core.c 257.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
T
Thomas Gleixner 已提交
49

50 51
#include "internal.h"

52 53
#include <asm/irq_regs.h>

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
69 70 71 72 73 74 75 76 77 78 79
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
100
task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 102
{
	struct remote_function_call data = {
103 104 105
		.p	= p,
		.func	= func,
		.info	= info,
106
		.ret	= -EAGAIN,
107
	};
108
	int ret;
109

110 111 112 113 114
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
115

116
	return ret;
117 118 119 120 121 122 123 124 125 126 127
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
128
static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 130
{
	struct remote_function_call data = {
131 132 133 134
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
135 136 137 138 139 140 141
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

142 143 144 145 146 147 148 149
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
150
{
151 152 153 154 155 156 157 158 159 160 161 162 163
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

164 165 166 167
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
168
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
203
	struct perf_event_context *ctx = event->ctx;
204 205
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216
		if (ctx->task != current) {
217
			ret = -ESRCH;
218 219
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
246 247
{
	struct perf_event_context *ctx = event->ctx;
248
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 250 251 252 253
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
254

P
Peter Zijlstra 已提交
255 256 257 258 259 260 261 262
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
263 264

	if (!task) {
265
		cpu_function_call(event->cpu, event_function, &efs);
266 267 268
		return;
	}

269 270 271
	if (task == TASK_TOMBSTONE)
		return;

272
again:
273
	if (!task_function_call(task, event_function, &efs))
274 275 276
		return;

	raw_spin_lock_irq(&ctx->lock);
277 278 279 280 281
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
282 283 284
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
285
	}
286 287 288 289 290
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
291 292 293
	raw_spin_unlock_irq(&ctx->lock);
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
342 343
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
344 345
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
346

347 348 349 350 351 352 353
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

354 355 356
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
357
	EVENT_TIME = 0x4,
358 359
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
360 361 362
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
363 364 365 366
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
367 368 369 370 371 372 373

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
374
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
375
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
376
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
377

378 379 380
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
381
static atomic_t nr_freq_events __read_mostly;
382
static atomic_t nr_switch_events __read_mostly;
383

P
Peter Zijlstra 已提交
384 385 386 387
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

388
/*
389
 * perf event paranoia level:
390 391
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
392
 *   1 - disallow cpu events for unpriv
393
 *   2 - disallow kernel profiling for unpriv
394
 */
395
int sysctl_perf_event_paranoid __read_mostly = 2;
396

397 398
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
399 400

/*
401
 * max perf event sample rate
402
 */
403 404 405 406 407 408 409 410 411
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
412 413
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
414

415
static void update_perf_cpu_limits(void)
416 417 418 419
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
420 421 422 423 424
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
425
}
P
Peter Zijlstra 已提交
426

427 428
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
429 430 431 432
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
433
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
434 435 436 437

	if (ret || !write)
		return ret;

438 439 440 441 442 443 444
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
445
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

463 464
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
465 466 467 468 469 470
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
471 472 473

	return 0;
}
474

475 476 477 478 479 480 481
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
482
static DEFINE_PER_CPU(u64, running_sample_length);
483

484 485 486
static u64 __report_avg;
static u64 __report_allowed;

487
static void perf_duration_warn(struct irq_work *w)
488
{
489
	printk_ratelimited(KERN_INFO
490 491 492 493
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
494 495 496 497 498 499
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
500 501 502 503
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
504

505
	if (max_len == 0)
506 507
		return;

508 509 510 511 512
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
513 514

	/*
515 516
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
517 518
	 * from having to maintain a count.
	 */
519 520
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
521 522
		return;

523 524
	__report_avg = avg_len;
	__report_allowed = max_len;
525

526 527 528 529 530 531 532 533 534
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
535

536 537 538 539 540
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
541

542
	if (!irq_work_queue(&perf_duration_work)) {
543
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
544
			     "kernel.perf_event_max_sample_rate to %d\n",
545
			     __report_avg, __report_allowed,
546 547
			     sysctl_perf_event_sample_rate);
	}
548 549
}

550
static atomic64_t perf_event_id;
551

552 553 554 555
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
556 557 558 559 560
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
561

562
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
563

564
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
565
{
566
	return "pmu";
T
Thomas Gleixner 已提交
567 568
}

569 570 571 572 573
static inline u64 perf_clock(void)
{
	return local_clock();
}

574 575 576 577 578
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
579 580 581 582 583 584 585 586
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
603 604 605 606
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
607
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
646 647
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
648
	/*
649 650
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
651
	 */
652
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
653 654
		return;

655
	cgrp = perf_cgroup_from_task(current, event->ctx);
656 657 658 659 660
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
661 662 663
}

static inline void
664 665
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
666 667 668 669
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

670 671 672 673 674 675
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
676 677
		return;

678
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
679
	info = this_cpu_ptr(cgrp->info);
680
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
681 682
}

683 684
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
685 686 687 688 689 690 691 692 693
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
694
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
695 696
{
	struct perf_cpu_context *cpuctx;
697
	struct list_head *list;
S
Stephane Eranian 已提交
698 699 700
	unsigned long flags;

	/*
701 702
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
703 704 705
	 */
	local_irq_save(flags);

706 707 708
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
709

710 711
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
712

713 714 715 716 717 718 719 720
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
721

722 723 724 725 726 727 728 729 730 731 732 733
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
734
		}
735 736
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
737 738 739 740 741
	}

	local_irq_restore(flags);
}

742 743
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
744
{
745 746 747
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

748
	rcu_read_lock();
749 750
	/*
	 * we come here when we know perf_cgroup_events > 0
751 752
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
753
	 */
754
	cgrp1 = perf_cgroup_from_task(task, NULL);
755
	cgrp2 = perf_cgroup_from_task(next, NULL);
756 757 758 759 760 761 762 763

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
764 765

	rcu_read_unlock();
S
Stephane Eranian 已提交
766 767
}

768 769
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
770
{
771 772 773
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

774
	rcu_read_lock();
775 776
	/*
	 * we come here when we know perf_cgroup_events > 0
777 778
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
779
	 */
780 781
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
782 783 784 785 786 787 788 789

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
790 791

	rcu_read_unlock();
S
Stephane Eranian 已提交
792 793 794 795 796 797 798 799
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
800 801
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
802

803
	if (!f.file)
S
Stephane Eranian 已提交
804 805
		return -EBADF;

A
Al Viro 已提交
806
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
807
					 &perf_event_cgrp_subsys);
808 809 810 811
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
825
out:
826
	fdput(f);
S
Stephane Eranian 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
871 872 873 874 875 876 877 878 879 880

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
881
	struct list_head *cpuctx_entry;
882 883 884 885 886 887 888 889 890 891 892 893 894

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
895 896 897 898 899 900 901 902
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
			cpuctx->cgrp = event->cgrp;
	} else {
		list_del(cpuctx_entry);
903
		cpuctx->cgrp = NULL;
904
	}
905 906
}

S
Stephane Eranian 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

936 937
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
938 939 940
{
}

941 942
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
943 944 945 946 947 948 949 950 951 952 953
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
954 955
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
984 985 986 987 988 989 990

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
991 992
#endif

993 994 995 996 997 998 999 1000
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
1001
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1002 1003 1004 1005 1006 1007 1008 1009 1010
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1011 1012
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1013
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1014 1015 1016
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1017

P
Peter Zijlstra 已提交
1018
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1019 1020
}

1021
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1022
{
1023
	struct hrtimer *timer = &cpuctx->hrtimer;
1024
	struct pmu *pmu = cpuctx->ctx.pmu;
1025
	u64 interval;
1026 1027 1028 1029 1030

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1031 1032 1033 1034
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1035 1036 1037
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1038

1039
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1040

P
Peter Zijlstra 已提交
1041 1042
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1043
	timer->function = perf_mux_hrtimer_handler;
1044 1045
}

1046
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1047
{
1048
	struct hrtimer *timer = &cpuctx->hrtimer;
1049
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1050
	unsigned long flags;
1051 1052 1053

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1054
		return 0;
1055

P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061 1062
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1063

1064
	return 0;
1065 1066
}

P
Peter Zijlstra 已提交
1067
void perf_pmu_disable(struct pmu *pmu)
1068
{
P
Peter Zijlstra 已提交
1069 1070 1071
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1072 1073
}

P
Peter Zijlstra 已提交
1074
void perf_pmu_enable(struct pmu *pmu)
1075
{
P
Peter Zijlstra 已提交
1076 1077 1078
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1079 1080
}

1081
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1082 1083

/*
1084 1085 1086 1087
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1088
 */
1089
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1090
{
1091
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1092

1093
	WARN_ON(!irqs_disabled());
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1107 1108
}

1109
static void get_ctx(struct perf_event_context *ctx)
1110
{
1111
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1123
static void put_ctx(struct perf_event_context *ctx)
1124
{
1125 1126 1127
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1128
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1129
			put_task_struct(ctx->task);
1130
		call_rcu(&ctx->rcu_head, free_ctx);
1131
	}
1132 1133
}

P
Peter Zijlstra 已提交
1134 1135 1136 1137 1138 1139 1140
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1141 1142 1143 1144
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1145 1146
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1187
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1188 1189 1190
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1191
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1192 1193 1194
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1195 1196
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1209
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1219 1220 1221 1222 1223 1224
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1225 1226 1227 1228 1229 1230 1231
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1232 1233 1234 1235 1236 1237 1238
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1239
{
1240 1241 1242 1243 1244
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1245
		ctx->parent_ctx = NULL;
1246
	ctx->generation++;
1247 1248

	return parent_ctx;
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1273
/*
1274
 * If we inherit events we want to return the parent event id
1275 1276
 * to userspace.
 */
1277
static u64 primary_event_id(struct perf_event *event)
1278
{
1279
	u64 id = event->id;
1280

1281 1282
	if (event->parent)
		id = event->parent->id;
1283 1284 1285 1286

	return id;
}

1287
/*
1288
 * Get the perf_event_context for a task and lock it.
1289
 *
1290 1291 1292
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1293
static struct perf_event_context *
P
Peter Zijlstra 已提交
1294
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1295
{
1296
	struct perf_event_context *ctx;
1297

P
Peter Zijlstra 已提交
1298
retry:
1299 1300 1301
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1302
	 * part of the read side critical section was irqs-enabled -- see
1303 1304 1305
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1306
	 * side critical section has interrupts disabled.
1307
	 */
1308
	local_irq_save(*flags);
1309
	rcu_read_lock();
P
Peter Zijlstra 已提交
1310
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1311 1312 1313 1314
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1315
		 * perf_event_task_sched_out, though the
1316 1317 1318 1319 1320 1321
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1322
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1323
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1324
			raw_spin_unlock(&ctx->lock);
1325
			rcu_read_unlock();
1326
			local_irq_restore(*flags);
1327 1328
			goto retry;
		}
1329

1330 1331
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1332
			raw_spin_unlock(&ctx->lock);
1333
			ctx = NULL;
P
Peter Zijlstra 已提交
1334 1335
		} else {
			WARN_ON_ONCE(ctx->task != task);
1336
		}
1337 1338
	}
	rcu_read_unlock();
1339 1340
	if (!ctx)
		local_irq_restore(*flags);
1341 1342 1343 1344 1345 1346 1347 1348
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1349 1350
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1351
{
1352
	struct perf_event_context *ctx;
1353 1354
	unsigned long flags;

P
Peter Zijlstra 已提交
1355
	ctx = perf_lock_task_context(task, ctxn, &flags);
1356 1357
	if (ctx) {
		++ctx->pin_count;
1358
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1359 1360 1361 1362
	}
	return ctx;
}

1363
static void perf_unpin_context(struct perf_event_context *ctx)
1364 1365 1366
{
	unsigned long flags;

1367
	raw_spin_lock_irqsave(&ctx->lock, flags);
1368
	--ctx->pin_count;
1369
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1370 1371
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1383 1384 1385
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1386 1387 1388 1389

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1390 1391 1392
	return ctx ? ctx->time : 0;
}

1393 1394 1395 1396 1397 1398 1399 1400
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1401 1402
	lockdep_assert_held(&ctx->lock);

1403 1404 1405
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1406

S
Stephane Eranian 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1418
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1419 1420
	else if (ctx->is_active)
		run_end = ctx->time;
1421 1422 1423 1424
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1425 1426 1427 1428

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1429
		run_end = perf_event_time(event);
1430 1431

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1432

1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1461 1462 1463 1464 1465 1466 1467 1468 1469
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1470
/*
1471
 * Add a event from the lists for its context.
1472 1473
 * Must be called with ctx->mutex and ctx->lock held.
 */
1474
static void
1475
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1476
{
P
Peter Zijlstra 已提交
1477 1478
	lockdep_assert_held(&ctx->lock);

1479 1480
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1481 1482

	/*
1483 1484 1485
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1486
	 */
1487
	if (event->group_leader == event) {
1488 1489
		struct list_head *list;

1490
		event->group_caps = event->event_caps;
1491

1492 1493
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1494
	}
P
Peter Zijlstra 已提交
1495

1496
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1497

1498 1499 1500
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1501
		ctx->nr_stat++;
1502 1503

	ctx->generation++;
1504 1505
}

J
Jiri Olsa 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1515
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1531
		nr += nr_siblings;
1532 1533 1534 1535 1536 1537 1538
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1539
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 1541 1542 1543 1544 1545 1546
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1547 1548 1549 1550 1551 1552
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1553 1554 1555
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1556 1557 1558
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1559 1560 1561
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1562 1563 1564
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1565 1566 1567
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1579 1580 1581 1582 1583 1584
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1585 1586 1587 1588 1589 1590
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1591 1592 1593
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1603
	event->id_header_size = size;
1604 1605
}

P
Peter Zijlstra 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1627 1628
static void perf_group_attach(struct perf_event *event)
{
1629
	struct perf_event *group_leader = event->group_leader, *pos;
1630

1631 1632
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1633 1634 1635 1636 1637 1638
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1639 1640 1641 1642 1643
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1644 1645
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1646
	group_leader->group_caps &= event->event_caps;
1647 1648 1649

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1650 1651 1652 1653 1654

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1655 1656
}

1657
/*
1658
 * Remove a event from the lists for its context.
1659
 * Must be called with ctx->mutex and ctx->lock held.
1660
 */
1661
static void
1662
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1663
{
P
Peter Zijlstra 已提交
1664 1665 1666
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1667 1668 1669 1670
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1671
		return;
1672 1673 1674

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1675
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1676

1677 1678
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1679
		ctx->nr_stat--;
1680

1681
	list_del_rcu(&event->event_entry);
1682

1683 1684
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1685

1686
	update_group_times(event);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1697 1698

	ctx->generation++;
1699 1700
}

1701
static void perf_group_detach(struct perf_event *event)
1702 1703
{
	struct perf_event *sibling, *tmp;
1704 1705
	struct list_head *list = NULL;

1706 1707
	lockdep_assert_held(&event->ctx->lock);

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1722
		goto out;
1723 1724 1725 1726
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1727

1728
	/*
1729 1730
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1731
	 * to whatever list we are on.
1732
	 */
1733
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1734 1735
		if (list)
			list_move_tail(&sibling->group_entry, list);
1736
		sibling->group_leader = sibling;
1737 1738

		/* Inherit group flags from the previous leader */
1739
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1740 1741

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1742
	}
1743 1744 1745 1746 1747 1748

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1749 1750
}

1751 1752
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1753
	return event->state == PERF_EVENT_STATE_DEAD;
1754 1755
}

1756
static inline int __pmu_filter_match(struct perf_event *event)
1757 1758 1759 1760 1761
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1783 1784 1785
static inline int
event_filter_match(struct perf_event *event)
{
1786 1787
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1788 1789
}

1790 1791
static void
event_sched_out(struct perf_event *event,
1792
		  struct perf_cpu_context *cpuctx,
1793
		  struct perf_event_context *ctx)
1794
{
1795
	u64 tstamp = perf_event_time(event);
1796
	u64 delta;
P
Peter Zijlstra 已提交
1797 1798 1799 1800

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1801 1802 1803 1804 1805 1806
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1807 1808
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1809
		delta = tstamp - event->tstamp_stopped;
1810
		event->tstamp_running += delta;
1811
		event->tstamp_stopped = tstamp;
1812 1813
	}

1814
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1815
		return;
1816

1817 1818
	perf_pmu_disable(event->pmu);

1819 1820 1821
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1822 1823 1824 1825
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1826
	}
1827

