773
	if (event_type & EVENT_PINNED) {
1774 1775
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1776
	}
1777

P
Peter Zijlstra 已提交
1778
	if (event_type & EVENT_FLEXIBLE) {
1779
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1780
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1781
	}
P
Peter Zijlstra 已提交
1782
	perf_pmu_enable(ctx->pmu);
P
Peter Zijlstra 已提交
1783
out:
1784
	raw_spin_unlock(&ctx->lock);
1785 1786
}

1787 1788 1789
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1790 1791 1792 1793
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1794
 * in them directly with an fd; we can only enable/disable all
1795
 * events via prctl, or enable/disable all events in a family
1796 1797
 * via ioctl, which will have the same effect on both contexts.
 */
1798 1799
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1800 1801
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1802
		&& ctx1->parent_gen == ctx2->parent_gen
1803
		&& !ctx1->pin_count && !ctx2->pin_count;
1804 1805
}

1806 1807
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1808 1809 1810
{
	u64 value;

1811
	if (!event->attr.inherit_stat)
1812 1813 1814
		return;

	/*
1815
	 * Update the event value, we cannot use perf_event_read()
1816 1817
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1818
	 * we know the event must be on the current CPU, therefore we
1819 1820
	 * don't need to use it.
	 */
1821 1822
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1823 1824
		event->pmu->read(event);
		/* fall-through */
1825

1826 1827
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1828 1829 1830 1831 1832 1833 1834
		break;

	default:
		break;
	}

	/*
1835
	 * In order to keep per-task stats reliable we need to flip the event
1836 1837
	 * values when we flip the contexts.
	 */
1838 1839 1840
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1841

1842 1843
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1844

1845
	/*
1846
	 * Since we swizzled the values, update the user visible data too.
1847
	 */
1848 1849
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1850 1851 1852 1853 1854
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1855 1856
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1857
{
1858
	struct perf_event *event, *next_event;
1859 1860 1861 1862

	if (!ctx->nr_stat)
		return;

1863 1864
	update_context_time(ctx);

1865 1866
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1867

1868 1869
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1870

1871 1872
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1873

1874
		__perf_event_sync_stat(event, next_event);
1875

1876 1877
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1878 1879 1880
	}
}

1881 1882
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1883
{
P
Peter Zijlstra 已提交
1884
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1885 1886
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1887
	struct perf_cpu_context *cpuctx;
1888
	int do_switch = 1;
T
Thomas Gleixner 已提交
1889

P
Peter Zijlstra 已提交
1890 1891
	if (likely(!ctx))
		return;
1892

P
Peter Zijlstra 已提交
1893 1894
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1895 1896
		return;

1897 1898
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1899
	next_ctx = next->perf_event_ctxp[ctxn];
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1911 1912
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1913
		if (context_equiv(ctx, next_ctx)) {
1914 1915
			/*
			 * XXX do we need a memory barrier of sorts
1916
			 * wrt to rcu_dereference() of perf_event_ctxp
1917
			 */
P
Peter Zijlstra 已提交
1918 1919
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1920 1921 1922
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1923

1924
			perf_event_sync_stat(ctx, next_ctx);
1925
		}
1926 1927
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1928
	}
1929
	rcu_read_unlock();
1930

1931
	if (do_switch) {
1932
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1933 1934
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1935 1936
}

P
Peter Zijlstra 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1951 1952
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1953 1954 1955 1956 1957
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1958 1959 1960 1961 1962 1963 1964 1965

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1966 1967
}

1968 1969
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1970
{
P
Peter Zijlstra 已提交
1971
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1972

1973 1974
	if (!cpuctx->task_ctx)
		return;
1975 1976 1977 1978

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1979
	ctx_sched_out(ctx, cpuctx, event_type);
1980 1981 1982
	cpuctx->task_ctx = NULL;
}

1983 1984 1985 1986 1987 1988 1989
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1990 1991
}

1992
static void
1993
ctx_pinned_sched_in(struct perf_event_context *ctx,
1994
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1995
{
1996
	struct perf_event *event;
T
Thomas Gleixner 已提交
1997

1998 1999
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2000
			continue;
2001
		if (!event_filter_match(event))
2002 2003
			continue;

S
Stephane Eranian 已提交
2004 2005 2006 2007
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2008
		if (group_can_go_on(event, cpuctx, 1))
2009
			group_sched_in(event, cpuctx, ctx);
2010 2011 2012 2013 2014

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2015 2016 2017
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2018
		}
2019
	}
2020 2021 2022 2023
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2024
		      struct perf_cpu_context *cpuctx)
2025 2026 2027
{
	struct perf_event *event;
	int can_add_hw = 1;
2028

2029 2030 2031
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2032
			continue;
2033 2034
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2035
		 * of events:
2036
		 */
2037
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2038 2039
			continue;

S
Stephane Eranian 已提交
2040 2041 2042 2043
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2044
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2045
			if (group_sched_in(event, cpuctx, ctx))
2046
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2047
		}
T
Thomas Gleixner 已提交
2048
	}
2049 2050 2051 2052 2053
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2054 2055
	     enum event_type_t event_type,
	     struct task_struct *task)
2056
{
S
Stephane Eranian 已提交
2057 2058
	u64 now;

2059 2060 2061 2062 2063
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

S
Stephane Eranian 已提交
2064 2065
	now = perf_clock();
	ctx->timestamp = now;
2066
	perf_cgroup_set_timestamp(task, ctx);
2067 2068 2069 2070 2071
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
2072
		ctx_pinned_sched_in(ctx, cpuctx);
2073 2074 2075

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
2076
		ctx_flexible_sched_in(ctx, cpuctx);
2077

P
Peter Zijlstra 已提交
2078
out:
2079
	raw_spin_unlock(&ctx->lock);
2080 2081
}

2082
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2083 2084
			     enum event_type_t event_type,
			     struct task_struct *task)
2085 2086 2087
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2088
	ctx_sched_in(ctx, cpuctx, event_type, task);
2089 2090
}

P
Peter Zijlstra 已提交
2091
static void task_ctx_sched_in(struct perf_event_context *ctx,
2092 2093
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
2094
	struct perf_cpu_context *cpuctx;
2095

2096
	cpuctx = __get_cpu_context(ctx);
2097 2098
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
2099

S
Stephane Eranian 已提交
2100
	ctx_sched_in(ctx, cpuctx, event_type, NULL);
2101 2102
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
2103

S
Stephane Eranian 已提交
2104 2105
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2106
{
P
Peter Zijlstra 已提交
2107
	struct perf_cpu_context *cpuctx;
2108

P
Peter Zijlstra 已提交
2109
	cpuctx = __get_cpu_context(ctx);
2110 2111 2112
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
2113
	perf_pmu_disable(ctx->pmu);
2114 2115 2116 2117 2118 2119 2120
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

S
Stephane Eranian 已提交
2121 2122 2123
	ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2124 2125

	cpuctx->task_ctx = ctx;
2126

2127 2128 2129 2130
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2131
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
2132
	perf_pmu_enable(ctx->pmu);
2133 2134
}

P
Peter Zijlstra 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2146
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2156
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2157
	}
S
Stephane Eranian 已提交
2158 2159 2160 2161 2162 2163 2164
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2165 2166
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2194
#define REDUCE_FLS(a, b)		\
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2234 2235 2236
	if (!divisor)
		return dividend;

2237 2238 2239 2240
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2241
{
2242
	struct hw_perf_event *hwc = &event->hw;
2243
	s64 period, sample_period;
2244 2245
	s64 delta;

2246
	period = perf_calculate_period(event, nsec, count);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2257

2258
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2259
		event->pmu->stop(event, PERF_EF_UPDATE);
2260
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2261
		event->pmu->start(event, PERF_EF_RELOAD);
2262
	}
2263 2264
}

2265
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2266
{
2267 2268
	struct perf_event *event;
	struct hw_perf_event *hwc;
2269 2270
	u64 interrupts, now;
	s64 delta;
2271

2272
	raw_spin_lock(&ctx->lock);
2273
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2274
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2275 2276
			continue;

2277
		if (!event_filter_match(event))
2278 2279
			continue;

2280
		hwc = &event->hw;
2281 2282 2283

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2284

2285
		/*
2286
		 * unthrottle events on the tick
2287
		 */
2288
		if (interrupts == MAX_INTERRUPTS) {
2289
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2290
			event->pmu->start(event, 0);
2291 2292
		}

2293
		if (!event->attr.freq || !event->attr.sample_freq)
2294 2295
			continue;

2296
		event->pmu->read(event);
2297
		now = local64_read(&event->count);
2298 2299
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2300

2301
		if (delta > 0)
2302
			perf_adjust_period(event, period, delta);
2303
	}
2304
	raw_spin_unlock(&ctx->lock);
2305 2306
}

2307
/*
2308
 * Round-robin a context's events:
2309
 */
2310
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2311
{
2312
	raw_spin_lock(&ctx->lock);
2313

2314 2315 2316 2317 2318 2319
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2320

2321
	raw_spin_unlock(&ctx->lock);
2322 2323
}

2324
/*
2325 2326 2327
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2328
 */
2329
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2330
{
2331
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2332
	struct perf_event_context *ctx = NULL;
2333
	int rotate = 0, remove = 1;
2334

2335
	if (cpuctx->ctx.nr_events) {
2336
		remove = 0;
2337 2338 2339
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2340

P
Peter Zijlstra 已提交
2341
	ctx = cpuctx->task_ctx;
2342
	if (ctx && ctx->nr_events) {
2343
		remove = 0;
2344 2345 2346
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2347

P
Peter Zijlstra 已提交
2348
	perf_pmu_disable(cpuctx->ctx.pmu);
2349
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2350
	if (ctx)
2351
		perf_ctx_adjust_freq(ctx, interval);
2352

2353
	if (!rotate)
2354
		goto done;
2355

2356
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2357
	if (ctx)
2358
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2359

2360
	rotate_ctx(&cpuctx->ctx);
2361 2362
	if (ctx)
		rotate_ctx(ctx);
2363

S
Stephane Eranian 已提交
2364
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2365
	if (ctx)
P
Peter Zijlstra 已提交
2366
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2367 2368

done:
2369 2370 2371
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2372
	perf_pmu_enable(cpuctx->ctx.pmu);
2373 2374 2375 2376 2377 2378
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2379

2380 2381 2382 2383 2384 2385 2386
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2387 2388
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2404
/*
2405
 * Enable all of a task's events that have been marked enable-on-exec.
2406 2407
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2408
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2409
{
2410
	struct perf_event *event;
2411 2412
	unsigned long flags;
	int enabled = 0;
2413
	int ret;
2414 2415

	local_irq_save(flags);
2416
	if (!ctx || !ctx->nr_events)
2417 2418
		goto out;

2419 2420 2421 2422 2423 2424 2425 2426
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
P
Peter Zijlstra 已提交
2427
	task_ctx_sched_out(ctx, EVENT_ALL);
2428