1828
	if (!is_software_event(event))
1829
		cpuctx->active_oncpu--;
1830 1831
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1832 1833
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1834
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1835
		cpuctx->exclusive = 0;
1836 1837

	perf_pmu_enable(event->pmu);
1838 1839
}

1840
static void
1841
group_sched_out(struct perf_event *group_event,
1842
		struct perf_cpu_context *cpuctx,
1843
		struct perf_event_context *ctx)
1844
{
1845
	struct perf_event *event;
1846
	int state = group_event->state;
1847

1848 1849
	perf_pmu_disable(ctx->pmu);

1850
	event_sched_out(group_event, cpuctx, ctx);
1851 1852 1853 1854

	/*
	 * Schedule out siblings (if any):
	 */
1855 1856
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1857

1858 1859
	perf_pmu_enable(ctx->pmu);

1860
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1861 1862 1863
		cpuctx->exclusive = 0;
}

1864
#define DETACH_GROUP	0x01UL
1865

T
Thomas Gleixner 已提交
1866
/*
1867
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1868
 *
1869
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1870 1871
 * remove it from the context list.
 */
1872 1873 1874 1875 1876
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1877
{
1878
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1879

1880
	event_sched_out(event, cpuctx, ctx);
1881
	if (flags & DETACH_GROUP)
1882
		perf_group_detach(event);
1883
	list_del_event(event, ctx);
1884 1885

	if (!ctx->nr_events && ctx->is_active) {
1886
		ctx->is_active = 0;
1887 1888 1889 1890
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1891
	}
T
Thomas Gleixner 已提交
1892 1893 1894
}

/*
1895
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1896
 *
1897 1898
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1899 1900
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1901
 * When called from perf_event_exit_task, it's OK because the
1902
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1903
 */
1904
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1905
{
1906 1907 1908
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1909

1910
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1929 1930
}

1931
/*
1932
 * Cross CPU call to disable a performance event
1933
 */
1934 1935 1936 1937
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1938
{
1939 1940
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1941

1942 1943 1944 1945 1946 1947 1948 1949
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1950 1951
}

1952
/*
1953
 * Disable a event.
1954
 *
1955 1956
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1957
 * remains valid.  This condition is satisifed when called through
1958 1959
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1960 1961
 * goes to exit will block in perf_event_exit_event().
 *
1962
 * When called from perf_pending_event it's OK because event->ctx
1963
 * is the current context on this CPU and preemption is disabled,
1964
 * hence we can't get into perf_event_task_sched_out for this context.
1965
 */
P
Peter Zijlstra 已提交
1966
static void _perf_event_disable(struct perf_event *event)
1967
{
1968
	struct perf_event_context *ctx = event->ctx;
1969

1970
	raw_spin_lock_irq(&ctx->lock);
1971
	if (event->state <= PERF_EVENT_STATE_OFF) {
1972
		raw_spin_unlock_irq(&ctx->lock);
1973
		return;
1974
	}
1975
	raw_spin_unlock_irq(&ctx->lock);
1976

1977 1978 1979 1980 1981 1982
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1983
}
P
Peter Zijlstra 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1997
EXPORT_SYMBOL_GPL(perf_event_disable);
1998

1999 2000 2001 2002 2003 2004
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2040 2041 2042
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2043
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2044

2045
static int
2046
event_sched_in(struct perf_event *event,
2047
		 struct perf_cpu_context *cpuctx,
2048
		 struct perf_event_context *ctx)
2049
{
2050
	u64 tstamp = perf_event_time(event);
2051
	int ret = 0;
2052

2053 2054
	lockdep_assert_held(&ctx->lock);

2055
	if (event->state <= PERF_EVENT_STATE_OFF)
2056 2057
		return 0;

2058 2059 2060 2061 2062 2063 2064
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2076 2077 2078 2079 2080
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2081 2082
	perf_pmu_disable(event->pmu);

2083 2084
	perf_set_shadow_time(event, ctx, tstamp);

2085 2086
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2087
	if (event->pmu->add(event, PERF_EF_START)) {
2088 2089
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2090 2091
		ret = -EAGAIN;
		goto out;
2092 2093
	}

2094 2095
	event->tstamp_running += tstamp - event->tstamp_stopped;

2096
	if (!is_software_event(event))
2097
		cpuctx->active_oncpu++;
2098 2099
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2100 2101
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2102

2103
	if (event->attr.exclusive)
2104 2105
		cpuctx->exclusive = 1;

2106 2107 2108 2109
out:
	perf_pmu_enable(event->pmu);

	return ret;
2110 2111
}

2112
static int
2113
group_sched_in(struct perf_event *group_event,
2114
	       struct perf_cpu_context *cpuctx,
2115
	       struct perf_event_context *ctx)
2116
{
2117
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2118
	struct pmu *pmu = ctx->pmu;
2119 2120
	u64 now = ctx->time;
	bool simulate = false;
2121

2122
	if (group_event->state == PERF_EVENT_STATE_OFF)
2123 2124
		return 0;

2125
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2126

2127
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2128
		pmu->cancel_txn(pmu);
2129
		perf_mux_hrtimer_restart(cpuctx);
2130
		return -EAGAIN;
2131
	}
2132 2133 2134 2135

	/*
	 * Schedule in siblings as one group (if any):
	 */
2136
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137
		if (event_sched_in(event, cpuctx, ctx)) {
2138
			partial_group = event;
2139 2140 2141 2142
			goto group_error;
		}
	}

2143
	if (!pmu->commit_txn(pmu))
2144
		return 0;
2145

2146 2147 2148 2149
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2160
	 */
2161 2162
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2163 2164 2165 2166 2167 2168 2169 2170
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2171
	}
2172
	event_sched_out(group_event, cpuctx, ctx);
2173

P
Peter Zijlstra 已提交
2174
	pmu->cancel_txn(pmu);
2175

2176
	perf_mux_hrtimer_restart(cpuctx);
2177

2178 2179 2180
	return -EAGAIN;
}

2181
/*
2182
 * Work out whether we can put this event group on the CPU now.
2183
 */
2184
static int group_can_go_on(struct perf_event *event,
2185 2186 2187 2188
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2189
	 * Groups consisting entirely of software events can always go on.
2190
	 */
2191
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2192 2193 2194
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2195
	 * events can go on.
2196 2197 2198 2199 2200
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2201
	 * events on the CPU, it can't go on.
2202
	 */
2203
	if (event->attr.exclusive && cpuctx->active_oncpu)
2204 2205 2206 2207 2208 2209 2210 2211
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2212 2213
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2214
{
2215 2216
	u64 tstamp = perf_event_time(event);

2217
	list_add_event(event, ctx);
2218
	perf_group_attach(event);
2219 2220 2221
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2222 2223
}

2224 2225 2226
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2227 2228 2229 2230 2231
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2232

2233
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234 2235
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2236 2237 2238 2239 2240 2241 2242
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2243
	ctx_sched_out(ctx, cpuctx, event_type);
2244 2245
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2273
static void ctx_resched(struct perf_cpu_context *cpuctx,
2274 2275
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2276
{
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2287 2288
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2303 2304
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2305 2306
}

T
Thomas Gleixner 已提交
2307
/*
2308
 * Cross CPU call to install and enable a performance event
2309
 *
2310 2311
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2312
 */
2313
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2314
{
2315 2316
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2317
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2318
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2319
	bool reprogram = true;
2320
	int ret = 0;
T
Thomas Gleixner 已提交
2321

2322
	raw_spin_lock(&cpuctx->ctx.lock);
2323
	if (ctx->task) {
2324 2325
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2326

2327
		reprogram = (ctx->task == current);
2328

2329
		/*
2330 2331 2332 2333 2334
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2335
		 */
2336 2337 2338 2339
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2340

2341
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2342 2343
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2344
	}
2345

2346
	if (reprogram) {
2347 2348
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2349
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2350 2351 2352 2353
	} else {
		add_event_to_ctx(event, ctx);
	}

2354
unlock:
2355
	perf_ctx_unlock(cpuctx, task_ctx);
2356

2357
	return ret;
T
Thomas Gleixner 已提交
2358 2359 2360
}

/*
2361 2362 2363
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2364 2365
 */
static void
2366 2367
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2368 2369
			int cpu)
{
2370
	struct task_struct *task = READ_ONCE(ctx->task);
2371

2372 2373
	lockdep_assert_held(&ctx->mutex);

2374 2375
	if (event->cpu != -1)
		event->cpu = cpu;
2376

2377 2378 2379 2380 2381 2382
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2394 2395 2396
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2416
	 */
2417

2418
	/*
2419 2420 2421 2422
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2423
	 */
2424 2425 2426
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2427 2428 2429 2430
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2431
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2432 2433 2434 2435 2436
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2437 2438 2439
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2440
	/*
2441 2442
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2443
	 */
2444 2445 2446 2447 2448 2449
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2450 2451
}

2452
/*
2453
 * Put a event into inactive state and update time fields.
2454 2455 2456 2457 2458 2459
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2460
static void __perf_event_mark_enabled(struct perf_event *event)
2461
{
2462
	struct perf_event *sub;
2463
	u64 tstamp = perf_event_time(event);
2464

2465
	event->state = PERF_EVENT_STATE_INACTIVE;
2466
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2467
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2468 2469
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2470
	}
2471 2472
}

2473
/*
2474
 * Cross CPU call to enable a performance event
2475
 */
2476 2477 2478 2479
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2480
{
2481
	struct perf_event *leader = event->group_leader;
2482
	struct perf_event_context *task_ctx;
2483

P
Peter Zijlstra 已提交
2484 2485
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2486
		return;
2487

2488 2489 2490
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2491
	__perf_event_mark_enabled(event);
2492

2493 2494 2495
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2496
	if (!event_filter_match(event)) {
2497
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2498
			perf_cgroup_defer_enabled(event);
2499
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2500
		return;
S
Stephane Eranian 已提交
2501
	}
2502

2503
	/*
2504
	 * If the event is in a group and isn't the group leader,
2505
	 * then don't put it on unless the group is on.
2506
	 */
2507 2508
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2509
		return;
2510
	}
2511

2512 2513 2514
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2515

2516
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2517 2518
}

2519
/*
2520
 * Enable a event.
2521
 *
2522 2523
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2524
 * remains valid.  This condition is satisfied when called through
2525 2526
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2527
 */
P
Peter Zijlstra 已提交
2528
static void _perf_event_enable(struct perf_event *event)
2529
{
2530
	struct perf_event_context *ctx = event->ctx;
2531

2532
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2533 2534
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2535
		raw_spin_unlock_irq(&ctx->lock);
2536 2537 2538 2539
		return;
	}

	/*
2540
	 * If the event is in error state, clear that first.
2541 2542 2543 2544
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2545
	 */
2546 2547
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2548
	raw_spin_unlock_irq(&ctx->lock);
2549

2550
	event_function_call(event, __perf_event_enable, NULL);
2551
}
P
Peter Zijlstra 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2564
EXPORT_SYMBOL_GPL(perf_event_enable);
2565

2566 2567 2568 2569 2570
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2571 2572
static int __perf_event_stop(void *info)
{
2573 2574
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2575

2576
	/* if it's already INACTIVE, do nothing */
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2602
		event->pmu->start(event, 0);
2603

2604 2605 2606
	return 0;
}

2607
static int perf_event_stop(struct perf_event *event, int restart)
2608 2609 2610
{
	struct stop_event_data sd = {
		.event		= event,
2611
		.restart	= restart,
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2672
static int _perf_event_refresh(struct perf_event *event, int refresh)
2673
{
2674
	/*
2675
	 * not supported on inherited events
2676
	 */
2677
	if (event->attr.inherit || !is_sampling_event(event))
2678 2679
		return -EINVAL;

2680
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2681
	_perf_event_enable(event);
2682 2683

	return 0;
2684
}
P
Peter Zijlstra 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2700
EXPORT_SYMBOL_GPL(perf_event_refresh);
2701

2702 2703 2704
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2705
{
2706
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2707
	struct perf_event *event;
2708

P
Peter Zijlstra 已提交
2709
	lockdep_assert_held(&ctx->lock);
2710

2711 2712 2713 2714 2715 2716 2717
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2718
		return;
2719 2720
	}

2721
	ctx->is_active &= ~event_type;
2722 2723 2724
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2725 2726 2727 2728 2729
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2741 2742 2743 2744 2745 2746
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2747 2748
	is_active ^= ctx->is_active; /* changed bits */

2749
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2750
		return;
2751

P
Peter Zijlstra 已提交
2752
	perf_pmu_disable(ctx->pmu);
2753
	if (is_active & EVENT_PINNED) {
2754 2755
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2756
	}
2757

2758
	if (is_active & EVENT_FLEXIBLE) {
2759
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2760
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2761
	}
P
Peter Zijlstra 已提交
2762
	perf_pmu_enable(ctx->pmu);
2763 2764
}

2765
/*
2766 2767 2768 2769 2770 2771
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2772
 */
2773 2774
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2775
{
2776 2777 2778
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2801 2802
}

2803 2804
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2805 2806 2807
{
	u64 value;

2808
	if (!event->attr.inherit_stat)
2809 2810 2811
		return;

	/*
2812
	 * Update the event value, we cannot use perf_event_read()
2813 2814
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2815
	 * we know the event must be on the current CPU, therefore we
2816 2817
	 * don't need to use it.
	 */
2818 2819
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2820 2821
		event->pmu->read(event);
		/* fall-through */
2822

2823 2824
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2825 2826 2827 2828 2829 2830 2831
		break;

	default:
		break;
	}

	/*
2832
	 * In order to keep per-task stats reliable we need to flip the event
2833 2834
	 * values when we flip the contexts.
	 */
2835 2836 2837
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2838

2839 2840
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2841

2842
	/*
2843
	 * Since we swizzled the values, update the user visible data too.
2844
	 */
2845 2846
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2847 2848
}

2849 2850
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2851
{
2852
	struct perf_event *event, *next_event;
2853 2854 2855 2856

	if (!ctx->nr_stat)
		return;

2857 2858
	update_context_time(ctx);

2859 2860
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2861

2862 2863
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2864

2865 2866
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2867

2868
		__perf_event_sync_stat(event, next_event);
2869

2870 2871
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2872 2873 2874
	}
}

2875 2876
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2877
{
P
Peter Zijlstra 已提交
2878
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2879
	struct perf_event_context *next_ctx;
2880
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2881
	struct perf_cpu_context *cpuctx;
2882
	int do_switch = 1;
T
Thomas Gleixner 已提交
2883

P
Peter Zijlstra 已提交
2884 2885
	if (likely(!ctx))
		return;
2886

P
Peter Zijlstra 已提交
2887 2888
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2889 2890
		return;

2891
	rcu_read_lock();
P
Peter Zijlstra 已提交
2892
	next_ctx = next->perf_event_ctxp[ctxn];
2893 2894 2895 2896 2897 2898 2899
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2900
	if (!parent && !next_parent)
2901 2902 2903
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2904 2905 2906 2907 2908 2909 2910 2911 2912
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2913 2914
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2915
		if (context_equiv(ctx, next_ctx)) {
2916 2917
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2918 2919 2920

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2931
			do_switch = 0;
2932

2933
			perf_event_sync_stat(ctx, next_ctx);
2934
		}
2935 2936
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2937
	}
2938
unlock:
2939
	rcu_read_unlock();
2940

2941
	if (do_switch) {
2942
		raw_spin_lock(&ctx->lock);
2943
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2944
		raw_spin_unlock(&ctx->lock);
2945
	}
T
Thomas Gleixner 已提交
2946 2947
}

2948 2949
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2950 2951
void perf_sched_cb_dec(struct pmu *pmu)
{
2952 2953
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2954
	this_cpu_dec(perf_sched_cb_usages);
2955 2956 2957

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2958 2959
}

2960

2961 2962
void perf_sched_cb_inc(struct pmu *pmu)
{
2963 2964 2965 2966 2967
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2968 2969 2970 2971 2972 2973
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2974 2975 2976 2977
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2989
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2990
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2991

2992 2993
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
2994

2995 2996
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
2997

2998
		pmu->sched_task(cpuctx->task_ctx, sched_in);
2999

3000 3001
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3002 3003 3004
	}
}

3005 3006 3007
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3022 3023
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3024 3025 3026
{
	int ctxn;

3027 3028 3029
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3030 3031 3032
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3033 3034
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3035 3036 3037 3038 3039 3040

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3041
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3042
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3043 3044
}

3045 3046 3047 3048 3049 3050 3051
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3052 3053
}

3054
static void
3055
ctx_pinned_sched_in(struct perf_event_context *ctx,
3056
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
3057
{
3058
	struct perf_event *event;
T
Thomas Gleixner 已提交
3059

3060 3061
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3062
			continue;
3063
		if (!event_filter_match(event))
3064 3065
			continue;

S
Stephane Eranian 已提交
3066 3067 3068 3069
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

3070
		if (group_can_go_on(event, cpuctx, 1))
3071
			group_sched_in(event, cpuctx, ctx);
3072 3073 3074 3075 3076

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3077 3078 3079
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
3080
		}
3081
	}
3082 3083 3084 3085
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3086
		      struct perf_cpu_context *cpuctx)
3087 3088 3089
{
	struct perf_event *event;
	int can_add_hw = 1;
3090

3091 3092 3093
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3094
			continue;
3095 3096
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3097
		 * of events:
3098
		 */
3099
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3100 3101
			continue;

S
Stephane Eranian 已提交
3102 3103 3104 3105
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3106
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3107
			if (group_sched_in(event, cpuctx, ctx))
3108
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3109
		}
T
Thomas Gleixner 已提交
3110
	}
3111 3112 3113 3114 3115
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3116 3117
	     enum event_type_t event_type,
	     struct task_struct *task)
3118
{
3119
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3120 3121 3122
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3123

3124
	if (likely(!ctx->nr_events))
3125
		return;
3126

3127
	ctx->is_active |= (event_type | EVENT_TIME);
3128 3129 3130 3131 3132 3133 3134
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3135 3136 3137 3138 3139 3140 3141 3142 3143
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3144 3145 3146 3147
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3148
	if (is_active & EVENT_PINNED)
3149
		ctx_pinned_sched_in(ctx, cpuctx);
3150 3151

	/* Then walk through the lower prio flexible groups */
3152
	if (is_active & EVENT_FLEXIBLE)
3153
		ctx_flexible_sched_in(ctx, cpuctx);
3154 3155
}

3156
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3157 3158
			     enum event_type_t event_type,
			     struct task_struct *task)
3159 3160 3161
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3162
	ctx_sched_in(ctx, cpuctx, event_type, task);
3163 3164
}

S
Stephane Eranian 已提交
3165 3166
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3167
{
P
Peter Zijlstra 已提交
3168
	struct perf_cpu_context *cpuctx;
3169

P
Peter Zijlstra 已提交
3170
	cpuctx = __get_cpu_context(ctx);
3171 3172 3173
	if (cpuctx->task_ctx == ctx)
		return;

3174
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3175
	perf_pmu_disable(ctx->pmu);
3176 3177 3178 3179
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3180 3181 3182
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3183
	 */
3184 3185
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3186
	perf_event_sched_in(cpuctx, ctx, task);
3187 3188
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3189 3190
}

P
Peter Zijlstra 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3202 3203
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3204 3205 3206 3207
{
	struct perf_event_context *ctx;
	int ctxn;

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3218 3219 3220 3221 3222
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3223
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3224
	}
3225

3226 3227 3228
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3229 3230
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3231 3232
}

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3260
#define REDUCE_FLS(a, b)		\
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3300 3301 3302
	if (!divisor)
		return dividend;

3303 3304 3305
	return div64_u64(dividend, divisor);
}

3306 3307 3308
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3309
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3310
{
3311
	struct hw_perf_event *hwc = &event->hw;
3312
	s64 period, sample_period;
3313 3314
	s64 delta;

3315
	period = perf_calculate_period(event, nsec, count);
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3326

3327
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3328 3329 3330
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3331
		local64_set(&hwc->period_left, 0);
3332 3333 3334

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3335
	}
3336 3337
}

3338 3339 3340 3341 3342 3343 3344
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3345
{
3346 3347
	struct perf_event *event;
	struct hw_perf_event *hwc;
3348
	u64 now, period = TICK_NSEC;
3349
	s64 delta;
3350

3351 3352 3353 3354 3355 3356
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3357 3358
		return;

3359
	raw_spin_lock(&ctx->lock);
3360
	perf_pmu_disable(ctx->pmu);
3361

3362
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3363
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3364 3365
			continue;

3366
		if (!event_filter_match(event))
3367 3368
			continue;

3369 3370
		perf_pmu_disable(event->pmu);

3371
		hwc = &event->hw;
3372

3373
		if (hwc->interrupts == MAX_INTERRUPTS) {
3374
			hwc->interrupts = 0;
3375
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3376
			event->pmu->start(event, 0);
3377 3378
		}

3379
		if (!event->attr.freq || !event->attr.sample_freq)
3380
			goto next;
3381

3382 3383 3384 3385 3386
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3387
		now = local64_read(&event->count);
3388 3389
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3390

3391 3392 3393
		/*
		 * restart the event
		 * reload only if value has changed
3394 3395 3396
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3397
		 */
3398
		if (delta > 0)
3399
			perf_adjust_period(event, period, delta, false);
3400 3401

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3402 3403
	next:
		perf_pmu_enable(event->pmu);
3404
	}
3405

3406
	perf_pmu_enable(ctx->pmu);
3407
	raw_spin_unlock(&ctx->lock);
3408 3409
}

3410
/*
3411
 * Round-robin a context's events:
3412
 */
3413
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3414
{
3415 3416 3417 3418 3419 3420
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3421 3422
}

3423
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3424
{
P
Peter Zijlstra 已提交
3425
	struct perf_event_context *ctx = NULL;
3426
	int rotate = 0;
3427

3428 3429 3430 3431
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3432

P
Peter Zijlstra 已提交
3433
	ctx = cpuctx->task_ctx;
3434 3435 3436 3437
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3438

3439
	if (!rotate)
3440 3441
		goto done;

3442
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3443
	perf_pmu_disable(cpuctx->ctx.pmu);
3444

3445 3446 3447
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3448

3449 3450 3451
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3452

3453
	perf_event_sched_in(cpuctx, ctx, current);
3454

3455 3456
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457
done:
3458 3459

	return rotate;
3460 3461 3462 3463
}

void perf_event_task_tick(void)
{
3464 3465
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3466
	int throttled;
3467

3468 3469
	WARN_ON(!irqs_disabled());

3470 3471
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3472
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3473

3474
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3475
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3476 3477
}

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3488
	__perf_event_mark_enabled(event);
3489 3490 3491 3492

	return 1;
}

3493
/*
3494
 * Enable all of a task's events that have been marked enable-on-exec.
3495 3496
 * This expects task == current.
 */
3497
static void perf_event_enable_on_exec(int ctxn)
3498
{
3499
	struct perf_event_context *ctx, *clone_ctx = NULL;
3500
	enum event_type_t event_type = 0;
3501
	struct perf_cpu_context *cpuctx;
3502
	struct perf_event *event;
3503 3504 3505 3506
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3507
	ctx = current->perf_event_ctxp[ctxn];
3508
	if (!ctx || !ctx->nr_events)
3509 3510
		goto out;

3511 3512
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3513
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3514
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3515
		enabled |= event_enable_on_exec(event, ctx);
3516 3517
		event_type |= get_event_type(event);
	}
3518 3519

	/*
3520
	 * Unclone and reschedule this context if we enabled any event.
3521
	 */
3522
	if (enabled) {
3523
		clone_ctx = unclone_ctx(ctx);
3524
		ctx_resched(cpuctx, ctx, event_type);
3525 3526
	}
	perf_ctx_unlock(cpuctx, ctx);
3527

P
Peter Zijlstra 已提交
3528
out:
3529
	local_irq_restore(flags);
3530 3531 3532

	if (clone_ctx)
		put_ctx(clone_ctx);
3533 3534
}

3535 3536 3537
struct perf_read_data {
	struct perf_event *event;
	bool group;
3538
	int ret;
3539 3540
};

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
static int find_cpu_to_read(struct perf_event *event, int local_cpu)
{
	int event_cpu = event->oncpu;
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
		event_pkg =  topology_physical_package_id(event_cpu);
		local_pkg =  topology_physical_package_id(local_cpu);

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3557
/*
3558
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3559
 */
3560
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3561
{
3562 3563
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3564
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3565
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3566
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3567

3568 3569 3570 3571
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3572 3573
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3574 3575 3576 3577
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3578
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3579
	if (ctx->is_active) {
3580
		update_context_time(ctx);
S
Stephane Eranian 已提交
3581 3582
		update_cgrp_time_from_event(event);
	}
3583

3584
	update_event_times(event);
3585 3586
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3587

3588 3589 3590
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3591
		goto unlock;
3592 3593 3594 3595 3596
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3597 3598 3599

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3600 3601 3602 3603 3604
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3605
			sub->pmu->read(sub);
3606
		}
3607
	}
3608 3609

	data->ret = pmu->commit_txn(pmu);
3610 3611

unlock:
3612
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3613 3614
}

P
Peter Zijlstra 已提交
3615 3616
static inline u64 perf_event_count(struct perf_event *event)
{
3617 3618 3619 3620
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3621 3622
}

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3676
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3677
{
3678
	int ret = 0, cpu_to_read, local_cpu;
3679

T
Thomas Gleixner 已提交
3680
	/*
3681 3682
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3683
	 */
3684
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3685 3686 3687
		struct perf_read_data data = {
			.event = event,
			.group = group,
3688
			.ret = 0,
3689
		};
3690 3691 3692 3693 3694

		local_cpu = get_cpu();
		cpu_to_read = find_cpu_to_read(event, local_cpu);
		put_cpu();

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
		 * If event->oncpu isn't a valid CPU it means the event got
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3705
		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3706
		ret = data.ret;
3707
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3708 3709 3710
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3711
		raw_spin_lock_irqsave(&ctx->lock, flags);
3712 3713 3714 3715 3716
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3717
		if (ctx->is_active) {
3718
			update_context_time(ctx);
S
Stephane Eranian 已提交
3719 3720
			update_cgrp_time_from_event(event);
		}
3721 3722 3723 3724
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3725
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3726
	}
3727 3728

	return ret;
T
Thomas Gleixner 已提交
3729 3730
}

3731
/*
3732
 * Initialize the perf_event context in a task_struct:
3733
 */
3734
static void __perf_event_init_context(struct perf_event_context *ctx)
3735
{
3736
	raw_spin_lock_init(&ctx->lock);
3737
	mutex_init(&ctx->mutex);
3738
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3739 3740
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3741 3742
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3758
	}
3759 3760 3761
	ctx->pmu = pmu;

	return ctx;
3762 3763
}

3764 3765 3766 3767
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3768 3769

	rcu_read_lock();
3770
	if (!vpid)
T
Thomas Gleixner 已提交
3771 3772
		task = current;
	else
3773
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3774 3775 3776 3777 3778 3779 3780
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3781 3782 3783
	return task;
}

3784 3785 3786
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3787
static struct perf_event_context *
3788 3789
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3790
{
3791
	struct perf_event_context *ctx, *clone_ctx = NULL;
3792
	struct perf_cpu_context *cpuctx;
3793
	void *task_ctx_data = NULL;
3794
	unsigned long flags;
P
Peter Zijlstra 已提交
3795
	int ctxn, err;
3796
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3797

3798
	if (!task) {
3799
		/* Must be root to operate on a CPU event: */
3800
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3801 3802 3803
			return ERR_PTR(-EACCES);

		/*
3804
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3805 3806 3807
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3808
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3809 3810
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3811
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3812
		ctx = &cpuctx->ctx;
3813
		get_ctx(ctx);
3814
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3815 3816 3817 3818

		return ctx;
	}

P
Peter Zijlstra 已提交
3819 3820 3821 3822 3823
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3824 3825 3826 3827 3828 3829 3830 3831
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3832
retry:
P
Peter Zijlstra 已提交
3833
	ctx = perf_lock_task_context(task, ctxn, &flags);
3834
	if (ctx) {
3835
		clone_ctx = unclone_ctx(ctx);
3836
		++ctx->pin_count;
3837 3838 3839 3840 3841

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3842
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3843 3844 3845

		if (clone_ctx)
			put_ctx(clone_ctx);
3846
	} else {
3847
		ctx = alloc_perf_context(pmu, task);
3848 3849 3850
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3851

3852 3853 3854 3855 3856
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3867
		else {
3868
			get_ctx(ctx);
3869
			++ctx->pin_count;
3870
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3871
		}
3872 3873 3874
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3875
			put_ctx(ctx);
3876 3877 3878 3879

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3880 3881 3882
		}
	}

3883
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3884
	return ctx;
3885

P
Peter Zijlstra 已提交
3886
errout:
3887
	kfree(task_ctx_data);
3888
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3889 3890
}

L
Li Zefan 已提交
3891
static void perf_event_free_filter(struct perf_event *event);
3892
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3893

3894
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3895
{
3896
	struct perf_event *event;
P
Peter Zijlstra 已提交
3897

3898 3899 3900
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3901
	perf_event_free_filter(event);
3902
	kfree(event);
P
Peter Zijlstra 已提交
3903 3904
}

3905 3906
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3907

3908 3909 3910 3911 3912 3913 3914 3915 3916
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3917
static bool is_sb_event(struct perf_event *event)
3918
{
3919 3920
	struct perf_event_attr *attr = &event->attr;

3921
	if (event->parent)
3922
		return false;
3923 3924

	if (event->attach_state & PERF_ATTACH_TASK)
3925
		return false;
3926

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3939 3940
}

3941
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3942
{
3943 3944 3945 3946 3947 3948
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3949

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3972 3973
static void unaccount_event(struct perf_event *event)
{
3974 3975
	bool dec = false;

3976 3977 3978 3979
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3980
		dec = true;
3981 3982 3983 3984 3985 3986
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3987
	if (event->attr.freq)
3988
		unaccount_freq_event();
3989
	if (event->attr.context_switch) {
3990
		dec = true;
3991 3992
		atomic_dec(&nr_switch_events);
	}
3993
	if (is_cgroup_event(event))
3994
		dec = true;
3995
	if (has_branch_stack(event))
3996 3997
		dec = true;

3998 3999 4000 4001
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4002 4003

	unaccount_event_cpu(event, event->cpu);
4004 4005

	unaccount_pmu_sb_event(event);
4006
}
4007

4008 4009 4010 4011 4012 4013 4014 4015
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4026
 * _free_event()), the latter -- before the first perf_install_in_context().
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4075
	if ((e1->pmu == e2->pmu) &&
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4101 4102 4103
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4104
static void _free_event(struct perf_event *event)
4105
{
4106
	irq_work_sync(&event->pending);
4107

4108
	unaccount_event(event);
4109

4110
	if (event->rb) {
4111 4112 4113 4114 4115 4116 4117
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4118
		ring_buffer_attach(event, NULL);
4119
		mutex_unlock(&event->mmap_mutex);
4120 4121
	}

S
Stephane Eranian 已提交
4122 4123 4124
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4125 4126 4127 4128 4129 4130
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4131 4132
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4133 4134 4135 4136 4137 4138 4139

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4140 4141
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4142 4143

	call_rcu(&event->rcu_head, free_event_rcu);
4144 4145
}

P
Peter Zijlstra 已提交
4146 4147 4148 4149 4150
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4151
{
P
Peter Zijlstra 已提交
4152 4153 4154 4155 4156 4157
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4158

P
Peter Zijlstra 已提交
4159
	_free_event(event);
T
Thomas Gleixner 已提交
4160 4161
}

4162
/*
4163
 * Remove user event from the owner task.
4164
 */
4165
static void perf_remove_from_owner(struct perf_event *event)
4166
{
P
Peter Zijlstra 已提交
4167
	struct task_struct *owner;
4168

P
Peter Zijlstra 已提交
4169 4170
	rcu_read_lock();
	/*
4171 4172 4173
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4174 4175
	 * owner->perf_event_mutex.
	 */
4176
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4198 4199 4200 4201 4202 4203
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4204
		if (event->owner) {
P
Peter Zijlstra 已提交
4205
			list_del_init(&event->owner_entry);
4206 4207
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4208 4209 4210
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4211 4212 4213 4214 4215 4216 4217
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4228
	struct perf_event_context *ctx = event->ctx;
4229 4230
	struct perf_event *child, *tmp;

4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4241 4242
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4243

4244
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4245
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4246
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4247

P
Peter Zijlstra 已提交
4248
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4249
	/*
P
Peter Zijlstra 已提交
4250 4251
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
4252
	 *
P
Peter Zijlstra 已提交
4253 4254 4255
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4256
	 *
4257 4258
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4259
	 */
P
Peter Zijlstra 已提交
4260 4261 4262 4263
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4264