2429
	raw_spin_lock(&ctx->lock);
2430

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2441 2442 2443
	}

	/*
2444
	 * Unclone this context if we enabled any event.
2445
	 */
2446 2447
	if (enabled)
		unclone_ctx(ctx);
2448

2449
	raw_spin_unlock(&ctx->lock);
2450

2451 2452 2453
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2454
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2455
out:
2456 2457 2458
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2459
/*
2460
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2461
 */
2462
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2463
{
2464 2465
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2466
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2467

2468 2469 2470 2471
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2472 2473
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2474 2475 2476 2477
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2478
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2479
	if (ctx->is_active) {
2480
		update_context_time(ctx);
S
Stephane Eranian 已提交
2481 2482
		update_cgrp_time_from_event(event);
	}
2483
	update_event_times(event);
2484 2485
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2486
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2487 2488
}

P
Peter Zijlstra 已提交
2489 2490
static inline u64 perf_event_count(struct perf_event *event)
{
2491
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2492 2493
}

2494
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2495 2496
{
	/*
2497 2498
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2499
	 */
2500 2501 2502 2503
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2504 2505 2506
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2507
		raw_spin_lock_irqsave(&ctx->lock, flags);
2508 2509 2510 2511 2512
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2513
		if (ctx->is_active) {
2514
			update_context_time(ctx);
S
Stephane Eranian 已提交
2515 2516
			update_cgrp_time_from_event(event);
		}
2517
		update_event_times(event);
2518
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2519 2520
	}

P
Peter Zijlstra 已提交
2521
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2522 2523
}

2524
/*
2525
 * Callchain support
2526
 */
2527 2528 2529 2530 2531 2532

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2533
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2534 2535 2536 2537 2538 2539 2540
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2541 2542 2543
{
}

2544 2545
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2546
{
2547
}
T
Thomas Gleixner 已提交
2548

2549 2550 2551 2552
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2553

2554
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2555

2556 2557
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2558

2559 2560
	kfree(entries);
}
T
Thomas Gleixner 已提交
2561

2562 2563 2564
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2565

2566 2567 2568 2569
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2570

2571 2572 2573 2574 2575
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2576

2577
	/*
2578 2579 2580
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2581
	 */
2582
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2583

2584 2585 2586
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2587

2588
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2589

2590 2591 2592 2593 2594
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2595 2596
	}

2597
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2733
/*
2734
 * Initialize the perf_event context in a task_struct:
2735
 */
2736
static void __perf_event_init_context(struct perf_event_context *ctx)
2737
{
2738
	raw_spin_lock_init(&ctx->lock);
2739
	mutex_init(&ctx->mutex);
2740 2741
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2742 2743
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2759
	}
2760 2761 2762
	ctx->pmu = pmu;

	return ctx;
2763 2764
}

2765 2766 2767 2768 2769
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2770 2771

	rcu_read_lock();
2772
	if (!vpid)
T
Thomas Gleixner 已提交
2773 2774
		task = current;
	else
2775
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2776 2777 2778 2779 2780 2781 2782 2783
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2784 2785 2786 2787
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2788 2789 2790 2791 2792 2793 2794
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2795 2796 2797
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2798
static struct perf_event_context *
M
Matt Helsley 已提交
2799
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2800
{
2801
	struct perf_event_context *ctx;
2802
	struct perf_cpu_context *cpuctx;
2803
	unsigned long flags;
P
Peter Zijlstra 已提交
2804
	int ctxn, err;
T
Thomas Gleixner 已提交
2805

2806
	if (!task) {
2807
		/* Must be root to operate on a CPU event: */
2808
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2809 2810 2811
			return ERR_PTR(-EACCES);

		/*
2812
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2813 2814 2815
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2816
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2817 2818
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2819
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2820
		ctx = &cpuctx->ctx;
2821
		get_ctx(ctx);
2822
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2823 2824 2825 2826

		return ctx;
	}

P
Peter Zijlstra 已提交
2827 2828 2829 2830 2831
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2832
retry:
P
Peter Zijlstra 已提交
2833
	ctx = perf_lock_task_context(task, ctxn, &flags);
2834
	if (ctx) {
2835
		unclone_ctx(ctx);
2836
		++ctx->pin_count;
2837
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2838
	} else {
2839
		ctx = alloc_perf_context(pmu, task);
2840 2841 2842
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2854
		else {
2855
			get_ctx(ctx);
2856
			++ctx->pin_count;
2857
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2858
		}
2859 2860 2861
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2862
			put_ctx(ctx);
2863 2864 2865 2866

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2867 2868 2869
		}
	}

T
Thomas Gleixner 已提交
2870
	return ctx;
2871

P
Peter Zijlstra 已提交
2872
errout:
2873
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2874 2875
}

L
Li Zefan 已提交
2876 2877
static void perf_event_free_filter(struct perf_event *event);

2878
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2879
{
2880
	struct perf_event *event;
P
Peter Zijlstra 已提交
2881

2882 2883 2884
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2885
	perf_event_free_filter(event);
2886
	kfree(event);
P
Peter Zijlstra 已提交
2887 2888
}

2889
static void perf_buffer_put(struct perf_buffer *buffer);
2890

2891
static void free_event(struct perf_event *event)
2892
{
2893
	irq_work_sync(&event->pending);
2894

2895
	if (!event->parent) {
2896
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2897
			jump_label_dec(&perf_sched_events);
2898
		if (event->attr.mmap || event->attr.mmap_data)
2899 2900 2901 2902 2903
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2904 2905
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2906 2907 2908 2909
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2910
	}
2911

2912 2913 2914
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2915 2916
	}

S
Stephane Eranian 已提交
2917 2918 2919
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2920 2921
	if (event->destroy)
		event->destroy(event);
2922

P
Peter Zijlstra 已提交
2923 2924 2925
	if (event->ctx)
		put_ctx(event->ctx);

2926
	call_rcu(&event->rcu_head, free_event_rcu);
2927 2928
}

2929
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2930
{
2931
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2932

2933 2934 2935 2936 2937 2938
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2939
	WARN_ON_ONCE(ctx->parent_ctx);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2953
	raw_spin_lock_irq(&ctx->lock);
2954
	perf_group_detach(event);
2955 2956
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2957
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2958

2959
	free_event(event);
T
Thomas Gleixner 已提交
2960 2961 2962

	return 0;
}
2963
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2964

2965 2966 2967 2968
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2969
{
2970
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2971
	struct task_struct *owner;
2972

2973
	file->private_data = NULL;
2974

P
Peter Zijlstra 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3008
	return perf_event_release_kernel(event);
3009 3010
}

3011
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3012
{
3013
	struct perf_event *child;
3014 3015
	u64 total = 0;

3016 3017 3018
	*enabled = 0;
	*running = 0;

3019
	mutex_lock(&event->child_mutex);
3020
	total += perf_event_read(event);
3021 3022 3023 3024 3025 3026
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3027
		total += perf_event_read(child);
3028 3029 3030
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3031
	mutex_unlock(&event->child_mutex);
3032 3033 3034

	return total;
}
3035
EXPORT_SYMBOL_GPL(perf_event_read_value);
3036

3037
static int perf_event_read_group(struct perf_event *event,
3038 3039
				   u64 read_format, char __user *buf)
{
3040
	struct perf_event *leader = event->group_leader, *sub;
3041 3042
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3043
	u64 values[5];
3044
	u64 count, enabled, running;
3045

3046
	mutex_lock(&ctx->mutex);
3047
	count = perf_event_read_value(leader, &enabled, &running);
3048 3049

	values[n++] = 1 + leader->nr_siblings;
3050 3051 3052 3053
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3054 3055 3056
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3057 3058 3059 3060

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3061
		goto unlock;
3062

3063
	ret = size;
3064

3065
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3066
		n = 0;
3067

3068
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3069 3070 3071 3072 3073
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3074
		if (copy_to_user(buf + ret, values, size)) {
3075 3076 3077
			ret = -EFAULT;
			goto unlock;
		}
3078 3079

		ret += size;
3080
	}
3081 3082
unlock:
	mutex_unlock(&ctx->mutex);
3083

3084
	return ret;
3085 3086
}

3087
static int perf_event_read_one(struct perf_event *event,
3088 3089
				 u64 read_format, char __user *buf)
{
3090
	u64 enabled, running;
3091 3092 3093
	u64 values[4];
	int n = 0;

3094 3095 3096 3097 3098
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3099
	if (read_format & PERF_FORMAT_ID)
3100
		values[n++] = primary_event_id(event);
3101 3102 3103 3104 3105 3106 3107

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3108
/*
3109
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3110 3111
 */
static ssize_t
3112
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3113
{
3114
	u64 read_format = event->attr.read_format;
3115
	int ret;
T
Thomas Gleixner 已提交
3116

3117
	/*
3118
	 * Return end-of-file for a read on a event that is in
3119 3120 3121
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3122
	if (event->state == PERF_EVENT_STATE_ERROR)
3123 3124
		return 0;

3125
	if (count < event->read_size)
3126 3127
		return -ENOSPC;

3128
	WARN_ON_ONCE(event->ctx->parent_ctx);
3129
	if (read_format & PERF_FORMAT_GROUP)
3130
		ret = perf_event_read_group(event, read_format, buf);
3131
	else
3132
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3133

3134
	return ret;
T
Thomas Gleixner 已提交
3135 3136 3137 3138 3139
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3140
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3141

3142
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3143 3144 3145 3146
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3147
	struct perf_event *event = file->private_data;
3148
	struct perf_buffer *buffer;
3149
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3150 3151

	rcu_read_lock();
3152 3153 3154
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3155
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3156

3157
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3158 3159 3160 3161

	return events;
}

3162
static void perf_event_reset(struct perf_event *event)
3163
{
3164
	(void)perf_event_read(event);
3165
	local64_set(&event->count, 0);
3166
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3167 3168
}

3169
/*
3170 3171 3172 3173
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3174
 */
3175 3176
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3177
{
3178
	struct perf_event *child;
P
Peter Zijlstra 已提交
3179

3180 3181 3182 3183
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3184
		func(child);
3185
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3186 3187
}

3188 3189
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3190
{
3191 3192
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3193

3194 3195
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3196
	event = event->group_leader;
3197

3198 3199 3200 3201
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3202
	mutex_unlock(&ctx->mutex);
3203 3204
}

3205
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3206
{
3207
	struct perf_event_context *ctx = event->ctx;
3208 3209 3210
	int ret = 0;
	u64 value;

3211
	if (!is_sampling_event(event))
3212 3213
		return -EINVAL;

3214
	if (copy_from_user(&value, arg, sizeof(value)))
3215 3216 3217 3218 3219
		return -EFAULT;

	if (!value)
		return -EINVAL;