4265 4266 4267
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4268

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4318 4319
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4320 4321 4322 4323
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4324 4325 4326
/*
 * Called when the last reference to the file is gone.
 */
4327 4328
static int perf_release(struct inode *inode, struct file *file)
{
4329
	perf_event_release_kernel(file->private_data);
4330
	return 0;
4331 4332
}

4333
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4334
{
4335
	struct perf_event *child;
4336 4337
	u64 total = 0;

4338 4339 4340
	*enabled = 0;
	*running = 0;

4341
	mutex_lock(&event->child_mutex);
4342

4343
	(void)perf_event_read(event, false);
4344 4345
	total += perf_event_count(event);

4346 4347 4348 4349 4350 4351
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4352
		(void)perf_event_read(child, false);
4353
		total += perf_event_count(child);
4354 4355 4356
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4357
	mutex_unlock(&event->child_mutex);
4358 4359 4360

	return total;
}
4361
EXPORT_SYMBOL_GPL(perf_event_read_value);
4362

4363
static int __perf_read_group_add(struct perf_event *leader,
4364
					u64 read_format, u64 *values)
4365
{
4366 4367
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4368
	int ret;
P
Peter Zijlstra 已提交
4369

4370 4371 4372
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4373

4374 4375 4376 4377 4378 4379 4380 4381 4382
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4383

4384 4385 4386 4387 4388 4389 4390 4391 4392
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4393 4394
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4395

4396 4397 4398 4399 4400
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4401 4402

	return 0;
4403
}
4404

4405 4406 4407 4408 4409
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4410
	int ret;
4411
	u64 *values;
4412

4413
	lockdep_assert_held(&ctx->mutex);
4414

4415 4416 4417
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4418

4419 4420 4421 4422 4423 4424 4425
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4426

4427 4428 4429 4430 4431 4432 4433 4434 4435
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4436

4437
	mutex_unlock(&leader->child_mutex);
4438

4439
	ret = event->read_size;
4440 4441
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4442
	goto out;
4443

4444 4445 4446
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4447
	kfree(values);
4448
	return ret;
4449 4450
}

4451
static int perf_read_one(struct perf_event *event,
4452 4453
				 u64 read_format, char __user *buf)
{
4454
	u64 enabled, running;
4455 4456 4457
	u64 values[4];
	int n = 0;

4458 4459 4460 4461 4462
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4463
	if (read_format & PERF_FORMAT_ID)
4464
		values[n++] = primary_event_id(event);
4465 4466 4467 4468 4469 4470 4471

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4472 4473 4474 4475
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4476
	if (event->state > PERF_EVENT_STATE_EXIT)
4477 4478 4479 4480 4481 4482 4483 4484
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4485
/*
4486
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4487 4488
 */
static ssize_t
4489
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4490
{
4491
	u64 read_format = event->attr.read_format;
4492
	int ret;
T
Thomas Gleixner 已提交
4493

4494
	/*
4495
	 * Return end-of-file for a read on a event that is in
4496 4497 4498
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4499
	if (event->state == PERF_EVENT_STATE_ERROR)
4500 4501
		return 0;

4502
	if (count < event->read_size)
4503 4504
		return -ENOSPC;

4505
	WARN_ON_ONCE(event->ctx->parent_ctx);
4506
	if (read_format & PERF_FORMAT_GROUP)
4507
		ret = perf_read_group(event, read_format, buf);
4508
	else
4509
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4510

4511
	return ret;
T
Thomas Gleixner 已提交
4512 4513 4514 4515 4516
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4517
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4518 4519
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4520

P
Peter Zijlstra 已提交
4521
	ctx = perf_event_ctx_lock(event);
4522
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4523 4524 4525
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4526 4527 4528 4529
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4530
	struct perf_event *event = file->private_data;
4531
	struct ring_buffer *rb;
4532
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4533

4534
	poll_wait(file, &event->waitq, wait);
4535

4536
	if (is_event_hup(event))
4537
		return events;
P
Peter Zijlstra 已提交
4538

4539
	/*
4540 4541
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4542 4543
	 */
	mutex_lock(&event->mmap_mutex);
4544 4545
	rb = event->rb;
	if (rb)
4546
		events = atomic_xchg(&rb->poll, 0);
4547
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4548 4549 4550
	return events;
}

P
Peter Zijlstra 已提交
4551
static void _perf_event_reset(struct perf_event *event)
4552
{
4553
	(void)perf_event_read(event, false);
4554
	local64_set(&event->count, 0);
4555
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4556 4557
}

4558
/*
4559 4560
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4561
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4562
 * task existence requirements of perf_event_enable/disable.
4563
 */
4564 4565
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4566
{
4567
	struct perf_event *child;
P
Peter Zijlstra 已提交
4568

4569
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4570

4571 4572 4573
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4574
		func(child);
4575
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4576 4577
}

4578 4579
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4580
{
4581 4582
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4583

P
Peter Zijlstra 已提交
4584 4585
	lockdep_assert_held(&ctx->mutex);

4586
	event = event->group_leader;
4587

4588 4589
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4590
		perf_event_for_each_child(sibling, func);
4591 4592
}

4593 4594 4595 4596
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4597
{
4598
	u64 value = *((u64 *)info);
4599
	bool active;
4600

4601 4602
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4603
	} else {
4604 4605
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4606
	}
4607 4608 4609 4610

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4611 4612 4613 4614 4615 4616 4617 4618
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4619 4620 4621 4622 4623 4624 4625 4626 4627
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4646
	event_function_call(event, __perf_event_period, &value);
4647

4648
	return 0;
4649 4650
}

4651 4652
static const struct file_operations perf_fops;

4653
static inline int perf_fget_light(int fd, struct fd *p)
4654
{
4655 4656 4657
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4658

4659 4660 4661
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4662
	}
4663 4664
	*p = f;
	return 0;
4665 4666 4667 4668
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4669
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4670
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4671

P
Peter Zijlstra 已提交
4672
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4673
{
4674
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4675
	u32 flags = arg;
4676 4677

	switch (cmd) {
4678
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4679
		func = _perf_event_enable;
4680
		break;
4681
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4682
		func = _perf_event_disable;
4683
		break;
4684
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4685
		func = _perf_event_reset;
4686
		break;
P
Peter Zijlstra 已提交
4687

4688
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4689
		return _perf_event_refresh(event, arg);
4690

4691 4692
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4693

4694 4695 4696 4697 4698 4699 4700 4701 4702
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4703
	case PERF_EVENT_IOC_SET_OUTPUT:
4704 4705 4706
	{
		int ret;
		if (arg != -1) {
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4717 4718 4719
		}
		return ret;
	}
4720

L
Li Zefan 已提交
4721 4722 4723
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4724 4725 4726
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4740
	default:
P
Peter Zijlstra 已提交
4741
		return -ENOTTY;
4742
	}
P
Peter Zijlstra 已提交
4743 4744

	if (flags & PERF_IOC_FLAG_GROUP)
4745
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4746
	else
4747
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4748 4749

	return 0;
4750 4751
}

P
Peter Zijlstra 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4785
int perf_event_task_enable(void)
4786
{
P
Peter Zijlstra 已提交
4787
	struct perf_event_context *ctx;
4788
	struct perf_event *event;
4789

4790
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4791 4792 4793 4794 4795
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4796
	mutex_unlock(&current->perf_event_mutex);
4797 4798 4799 4800

	return 0;
}

4801
int perf_event_task_disable(void)
4802
{
P
Peter Zijlstra 已提交
4803
	struct perf_event_context *ctx;
4804
	struct perf_event *event;
4805

4806
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4807 4808 4809 4810 4811
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4812
	mutex_unlock(&current->perf_event_mutex);
4813 4814 4815 4816

	return 0;
}

4817
static int perf_event_index(struct perf_event *event)
4818
{
P
Peter Zijlstra 已提交
4819 4820 4821
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4822
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4823 4824
		return 0;

4825
	return event->pmu->event_idx(event);
4826 4827
}

4828
static void calc_timer_values(struct perf_event *event,
4829
				u64 *now,
4830 4831
				u64 *enabled,
				u64 *running)
4832
{
4833
	u64 ctx_time;
4834

4835 4836
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4837 4838 4839 4840
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4856 4857
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4858 4859 4860 4861 4862

unlock:
	rcu_read_unlock();
}

4863 4864
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4865 4866 4867
{
}

4868 4869 4870 4871 4872
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4873
void perf_event_update_userpage(struct perf_event *event)
4874
{
4875
	struct perf_event_mmap_page *userpg;
4876
	struct ring_buffer *rb;
4877
	u64 enabled, running, now;
4878 4879

	rcu_read_lock();
4880 4881 4882 4883
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4884 4885 4886 4887 4888 4889 4890 4891 4892
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4893
	calc_timer_values(event, &now, &enabled, &running);
4894

4895
	userpg = rb->user_page;
4896 4897 4898 4899 4900
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4901
	++userpg->lock;
4902
	barrier();
4903
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4904
	userpg->offset = perf_event_count(event);
4905
	if (userpg->index)
4906
		userpg->offset -= local64_read(&event->hw.prev_count);
4907

4908
	userpg->time_enabled = enabled +
4909
			atomic64_read(&event->child_total_time_enabled);
4910

4911
	userpg->time_running = running +
4912
			atomic64_read(&event->child_total_time_running);
4913

4914
	arch_perf_update_userpage(event, userpg, now);
4915

4916
	barrier();
4917
	++userpg->lock;
4918
	preempt_enable();
4919
unlock:
4920
	rcu_read_unlock();
4921 4922
}

4923 4924 4925
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4926
	struct ring_buffer *rb;
4927 4928 4929 4930 4931 4932 4933 4934 4935
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4936 4937
	rb = rcu_dereference(event->rb);
	if (!rb)
4938 4939 4940 4941 4942
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4943
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4958 4959 4960
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4961
	struct ring_buffer *old_rb = NULL;
4962 4963
	unsigned long flags;

4964 4965 4966 4967 4968 4969
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4970

4971 4972 4973 4974
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4975

4976 4977
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4978
	}
4979

4980
	if (rb) {
4981 4982 4983 4984 4985
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4986 4987 4988 4989 4990
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5015 5016 5017 5018 5019 5020 5021 5022
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5023 5024 5025 5026
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5027 5028 5029
	rcu_read_unlock();
}

5030
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5031
{
5032
	struct ring_buffer *rb;
5033

5034
	rcu_read_lock();
5035 5036 5037 5038
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5039 5040 5041
	}
	rcu_read_unlock();

5042
	return rb;
5043 5044
}

5045
void ring_buffer_put(struct ring_buffer *rb)
5046
{
5047
	if (!atomic_dec_and_test(&rb->refcount))
5048
		return;
5049

5050
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5051

5052
	call_rcu(&rb->rcu_head, rb_free_rcu);
5053 5054 5055 5056
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5057
	struct perf_event *event = vma->vm_file->private_data;
5058

5059
	atomic_inc(&event->mmap_count);
5060
	atomic_inc(&event->rb->mmap_count);
5061

5062 5063 5064
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5065 5066
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
5067 5068
}

5069 5070
static void perf_pmu_output_stop(struct perf_event *event);

5071 5072 5073 5074 5075 5076 5077 5078
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5079 5080
static void perf_mmap_close(struct vm_area_struct *vma)
{
5081
	struct perf_event *event = vma->vm_file->private_data;
5082

5083
	struct ring_buffer *rb = ring_buffer_get(event);
5084 5085 5086
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5087

5088 5089 5090
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

5091 5092 5093 5094 5095 5096 5097
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5098 5099 5100 5101 5102 5103 5104 5105 5106
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5107 5108 5109
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5110
		/* this has to be the last one */
5111
		rb_free_aux(rb);
5112 5113
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5114 5115 5116
		mutex_unlock(&event->mmap_mutex);
	}

5117 5118 5119
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5120
		goto out_put;
5121

5122
	ring_buffer_attach(event, NULL);
5123 5124 5125
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5126 5127
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5128

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5145

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5157 5158 5159
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5160
		mutex_unlock(&event->mmap_mutex);
5161
		put_event(event);
5162

5163 5164 5165 5166 5167
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5168
	}
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5184
out_put:
5185
	ring_buffer_put(rb); /* could be last */
5186 5187
}

5188
static const struct vm_operations_struct perf_mmap_vmops = {
5189
	.open		= perf_mmap_open,
5190
	.close		= perf_mmap_close, /* non mergable */
5191 5192
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5193 5194 5195 5196
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5197
	struct perf_event *event = file->private_data;
5198
	unsigned long user_locked, user_lock_limit;
5199
	struct user_struct *user = current_user();
5200
	unsigned long locked, lock_limit;
5201
	struct ring_buffer *rb = NULL;
5202 5203
	unsigned long vma_size;
	unsigned long nr_pages;
5204
	long user_extra = 0, extra = 0;
5205
	int ret = 0, flags = 0;
5206

5207 5208 5209
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5210
	 * same rb.
5211 5212 5213 5214
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5215
	if (!(vma->vm_flags & VM_SHARED))
5216
		return -EINVAL;
5217 5218

	vma_size = vma->vm_end - vma->vm_start;
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5279

5280
	/*
5281
	 * If we have rb pages ensure they're a power-of-two number, so we
5282 5283
	 * can do bitmasks instead of modulo.
	 */
5284
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5285 5286
		return -EINVAL;

5287
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5288 5289
		return -EINVAL;

5290
	WARN_ON_ONCE(event->ctx->parent_ctx);
5291
again:
5292
	mutex_lock(&event->mmap_mutex);
5293
	if (event->rb) {
5294
		if (event->rb->nr_pages != nr_pages) {
5295
			ret = -EINVAL;
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5309 5310 5311
		goto unlock;
	}

5312
	user_extra = nr_pages + 1;
5313 5314

accounting:
5315
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5316 5317 5318 5319 5320 5321

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5322
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5323

5324 5325
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5326

5327
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5328
	lock_limit >>= PAGE_SHIFT;
5329
	locked = vma->vm_mm->pinned_vm + extra;
5330

5331 5332
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5333 5334 5335
		ret = -EPERM;
		goto unlock;
	}
5336

5337
	WARN_ON(!rb && event->rb);
5338

5339
	if (vma->vm_flags & VM_WRITE)
5340
		flags |= RING_BUFFER_WRITABLE;
5341

5342
	if (!rb) {
5343 5344 5345
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5346

5347 5348 5349 5350
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5351

5352 5353 5354
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5355

5356
		ring_buffer_attach(event, rb);
5357

5358 5359 5360
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5361 5362
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5363 5364 5365
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5366

5367
unlock:
5368 5369 5370 5371
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5372
		atomic_inc(&event->mmap_count);
5373 5374 5375 5376
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5377
	mutex_unlock(&event->mmap_mutex);
5378

5379 5380 5381 5382
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5383
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5384
	vma->vm_ops = &perf_mmap_vmops;
5385

5386 5387 5388
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5389
	return ret;
5390 5391
}

P
Peter Zijlstra 已提交
5392 5393
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5394
	struct inode *inode = file_inode(filp);
5395
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5396 5397
	int retval;

A
Al Viro 已提交
5398
	inode_lock(inode);
5399
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5400
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5401 5402 5403 5404 5405 5406 5407

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5408
static const struct file_operations perf_fops = {
5409
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5410 5411 5412
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5413
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5414
	.compat_ioctl		= perf_compat_ioctl,
5415
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5416
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5417 5418
};

5419
/*
5420
 * Perf event wakeup
5421 5422 5423 5424 5425
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5426 5427 5428 5429 5430 5431 5432 5433
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5434
void perf_event_wakeup(struct perf_event *event)
5435
{
5436
	ring_buffer_wakeup(event);
5437

5438
	if (event->pending_kill) {
5439
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5440
		event->pending_kill = 0;
5441
	}
5442 5443
}

5444
static void perf_pending_event(struct irq_work *entry)
5445
{
5446 5447
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5448 5449 5450 5451 5452 5453 5454
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5455

5456 5457
	if (event->pending_disable) {
		event->pending_disable = 0;
5458
		perf_event_disable_local(event);
5459 5460
	}

5461 5462 5463
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5464
	}
5465 5466 5467

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5468 5469
}

5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5491 5492 5493 5494 5495
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5496
	DECLARE_BITMAP(_mask, 64);
5497