3220
	raw_spin_lock_irq(&ctx->lock);
3221 3222
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3223 3224 3225 3226
			ret = -EINVAL;
			goto unlock;
		}

3227
		event->attr.sample_freq = value;
3228
	} else {
3229 3230
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3231 3232
	}
unlock:
3233
	raw_spin_unlock_irq(&ctx->lock);
3234 3235 3236 3237

	return ret;
}

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3259
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3260

3261 3262
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3263 3264
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3265
	u32 flags = arg;
3266 3267

	switch (cmd) {
3268 3269
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3270
		break;
3271 3272
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3273
		break;
3274 3275
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3276
		break;
P
Peter Zijlstra 已提交
3277

3278 3279
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3280

3281 3282
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3283

3284
	case PERF_EVENT_IOC_SET_OUTPUT:
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3302

L
Li Zefan 已提交
3303 3304 3305
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3306
	default:
P
Peter Zijlstra 已提交
3307
		return -ENOTTY;
3308
	}
P
Peter Zijlstra 已提交
3309 3310

	if (flags & PERF_IOC_FLAG_GROUP)
3311
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3312
	else
3313
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3314 3315

	return 0;
3316 3317
}

3318
int perf_event_task_enable(void)
3319
{
3320
	struct perf_event *event;
3321

3322 3323 3324 3325
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3326 3327 3328 3329

	return 0;
}

3330
int perf_event_task_disable(void)
3331
{
3332
	struct perf_event *event;
3333

3334 3335 3336 3337
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3338 3339 3340 3341

	return 0;
}

3342 3343
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3344 3345
#endif

3346
static int perf_event_index(struct perf_event *event)
3347
{
P
Peter Zijlstra 已提交
3348 3349 3350
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3351
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3352 3353
		return 0;

3354
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3355 3356
}

3357 3358 3359 3360 3361
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3362
void perf_event_update_userpage(struct perf_event *event)
3363
{
3364
	struct perf_event_mmap_page *userpg;
3365
	struct perf_buffer *buffer;
3366 3367

	rcu_read_lock();
3368 3369
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3370 3371
		goto unlock;

3372
	userpg = buffer->user_page;
3373

3374 3375 3376 3377 3378
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3379
	++userpg->lock;
3380
	barrier();
3381
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3382
	userpg->offset = perf_event_count(event);
3383
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3384
		userpg->offset -= local64_read(&event->hw.prev_count);
3385

3386 3387
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3388

3389 3390
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3391

3392
	barrier();
3393
	++userpg->lock;
3394
	preempt_enable();
3395
unlock:
3396
	rcu_read_unlock();
3397 3398
}

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3418
#ifndef CONFIG_PERF_USE_VMALLOC
3419

3420 3421 3422
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3423

3424
static struct page *
3425
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3426
{
3427
	if (pgoff > buffer->nr_pages)
3428
		return NULL;
3429

3430
	if (pgoff == 0)
3431
		return virt_to_page(buffer->user_page);
3432

3433
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3434 3435
}

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3449
static struct perf_buffer *
3450
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3451
{
3452
	struct perf_buffer *buffer;
3453 3454 3455
	unsigned long size;
	int i;

3456
	size = sizeof(struct perf_buffer);
3457 3458
	size += nr_pages * sizeof(void *);

3459 3460
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3461 3462
		goto fail;

3463
	buffer->user_page = perf_mmap_alloc_page(cpu);
3464
	if (!buffer->user_page)
3465 3466 3467
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3468
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3469
		if (!buffer->data_pages[i])
3470 3471 3472
			goto fail_data_pages;
	}

3473
	buffer->nr_pages = nr_pages;
3474

3475 3476
	perf_buffer_init(buffer, watermark, flags);

3477
	return buffer;
3478 3479 3480

fail_data_pages:
	for (i--; i >= 0; i--)
3481
		free_page((unsigned long)buffer->data_pages[i]);
3482

3483
	free_page((unsigned long)buffer->user_page);
3484 3485

fail_user_page:
3486
	kfree(buffer);
3487 3488

fail:
3489
	return NULL;
3490 3491
}

3492 3493
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3494
	struct page *page = virt_to_page((void *)addr);
3495 3496 3497 3498 3499

	page->mapping = NULL;
	__free_page(page);
}

3500
static void perf_buffer_free(struct perf_buffer *buffer)
3501 3502 3503
{
	int i;

3504 3505 3506 3507
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3508 3509
}

3510
static inline int page_order(struct perf_buffer *buffer)
3511 3512 3513 3514
{
	return 0;
}

3515 3516 3517 3518 3519 3520 3521 3522
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3523
static inline int page_order(struct perf_buffer *buffer)
3524
{
3525
	return buffer->page_order;
3526 3527
}

3528
static struct page *
3529
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3530
{
3531
	if (pgoff > (1UL << page_order(buffer)))
3532 3533
		return NULL;

3534
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3535 3536 3537 3538 3539 3540 3541 3542 3543
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3544
static void perf_buffer_free_work(struct work_struct *work)
3545
{
3546
	struct perf_buffer *buffer;
3547 3548 3549
	void *base;
	int i, nr;

3550 3551
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3552

3553
	base = buffer->user_page;
3554 3555 3556 3557
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3558
	kfree(buffer);
3559 3560
}

3561
static void perf_buffer_free(struct perf_buffer *buffer)
3562
{
3563
	schedule_work(&buffer->work);
3564 3565
}

3566
static struct perf_buffer *
3567
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3568
{
3569
	struct perf_buffer *buffer;
3570 3571 3572
	unsigned long size;
	void *all_buf;

3573
	size = sizeof(struct perf_buffer);
3574 3575
	size += sizeof(void *);

3576 3577
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3578 3579
		goto fail;

3580
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3581 3582 3583 3584 3585

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3586 3587 3588 3589
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3590

3591 3592
	perf_buffer_init(buffer, watermark, flags);

3593
	return buffer;
3594 3595

fail_all_buf:
3596
	kfree(buffer);
3597 3598 3599 3600 3601 3602 3603

fail:
	return NULL;
}

#endif

3604
static unsigned long perf_data_size(struct perf_buffer *buffer)
3605
{
3606
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3607 3608
}

3609 3610 3611
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3612
	struct perf_buffer *buffer;
3613 3614 3615 3616 3617 3618 3619 3620 3621
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3622 3623
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3624 3625 3626 3627 3628
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3629
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3644
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3645
{
3646
	struct perf_buffer *buffer;
3647

3648 3649
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3650 3651
}

3652
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3653
{
3654
	struct perf_buffer *buffer;
3655

3656
	rcu_read_lock();
3657 3658 3659 3660
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3661 3662 3663
	}
	rcu_read_unlock();

3664
	return buffer;
3665 3666
}

3667
static void perf_buffer_put(struct perf_buffer *buffer)
3668
{
3669
	if (!atomic_dec_and_test(&buffer->refcount))
3670
		return;
3671

3672
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3673 3674 3675 3676
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3677
	struct perf_event *event = vma->vm_file->private_data;
3678

3679
	atomic_inc(&event->mmap_count);
3680 3681 3682 3683
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3684
	struct perf_event *event = vma->vm_file->private_data;
3685

3686
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3687
		unsigned long size = perf_data_size(event->buffer);
3688
		struct user_struct *user = event->mmap_user;
3689
		struct perf_buffer *buffer = event->buffer;
3690

3691
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3692
		vma->vm_mm->locked_vm -= event->mmap_locked;
3693
		rcu_assign_pointer(event->buffer, NULL);
3694
		mutex_unlock(&event->mmap_mutex);
3695

3696
		perf_buffer_put(buffer);
3697
		free_uid(user);
3698
	}
3699 3700
}

3701
static const struct vm_operations_struct perf_mmap_vmops = {
3702 3703 3704 3705
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3706 3707 3708 3709
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3710
	struct perf_event *event = file->private_data;
3711
	unsigned long user_locked, user_lock_limit;
3712
	struct user_struct *user = current_user();
3713
	unsigned long locked, lock_limit;
3714
	struct perf_buffer *buffer;
3715 3716
	unsigned long vma_size;
	unsigned long nr_pages;
3717
	long user_extra, extra;
3718
	int ret = 0, flags = 0;
3719

3720 3721 3722 3723 3724 3725 3726 3727
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3728
	if (!(vma->vm_flags & VM_SHARED))
3729
		return -EINVAL;
3730 3731 3732 3733

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3734
	/*
3735
	 * If we have buffer pages ensure they're a power-of-two number, so we
3736 3737 3738
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3739 3740
		return -EINVAL;

3741
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3742 3743
		return -EINVAL;

3744 3745
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3746

3747 3748
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3749 3750 3751
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3752
		else
3753 3754 3755 3756
			ret = -EINVAL;
		goto unlock;
	}

3757
	user_extra = nr_pages + 1;
3758
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3759 3760 3761 3762 3763 3764

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3765
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3766

3767 3768 3769
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3770

3771
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3772
	lock_limit >>= PAGE_SHIFT;
3773
	locked = vma->vm_mm->locked_vm + extra;
3774

3775 3776
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3777 3778 3779
		ret = -EPERM;
		goto unlock;
	}
3780

3781
	WARN_ON(event->buffer);
3782

3783 3784 3785 3786 3787
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3788
	if (!buffer) {
3789
		ret = -ENOMEM;
3790
		goto unlock;
3791
	}
3792
	rcu_assign_pointer(event->buffer, buffer);
3793

3794 3795 3796 3797 3798
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3799
unlock:
3800 3801
	if (!ret)
		atomic_inc(&event->mmap_count);
3802
	mutex_unlock(&event->mmap_mutex);
3803 3804 3805

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3806 3807

	return ret;
3808 3809
}

P
Peter Zijlstra 已提交
3810 3811 3812
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3813
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3814 3815 3816
	int retval;

	mutex_lock(&inode->i_mutex);
3817
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3818 3819 3820 3821 3822 3823 3824 3825
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3826
static const struct file_operations perf_fops = {
3827
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3828 3829 3830
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3831 3832
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3833
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3834
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3835 3836
};

3837
/*
3838
 * Perf event wakeup
3839 3840 3841 3842 3843
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3844
void perf_event_wakeup(struct perf_event *event)
3845
{
3846
	wake_up_all(&event->waitq);
3847

3848 3849 3850
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3851
	}
3852 3853
}

3854
static void perf_pending_event(struct irq_work *entry)
3855
{
3856 3857
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3858

3859 3860 3861
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3862 3863
	}

3864 3865 3866
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3867 3868 3869
	}
}

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3891 3892 3893
/*
 * Output
 */
3894
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3895
			      unsigned long offset, unsigned long head)
3896 3897 3898
{
	unsigned long mask;

3899
	if (!buffer->writable)
3900 3901
		return true;

3902
	mask = perf_data_size(buffer) - 1;
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3913
static void perf_output_wakeup(struct perf_output_handle *handle)
3914
{
3915
	atomic_set(&handle->buffer->poll, POLL_IN);
3916

3917
	if (handle->nmi) {
3918
		handle->event->pending_wakeup = 1;
3919
		irq_work_queue(&handle->event->pending);
3920
	} else
3921
		perf_event_wakeup(handle->event);
3922 3923
}

3924
/*
3925
 * We need to ensure a later event_id doesn't publish a head when a former
3926
 * event isn't done writing. However since we need to deal with NMIs we
3927 3928 3929
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3930
 * event completes.
3931
 */
3932
static void perf_output_get_handle(struct perf_output_handle *handle)
3933
{
3934
	struct perf_buffer *buffer = handle->buffer;
3935

3936
	preempt_disable();
3937 3938
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3939 3940
}

3941
static void perf_output_put_handle(struct perf_output_handle *handle)
3942
{
3943
	struct perf_buffer *buffer = handle->buffer;
3944
	unsigned long head;
3945 3946

again:
3947
	head = local_read(&buffer->head);
3948 3949

	/*
3950
	 * IRQ/NMI can happen here, which means we can miss a head update.
3951 3952
	 */

3953
	if (!local_dec_and_test(&buffer->nest))
3954
		goto out;
3955 3956

	/*
3957
	 * Publish the known good head. Rely on the full barrier implied
3958
	 * by atomic_dec_and_test() order the buffer->head read and this
3959
	 * write.
3960
	 */
3961
	buffer->user_page->data_head = head;
3962

3963 3964
	/*
	 * Now check if we missed an update, rely on the (compiler)
3965
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3966
	 */
3967 3968
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3969 3970 3971
		goto again;
	}

3972
	if (handle->wakeup != local_read(&buffer->wakeup))
3973
		perf_output_wakeup(handle);
3974

P
Peter Zijlstra 已提交
3975
out:
3976
	preempt_enable();
3977 3978
}

3979
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3980
		      const void *buf, unsigned int len)
3981
{
3982
	do {
3983
		unsigned long size = min_t(unsigned long, handle->size, len);
3984 3985 3986 3987 3988

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3989
		buf += size;
3990 3991
		handle->size -= size;
		if (!handle->size) {
3992
			struct perf_buffer *buffer = handle->buffer;
3993

3994
			handle->page++;
3995 3996 3997
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3998 3999
		}
	} while (len);
4000 4001
}

4002 4003 4004
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4069
int perf_output_begin(struct perf_output_handle *handle,
4070
		      struct perf_event *event, unsigned int size,
4071
		      int nmi, int sample)
4072
{
4073
	struct perf_buffer *buffer;
4074
	unsigned long tail, offset, head;
4075
	int have_lost;
4076
	struct perf_sample_data sample_data;
4077 4078 4079 4080 4081
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4082

4083
	rcu_read_lock();
4084
	/*
4085
	 * For inherited events we send all the output towards the parent.
4086
	 */
4087 4088
	if (event->parent)
		event = event->parent;
4089

4090 4091
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4092 4093
		goto out;

4094
	handle->buffer	= buffer;
4095
	handle->event	= event;
4096 4097
	handle->nmi	= nmi;
	handle->sample	= sample;
4098

4099
	if (!buffer->nr_pages)
4100
		goto out;
4101

4102
	have_lost = local_read(&buffer->lost);
4103 4104 4105 4106 4107 4108
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4109

4110
	perf_output_get_handle(handle);
4111

4112
	do {
4113 4114 4115 4116 4117
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4118
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4119
		smp_rmb();
4120
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4121
		head += size;
4122
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4123
			goto fail;
4124
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4125

4126 4127
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4128

4129 4130 4131 4132
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4133
	handle->addr += handle->size;
4134
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4135

4136
	if (have_lost) {
4137
		lost_event.header.type = PERF_RECORD_LOST;
4138
		lost_event.header.misc = 0;
4139
		lost_event.id          = event->id;
4140
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4141 4142

		perf_output_put(handle, lost_event);
4143
		perf_event__output_id_sample(event, handle, &sample_data);
4144 4145
	}

4146
	return 0;
4147

4148
fail:
4149
	local_inc(&buffer->lost);
4150
	perf_output_put_handle(handle);
4151 4152
out:
	rcu_read_unlock();
4153

4154 4155
	return -ENOSPC;
}
4156

4157
void perf_output_end(struct perf_output_handle *handle)
4158
{
4159
	struct perf_event *event = handle->event;
4160
	struct perf_buffer *buffer = handle->buffer;
4161

4162
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4163

4164
	if (handle->sample && wakeup_events) {
4165
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4166
		if (events >= wakeup_events) {
4167 4168
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4169
		}
4170 4171
	}

4172
	perf_output_put_handle(handle);
4173
	rcu_read_unlock();
4174 4175
}

4176
static void perf_output_read_one(struct perf_output_handle *handle,
4177 4178
				 struct perf_event *event,
				 u64 enabled, u64 running)
4179
{
4180
	u64 read_format = event->attr.read_format;
4181 4182 4183
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4184
	values[n++] = perf_event_count(event);
4185
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4186
		values[n++] = enabled +
4187
			atomic64_read(&event->child_total_time_enabled);
4188 4189
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4190
		values[n++] = running +
4191
			atomic64_read(&event->child_total_time_running);
4192 4193
	}
	if (read_format & PERF_FORMAT_ID)
4194
		values[n++] = primary_event_id(event);
4195 4196 4197 4198 4199

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4200
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4201 4202
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4203 4204
			    struct perf_event *event,
			    u64 enabled, u64 running)
4205
{
4206 4207
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4208 4209 4210 4211 4212 4213
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4214
		values[n++] = enabled;
4215 4216

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4217
		values[n++] = running;
4218

4219
	if (leader != event)
4220 4221
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4222
	values[n++] = perf_event_count(leader);
4223
	if (read_format & PERF_FORMAT_ID)
4224
		values[n++] = primary_event_id(leader);
4225 4226 4227

	perf_output_copy(handle, values, n * sizeof(u64));

4228
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4229 4230
		n = 0;

4231
		if (sub != event)
4232 4233
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4234
		values[n++] = perf_event_count(sub);
4235
		if (read_format & PERF_FORMAT_ID)
4236
			values[n++] = primary_event_id(sub);
4237 4238 4239 4240 4241

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4242 4243 4244
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4245
static void perf_output_read(struct perf_output_handle *handle,
4246
			     struct perf_event *event)
4247
{
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4267
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4268
		perf_output_read_group(handle, event, enabled, running);
4269
	else
4270
		perf_output_read_one(handle, event, enabled, running);
4271 4272
}

4273 4274 4275
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4276
			struct perf_event *event)
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4307
		perf_output_read(handle, event);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4345
			 struct perf_event *event,
4346
			 struct pt_regs *regs)
4347
{
4348
	u64 sample_type = event->attr.sample_type;
4349

4350
	header->type = PERF_RECORD_SAMPLE;
4351
	header->size = sizeof(*header) + event->header_size;
4352 4353 4354

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4355

4356
	__perf_event_header__init_id(header, data, event);
4357

4358
	if (sample_type & PERF_SAMPLE_IP)
4359 4360
		data->ip = perf_instruction_pointer(regs);

4361
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4362
		int size = 1;
4363

4364 4365 4366 4367 4368 4369
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4370 4371
	}

4372
	if (sample_type & PERF_SAMPLE_RAW) {
4373 4374 4375 4376 4377 4378 4379 4380
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4381
		header->size += size;
4382
	}
4383
}
4384

4385
static void perf_event_output(struct perf_event *event, int nmi,
4386 4387 4388 4389 4390
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4391

4392 4393 4394
	/* protect the callchain buffers */
	rcu_read_lock();

4395
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4396

4397
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4398
		goto exit;
4399

4400
	perf_output_sample(&handle, &header, data, event);
4401

4402
	perf_output_end(&handle);
4403 4404 4405

exit:
	rcu_read_unlock();
4406 4407
}

4408
/*
4409
 * read event_id
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4420
perf_event_read_event(struct perf_event *event,
4421 4422 4423
			struct task_struct *task)
{
	struct perf_output_handle handle;
4424
	struct perf_sample_data sample;
4425
	struct perf_read_event read_event = {
4426
		.header = {
4427
			.type = PERF_RECORD_READ,
4428
			.misc = 0,
4429
			.size = sizeof(read_event) + event->read_size,
4430
		},
4431 4432
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4433
	};
4434
	int ret;
4435

4436
	perf_event_header__init_id(&read_event.header, &sample, event);
4437
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4438 4439 4440
	if (ret)
		return;

4441
	perf_output_put(&handle, read_event);
4442
	perf_output_read(&handle, event);
4443
	perf_event__output_id_sample(event, &handle, &sample);
4444

4445 4446 4447
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4448
/*
P
Peter Zijlstra 已提交
4449 4450
 * task tracking -- fork/exit
 *
4451
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4452 4453
 */

P
Peter Zijlstra 已提交
4454
struct perf_task_event {
4455
	struct task_struct		*task;
4456
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4457 4458 4459 4460 4461 4462

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4463 4464
		u32				tid;
		u32				ptid;
4465
		u64				time;
4466
	} event_id;
P
Peter Zijlstra 已提交
4467 4468
};

4469
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4470
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4471 4472
{
	struct perf_output_handle handle;
4473
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4474
	struct task_struct *task = task_event->task;
4475
	int ret, size = task_event->event_id.header.size;
4476

4477
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4478

4479 4480
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4481
	if (ret)
4482
		goto out;
P
Peter Zijlstra 已提交
4483

4484 4485
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4486

4487 4488
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4489

4490
	perf_output_put(&handle, task_event->event_id);
4491

4492 4493
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4494
	perf_output_end(&handle);
4495 4496
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4497 4498
}

4499
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4500
{
P
Peter Zijlstra 已提交
4501
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4502 4503
		return 0;

4504
	if (!event_filter_match(event))
4505 4506
		return 0;

4507 4508
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4509 4510 4511 4512 4513
		return 1;

	return 0;
}

4514
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4515
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4516
{
4517
	struct perf_event *event;
P
Peter Zijlstra 已提交
4518

4519 4520 4521
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4522 4523 4524
	}
}

4525
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4526 4527
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4528
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4529
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4530
	int ctxn;
P
Peter Zijlstra 已提交
4531

4532
	rcu_read_lock();
P
Peter Zijlstra 已提交
4533
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4534
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4535 4536
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4537
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4538 4539 4540 4541 4542

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4543
				goto next;
P
Peter Zijlstra 已提交
4544 4545 4546 4547
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4548 4549
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4550
	}
P
Peter Zijlstra 已提交
4551 4552 4553
	rcu_read_unlock();
}

4554 4555
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4556
			      int new)
P
Peter Zijlstra 已提交
4557
{
P
Peter Zijlstra 已提交
4558
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4559

4560 4561 4562
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4563 4564
		return;