5498 5499
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5500 5501 5502 5503 5504 5505 5506
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5507
static void perf_sample_regs_user(struct perf_regs *regs_user,
5508 5509
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5510
{
5511 5512
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5513
		regs_user->regs = regs;
5514 5515
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5516 5517 5518
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5519 5520 5521
	}
}

5522 5523 5524 5525 5526 5527 5528 5529
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5625 5626 5627
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5641
		data->time = perf_event_clock(event);
5642

5643
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5655 5656 5657
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5682 5683 5684

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5685 5686
}

5687 5688 5689
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5690 5691 5692 5693 5694
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5695
static void perf_output_read_one(struct perf_output_handle *handle,
5696 5697
				 struct perf_event *event,
				 u64 enabled, u64 running)
5698
{
5699
	u64 read_format = event->attr.read_format;
5700 5701 5702
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5703
	values[n++] = perf_event_count(event);
5704
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5705
		values[n++] = enabled +
5706
			atomic64_read(&event->child_total_time_enabled);
5707 5708
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5709
		values[n++] = running +
5710
			atomic64_read(&event->child_total_time_running);
5711 5712
	}
	if (read_format & PERF_FORMAT_ID)
5713
		values[n++] = primary_event_id(event);
5714

5715
	__output_copy(handle, values, n * sizeof(u64));
5716 5717 5718
}

/*
5719
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5720 5721
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5722 5723
			    struct perf_event *event,
			    u64 enabled, u64 running)
5724
{
5725 5726
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5727 5728 5729 5730 5731 5732
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5733
		values[n++] = enabled;
5734 5735

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5736
		values[n++] = running;
5737

5738
	if (leader != event)
5739 5740
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5741
	values[n++] = perf_event_count(leader);
5742
	if (read_format & PERF_FORMAT_ID)
5743
		values[n++] = primary_event_id(leader);
5744

5745
	__output_copy(handle, values, n * sizeof(u64));
5746

5747
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5748 5749
		n = 0;

5750 5751
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5752 5753
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5754
		values[n++] = perf_event_count(sub);
5755
		if (read_format & PERF_FORMAT_ID)
5756
			values[n++] = primary_event_id(sub);
5757

5758
		__output_copy(handle, values, n * sizeof(u64));
5759 5760 5761
	}
}

5762 5763 5764
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5765
static void perf_output_read(struct perf_output_handle *handle,
5766
			     struct perf_event *event)
5767
{
5768
	u64 enabled = 0, running = 0, now;
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5780
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5781
		calc_timer_values(event, &now, &enabled, &running);
5782

5783
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5784
		perf_output_read_group(handle, event, enabled, running);
5785
	else
5786
		perf_output_read_one(handle, event, enabled, running);
5787 5788
}

5789 5790 5791
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5792
			struct perf_event *event)
5793 5794 5795 5796 5797
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5798 5799 5800
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5826
		perf_output_read(handle, event);
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5837
			__output_copy(handle, data->callchain, size);
5838 5839 5840 5841 5842 5843 5844
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5876

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5911

5912
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5913 5914 5915
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5916
	}
A
Andi Kleen 已提交
5917 5918 5919

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5920 5921 5922

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5923

A
Andi Kleen 已提交
5924 5925 5926
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5957 5958 5959 5960
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5961
			 struct perf_event *event,
5962
			 struct pt_regs *regs)
5963
{
5964
	u64 sample_type = event->attr.sample_type;
5965

5966
	header->type = PERF_RECORD_SAMPLE;
5967
	header->size = sizeof(*header) + event->header_size;
5968 5969 5970

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5971

5972
	__perf_event_header__init_id(header, data, event);
5973

5974
	if (sample_type & PERF_SAMPLE_IP)
5975 5976
		data->ip = perf_instruction_pointer(regs);

5977
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5978
		int size = 1;
5979

5980
		data->callchain = perf_callchain(event, regs);
5981 5982 5983 5984 5985

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5986 5987
	}

5988
	if (sample_type & PERF_SAMPLE_RAW) {
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6009

6010
		header->size += size;
6011
	}
6012 6013 6014 6015 6016 6017 6018 6019 6020

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6021

6022
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6023 6024
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6025

6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6049
						     data->regs_user.regs);
6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6077
}
6078

6079 6080 6081 6082 6083 6084 6085
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6086 6087 6088
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6089

6090 6091 6092
	/* protect the callchain buffers */
	rcu_read_lock();

6093
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6094

6095
	if (output_begin(&handle, event, header.size))
6096
		goto exit;
6097

6098
	perf_output_sample(&handle, &header, data, event);
6099

6100
	perf_output_end(&handle);
6101 6102 6103

exit:
	rcu_read_unlock();
6104 6105
}

6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6130
/*
6131
 * read event_id
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6142
perf_event_read_event(struct perf_event *event,
6143 6144 6145
			struct task_struct *task)
{
	struct perf_output_handle handle;
6146
	struct perf_sample_data sample;
6147
	struct perf_read_event read_event = {
6148
		.header = {
6149
			.type = PERF_RECORD_READ,
6150
			.misc = 0,
6151
			.size = sizeof(read_event) + event->read_size,
6152
		},
6153 6154
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6155
	};
6156
	int ret;
6157

6158
	perf_event_header__init_id(&read_event.header, &sample, event);
6159
	ret = perf_output_begin(&handle, event, read_event.header.size);
6160 6161 6162
	if (ret)
		return;

6163
	perf_output_put(&handle, read_event);
6164
	perf_output_read(&handle, event);
6165
	perf_event__output_id_sample(event, &handle, &sample);
6166

6167 6168 6169
	perf_output_end(&handle);
}

6170
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6171 6172

static void
6173 6174
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6175
		   void *data, bool all)
6176 6177 6178 6179
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6180 6181 6182 6183 6184 6185 6186
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6187
		output(event, data);
6188 6189 6190
	}
}

6191
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6192 6193 6194 6195 6196
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6197 6198 6199 6200 6201 6202 6203 6204
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6205 6206 6207 6208 6209 6210 6211 6212
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6213 6214 6215 6216 6217 6218
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6219
static void
6220
perf_iterate_sb(perf_iterate_f output, void *data,
6221 6222 6223 6224 6225
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6226 6227 6228
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6229
	/*
6230 6231
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6232 6233 6234
	 * context.
	 */
	if (task_ctx) {
6235 6236
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6237 6238
	}

6239
	perf_iterate_sb_cpu(output, data);
6240 6241

	for_each_task_context_nr(ctxn) {
6242 6243
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6244
			perf_iterate_ctx(ctx, output, data, false);
6245
	}
6246
done:
6247
	preempt_enable();
6248
	rcu_read_unlock();
6249 6250
}

6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6280
		perf_event_stop(event, 1);
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6296
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6297 6298 6299 6300 6301
				   true);
	}
	rcu_read_unlock();
}

6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6312 6313 6314
	struct stop_event_data sd = {
		.event	= event,
	};
6315 6316 6317 6318 6319 6320 6321 6322 6323

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6324 6325 6326 6327 6328 6329 6330
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6331 6332
	 */
	if (rcu_dereference(parent->rb) == rb)
6333
		ro->err = __perf_event_stop(&sd);
6334 6335 6336 6337 6338 6339
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6340
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6341 6342 6343 6344 6345
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6346
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6347
	if (cpuctx->task_ctx)
6348
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6349
				   &ro, false);
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6383 6384
}

P
Peter Zijlstra 已提交
6385
/*
P
Peter Zijlstra 已提交
6386 6387
 * task tracking -- fork/exit
 *
6388
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6389 6390
 */

P
Peter Zijlstra 已提交
6391
struct perf_task_event {
6392
	struct task_struct		*task;
6393
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6394 6395 6396 6397 6398 6399

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6400 6401
		u32				tid;
		u32				ptid;
6402
		u64				time;
6403
	} event_id;
P
Peter Zijlstra 已提交
6404 6405
};

6406 6407
static int perf_event_task_match(struct perf_event *event)
{
6408 6409 6410
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6411 6412
}

6413
static void perf_event_task_output(struct perf_event *event,
6414
				   void *data)
P
Peter Zijlstra 已提交
6415
{
6416
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6417
	struct perf_output_handle handle;
6418
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6419
	struct task_struct *task = task_event->task;
6420
	int ret, size = task_event->event_id.header.size;
6421

6422 6423 6424
	if (!perf_event_task_match(event))
		return;

6425
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6426

6427
	ret = perf_output_begin(&handle, event,
6428
				task_event->event_id.header.size);
6429
	if (ret)
6430
		goto out;
P
Peter Zijlstra 已提交
6431

6432 6433
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6434

6435 6436
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6437

6438 6439
	task_event->event_id.time = perf_event_clock(event);

6440
	perf_output_put(&handle, task_event->event_id);
6441

6442 6443
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6444
	perf_output_end(&handle);
6445 6446
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6447 6448
}

6449 6450
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6451
			      int new)
P
Peter Zijlstra 已提交
6452
{
P
Peter Zijlstra 已提交
6453
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6454

6455 6456 6457
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6458 6459
		return;

P
Peter Zijlstra 已提交
6460
	task_event = (struct perf_task_event){
6461 6462
		.task	  = task,
		.task_ctx = task_ctx,
6463
		.event_id    = {
P
Peter Zijlstra 已提交
6464
			.header = {
6465
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6466
				.misc = 0,
6467
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6468
			},
6469 6470
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6471 6472
			/* .tid  */
			/* .ptid */
6473
			/* .time */
P
Peter Zijlstra 已提交
6474 6475 6476
		},
	};

6477
	perf_iterate_sb(perf_event_task_output,
6478 6479
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6480 6481
}

6482
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6483
{
6484
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
6485 6486
}

6487 6488 6489 6490 6491
/*
 * comm tracking
 */

struct perf_comm_event {
6492 6493
	struct task_struct	*task;
	char			*comm;
6494 6495 6496 6497 6498 6499 6500
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6501
	} event_id;
6502 6503
};

6504 6505 6506 6507 6508
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6509
static void perf_event_comm_output(struct perf_event *event,
6510
				   void *data)
6511
{
6512
	struct perf_comm_event *comm_event = data;
6513
	struct perf_output_handle handle;
6514
	struct perf_sample_data sample;
6515
	int size = comm_event->event_id.header.size;
6516 6517
	int ret;

6518 6519 6520
	if (!perf_event_comm_match(event))
		return;

6521 6522
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6523
				comm_event->event_id.header.size);
6524 6525

	if (ret)
6526
		goto out;
6527

6528 6529
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6530

6531
	perf_output_put(&handle, comm_event->event_id);
6532
	__output_copy(&handle, comm_event->comm,
6533
				   comm_event->comm_size);
6534 6535 6536

	perf_event__output_id_sample(event, &handle, &sample);

6537
	perf_output_end(&handle);
6538 6539
out:
	comm_event->event_id.header.size = size;
6540 6541
}

6542
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6543
{
6544
	char comm[TASK_COMM_LEN];
6545 6546
	unsigned int size;

6547
	memset(comm, 0, sizeof(comm));
6548
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6549
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6550 6551 6552 6553

	comm_event->comm = comm;
	comm_event->comm_size = size;

6554
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6555

6556
	perf_iterate_sb(perf_event_comm_output,
6557 6558
		       comm_event,
		       NULL);
6559 6560
}

6561
void perf_event_comm(struct task_struct *task, bool exec)
6562
{
6563 6564
	struct perf_comm_event comm_event;

6565
	if (!atomic_read(&nr_comm_events))
6566
		return;
6567

6568
	comm_event = (struct perf_comm_event){
6569
		.task	= task,
6570 6571
		/* .comm      */
		/* .comm_size */
6572
		.event_id  = {
6573
			.header = {
6574
				.type = PERF_RECORD_COMM,
6575
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6576 6577 6578 6579
				/* .size */
			},
			/* .pid */
			/* .tid */
6580 6581 6582
		},
	};

6583
	perf_event_comm_event(&comm_event);
6584 6585
}

6586 6587 6588 6589 6590
/*
 * mmap tracking
 */

struct perf_mmap_event {
6591 6592 6593 6594
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6595 6596 6597
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6598
	u32			prot, flags;
6599 6600 6601 6602 6603 6604 6605 6606 6607

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6608
	} event_id;
6609 6610
};

6611 6612 6613 6614 6615 6616 6617 6618
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6619
	       (executable && (event->attr.mmap || event->attr.mmap2));
6620 6621
}

6622
static void perf_event_mmap_output(struct perf_event *event,
6623
				   void *data)
6624
{
6625
	struct perf_mmap_event *mmap_event = data;
6626
	struct perf_output_handle handle;
6627
	struct perf_sample_data sample;
6628
	int size = mmap_event->event_id.header.size;
6629
	int ret;
6630

6631 6632 6633
	if (!perf_event_mmap_match(event, data))
		return;

6634 6635 6636 6637 6638
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6639
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6640 6641
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6642 6643
	}

6644 6645
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6646
				mmap_event->event_id.header.size);
6647
	if (ret)
6648
		goto out;
6649

6650 6651
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6652

6653
	perf_output_put(&handle, mmap_event->event_id);
6654 6655 6656 6657 6658 6659

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6660 6661
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6662 6663
	}

6664
	__output_copy(&handle, mmap_event->file_name,
6665
				   mmap_event->file_size);
6666 6667 6668

	perf_event__output_id_sample(event, &handle, &sample);

6669
	perf_output_end(&handle);
6670 6671
out:
	mmap_event->event_id.header.size = size;
6672 6673
}

6674
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6675
{
6676 6677
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6678 6679
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6680
	u32 prot = 0, flags = 0;
6681 6682 6683
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6684
	char *name;
6685

6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6707
	if (file) {
6708 6709
		struct inode *inode;
		dev_t dev;
6710

6711
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6712
		if (!buf) {
6713 6714
			name = "//enomem";
			goto cpy_name;
6715
		}
6716
		/*
6717
		 * d_path() works from the end of the rb backwards, so we
6718 6719 6720
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6721
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6722
		if (IS_ERR(name)) {
6723 6724
			name = "//toolong";
			goto cpy_name;
6725
		}
6726 6727 6728 6729 6730 6731
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6732

6733
		goto got_name;
6734
	} else {
6735 6736 6737 6738 6739 6740
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6741
		name = (char *)arch_vma_name(vma);
6742 6743
		if (name)
			goto cpy_name;
6744

6745
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6746
				vma->vm_end >= vma->vm_mm->brk) {
6747 6748
			name = "[heap]";
			goto cpy_name;
6749 6750
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6751
				vma->vm_end >= vma->vm_mm->start_stack) {
6752 6753
			name = "[stack]";
			goto cpy_name;
6754 6755
		}

6756 6757
		name = "//anon";
		goto cpy_name;
6758 6759
	}

6760 6761 6762
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6763
got_name:
6764 6765 6766 6767 6768 6769 6770 6771
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6772 6773 6774

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6775 6776 6777 6778
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6779 6780
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6781

6782 6783 6784
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6785
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6786

6787
	perf_iterate_sb(perf_event_mmap_output,
6788 6789
		       mmap_event,
		       NULL);
6790

6791 6792 6793
	kfree(buf);
}

6794 6795 6796 6797 6798 6799 6800
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
6801
	if (filter->inode != file_inode(file))
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6844
		perf_event_stop(event, 1);
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

6855 6856 6857 6858 6859 6860 6861
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

6862 6863 6864 6865 6866 6867
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

6868
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6869 6870 6871 6872
	}
	rcu_read_unlock();
}

6873
void perf_event_mmap(struct vm_area_struct *vma)
6874
{
6875 6876
	struct perf_mmap_event mmap_event;

6877
	if (!atomic_read(&nr_mmap_events))
6878 6879 6880
		return;

	mmap_event = (struct perf_mmap_event){
6881
		.vma	= vma,
6882 6883
		/* .file_name */
		/* .file_size */
6884
		.event_id  = {
6885
			.header = {
6886
				.type = PERF_RECORD_MMAP,
6887
				.misc = PERF_RECORD_MISC_USER,
6888 6889 6890 6891
				/* .size */
			},
			/* .pid */
			/* .tid */
6892 6893
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6894
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6895
		},
6896 6897 6898 6899
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6900 6901
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6902 6903
	};

6904
	perf_addr_filters_adjust(vma);
6905
	perf_event_mmap_event(&mmap_event);
6906 6907
}

A
Alexander Shishkin 已提交
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7055
	perf_iterate_sb(perf_event_switch_output,
7056 7057 7058 7059
		       &switch_event,
		       NULL);
}