P
Peter Zijlstra 已提交
4565
	task_event = (struct perf_task_event){
4566 4567
		.task	  = task,
		.task_ctx = task_ctx,
4568
		.event_id    = {
P
Peter Zijlstra 已提交
4569
			.header = {
4570
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4571
				.misc = 0,
4572
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4573
			},
4574 4575
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4576 4577
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4578
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4579 4580 4581
		},
	};

4582
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4583 4584
}

4585
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4586
{
4587
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4588 4589
}

4590 4591 4592 4593 4594
/*
 * comm tracking
 */

struct perf_comm_event {
4595 4596
	struct task_struct	*task;
	char			*comm;
4597 4598 4599 4600 4601 4602 4603
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4604
	} event_id;
4605 4606
};

4607
static void perf_event_comm_output(struct perf_event *event,
4608 4609 4610
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4611
	struct perf_sample_data sample;
4612
	int size = comm_event->event_id.header.size;
4613 4614 4615 4616 4617
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4618 4619

	if (ret)
4620
		goto out;
4621

4622 4623
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4624

4625
	perf_output_put(&handle, comm_event->event_id);
4626 4627
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4628 4629 4630

	perf_event__output_id_sample(event, &handle, &sample);

4631
	perf_output_end(&handle);
4632 4633
out:
	comm_event->event_id.header.size = size;
4634 4635
}

4636
static int perf_event_comm_match(struct perf_event *event)
4637
{
P
Peter Zijlstra 已提交
4638
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4639 4640
		return 0;

4641
	if (!event_filter_match(event))
4642 4643
		return 0;

4644
	if (event->attr.comm)
4645 4646 4647 4648 4649
		return 1;

	return 0;
}

4650
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4651 4652
				  struct perf_comm_event *comm_event)
{
4653
	struct perf_event *event;
4654

4655 4656 4657
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4658 4659 4660
	}
}

4661
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4662 4663
{
	struct perf_cpu_context *cpuctx;
4664
	struct perf_event_context *ctx;
4665
	char comm[TASK_COMM_LEN];
4666
	unsigned int size;
P
Peter Zijlstra 已提交
4667
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4668
	int ctxn;
4669

4670
	memset(comm, 0, sizeof(comm));
4671
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4672
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4673 4674 4675 4676

	comm_event->comm = comm;
	comm_event->comm_size = size;

4677
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4678
	rcu_read_lock();
P
Peter Zijlstra 已提交
4679
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4680
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4681 4682
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4683
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4684 4685 4686

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4687
			goto next;
P
Peter Zijlstra 已提交
4688 4689 4690 4691

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4692 4693
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4694
	}
4695
	rcu_read_unlock();
4696 4697
}

4698
void perf_event_comm(struct task_struct *task)
4699
{
4700
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4701 4702
	struct perf_event_context *ctx;
	int ctxn;
4703

P
Peter Zijlstra 已提交
4704 4705 4706 4707
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4708

P
Peter Zijlstra 已提交
4709 4710
		perf_event_enable_on_exec(ctx);
	}
4711

4712
	if (!atomic_read(&nr_comm_events))
4713
		return;
4714

4715
	comm_event = (struct perf_comm_event){
4716
		.task	= task,
4717 4718
		/* .comm      */
		/* .comm_size */
4719
		.event_id  = {
4720
			.header = {
4721
				.type = PERF_RECORD_COMM,
4722 4723 4724 4725 4726
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4727 4728 4729
		},
	};

4730
	perf_event_comm_event(&comm_event);
4731 4732
}

4733 4734 4735 4736 4737
/*
 * mmap tracking
 */

struct perf_mmap_event {
4738 4739 4740 4741
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4742 4743 4744 4745 4746 4747 4748 4749 4750

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4751
	} event_id;
4752 4753
};

4754
static void perf_event_mmap_output(struct perf_event *event,
4755 4756 4757
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4758
	struct perf_sample_data sample;
4759
	int size = mmap_event->event_id.header.size;
4760
	int ret;
4761

4762 4763 4764
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4765
	if (ret)
4766
		goto out;
4767

4768 4769
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4770

4771
	perf_output_put(&handle, mmap_event->event_id);
4772 4773
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4774 4775 4776

	perf_event__output_id_sample(event, &handle, &sample);

4777
	perf_output_end(&handle);
4778 4779
out:
	mmap_event->event_id.header.size = size;
4780 4781
}

4782
static int perf_event_mmap_match(struct perf_event *event,
4783 4784
				   struct perf_mmap_event *mmap_event,
				   int executable)
4785
{
P
Peter Zijlstra 已提交
4786
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4787 4788
		return 0;

4789
	if (!event_filter_match(event))
4790 4791
		return 0;

4792 4793
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4794 4795 4796 4797 4798
		return 1;

	return 0;
}

4799
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4800 4801
				  struct perf_mmap_event *mmap_event,
				  int executable)
4802
{
4803
	struct perf_event *event;
4804

4805
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4806
		if (perf_event_mmap_match(event, mmap_event, executable))
4807
			perf_event_mmap_output(event, mmap_event);
4808 4809 4810
	}
}

4811
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4812 4813
{
	struct perf_cpu_context *cpuctx;
4814
	struct perf_event_context *ctx;
4815 4816
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4817 4818 4819
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4820
	const char *name;
P
Peter Zijlstra 已提交
4821
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4822
	int ctxn;
4823

4824 4825
	memset(tmp, 0, sizeof(tmp));

4826
	if (file) {
4827 4828 4829 4830 4831 4832
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4833 4834 4835 4836
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4837
		name = d_path(&file->f_path, buf, PATH_MAX);
4838 4839 4840 4841 4842
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4843 4844 4845
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4846
			goto got_name;
4847
		}
4848 4849 4850 4851

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4852 4853 4854 4855 4856 4857 4858 4859
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4860 4861
		}

4862 4863 4864 4865 4866
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4867
	size = ALIGN(strlen(name)+1, sizeof(u64));
4868 4869 4870 4871

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4872
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4873

4874
	rcu_read_lock();
P
Peter Zijlstra 已提交
4875
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4876
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4877 4878
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4879 4880
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4881 4882 4883

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4884
			goto next;
P
Peter Zijlstra 已提交
4885 4886 4887 4888 4889 4890

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4891 4892
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4893
	}
4894 4895
	rcu_read_unlock();

4896 4897 4898
	kfree(buf);
}

4899
void perf_event_mmap(struct vm_area_struct *vma)
4900
{
4901 4902
	struct perf_mmap_event mmap_event;

4903
	if (!atomic_read(&nr_mmap_events))
4904 4905 4906
		return;

	mmap_event = (struct perf_mmap_event){
4907
		.vma	= vma,
4908 4909
		/* .file_name */
		/* .file_size */
4910
		.event_id  = {
4911
			.header = {
4912
				.type = PERF_RECORD_MMAP,
4913
				.misc = PERF_RECORD_MISC_USER,
4914 4915 4916 4917
				/* .size */
			},
			/* .pid */
			/* .tid */
4918 4919
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4920
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4921 4922 4923
		},
	};

4924
	perf_event_mmap_event(&mmap_event);
4925 4926
}

4927 4928 4929 4930
/*
 * IRQ throttle logging
 */

4931
static void perf_log_throttle(struct perf_event *event, int enable)
4932 4933
{
	struct perf_output_handle handle;
4934
	struct perf_sample_data sample;
4935 4936 4937 4938 4939
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4940
		u64				id;
4941
		u64				stream_id;
4942 4943
	} throttle_event = {
		.header = {
4944
			.type = PERF_RECORD_THROTTLE,
4945 4946 4947
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4948
		.time		= perf_clock(),
4949 4950
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4951 4952
	};

4953
	if (enable)
4954
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4955

4956 4957 4958 4959
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4960 4961 4962 4963
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4964
	perf_event__output_id_sample(event, &handle, &sample);
4965 4966 4967
	perf_output_end(&handle);
}

4968
/*
4969
 * Generic event overflow handling, sampling.
4970 4971
 */

4972
static int __perf_event_overflow(struct perf_event *event, int nmi,
4973 4974
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4975
{
4976 4977
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4978 4979
	int ret = 0;

4980 4981 4982 4983 4984 4985 4986
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4987 4988 4989 4990
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4991 4992
			ret = 1;
		}
P
Peter Zijlstra 已提交
4993 4994
	} else
		hwc->interrupts++;
4995

4996
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4997
		u64 now = perf_clock();
4998
		s64 delta = now - hwc->freq_time_stamp;
4999

5000
		hwc->freq_time_stamp = now;
5001

5002 5003
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
5004 5005
	}

5006 5007
	/*
	 * XXX event_limit might not quite work as expected on inherited
5008
	 * events
5009 5010
	 */

5011 5012
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5013
		ret = 1;
5014
		event->pending_kill = POLL_HUP;
5015
		if (nmi) {
5016
			event->pending_disable = 1;
5017
			irq_work_queue(&event->pending);
5018
		} else
5019
			perf_event_disable(event);
5020 5021
	}

5022 5023 5024 5025 5026
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

P
Peter Zijlstra 已提交
5027 5028 5029 5030 5031 5032 5033 5034
	if (event->fasync && event->pending_kill) {
		if (nmi) {
			event->pending_wakeup = 1;
			irq_work_queue(&event->pending);
		} else
			perf_event_wakeup(event);
	}

5035
	return ret;
5036 5037
}

5038
int perf_event_overflow(struct perf_event *event, int nmi,
5039 5040
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5041
{
5042
	return __perf_event_overflow(event, nmi, 1, data, regs);
5043 5044
}

5045
/*
5046
 * Generic software event infrastructure
5047 5048
 */

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5060
/*
5061 5062
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5063 5064 5065 5066
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5067
static u64 perf_swevent_set_period(struct perf_event *event)
5068
{
5069
	struct hw_perf_event *hwc = &event->hw;
5070 5071 5072 5073 5074
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5075 5076

again:
5077
	old = val = local64_read(&hwc->period_left);
5078 5079
	if (val < 0)
		return 0;
5080

5081 5082 5083
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5084
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5085
		goto again;
5086

5087
	return nr;
5088 5089
}

5090
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5091 5092
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5093
{
5094
	struct hw_perf_event *hwc = &event->hw;
5095
	int throttle = 0;
5096

5097
	data->period = event->hw.last_period;
5098 5099
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5100

5101 5102
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5103

5104
	for (; overflow; overflow--) {
5105
		if (__perf_event_overflow(event, nmi, throttle,
5106
					    data, regs)) {
5107 5108 5109 5110 5111 5112
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5113
		throttle = 1;
5114
	}
5115 5116
}

P
Peter Zijlstra 已提交
5117
static void perf_swevent_event(struct perf_event *event, u64 nr,
5118 5119
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5120
{
5121
	struct hw_perf_event *hwc = &event->hw;
5122

5123
	local64_add(nr, &event->count);
5124

5125 5126 5127
	if (!regs)
		return;

5128
	if (!is_sampling_event(event))
5129
		return;
5130

5131 5132 5133
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5134
	if (local64_add_negative(nr, &hwc->period_left))
5135
		return;
5136

5137
	perf_swevent_overflow(event, 0, nmi, data, regs);
5138 5139
}

5140 5141 5142
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5143
	if (event->hw.state & PERF_HES_STOPPED)
5144
		return 1;
P
Peter Zijlstra 已提交
5145

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5157
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5158
				enum perf_type_id type,
L
Li Zefan 已提交
5159 5160 5161
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5162
{
5163
	if (event->attr.type != type)
5164
		return 0;
5165

5166
	if (event->attr.config != event_id)
5167 5168
		return 0;

5169 5170
	if (perf_exclude_event(event, regs))
		return 0;
5171 5172 5173 5174

	return 1;
}

5175 5176 5177 5178 5179 5180 5181
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5182 5183
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5184
{
5185 5186 5187 5188
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5189

5190 5191
/* For the read side: events when they trigger */
static inline struct hlist_head *
5192
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5193 5194
{
	struct swevent_hlist *hlist;
5195

5196
	hlist = rcu_dereference(swhash->swevent_hlist);
5197 5198 5199
	if (!hlist)
		return NULL;

5200 5201 5202 5203 5204
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5205
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5216
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5217 5218 5219 5220 5221
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5222 5223 5224 5225 5226 5227
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5228
{
5229
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5230
	struct perf_event *event;
5231 5232
	struct hlist_node *node;
	struct hlist_head *head;
5233

5234
	rcu_read_lock();
5235
	head = find_swevent_head_rcu(swhash, type, event_id);
5236 5237 5238 5239
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5240
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5241
			perf_swevent_event(event, nr, nmi, data, regs);
5242
	}
5243 5244
end:
	rcu_read_unlock();
5245 5246
}

5247
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5248
{
5249
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5250

5251
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5252
}
I
Ingo Molnar 已提交
5253
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5254

5255
inline void perf_swevent_put_recursion_context(int rctx)
5256
{
5257
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5258

5259
	put_recursion_context(swhash->recursion, rctx);
5260
}
5261

5262
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5263
			    struct pt_regs *regs, u64 addr)
5264
{
5265
	struct perf_sample_data data;
5266 5267
	int rctx;

5268
	preempt_disable_notrace();
5269 5270 5271
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5272

5273
	perf_sample_data_init(&data, addr);
5274

5275
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5276 5277

	perf_swevent_put_recursion_context(rctx);
5278
	preempt_enable_notrace();
5279 5280
}

5281
static void perf_swevent_read(struct perf_event *event)
5282 5283 5284
{
}

P
Peter Zijlstra 已提交
5285
static int perf_swevent_add(struct perf_event *event, int flags)
5286
{
5287
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5288
	struct hw_perf_event *hwc = &event->hw;
5289 5290
	struct hlist_head *head;

5291
	if (is_sampling_event(event)) {
5292
		hwc->last_period = hwc->sample_period;
5293
		perf_swevent_set_period(event);
5294
	}
5295

P
Peter Zijlstra 已提交
5296 5297
	hwc->state = !(flags & PERF_EF_START);

5298
	head = find_swevent_head(swhash, event);
5299 5300 5301 5302 5303
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5304 5305 5306
	return 0;
}

P
Peter Zijlstra 已提交
5307
static void perf_swevent_del(struct perf_event *event, int flags)
5308
{
5309
	hlist_del_rcu(&event->hlist_entry);
5310 5311
}

P
Peter Zijlstra 已提交
5312
static void perf_swevent_start(struct perf_event *event, int flags)
5313
{
P
Peter Zijlstra 已提交
5314
	event->hw.state = 0;
5315
}
I
Ingo Molnar 已提交
5316

P
Peter Zijlstra 已提交
5317
static void perf_swevent_stop(struct perf_event *event, int flags)
5318
{
P
Peter Zijlstra 已提交
5319
	event->hw.state = PERF_HES_STOPPED;
5320 5321
}

5322 5323
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5324
swevent_hlist_deref(struct swevent_htable *swhash)
5325
{
5326 5327
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5328 5329
}

5330
static void swevent_hlist_release(struct swevent_htable *swhash)
5331
{
5332
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5333

5334
	if (!hlist)
5335 5336
		return;

5337
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5338
	kfree_rcu(hlist, rcu_head);
5339 5340 5341 5342
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5343
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5344

5345
	mutex_lock(&swhash->hlist_mutex);
5346

5347 5348
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5349

5350
	mutex_unlock(&swhash->hlist_mutex);
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5368
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5369 5370
	int err = 0;

5371
	mutex_lock(&swhash->hlist_mutex);
5372

5373
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5374 5375 5376 5377 5378 5379 5380
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5381
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5382
	}
5383
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5384
exit:
5385
	mutex_unlock(&swhash->hlist_mutex);
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5409
fail:
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5420
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5421

5422 5423 5424
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5425

5426 5427
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5428
	jump_label_dec(&perf_swevent_enabled[event_id]);
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5448
	if (event_id >= PERF_COUNT_SW_MAX)
5449 5450 5451 5452 5453 5454 5455 5456 5457
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5458
		jump_label_inc(&perf_swevent_enabled[event_id]);
5459 5460 5461 5462 5463 5464 5465
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5466
	.task_ctx_nr	= perf_sw_context,
5467

5468
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5469 5470 5471 5472
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5473 5474 5475
	.read		= perf_swevent_read,
};

5476 5477
#ifdef CONFIG_EVENT_TRACING

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5492 5493
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5494 5495 5496 5497
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5498 5499 5500 5501 5502 5503 5504 5505 5506
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5507
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5508 5509
{
	struct perf_sample_data data;
5510 5511 5512
	struct perf_event *event;
	struct hlist_node *node;

5513 5514 5515 5516 5517 5518 5519 5520
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5521 5522
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5523
			perf_swevent_event(event, count, 1, &data, regs);
5524
	}
5525 5526

	perf_swevent_put_recursion_context(rctx);
5527 5528 5529
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5530
static void tp_perf_event_destroy(struct perf_event *event)
5531
{
5532
	perf_trace_destroy(event);
5533 5534
}

5535
static int perf_tp_event_init(struct perf_event *event)
5536
{
5537 5538
	int err;

5539 5540 5541
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5542 5543
	err = perf_trace_init(event);
	if (err)
5544
		return err;
5545

5546
	event->destroy = tp_perf_event_destroy;
5547

5548 5549 5550 5551
	return 0;
}

static struct pmu perf_tracepoint = {
5552 5553
	.task_ctx_nr	= perf_sw_context,

5554
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5555 5556 5557 5558
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5559 5560 5561 5562 5563
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5564
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5565
}
L
Li Zefan 已提交
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5590
#else
L
Li Zefan 已提交
5591

5592
static inline void perf_tp_register(void)
5593 5594
{
}
L
Li Zefan 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5605
#endif /* CONFIG_EVENT_TRACING */
5606

5607
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5608
void perf_bp_event(struct perf_event *bp, void *data)
5609
{
5610 5611 5612
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5613
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5614

P
Peter Zijlstra 已提交
5615 5616
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5617 5618 5619
}
#endif

5620 5621 5622
/*
 * hrtimer based swevent callback
 */
5623

5624
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5625
{
5626 5627 5628 5629 5630
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5631

5632
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5633 5634 5635 5636

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5637
	event->pmu->read(event);
5638

5639 5640 5641 5642 5643 5644 5645 5646 5647
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5648

5649 5650
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5651

5652
	return ret;
5653 5654
}

5655
static void perf_swevent_start_hrtimer(struct perf_event *event)
5656
{
5657
	struct hw_perf_event *hwc = &event->hw;
5658 5659 5660 5661
	s64 period;

	if (!is_sampling_event(event))
		return;
5662

5663 5664 5665 5666
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5667

5668 5669 5670 5671 5672
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5673
				ns_to_ktime(period), 0,
5674
				HRTIMER_MODE_REL_PINNED, 0);
5675
}
5676 5677

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5678
{
5679 5680
	struct hw_perf_event *hwc = &event->hw;

5681
	if (is_sampling_event(event)) {
5682
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5683
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5684 5685 5686

		hrtimer_cancel(&hwc->hrtimer);
	}
5687 5688
}

P
Peter Zijlstra 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5713 5714 5715 5716 5717
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5718
{
5719 5720 5721
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5722
	now = local_clock();
5723 5724
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5725 5726
}

P
Peter Zijlstra 已提交
5727
static void cpu_clock_event_start(struct perf_event *event, int flags)
5728
{
P
Peter Zijlstra 已提交
5729
	local64_set(&event->hw.prev_count, local_clock());
5730 5731 5732
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5733
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5734
{
5735 5736 5737
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5738

P
Peter Zijlstra 已提交
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5752 5753 5754 5755
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5756

5757 5758 5759 5760 5761 5762 5763 5764
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5765 5766
	perf_swevent_init_hrtimer(event);

5767
	return 0;
5768 5769
}

5770
static struct pmu perf_cpu_clock = {
5771 5772
	.task_ctx_nr	= perf_sw_context,

5773
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5774 5775 5776 5777
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5778 5779 5780 5781 5782 5783 5784 5785
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5786
{
5787 5788
	u64 prev;
	s64 delta;
5789

5790 5791 5792 5793
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5794

P
Peter Zijlstra 已提交
5795
static void task_clock_event_start(struct perf_event *event, int flags)
5796
{
P
Peter Zijlstra 已提交
5797
	local64_set(&event->hw.prev_count, event->ctx->time);
5798 5799 5800
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5801
static void task_clock_event_stop(struct perf_event *event, int flags)
5802 5803 5804
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5805 5806 5807 5808 5809 5810
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5811

P
Peter Zijlstra 已提交
5812 5813 5814 5815 5816 5817
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5818 5819 5820 5821
}

static void task_clock_event_read(struct perf_event *event)
{
5822 5823 5824
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5825 5826 5827 5828 5829

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5830
{
5831 5832 5833 5834 5835 5836
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5837 5838
	perf_swevent_init_hrtimer(event);

5839
	return 0;
L
Li Zefan 已提交
5840 5841
}

5842
static struct pmu perf_task_clock = {
5843 5844
	.task_ctx_nr	= perf_sw_context,

5845
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5846 5847 5848 5849
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5850 5851
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5852

P
Peter Zijlstra 已提交
5853
static void perf_pmu_nop_void(struct pmu *pmu)
5854 5855
{
}
L
Li Zefan 已提交
5856

P
Peter Zijlstra 已提交
5857
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5858
{
P
Peter Zijlstra 已提交
5859
	return 0;
L
Li Zefan 已提交
5860 5861
}