7060 7061 7062 7063
/*
 * IRQ throttle logging
 */

7064
static void perf_log_throttle(struct perf_event *event, int enable)
7065 7066
{
	struct perf_output_handle handle;
7067
	struct perf_sample_data sample;
7068 7069 7070 7071 7072
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7073
		u64				id;
7074
		u64				stream_id;
7075 7076
	} throttle_event = {
		.header = {
7077
			.type = PERF_RECORD_THROTTLE,
7078 7079 7080
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7081
		.time		= perf_event_clock(event),
7082 7083
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7084 7085
	};

7086
	if (enable)
7087
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7088

7089 7090 7091
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7092
				throttle_event.header.size);
7093 7094 7095 7096
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7097
	perf_event__output_id_sample(event, &handle, &sample);
7098 7099 7100
	perf_output_end(&handle);
}

7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7137 7138
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7139
{
7140
	struct hw_perf_event *hwc = &event->hw;
7141
	int ret = 0;
7142
	u64 seq;
7143

7144 7145 7146 7147 7148 7149 7150 7151 7152
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7153
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7154 7155
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7156 7157
			ret = 1;
		}
7158
	}
7159

7160
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7161
		u64 now = perf_clock();
7162
		s64 delta = now - hwc->freq_time_stamp;
7163

7164
		hwc->freq_time_stamp = now;
7165

7166
		if (delta > 0 && delta < 2*TICK_NSEC)
7167
			perf_adjust_period(event, delta, hwc->last_period, true);
7168 7169
	}

7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);

7198 7199
	/*
	 * XXX event_limit might not quite work as expected on inherited
7200
	 * events
7201 7202
	 */

7203 7204
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7205
		ret = 1;
7206
		event->pending_kill = POLL_HUP;
7207 7208

		perf_event_disable_inatomic(event);
7209 7210
	}

7211
	READ_ONCE(event->overflow_handler)(event, data, regs);
7212

7213
	if (*perf_event_fasync(event) && event->pending_kill) {
7214 7215
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7216 7217
	}

7218
	return ret;
7219 7220
}

7221
int perf_event_overflow(struct perf_event *event,
7222 7223
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7224
{
7225
	return __perf_event_overflow(event, 1, data, regs);
7226 7227
}

7228
/*
7229
 * Generic software event infrastructure
7230 7231
 */

7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7243
/*
7244 7245
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7246 7247 7248 7249
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7250
u64 perf_swevent_set_period(struct perf_event *event)
7251
{
7252
	struct hw_perf_event *hwc = &event->hw;
7253 7254 7255 7256 7257
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7258 7259

again:
7260
	old = val = local64_read(&hwc->period_left);
7261 7262
	if (val < 0)
		return 0;
7263

7264 7265 7266
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7267
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7268
		goto again;
7269

7270
	return nr;
7271 7272
}

7273
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7274
				    struct perf_sample_data *data,
7275
				    struct pt_regs *regs)
7276
{
7277
	struct hw_perf_event *hwc = &event->hw;
7278
	int throttle = 0;
7279

7280 7281
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7282

7283 7284
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7285

7286
	for (; overflow; overflow--) {
7287
		if (__perf_event_overflow(event, throttle,
7288
					    data, regs)) {
7289 7290 7291 7292 7293 7294
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7295
		throttle = 1;
7296
	}
7297 7298
}

P
Peter Zijlstra 已提交
7299
static void perf_swevent_event(struct perf_event *event, u64 nr,
7300
			       struct perf_sample_data *data,
7301
			       struct pt_regs *regs)
7302
{
7303
	struct hw_perf_event *hwc = &event->hw;
7304

7305
	local64_add(nr, &event->count);
7306

7307 7308 7309
	if (!regs)
		return;

7310
	if (!is_sampling_event(event))
7311
		return;
7312

7313 7314 7315 7316 7317 7318
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7319
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7320
		return perf_swevent_overflow(event, 1, data, regs);
7321

7322
	if (local64_add_negative(nr, &hwc->period_left))
7323
		return;
7324

7325
	perf_swevent_overflow(event, 0, data, regs);
7326 7327
}

7328 7329 7330
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7331
	if (event->hw.state & PERF_HES_STOPPED)
7332
		return 1;
P
Peter Zijlstra 已提交
7333

7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7345
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7346
				enum perf_type_id type,
L
Li Zefan 已提交
7347 7348 7349
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7350
{
7351
	if (event->attr.type != type)
7352
		return 0;
7353

7354
	if (event->attr.config != event_id)
7355 7356
		return 0;

7357 7358
	if (perf_exclude_event(event, regs))
		return 0;
7359 7360 7361 7362

	return 1;
}

7363 7364 7365 7366 7367 7368 7369
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7370 7371
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7372
{
7373 7374 7375 7376
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7377

7378 7379
/* For the read side: events when they trigger */
static inline struct hlist_head *
7380
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7381 7382
{
	struct swevent_hlist *hlist;
7383

7384
	hlist = rcu_dereference(swhash->swevent_hlist);
7385 7386 7387
	if (!hlist)
		return NULL;

7388 7389 7390 7391 7392
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7393
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7404
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7405 7406 7407 7408 7409
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7410 7411 7412
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7413
				    u64 nr,
7414 7415
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7416
{
7417
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7418
	struct perf_event *event;
7419
	struct hlist_head *head;
7420

7421
	rcu_read_lock();
7422
	head = find_swevent_head_rcu(swhash, type, event_id);
7423 7424 7425
	if (!head)
		goto end;

7426
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7427
		if (perf_swevent_match(event, type, event_id, data, regs))
7428
			perf_swevent_event(event, nr, data, regs);
7429
	}
7430 7431
end:
	rcu_read_unlock();
7432 7433
}

7434 7435
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7436
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7437
{
7438
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7439

7440
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7441
}
I
Ingo Molnar 已提交
7442
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7443

7444
void perf_swevent_put_recursion_context(int rctx)
7445
{
7446
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7447

7448
	put_recursion_context(swhash->recursion, rctx);
7449
}
7450

7451
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7452
{
7453
	struct perf_sample_data data;
7454

7455
	if (WARN_ON_ONCE(!regs))
7456
		return;
7457

7458
	perf_sample_data_init(&data, addr, 0);
7459
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7472 7473

	perf_swevent_put_recursion_context(rctx);
7474
fail:
7475
	preempt_enable_notrace();
7476 7477
}

7478
static void perf_swevent_read(struct perf_event *event)
7479 7480 7481
{
}

P
Peter Zijlstra 已提交
7482
static int perf_swevent_add(struct perf_event *event, int flags)
7483
{
7484
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7485
	struct hw_perf_event *hwc = &event->hw;
7486 7487
	struct hlist_head *head;

7488
	if (is_sampling_event(event)) {
7489
		hwc->last_period = hwc->sample_period;
7490
		perf_swevent_set_period(event);
7491
	}
7492

P
Peter Zijlstra 已提交
7493 7494
	hwc->state = !(flags & PERF_EF_START);

7495
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7496
	if (WARN_ON_ONCE(!head))
7497 7498 7499
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7500
	perf_event_update_userpage(event);
7501

7502 7503 7504
	return 0;
}

P
Peter Zijlstra 已提交
7505
static void perf_swevent_del(struct perf_event *event, int flags)
7506
{
7507
	hlist_del_rcu(&event->hlist_entry);
7508 7509
}

P
Peter Zijlstra 已提交
7510
static void perf_swevent_start(struct perf_event *event, int flags)
7511
{
P
Peter Zijlstra 已提交
7512
	event->hw.state = 0;
7513
}
I
Ingo Molnar 已提交
7514

P
Peter Zijlstra 已提交
7515
static void perf_swevent_stop(struct perf_event *event, int flags)
7516
{
P
Peter Zijlstra 已提交
7517
	event->hw.state = PERF_HES_STOPPED;
7518 7519
}

7520 7521
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7522
swevent_hlist_deref(struct swevent_htable *swhash)
7523
{
7524 7525
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7526 7527
}

7528
static void swevent_hlist_release(struct swevent_htable *swhash)
7529
{
7530
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7531

7532
	if (!hlist)
7533 7534
		return;

7535
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7536
	kfree_rcu(hlist, rcu_head);
7537 7538
}

7539
static void swevent_hlist_put_cpu(int cpu)
7540
{
7541
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7542

7543
	mutex_lock(&swhash->hlist_mutex);
7544

7545 7546
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7547

7548
	mutex_unlock(&swhash->hlist_mutex);
7549 7550
}

7551
static void swevent_hlist_put(void)
7552 7553 7554 7555
{
	int cpu;

	for_each_possible_cpu(cpu)
7556
		swevent_hlist_put_cpu(cpu);
7557 7558
}

7559
static int swevent_hlist_get_cpu(int cpu)
7560
{
7561
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7562 7563
	int err = 0;

7564 7565
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7566 7567 7568 7569 7570 7571 7572
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7573
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7574
	}
7575
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7576
exit:
7577
	mutex_unlock(&swhash->hlist_mutex);
7578 7579 7580 7581

	return err;
}

7582
static int swevent_hlist_get(void)
7583
{
7584
	int err, cpu, failed_cpu;
7585 7586 7587

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7588
		err = swevent_hlist_get_cpu(cpu);
7589 7590 7591 7592 7593 7594 7595 7596
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7597
fail:
7598 7599 7600
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7601
		swevent_hlist_put_cpu(cpu);
7602 7603 7604 7605 7606 7607
	}

	put_online_cpus();
	return err;
}

7608
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7609

7610 7611 7612
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7613

7614 7615
	WARN_ON(event->parent);

7616
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7617
	swevent_hlist_put();
7618 7619 7620 7621
}

static int perf_swevent_init(struct perf_event *event)
{
7622
	u64 event_id = event->attr.config;
7623 7624 7625 7626

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7627 7628 7629 7630 7631 7632
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7633 7634 7635 7636 7637 7638 7639 7640 7641
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7642
	if (event_id >= PERF_COUNT_SW_MAX)
7643 7644 7645 7646 7647
		return -ENOENT;

	if (!event->parent) {
		int err;

7648
		err = swevent_hlist_get();
7649 7650 7651
		if (err)
			return err;

7652
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7653 7654 7655 7656 7657 7658 7659
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7660
	.task_ctx_nr	= perf_sw_context,
7661

7662 7663
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7664
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7665 7666 7667 7668
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7669 7670 7671
	.read		= perf_swevent_read,
};

7672 7673
#ifdef CONFIG_EVENT_TRACING

7674 7675 7676
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7677
	void *record = data->raw->frag.data;
7678

7679 7680 7681 7682
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7683 7684 7685 7686 7687 7688 7689 7690 7691
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7692 7693
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7694 7695 7696 7697
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7698 7699 7700 7701 7702 7703 7704 7705
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7725
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7726 7727
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7728 7729
{
	struct perf_sample_data data;
7730 7731
	struct perf_event *event;

7732
	struct perf_raw_record raw = {
7733 7734 7735 7736
		.frag = {
			.size = entry_size,
			.data = record,
		},
7737 7738
	};

7739
	perf_sample_data_init(&data, 0, 0);
7740 7741
	data.raw = &raw;

7742 7743
	perf_trace_buf_update(record, event_type);

7744
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7745
		if (perf_tp_event_match(event, &data, regs))
7746
			perf_swevent_event(event, count, &data, regs);
7747
	}
7748

7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7774
	perf_swevent_put_recursion_context(rctx);
7775 7776 7777
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7778
static void tp_perf_event_destroy(struct perf_event *event)
7779
{
7780
	perf_trace_destroy(event);
7781 7782
}

7783
static int perf_tp_event_init(struct perf_event *event)
7784
{
7785 7786
	int err;

7787 7788 7789
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7790 7791 7792 7793 7794 7795
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7796 7797
	err = perf_trace_init(event);
	if (err)
7798
		return err;
7799

7800
	event->destroy = tp_perf_event_destroy;
7801

7802 7803 7804 7805
	return 0;
}

static struct pmu perf_tracepoint = {
7806 7807
	.task_ctx_nr	= perf_sw_context,

7808
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7809 7810 7811 7812
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7813 7814 7815 7816 7817
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7818
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7819
}
L
Li Zefan 已提交
7820 7821 7822 7823 7824 7825

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
7841
	ret = BPF_PROG_RUN(event->prog, &ctx);
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

7894 7895
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
7896
	bool is_kprobe, is_tracepoint;
7897 7898
	struct bpf_prog *prog;

7899 7900 7901 7902
	if (event->attr.type == PERF_TYPE_HARDWARE ||
	    event->attr.type == PERF_TYPE_SOFTWARE)
		return perf_event_set_bpf_handler(event, prog_fd);

7903 7904 7905 7906 7907 7908
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7909 7910 7911 7912
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
7913 7914 7915 7916 7917 7918
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7919 7920
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7921 7922 7923 7924 7925
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

7926 7927 7928 7929 7930 7931 7932 7933
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
7934 7935 7936 7937 7938 7939 7940 7941 7942
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

7943 7944
	perf_event_free_bpf_handler(event);

7945 7946 7947 7948 7949 7950
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
7951
		bpf_prog_put(prog);
7952 7953 7954
	}
}

7955
#else
L
Li Zefan 已提交
7956

7957
static inline void perf_tp_register(void)
7958 7959
{
}
L
Li Zefan 已提交
7960 7961 7962 7963 7964

static void perf_event_free_filter(struct perf_event *event)
{
}

7965 7966 7967 7968 7969 7970 7971 7972
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7973
#endif /* CONFIG_EVENT_TRACING */
7974

7975
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7976
void perf_bp_event(struct perf_event *bp, void *data)
7977
{
7978 7979 7980
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7981
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7982

P
Peter Zijlstra 已提交
7983
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7984
		perf_swevent_event(bp, 1, &sample, regs);
7985 7986 7987
}
#endif

7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8103 8104 8105 8106 8107
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8122
	perf_event_stop(event, 1);
8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8144
	IF_ACT_NONE = -1,
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8168
	{ IF_ACT_NONE,		NULL },
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8240 8241 8242 8243
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8263
			ret = -EINVAL;
8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	/*
	 * For now, we only support filtering in per-task events; doing so
	 * for CPU-wide events requires additional context switching trickery,
	 * since same object code will be mapped at different virtual
	 * addresses in different processes.
	 */
	if (!event->ctx->task)
		return -EOPNOTSUPP;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
		return ret;

	ret = event->pmu->addr_filters_validate(&filters);
	if (ret) {
		free_filters_list(&filters);
		return ret;
	}

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

	return ret;
}

8353 8354 8355 8356 8357
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8358 8359 8360
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8361 8362 8363 8364 8365 8366 8367 8368 8369 8370
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8371 8372
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8373 8374 8375 8376 8377

	kfree(filter_str);
	return ret;
}

8378 8379 8380
/*
 * hrtimer based swevent callback
 */
8381

8382
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8383
{
8384 8385 8386 8387 8388
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8389

8390
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8391 8392 8393 8394

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8395
	event->pmu->read(event);
8396

8397
	perf_sample_data_init(&data, 0, event->hw.last_period);
8398 8399 8400
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8401
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8402
			if (__perf_event_overflow(event, 1, &data, regs))
8403 8404
				ret = HRTIMER_NORESTART;
	}
8405

8406 8407
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8408

8409
	return ret;
8410 8411
}

8412
static void perf_swevent_start_hrtimer(struct perf_event *event)
8413
{
8414
	struct hw_perf_event *hwc = &event->hw;
8415 8416 8417 8418
	s64 period;

	if (!is_sampling_event(event))
		return;
8419

8420 8421 8422 8423
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8424

8425 8426 8427 8428
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8429 8430
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8431
}
8432 8433

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8434
{
8435 8436
	struct hw_perf_event *hwc = &event->hw;

8437
	if (is_sampling_event(event)) {
8438
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8439
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8440 8441 8442

		hrtimer_cancel(&hwc->hrtimer);
	}
8443 8444
}

P
Peter Zijlstra 已提交
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8465
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8466 8467 8468 8469
		event->attr.freq = 0;
	}
}

8470 8471 8472 8473 8474
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8475
{
8476 8477 8478
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8479
	now = local_clock();
8480 8481
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8482 8483
}

P
Peter Zijlstra 已提交
8484
static void cpu_clock_event_start(struct perf_event *event, int flags)
8485
{
P
Peter Zijlstra 已提交
8486
	local64_set(&event->hw.prev_count, local_clock());
8487 8488 8489
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8490
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8491
{
8492 8493 8494
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8495

P
Peter Zijlstra 已提交
8496 8497 8498 8499
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8500
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8501 8502 8503 8504 8505 8506 8507 8508 8509

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8510 8511 8512 8513
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8514

8515 8516 8517 8518 8519 8520 8521 8522
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8523 8524 8525 8526 8527 8528
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8529 8530
	perf_swevent_init_hrtimer(event);

8531
	return 0;
8532 8533
}

8534
static struct pmu perf_cpu_clock = {
8535 8536
	.task_ctx_nr	= perf_sw_context,

8537 8538
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8539
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8540 8541 8542 8543
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8544 8545 8546 8547 8548 8549 8550 8551
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8552
{
8553 8554
	u64 prev;
	s64 delta;
8555

8556 8557 8558 8559
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8560

P
Peter Zijlstra 已提交
8561
static void task_clock_event_start(struct perf_event *event, int flags)
8562
{
P
Peter Zijlstra 已提交
8563
	local64_set(&event->hw.prev_count, event->ctx->time);
8564 8565 8566
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8567
static void task_clock_event_stop(struct perf_event *event, int flags)
8568 8569 8570
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8571 8572 8573 8574 8575 8576
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8577
	perf_event_update_userpage(event);
8578

P
Peter Zijlstra 已提交
8579 8580 8581 8582 8583 8584
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8585 8586 8587 8588
}

static void task_clock_event_read(struct perf_event *event)
{
8589 8590 8591
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8592 8593 8594 8595 8596

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8597
{
8598 8599 8600 8601 8602 8603
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8604 8605 8606 8607 8608 8609
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8610 8611
	perf_swevent_init_hrtimer(event);

8612
	return 0;
L
Li Zefan 已提交
8613 8614
}

8615
static struct pmu perf_task_clock = {
8616 8617
	.task_ctx_nr	= perf_sw_context,

8618 8619
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8620
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8621 8622 8623 8624
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8625 8626
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8627

P
Peter Zijlstra 已提交
8628
static void perf_pmu_nop_void(struct pmu *pmu)
8629 8630
{
}
L
Li Zefan 已提交
8631

8632 8633 8634 8635
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8636
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8637
{
P
Peter Zijlstra 已提交
8638
	return 0;
L
Li Zefan 已提交
8639 8640
}

8641
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8642 8643

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8644
{
8645 8646 8647 8648 8649
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8650
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8651 8652
}

P
Peter Zijlstra 已提交
8653 8654
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8655 8656 8657 8658 8659 8660 8661
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8662 8663 8664
	perf_pmu_enable(pmu);
	return 0;
}
8665

P
Peter Zijlstra 已提交
8666
static void perf_pmu_cancel_txn(struct pmu *pmu)
8667
{
8668 8669 8670 8671 8672 8673 8674
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8675
	perf_pmu_enable(pmu);
8676 8677
}

8678 8679
static int perf_event_idx_default(struct perf_event *event)
{
8680
	return 0;
8681 8682
}

P
Peter Zijlstra 已提交
8683 8684 8685 8686
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8687
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8688
{
P
Peter Zijlstra 已提交
8689
	struct pmu *pmu;
8690

P
Peter Zijlstra 已提交
8691 8692
	if (ctxn < 0)
		return NULL;
8693

P
Peter Zijlstra 已提交
8694 8695 8696 8697
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8698

P
Peter Zijlstra 已提交
8699
	return NULL;
8700 8701
}

8702 8703
static void free_pmu_context(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
8704
	mutex_lock(&pmus_lock);
8705
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8706
	mutex_unlock(&pmus_lock);
8707
}
8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8722
static struct idr pmu_idr;
8723

P
Peter Zijlstra 已提交
8724 8725 8726 8727 8728 8729 8730
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8731
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8732

8733 8734 8735 8736 8737 8738 8739 8740 8741 8742
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8743 8744
static DEFINE_MUTEX(mux_interval_mutex);

8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8764
	mutex_lock(&mux_interval_mutex);
8765 8766 8767
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8768 8769
	get_online_cpus();
	for_each_online_cpu(cpu) {
8770 8771 8772 8773
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8774 8775
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8776
	}
8777 8778
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
8779 8780 8781

	return count;
}
8782
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8783

8784 8785 8786 8787
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8788
};
8789
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8790 8791 8792 8793

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8794
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8810
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8823 8824 8825 8826 8827 8828 8829
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8830 8831 8832
out:
	return ret;

8833 8834 8835
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8836 8837 8838 8839 8840
free_dev:
	put_device(pmu->dev);
	goto out;
}

8841
static struct lock_class_key cpuctx_mutex;
8842
static struct lock_class_key cpuctx_lock;
8843

8844
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8845
{
P
Peter Zijlstra 已提交
8846
	int cpu, ret;
8847

8848
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
8849 8850 8851 8852
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
8853

P
Peter Zijlstra 已提交
8854 8855 8856 8857 8858 8859
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
8860 8861 8862
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
8863 8864 8865 8866 8867
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
8868 8869 8870 8871 8872 8873
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
8874
skip_type:
8875 8876 8877
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

8878 8879 8880 8881 8882 8883 8884
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8885 8886 8887 8888 8889
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
8890 8891 8892
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
8893

W
Wei Yongjun 已提交
8894
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
8895 8896
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
8897
		goto free_dev;
8898

P
Peter Zijlstra 已提交
8899 8900 8901 8902
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8903
		__perf_event_init_context(&cpuctx->ctx);
8904
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8905
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
8906
		cpuctx->ctx.pmu = pmu;
8907

8908
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
8909
	}
8910

P
Peter Zijlstra 已提交
8911
got_cpu_context:
P
Peter Zijlstra 已提交
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
8923
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
8924 8925
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
8926
		}
8927
	}
8928

P
Peter Zijlstra 已提交
8929 8930 8931 8932 8933
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

8934 8935 8936
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

8937
	list_add_rcu(&pmu->entry, &pmus);
8938
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
8939 8940
	ret = 0;
unlock:
8941 8942
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
8943
	return ret;
P
Peter Zijlstra 已提交
8944

P
Peter Zijlstra 已提交
8945 8946 8947 8948
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
8949 8950 8951 8952
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
8953 8954 8955
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
8956
}
8957
EXPORT_SYMBOL_GPL(perf_pmu_register);
8958

8959
void perf_pmu_unregister(struct pmu *pmu)
8960
{
8961 8962
	int remove_device;

8963
	mutex_lock(&pmus_lock);
8964
	remove_device = pmu_bus_running;
8965 8966
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
8967

8968
	/*
P
Peter Zijlstra 已提交
8969 8970
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
8971
	 */
8972
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
8973
	synchronize_rcu();
8974

P
Peter Zijlstra 已提交
8975
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
8976 8977
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
8978 8979 8980 8981 8982 8983
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
8984
	free_pmu_context(pmu);
8985
}
8986
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8987

8988 8989
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
8990
	struct perf_event_context *ctx = NULL;
8991 8992 8993 8994
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
8995 8996

	if (event->group_leader != event) {
8997 8998 8999 9000 9001 9002
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9003 9004 9005
		BUG_ON(!ctx);
	}

9006 9007
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9008 9009 9010 9011

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9012 9013 9014 9015 9016 9017
	if (ret)
		module_put(pmu->module);

	return ret;
}

9018
static struct pmu *perf_init_event(struct perf_event *event)
9019 9020 9021
{
	struct pmu *pmu = NULL;
	int idx;
9022
	int ret;
9023 9024

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9025

9026 9027 9028 9029 9030 9031 9032 9033
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9034 9035 9036
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9037
	if (pmu) {
9038
		ret = perf_try_init_event(pmu, event);
9039 9040
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9041
		goto unlock;
9042
	}
P
Peter Zijlstra 已提交
9043

9044
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9045
		ret = perf_try_init_event(pmu, event);
9046
		if (!ret)
P
Peter Zijlstra 已提交
9047
			goto unlock;
9048

9049 9050
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9051
			goto unlock;
9052
		}
9053
	}
P
Peter Zijlstra 已提交
9054 9055
	pmu = ERR_PTR(-ENOENT);
unlock:
9056
	srcu_read_unlock(&pmus_srcu, idx);
9057

9058
	return pmu;
9059 9060
}

9061 9062 9063 9064 9065 9066 9067 9068 9069
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9070 9071 9072 9073 9074 9075 9076
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9077 9078
static void account_pmu_sb_event(struct perf_event *event)
{
9079
	if (is_sb_event(event))
9080 9081 9082
		attach_sb_event(event);
}

9083 9084 9085 9086 9087 9088 9089 9090 9091
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9113 9114
static void account_event(struct perf_event *event)
{
9115 9116
	bool inc = false;

9117 9118 9119
	if (event->parent)
		return;

9120
	if (event->attach_state & PERF_ATTACH_TASK)
9121
		inc = true;
9122 9123 9124 9125 9126 9127
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9128 9129
	if (event->attr.freq)
		account_freq_event();
9130 9131
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9132
		inc = true;
9133
	}
9134
	if (has_branch_stack(event))
9135
		inc = true;
9136
	if (is_cgroup_event(event))
9137 9138
		inc = true;

9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9161 9162

	account_event_cpu(event, event->cpu);
9163 9164

	account_pmu_sb_event(event);
9165 9166
}

T
Thomas Gleixner 已提交
9167
/*
9168
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9169
 */
9170
static struct perf_event *
9171
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9172 9173 9174
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9175
		 perf_overflow_handler_t overflow_handler,
9176
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9177
{
P
Peter Zijlstra 已提交
9178
	struct pmu *pmu;
9179 9180
	struct perf_event *event;
	struct hw_perf_event *hwc;
9181
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9182

9183 9184 9185 9186 9187
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9188
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9189
	if (!event)
9190
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9191

9192
	/*
9193
	 * Single events are their own group leaders, with an
9194 9195 9196
	 * empty sibling list:
	 */
	if (!group_leader)
9197
		group_leader = event;
9198

9199 9200
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9201

9202 9203 9204
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9205
	INIT_LIST_HEAD(&event->rb_entry);
9206
	INIT_LIST_HEAD(&event->active_entry);
9207
	INIT_LIST_HEAD(&event->addr_filters.list);
9208 9209
	INIT_HLIST_NODE(&event->hlist_entry);

9210

9211
	init_waitqueue_head(&event->waitq);
9212
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9213

9214
	mutex_init(&event->mmap_mutex);
9215
	raw_spin_lock_init(&event->addr_filters.lock);
9216

9217
	atomic_long_set(&event->refcount, 1);
9218 9219 9220 9221 9222
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9223

9224
	event->parent		= parent_event;
9225

9226
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9227
	event->id		= atomic64_inc_return(&perf_event_id);
9228

9229
	event->state		= PERF_EVENT_STATE_INACTIVE;
9230

9231 9232 9233
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9234 9235 9236
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9237
		 */
9238
		event->hw.target = task;
9239 9240
	}

9241 9242 9243 9244
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9245
	if (!overflow_handler && parent_event) {
9246
		overflow_handler = parent_event->overflow_handler;
9247
		context = parent_event->overflow_handler_context;
9248
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9261
	}
9262

9263 9264 9265
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9266 9267 9268
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9269
	} else {
9270
		event->overflow_handler = perf_event_output_forward;
9271 9272
		event->overflow_handler_context = NULL;
	}
9273

J
Jiri Olsa 已提交
9274
	perf_event__state_init(event);
9275

9276
	pmu = NULL;
9277

9278
	hwc = &event->hw;
9279
	hwc->sample_period = attr->sample_period;
9280
	if (attr->freq && attr->sample_freq)
9281
		hwc->sample_period = 1;
9282
	hwc->last_period = hwc->sample_period;
9283

9284
	local64_set(&hwc->period_left, hwc->sample_period);
9285

9286
	/*
9287
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9288
	 */
9289
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9290
		goto err_ns;
9291 9292 9293

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9294

9295 9296 9297 9298 9299 9300
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9301
	pmu = perf_init_event(event);
9302
	if (!pmu)
9303 9304
		goto err_ns;
	else if (IS_ERR(pmu)) {
9305
		err = PTR_ERR(pmu);
9306
		goto err_ns;
I
Ingo Molnar 已提交
9307
	}
9308

9309 9310 9311 9312
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
		if (!event->addr_filters_offs)
			goto err_per_task;

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9324
	if (!event->parent) {
9325
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9326
			err = get_callchain_buffers(attr->sample_max_stack);
9327
			if (err)
9328
				goto err_addr_filters;
9329
		}
9330
	}
9331

9332 9333 9334
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9335
	return event;
9336

9337 9338 9339
err_addr_filters:
	kfree(event->addr_filters_offs);

9340 9341 9342
err_per_task:
	exclusive_event_destroy(event);

9343 9344 9345
err_pmu:
	if (event->destroy)
		event->destroy(event);
9346
	module_put(pmu->module);
9347
err_ns:
9348 9349
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9350 9351 9352 9353 9354
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9355 9356
}

9357 9358
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9359 9360
{
	u32 size;
9361
	int ret;
9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9386 9387 9388
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9389 9390
	 */
	if (size > sizeof(*attr)) {
9391 9392 9393
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9394

9395 9396
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9397

9398
		for (; addr < end; addr++) {
9399 9400 9401 9402 9403 9404
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9405
		size = sizeof(*attr);
9406 9407 9408 9409 9410 9411
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9412
	if (attr->__reserved_1)
9413 9414 9415 9416 9417 9418 9419 9420
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9449 9450
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9451 9452
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9453
	}
9454

9455
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9456
		ret = perf_reg_validate(attr->sample_regs_user);
9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9475

9476 9477
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9478 9479 9480 9481 9482 9483 9484 9485 9486
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9487 9488
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9489
{
9490
	struct ring_buffer *rb = NULL;
9491 9492
	int ret = -EINVAL;

9493
	if (!output_event)
9494 9495
		goto set;

9496 9497
	/* don't allow circular references */
	if (event == output_event)
9498 9499
		goto out;

9500 9501 9502 9503 9504 9505 9506
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9507
	 * If its not a per-cpu rb, it must be the same task.
9508 9509 9510 9511
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9512 9513 9514 9515 9516 9517
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9518 9519 9520 9521 9522 9523 9524
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9525 9526 9527 9528 9529 9530 9531
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9532
set:
9533
	mutex_lock(&event->mmap_mutex);
9534 9535 9536
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9537

9538
	if (output_event) {
9539 9540 9541
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9542
			goto unlock;
9543 9544
	}

9545
	ring_buffer_attach(event, rb);
9546

9547
	ret = 0;
9548 9549 9550
unlock:
	mutex_unlock(&event->mmap_mutex);

9551 9552 9553 9554
out:
	return ret;
}

P
Peter Zijlstra 已提交
9555 9556 9557 9558 9559 9560 9561 9562 9563
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9632
/**
9633
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9634
 *
9635
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9636
 * @pid:		target pid
I
Ingo Molnar 已提交
9637
 * @cpu:		target cpu
9638
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9639
 */
9640 9641
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9642
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9643
{
9644 9645
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9646
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9647
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9648
	struct file *event_file = NULL;
9649
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9650
	struct task_struct *task = NULL;
9651
	struct pmu *pmu;
9652
	int event_fd;
9653
	int move_group = 0;
9654
	int err;
9655
	int f_flags = O_RDWR;
9656
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9657

9658
	/* for future expandability... */
S
Stephane Eranian 已提交
9659
	if (flags & ~PERF_FLAG_ALL)
9660 9661
		return -EINVAL;

9662 9663 9664
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9665

9666 9667 9668 9669 9670
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9671
	if (attr.freq) {
9672
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9673
			return -EINVAL;
9674 9675 9676
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9677 9678
	}

9679 9680 9681
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9682 9683 9684 9685 9686 9687 9688 9689 9690
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9691 9692 9693 9694
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9695 9696 9697
	if (event_fd < 0)
		return event_fd;

9698
	if (group_fd != -1) {
9699 9700
		err = perf_fget_light(group_fd, &group);
		if (err)
9701
			goto err_fd;
9702
		group_leader = group.file->private_data;
9703 9704 9705 9706 9707 9708
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9709
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9710 9711 9712 9713 9714 9715 9716
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9717 9718 9719 9720 9721 9722
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9723 9724
	get_online_cpus();

9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9743 9744 9745
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9746
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9747
				 NULL, NULL, cgroup_fd);
9748 9749
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9750
		goto err_cred;
9751 9752
	}