P
Peter Zijlstra 已提交
5862
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5863
{
P
Peter Zijlstra 已提交
5864
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5865 5866
}

P
Peter Zijlstra 已提交
5867 5868 5869 5870 5871
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5872

P
Peter Zijlstra 已提交
5873
static void perf_pmu_cancel_txn(struct pmu *pmu)
5874
{
P
Peter Zijlstra 已提交
5875
	perf_pmu_enable(pmu);
5876 5877
}

P
Peter Zijlstra 已提交
5878 5879 5880 5881 5882
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5883
{
P
Peter Zijlstra 已提交
5884
	struct pmu *pmu;
5885

P
Peter Zijlstra 已提交
5886 5887
	if (ctxn < 0)
		return NULL;
5888

P
Peter Zijlstra 已提交
5889 5890 5891 5892
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5893

P
Peter Zijlstra 已提交
5894
	return NULL;
5895 5896
}

5897
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5898
{
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5914

P
Peter Zijlstra 已提交
5915
	mutex_lock(&pmus_lock);
5916
	/*
P
Peter Zijlstra 已提交
5917
	 * Like a real lame refcount.
5918
	 */
5919 5920 5921
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5922
			goto out;
5923
		}
P
Peter Zijlstra 已提交
5924
	}
5925

5926
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5927 5928
out:
	mutex_unlock(&pmus_lock);
5929
}
P
Peter Zijlstra 已提交
5930
static struct idr pmu_idr;
5931

P
Peter Zijlstra 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5984 5985
static struct lock_class_key cpuctx_mutex;

P
Peter Zijlstra 已提交
5986
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5987
{
P
Peter Zijlstra 已提交
5988
	int cpu, ret;
5989

5990
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5991 5992 5993 5994
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5995

P
Peter Zijlstra 已提交
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6014 6015 6016 6017 6018 6019
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6020
skip_type:
P
Peter Zijlstra 已提交
6021 6022 6023
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6024

P
Peter Zijlstra 已提交
6025 6026
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6027
		goto free_dev;
6028

P
Peter Zijlstra 已提交
6029 6030 6031 6032
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6033
		__perf_event_init_context(&cpuctx->ctx);
6034
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6035
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6036
		cpuctx->ctx.pmu = pmu;
6037 6038
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6039
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6040
	}
6041

P
Peter Zijlstra 已提交
6042
got_cpu_context:
P
Peter Zijlstra 已提交
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6057
		}
6058
	}
6059

P
Peter Zijlstra 已提交
6060 6061 6062 6063 6064
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6065
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6066 6067
	ret = 0;
unlock:
6068 6069
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6070
	return ret;
P
Peter Zijlstra 已提交
6071

P
Peter Zijlstra 已提交
6072 6073 6074 6075
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6076 6077 6078 6079
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6080 6081 6082
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6083 6084
}

6085
void perf_pmu_unregister(struct pmu *pmu)
6086
{
6087 6088 6089
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6090

6091
	/*
P
Peter Zijlstra 已提交
6092 6093
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6094
	 */
6095
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6096
	synchronize_rcu();
6097

P
Peter Zijlstra 已提交
6098
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6099 6100
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6101 6102
	device_del(pmu->dev);
	put_device(pmu->dev);
6103
	free_pmu_context(pmu);
6104
}
6105

6106 6107 6108 6109
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6110
	int ret;
6111 6112

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6113 6114 6115 6116

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6117 6118 6119 6120
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6121
		goto unlock;
6122
	}
P
Peter Zijlstra 已提交
6123

6124
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6125
		ret = pmu->event_init(event);
6126
		if (!ret)
P
Peter Zijlstra 已提交
6127
			goto unlock;
6128

6129 6130
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6131
			goto unlock;
6132
		}
6133
	}
P
Peter Zijlstra 已提交
6134 6135
	pmu = ERR_PTR(-ENOENT);
unlock:
6136
	srcu_read_unlock(&pmus_srcu, idx);
6137

6138
	return pmu;
6139 6140
}

T
Thomas Gleixner 已提交
6141
/*
6142
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6143
 */
6144
static struct perf_event *
6145
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6146 6147 6148 6149
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6150
{
P
Peter Zijlstra 已提交
6151
	struct pmu *pmu;
6152 6153
	struct perf_event *event;
	struct hw_perf_event *hwc;
6154
	long err;
T
Thomas Gleixner 已提交
6155

6156 6157 6158 6159 6160
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6161
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6162
	if (!event)
6163
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6164

6165
	/*
6166
	 * Single events are their own group leaders, with an
6167 6168 6169
	 * empty sibling list:
	 */
	if (!group_leader)
6170
		group_leader = event;
6171

6172 6173
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6174

6175 6176 6177 6178
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6179
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6180

6181
	mutex_init(&event->mmap_mutex);
6182

6183 6184 6185 6186 6187
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6188

6189
	event->parent		= parent_event;
6190

6191 6192
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6193

6194
	event->state		= PERF_EVENT_STATE_INACTIVE;
6195

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6207 6208
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6209

6210
	event->overflow_handler	= overflow_handler;
6211

6212
	if (attr->disabled)
6213
		event->state = PERF_EVENT_STATE_OFF;
6214

6215
	pmu = NULL;
6216

6217
	hwc = &event->hw;
6218
	hwc->sample_period = attr->sample_period;
6219
	if (attr->freq && attr->sample_freq)
6220
		hwc->sample_period = 1;
6221
	hwc->last_period = hwc->sample_period;
6222

6223
	local64_set(&hwc->period_left, hwc->sample_period);
6224

6225
	/*
6226
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6227
	 */
6228
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6229 6230
		goto done;

6231
	pmu = perf_init_event(event);
6232

6233 6234
done:
	err = 0;
6235
	if (!pmu)
6236
		err = -EINVAL;
6237 6238
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6239

6240
	if (err) {
6241 6242 6243
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6244
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6245
	}
6246

6247
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6248

6249
	if (!event->parent) {
6250
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6251
			jump_label_inc(&perf_sched_events);
6252
		if (event->attr.mmap || event->attr.mmap_data)
6253 6254 6255 6256 6257
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6258 6259 6260 6261 6262 6263 6264
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6265
	}
6266

6267
	return event;
T
Thomas Gleixner 已提交
6268 6269
}

6270 6271
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6272 6273
{
	u32 size;
6274
	int ret;
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6299 6300 6301
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6302 6303
	 */
	if (size > sizeof(*attr)) {
6304 6305 6306
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6307

6308 6309
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6310

6311
		for (; addr < end; addr++) {
6312 6313 6314 6315 6316 6317
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6318
		size = sizeof(*attr);
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6332
	if (attr->__reserved_1)
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6350 6351
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6352
{
6353
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6354 6355
	int ret = -EINVAL;

6356
	if (!output_event)
6357 6358
		goto set;

6359 6360
	/* don't allow circular references */
	if (event == output_event)
6361 6362
		goto out;

6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6375
set:
6376
	mutex_lock(&event->mmap_mutex);
6377 6378 6379
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6380

6381 6382
	if (output_event) {
		/* get the buffer we want to redirect to */
6383 6384
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6385
			goto unlock;
6386 6387
	}

6388 6389
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6390
	ret = 0;
6391 6392 6393
unlock:
	mutex_unlock(&event->mmap_mutex);

6394 6395
	if (old_buffer)
		perf_buffer_put(old_buffer);
6396 6397 6398 6399
out:
	return ret;
}

T
Thomas Gleixner 已提交
6400
/**
6401
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6402
 *
6403
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6404
 * @pid:		target pid
I
Ingo Molnar 已提交
6405
 * @cpu:		target cpu
6406
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6407
 */
6408 6409
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6410
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6411
{
6412 6413
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6414 6415 6416
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6417
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6418
	struct task_struct *task = NULL;
6419
	struct pmu *pmu;
6420
	int event_fd;
6421
	int move_group = 0;
6422
	int fput_needed = 0;
6423
	int err;
T
Thomas Gleixner 已提交
6424

6425
	/* for future expandability... */
S
Stephane Eranian 已提交
6426
	if (flags & ~PERF_FLAG_ALL)
6427 6428
		return -EINVAL;

6429 6430 6431
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6432

6433 6434 6435 6436 6437
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6438
	if (attr.freq) {
6439
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6440 6441 6442
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6443 6444 6445 6446 6447 6448 6449 6450 6451
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6452 6453 6454 6455
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6456 6457 6458 6459
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6460
			goto err_fd;
6461 6462 6463 6464 6465 6466 6467 6468
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6469
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6470 6471 6472 6473 6474 6475 6476
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6477
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6478 6479
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6480
		goto err_task;
6481 6482
	}

S
Stephane Eranian 已提交
6483 6484 6485 6486
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6487 6488 6489 6490 6491 6492 6493
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6494 6495
	}

6496 6497 6498 6499 6500
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6524 6525 6526 6527

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6528
	ctx = find_get_context(pmu, task, cpu);
6529 6530
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6531
		goto err_alloc;
6532 6533
	}

6534 6535 6536 6537 6538
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6539
	/*
6540
	 * Look up the group leader (we will attach this event to it):
6541
	 */
6542
	if (group_leader) {
6543
		err = -EINVAL;
6544 6545

		/*
I
Ingo Molnar 已提交
6546 6547 6548 6549
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6550
			goto err_context;
I
Ingo Molnar 已提交
6551 6552 6553
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6554
		 */
6555 6556 6557 6558 6559 6560 6561 6562
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6563 6564 6565
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6566
		if (attr.exclusive || attr.pinned)
6567
			goto err_context;
6568 6569 6570 6571 6572
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6573
			goto err_context;
6574
	}
T
Thomas Gleixner 已提交
6575

6576 6577 6578
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6579
		goto err_context;
6580
	}
6581

6582 6583 6584 6585
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6586
		perf_remove_from_context(group_leader);
6587 6588
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6589
			perf_remove_from_context(sibling);
6590 6591 6592 6593
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6594
	}
6595

6596
	event->filp = event_file;
6597
	WARN_ON_ONCE(ctx->parent_ctx);
6598
	mutex_lock(&ctx->mutex);
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6610
	perf_install_in_context(ctx, event, cpu);
6611
	++ctx->generation;
6612
	perf_unpin_context(ctx);
6613
	mutex_unlock(&ctx->mutex);
6614

6615
	event->owner = current;
P
Peter Zijlstra 已提交
6616

6617 6618 6619
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6620

6621 6622 6623 6624
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6625
	perf_event__id_header_size(event);
6626

6627 6628 6629 6630 6631 6632
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6633 6634 6635
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6636

6637
err_context:
6638
	perf_unpin_context(ctx);
6639
	put_ctx(ctx);
6640
err_alloc:
6641
	free_event(event);
P
Peter Zijlstra 已提交
6642 6643 6644
err_task:
	if (task)
		put_task_struct(task);
6645
err_group_fd:
6646
	fput_light(group_file, fput_needed);
6647 6648
err_fd:
	put_unused_fd(event_fd);
6649
	return err;
T
Thomas Gleixner 已提交
6650 6651
}