9753 9754
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9755
			err = -EOPNOTSUPP;
9756 9757 9758 9759
			goto err_alloc;
		}
	}

9760 9761 9762 9763 9764
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9765

9766 9767 9768 9769 9770 9771
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9772 9773 9774
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9788
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9789 9790 9791 9792 9793 9794 9795 9796
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9797 9798 9799 9800

	/*
	 * Get the target context (task or percpu):
	 */
9801
	ctx = find_get_context(pmu, task, event);
9802 9803
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9804
		goto err_alloc;
9805 9806
	}

9807 9808 9809 9810 9811
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9812
	/*
9813
	 * Look up the group leader (we will attach this event to it):
9814
	 */
9815
	if (group_leader) {
9816
		err = -EINVAL;
9817 9818

		/*
I
Ingo Molnar 已提交
9819 9820 9821 9822
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9823
			goto err_context;
9824 9825 9826 9827 9828

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9829 9830 9831
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9832
		 */
9833
		if (move_group) {
9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
9847 9848 9849 9850 9851 9852
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

9853 9854 9855
		/*
		 * Only a group leader can be exclusive or pinned
		 */
9856
		if (attr.exclusive || attr.pinned)
9857
			goto err_context;
9858 9859 9860 9861 9862
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
9863
			goto err_context;
9864
	}
T
Thomas Gleixner 已提交
9865

9866 9867
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
9868 9869
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
9870
		event_file = NULL;
9871
		goto err_context;
9872
	}
9873

9874
	if (move_group) {
9875 9876
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

9877 9878 9879 9880
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
9900 9901 9902 9903
	} else {
		mutex_lock(&ctx->mutex);
	}

9904 9905 9906 9907 9908
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
9909 9910 9911 9912 9913
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

9914 9915 9916 9917 9918 9919 9920
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
9921

9922 9923 9924
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
9925

9926 9927
	WARN_ON_ONCE(ctx->parent_ctx);

9928 9929 9930 9931 9932
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

9933
	if (move_group) {
P
Peter Zijlstra 已提交
9934 9935 9936 9937
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
9938
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
9939

9940 9941
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9942
			perf_remove_from_context(sibling, 0);
9943 9944 9945
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
9946 9947 9948 9949
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
9950
		synchronize_rcu();
P
Peter Zijlstra 已提交
9951

9952 9953 9954 9955 9956 9957 9958 9959 9960 9961
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
9962 9963
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9964
			perf_event__state_init(sibling);
9965
			perf_install_in_context(ctx, sibling, sibling->cpu);
9966 9967
			get_ctx(ctx);
		}
9968 9969 9970 9971 9972 9973 9974 9975 9976

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
9977

9978 9979 9980 9981 9982 9983
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
9984 9985
	}

9986 9987 9988 9989 9990 9991 9992 9993 9994
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
9995 9996
	event->owner = current;

9997
	perf_install_in_context(ctx, event, event->cpu);
9998
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
9999

10000
	if (move_group)
10001
		perf_event_ctx_unlock(group_leader, gctx);
10002
	mutex_unlock(&ctx->mutex);
10003

10004 10005 10006 10007 10008
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10009 10010
	put_online_cpus();

10011 10012 10013
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10014

10015 10016 10017 10018 10019 10020
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10021
	fdput(group);
10022 10023
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10024

10025 10026
err_locked:
	if (move_group)
10027
		perf_event_ctx_unlock(group_leader, gctx);
10028 10029 10030
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10031
err_context:
10032
	perf_unpin_context(ctx);
10033
	put_ctx(ctx);
10034
err_alloc:
P
Peter Zijlstra 已提交
10035 10036 10037 10038 10039 10040
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10041 10042 10043
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10044
err_cpus:
10045
	put_online_cpus();
10046
err_task:
P
Peter Zijlstra 已提交
10047 10048
	if (task)
		put_task_struct(task);
10049
err_group_fd:
10050
	fdput(group);
10051 10052
err_fd:
	put_unused_fd(event_fd);
10053
	return err;
T
Thomas Gleixner 已提交
10054 10055
}

10056 10057 10058 10059 10060
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10061
 * @task: task to profile (NULL for percpu)
10062 10063 10064
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10065
				 struct task_struct *task,
10066 10067
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10068 10069
{
	struct perf_event_context *ctx;
10070
	struct perf_event *event;
10071
	int err;
10072

10073 10074 10075
	/*
	 * Get the target context (task or percpu):
	 */
10076

10077
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10078
				 overflow_handler, context, -1);
10079 10080 10081 10082
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10083

10084
	/* Mark owner so we could distinguish it from user events. */
10085
	event->owner = TASK_TOMBSTONE;
10086

10087
	ctx = find_get_context(event->pmu, task, event);
10088 10089
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10090
		goto err_free;
10091
	}
10092 10093 10094

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10095 10096 10097 10098 10099
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10100 10101
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10102
		goto err_unlock;
10103 10104
	}

10105
	perf_install_in_context(ctx, event, cpu);
10106
	perf_unpin_context(ctx);
10107 10108 10109 10110
	mutex_unlock(&ctx->mutex);

	return event;

10111 10112 10113 10114
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10115 10116 10117
err_free:
	free_event(event);
err:
10118
	return ERR_PTR(err);
10119
}
10120
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10121

10122 10123 10124 10125 10126 10127 10128 10129 10130 10131
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10132 10133 10134 10135 10136
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10137 10138
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10139
		perf_remove_from_context(event, 0);
10140
		unaccount_event_cpu(event, src_cpu);
10141
		put_ctx(src_ctx);
10142
		list_add(&event->migrate_entry, &events);
10143 10144
	}

10145 10146 10147
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10148 10149
	synchronize_rcu();

10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10174 10175
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10176 10177
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10178
		account_event_cpu(event, dst_cpu);
10179 10180 10181 10182
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10183
	mutex_unlock(&src_ctx->mutex);
10184 10185 10186
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10187
static void sync_child_event(struct perf_event *child_event,
10188
			       struct task_struct *child)
10189
{
10190
	struct perf_event *parent_event = child_event->parent;
10191
	u64 child_val;
10192

10193 10194
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10195

P
Peter Zijlstra 已提交
10196
	child_val = perf_event_count(child_event);
10197 10198 10199 10200

	/*
	 * Add back the child's count to the parent's count:
	 */
10201
	atomic64_add(child_val, &parent_event->child_count);
10202 10203 10204 10205
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10206 10207
}

10208
static void
10209 10210 10211
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10212
{
10213 10214
	struct perf_event *parent_event = child_event->parent;

10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10227 10228 10229
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10230
	if (parent_event)
10231 10232
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10233
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10234
	raw_spin_unlock_irq(&child_ctx->lock);
10235

10236
	/*
10237
	 * Parent events are governed by their filedesc, retain them.
10238
	 */
10239
	if (!parent_event) {
10240
		perf_event_wakeup(child_event);
10241
		return;
10242
	}
10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10263 10264
}

P
Peter Zijlstra 已提交
10265
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10266
{
10267
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10268 10269 10270
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10271

10272
	child_ctx = perf_pin_task_context(child, ctxn);
10273
	if (!child_ctx)
10274 10275
		return;

10276
	/*
10277 10278 10279 10280 10281 10282 10283 10284
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10285
	 */
10286
	mutex_lock(&child_ctx->mutex);
10287 10288

	/*
10289 10290 10291
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10292
	 */
10293
	raw_spin_lock_irq(&child_ctx->lock);
10294
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10295

10296
	/*
10297 10298
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10299
	 */
10300 10301 10302 10303
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10304

10305
	clone_ctx = unclone_ctx(child_ctx);
10306
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10307

10308 10309
	if (clone_ctx)
		put_ctx(clone_ctx);
10310

P
Peter Zijlstra 已提交
10311
	/*
10312 10313 10314
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10315
	 */
10316
	perf_event_task(child, child_ctx, 0);
10317

10318
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10319
		perf_event_exit_event(child_event, child_ctx, child);
10320

10321 10322 10323
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10324 10325
}

P
Peter Zijlstra 已提交
10326 10327
/*
 * When a child task exits, feed back event values to parent events.
10328 10329 10330
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10331 10332 10333
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10334
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10335 10336
	int ctxn;

P
Peter Zijlstra 已提交
10337 10338 10339 10340 10341 10342 10343 10344 10345 10346
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10347
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10348 10349 10350
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10351 10352
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10353 10354 10355 10356 10357 10358 10359 10360

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10361 10362
}

10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10375
	put_event(parent);
10376

P
Peter Zijlstra 已提交
10377
	raw_spin_lock_irq(&ctx->lock);
10378
	perf_group_detach(event);
10379
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10380
	raw_spin_unlock_irq(&ctx->lock);
10381 10382 10383
	free_event(event);
}

10384
/*
P
Peter Zijlstra 已提交
10385
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10386
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10387 10388 10389
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10390
 */
10391
void perf_event_free_task(struct task_struct *task)
10392
{
P
Peter Zijlstra 已提交
10393
	struct perf_event_context *ctx;
10394
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10395
	int ctxn;
10396

P
Peter Zijlstra 已提交
10397 10398 10399 10400
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10401

P
Peter Zijlstra 已提交
10402
		mutex_lock(&ctx->mutex);
10403
again:
P
Peter Zijlstra 已提交
10404 10405 10406
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
10407

P
Peter Zijlstra 已提交
10408 10409 10410
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
10411

P
Peter Zijlstra 已提交
10412 10413 10414
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
10415

P
Peter Zijlstra 已提交
10416
		mutex_unlock(&ctx->mutex);
10417

P
Peter Zijlstra 已提交
10418 10419
		put_ctx(ctx);
	}
10420 10421
}

10422 10423 10424 10425 10426 10427 10428 10429
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10430
struct file *perf_event_get(unsigned int fd)
10431
{
10432
	struct file *file;
10433

10434 10435 10436
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10437

10438 10439 10440 10441
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10442

10443
	return file;
10444 10445 10446 10447 10448 10449 10450 10451 10452 10453
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10465
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10466
	struct perf_event *child_event;
10467
	unsigned long flags;
P
Peter Zijlstra 已提交
10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10480
					   child,
P
Peter Zijlstra 已提交
10481
					   group_leader, parent_event,
10482
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10483 10484
	if (IS_ERR(child_event))
		return child_event;
10485

10486 10487 10488 10489 10490 10491 10492
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10493 10494
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10495
		mutex_unlock(&parent_event->child_mutex);
10496 10497 10498 10499
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10500 10501 10502 10503 10504 10505 10506
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10507
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10524 10525
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10526

10527 10528 10529 10530
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10531
	perf_event__id_header_size(child_event);
10532

P
Peter Zijlstra 已提交
10533 10534 10535
	/*
	 * Link it up in the child's context:
	 */
10536
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10537
	add_event_to_ctx(child_event, child_ctx);
10538
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10570 10571 10572 10573 10574
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10575
		   struct task_struct *child, int ctxn,
10576 10577 10578
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10579
	struct perf_event_context *child_ctx;
10580 10581 10582 10583

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10584 10585
	}

10586
	child_ctx = child->perf_event_ctxp[ctxn];
10587 10588 10589 10590 10591 10592 10593
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10594

10595
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10596 10597
		if (!child_ctx)
			return -ENOMEM;
10598

P
Peter Zijlstra 已提交
10599
		child->perf_event_ctxp[ctxn] = child_ctx;
10600 10601 10602 10603 10604 10605 10606 10607 10608
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10609 10610
}

10611
/*
10612
 * Initialize the perf_event context in task_struct
10613
 */
10614
static int perf_event_init_context(struct task_struct *child, int ctxn)
10615
{
10616
	struct perf_event_context *child_ctx, *parent_ctx;
10617 10618
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10619
	struct task_struct *parent = current;
10620
	int inherited_all = 1;
10621
	unsigned long flags;
10622
	int ret = 0;
10623

P
Peter Zijlstra 已提交
10624
	if (likely(!parent->perf_event_ctxp[ctxn]))
10625 10626
		return 0;

10627
	/*
10628 10629
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10630
	 */
P
Peter Zijlstra 已提交
10631
	parent_ctx = perf_pin_task_context(parent, ctxn);
10632 10633
	if (!parent_ctx)
		return 0;
10634

10635 10636 10637 10638 10639 10640 10641
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10642 10643 10644 10645
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10646
	mutex_lock(&parent_ctx->mutex);
10647 10648 10649 10650 10651

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10652
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10653 10654
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10655 10656 10657
		if (ret)
			break;
	}
10658

10659 10660 10661 10662 10663 10664 10665 10666 10667
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10668
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10669 10670
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10671
		if (ret)
10672
			break;
10673 10674
	}

10675 10676 10677
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10678
	child_ctx = child->perf_event_ctxp[ctxn];
10679

10680
	if (child_ctx && inherited_all) {
10681 10682 10683
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10684 10685 10686
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10687
		 */
P
Peter Zijlstra 已提交
10688
		cloned_ctx = parent_ctx->parent_ctx;
10689 10690
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10691
			child_ctx->parent_gen = parent_ctx->parent_gen;
10692 10693 10694 10695 10696
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10697 10698
	}

P
Peter Zijlstra 已提交
10699
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10700
	mutex_unlock(&parent_ctx->mutex);
10701

10702
	perf_unpin_context(parent_ctx);
10703
	put_ctx(parent_ctx);
10704

10705
	return ret;
10706 10707
}

P
Peter Zijlstra 已提交
10708 10709 10710 10711 10712 10713 10714
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10715 10716 10717 10718
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10719 10720
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10721 10722
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10723
			return ret;
P
Peter Zijlstra 已提交
10724
		}
P
Peter Zijlstra 已提交
10725 10726 10727 10728 10729
	}

	return 0;
}

10730 10731
static void __init perf_event_init_all_cpus(void)
{
10732
	struct swevent_htable *swhash;
10733 10734 10735
	int cpu;

	for_each_possible_cpu(cpu) {
10736 10737
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10738
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10739 10740 10741

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10742

10743 10744 10745
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
10746
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10747 10748 10749
	}
}

10750
int perf_event_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10751
{
P
Peter Zijlstra 已提交
10752
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10753

10754
	mutex_lock(&swhash->hlist_mutex);
10755
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10756 10757
		struct swevent_hlist *hlist;

10758 10759 10760
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10761
	}
10762
	mutex_unlock(&swhash->hlist_mutex);
10763
	return 0;
T
Thomas Gleixner 已提交
10764 10765
}

10766
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10767
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10768
{
P
Peter Zijlstra 已提交
10769
	struct perf_event_context *ctx = __info;
10770 10771
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10772

10773 10774
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10775
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10776
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10777
}
P
Peter Zijlstra 已提交
10778 10779 10780 10781 10782 10783 10784 10785 10786

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
10787
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
10788 10789 10790 10791 10792 10793 10794

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}
10795 10796 10797 10798 10799
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
10800

10801
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10802
{
P
Peter Zijlstra 已提交
10803
	perf_event_exit_cpu_context(cpu);
10804
	return 0;
T
Thomas Gleixner 已提交
10805 10806
}

P
Peter Zijlstra 已提交
10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

10827
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
10828
{
10829 10830
	int ret;

P
Peter Zijlstra 已提交
10831 10832
	idr_init(&pmu_idr);

10833
	perf_event_init_all_cpus();
10834
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
10835 10836 10837
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
10838
	perf_tp_register();
10839
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
10840
	register_reboot_notifier(&perf_reboot_notifier);
10841 10842 10843

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10844

10845 10846 10847 10848 10849 10850
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
10851
}
P
Peter Zijlstra 已提交
10852

10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
10864
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10865

P
Peter Zijlstra 已提交
10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
10893 10894

#ifdef CONFIG_CGROUP_PERF
10895 10896
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
10897 10898 10899
{
	struct perf_cgroup *jc;

10900
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

10913
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
10914
{
10915 10916
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
10917 10918 10919 10920 10921 10922 10923
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
10924
	rcu_read_lock();
S
Stephane Eranian 已提交
10925
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10926
	rcu_read_unlock();
S
Stephane Eranian 已提交
10927 10928 10929
	return 0;
}

10930
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
10931
{
10932
	struct task_struct *task;
10933
	struct cgroup_subsys_state *css;
10934

10935
	cgroup_taskset_for_each(task, css, tset)
10936
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
10937 10938
}

10939
struct cgroup_subsys perf_event_cgrp_subsys = {
10940 10941
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
10942
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
10943 10944
};
#endif /* CONFIG_CGROUP_PERF */