6652 6653 6654 6655 6656
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6657
 * @task: task to profile (NULL for percpu)
6658 6659 6660
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6661
				 struct task_struct *task,
6662
				 perf_overflow_handler_t overflow_handler)
6663 6664
{
	struct perf_event_context *ctx;
6665
	struct perf_event *event;
6666
	int err;
6667

6668 6669 6670
	/*
	 * Get the target context (task or percpu):
	 */
6671

6672
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6673 6674 6675 6676
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6677

M
Matt Helsley 已提交
6678
	ctx = find_get_context(event->pmu, task, cpu);
6679 6680
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6681
		goto err_free;
6682
	}
6683 6684 6685 6686 6687 6688

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6689
	perf_unpin_context(ctx);
6690 6691 6692 6693
	mutex_unlock(&ctx->mutex);

	return event;

6694 6695 6696
err_free:
	free_event(event);
err:
6697
	return ERR_PTR(err);
6698
}
6699
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6700

6701
static void sync_child_event(struct perf_event *child_event,
6702
			       struct task_struct *child)
6703
{
6704
	struct perf_event *parent_event = child_event->parent;
6705
	u64 child_val;
6706

6707 6708
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6709

P
Peter Zijlstra 已提交
6710
	child_val = perf_event_count(child_event);
6711 6712 6713 6714

	/*
	 * Add back the child's count to the parent's count:
	 */
6715
	atomic64_add(child_val, &parent_event->child_count);
6716 6717 6718 6719
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6720 6721

	/*
6722
	 * Remove this event from the parent's list
6723
	 */
6724 6725 6726 6727
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6728 6729

	/*
6730
	 * Release the parent event, if this was the last
6731 6732
	 * reference to it.
	 */
6733
	fput(parent_event->filp);
6734 6735
}

6736
static void
6737 6738
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6739
			 struct task_struct *child)
6740
{
6741 6742 6743 6744 6745
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6746

6747
	perf_remove_from_context(child_event);
6748

6749
	/*
6750
	 * It can happen that the parent exits first, and has events
6751
	 * that are still around due to the child reference. These
6752
	 * events need to be zapped.
6753
	 */
6754
	if (child_event->parent) {
6755 6756
		sync_child_event(child_event, child);
		free_event(child_event);
6757
	}
6758 6759
}

P
Peter Zijlstra 已提交
6760
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6761
{
6762 6763
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6764
	unsigned long flags;
6765

P
Peter Zijlstra 已提交
6766
	if (likely(!child->perf_event_ctxp[ctxn])) {
6767
		perf_event_task(child, NULL, 0);
6768
		return;
P
Peter Zijlstra 已提交
6769
	}
6770

6771
	local_irq_save(flags);
6772 6773 6774 6775 6776 6777
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6778
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6779
	task_ctx_sched_out(child_ctx, EVENT_ALL);
6780 6781 6782

	/*
	 * Take the context lock here so that if find_get_context is
6783
	 * reading child->perf_event_ctxp, we wait until it has
6784 6785
	 * incremented the context's refcount before we do put_ctx below.
	 */
6786
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
6787
	child->perf_event_ctxp[ctxn] = NULL;
6788 6789 6790
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6791
	 * the events from it.
6792 6793
	 */
	unclone_ctx(child_ctx);
6794
	update_context_time(child_ctx);
6795
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6796 6797

	/*
6798 6799 6800
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6801
	 */
6802
	perf_event_task(child, child_ctx, 0);
6803

6804 6805 6806
	/*
	 * We can recurse on the same lock type through:
	 *
6807 6808 6809
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6810 6811 6812 6813 6814
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6815
	mutex_lock(&child_ctx->mutex);
6816

6817
again:
6818 6819 6820 6821 6822
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6823
				 group_entry)
6824
		__perf_event_exit_task(child_event, child_ctx, child);
6825 6826

	/*
6827
	 * If the last event was a group event, it will have appended all
6828 6829 6830
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6831 6832
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6833
		goto again;
6834 6835 6836 6837

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6838 6839
}

P
Peter Zijlstra 已提交
6840 6841 6842 6843 6844
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6845
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6846 6847
	int ctxn;

P
Peter Zijlstra 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6863 6864 6865 6866
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6881
	perf_group_detach(event);
6882 6883 6884 6885
	list_del_event(event, ctx);
	free_event(event);
}

6886 6887
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6888
 * perf_event_init_task below, used by fork() in case of fail.
6889
 */
6890
void perf_event_free_task(struct task_struct *task)
6891
{
P
Peter Zijlstra 已提交
6892
	struct perf_event_context *ctx;
6893
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6894
	int ctxn;
6895

P
Peter Zijlstra 已提交
6896 6897 6898 6899
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6900

P
Peter Zijlstra 已提交
6901
		mutex_lock(&ctx->mutex);
6902
again:
P
Peter Zijlstra 已提交
6903 6904 6905
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6906

P
Peter Zijlstra 已提交
6907 6908 6909
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6910

P
Peter Zijlstra 已提交
6911 6912 6913
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6914

P
Peter Zijlstra 已提交
6915
		mutex_unlock(&ctx->mutex);
6916

P
Peter Zijlstra 已提交
6917 6918
		put_ctx(ctx);
	}
6919 6920
}

6921 6922 6923 6924 6925 6926 6927 6928
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6941
	unsigned long flags;
P
Peter Zijlstra 已提交
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6954
					   child,
P
Peter Zijlstra 已提交
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6984 6985 6986 6987
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6988
	perf_event__id_header_size(child_event);
6989

P
Peter Zijlstra 已提交
6990 6991 6992
	/*
	 * Link it up in the child's context:
	 */
6993
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6994
	add_event_to_ctx(child_event, child_ctx);
6995
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7037 7038 7039 7040 7041
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7042
		   struct task_struct *child, int ctxn,
7043 7044 7045
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7046
	struct perf_event_context *child_ctx;
7047 7048 7049 7050

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7051 7052
	}

7053
	child_ctx = child->perf_event_ctxp[ctxn];
7054 7055 7056 7057 7058 7059 7060
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7061

7062
		child_ctx = alloc_perf_context(event->pmu, child);
7063 7064
		if (!child_ctx)
			return -ENOMEM;
7065

P
Peter Zijlstra 已提交
7066
		child->perf_event_ctxp[ctxn] = child_ctx;
7067 7068 7069 7070 7071 7072 7073 7074 7075
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7076 7077
}

7078
/*
7079
 * Initialize the perf_event context in task_struct
7080
 */
P
Peter Zijlstra 已提交
7081
int perf_event_init_context(struct task_struct *child, int ctxn)
7082
{
7083
	struct perf_event_context *child_ctx, *parent_ctx;
7084 7085
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7086
	struct task_struct *parent = current;
7087
	int inherited_all = 1;
7088
	unsigned long flags;
7089
	int ret = 0;
7090

P
Peter Zijlstra 已提交
7091
	if (likely(!parent->perf_event_ctxp[ctxn]))
7092 7093
		return 0;

7094
	/*
7095 7096
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7097
	 */
P
Peter Zijlstra 已提交
7098
	parent_ctx = perf_pin_task_context(parent, ctxn);
7099

7100 7101 7102 7103 7104 7105 7106
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7107 7108 7109 7110
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7111
	mutex_lock(&parent_ctx->mutex);
7112 7113 7114 7115 7116

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7117
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7118 7119
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7120 7121 7122
		if (ret)
			break;
	}
7123

7124 7125 7126 7127 7128 7129 7130 7131 7132
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7133
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7134 7135
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7136
		if (ret)
7137
			break;
7138 7139
	}

7140 7141 7142
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7143
	child_ctx = child->perf_event_ctxp[ctxn];
7144

7145
	if (child_ctx && inherited_all) {
7146 7147 7148
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7149 7150 7151
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7152
		 */
P
Peter Zijlstra 已提交
7153
		cloned_ctx = parent_ctx->parent_ctx;
7154 7155
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7156
			child_ctx->parent_gen = parent_ctx->parent_gen;
7157 7158 7159 7160 7161
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7162 7163
	}

P
Peter Zijlstra 已提交
7164
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7165
	mutex_unlock(&parent_ctx->mutex);
7166

7167
	perf_unpin_context(parent_ctx);
7168
	put_ctx(parent_ctx);
7169

7170
	return ret;
7171 7172
}

P
Peter Zijlstra 已提交
7173 7174 7175 7176 7177 7178 7179
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7180 7181 7182 7183
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7184 7185 7186 7187 7188 7189 7190 7191 7192
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7193 7194
static void __init perf_event_init_all_cpus(void)
{
7195
	struct swevent_htable *swhash;
7196 7197 7198
	int cpu;

	for_each_possible_cpu(cpu) {
7199 7200
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7201
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7202 7203 7204
	}
}

7205
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7206
{
P
Peter Zijlstra 已提交
7207
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7208

7209 7210
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7211 7212
		struct swevent_hlist *hlist;

7213 7214 7215
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7216
	}
7217
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7218 7219
}

P
Peter Zijlstra 已提交
7220
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7221
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7222
{
7223 7224 7225 7226 7227 7228 7229
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7230
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7231
{
P
Peter Zijlstra 已提交
7232
	struct perf_event_context *ctx = __info;
7233
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7234

P
Peter Zijlstra 已提交
7235
	perf_pmu_rotate_stop(ctx->pmu);
7236

7237
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7238
		__perf_remove_from_context(event);
7239
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7240
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7241
}
P
Peter Zijlstra 已提交
7242 7243 7244 7245 7246 7247 7248 7249 7250

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7251
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7252 7253 7254 7255 7256 7257 7258 7259

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7260
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7261
{
7262
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7263

7264 7265 7266
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7267

P
Peter Zijlstra 已提交
7268
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7269 7270
}
#else
7271
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7272 7273
#endif

P
Peter Zijlstra 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7294 7295 7296 7297 7298
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7299
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7300 7301

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7302
	case CPU_DOWN_FAILED:
7303
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7304 7305
		break;

P
Peter Zijlstra 已提交
7306
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7307
	case CPU_DOWN_PREPARE:
7308
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7309 7310 7311 7312 7313 7314 7315 7316 7317
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7318
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7319
{
7320 7321
	int ret;

P
Peter Zijlstra 已提交
7322 7323
	idr_init(&pmu_idr);

7324
	perf_event_init_all_cpus();
7325
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7326 7327 7328
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7329 7330
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7331
	register_reboot_notifier(&perf_reboot_notifier);
7332 7333 7334

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7335
}
P
Peter Zijlstra 已提交
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7364 7365 7366 7367 7368 7369 7370

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7371
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
7436 7437 7438 7439 7440 7441
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7442 7443
};
#endif /* CONFIG_CGROUP_PERF */