core.c 169.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41
struct remote_function_call {
42 43 44 45
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
79 80 81 82
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
103 104 105 106
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
107 108 109 110 111 112 113
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
128
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
129 130
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148 149
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150 151

/*
152
 * max perf event sample rate
153
 */
P
Peter Zijlstra 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
172

173
static atomic64_t perf_event_id;
174

175 176 177 178
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
179 180 181 182 183
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
184

185
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
186

187
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
188
{
189
	return "pmu";
T
Thomas Gleixner 已提交
190 191
}

192 193 194 195 196
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
197 198 199 200 201 202
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
219 220
#ifdef CONFIG_CGROUP_PERF

221 222 223 224 225
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
293 294
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
295
	/*
296 297
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
298
	 */
299
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
300 301
		return;

302 303 304 305 306 307
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
308 309 310
}

static inline void
311 312
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
313 314 315 316
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

317 318 319 320 321 322
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
323 324 325 326
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
327
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
369 370
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
371 372 373 374 375 376 377 378 379 380 381

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
382
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
383 384 385 386 387 388 389
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
390 391
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
424 425 426 427
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
428 429 430 431

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

432 433 434
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
435 436 437 438 439 440 441 442 443
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
444
out:
S
Stephane Eranian 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
535 536
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
567
void perf_pmu_disable(struct pmu *pmu)
568
{
P
Peter Zijlstra 已提交
569 570 571
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
572 573
}

P
Peter Zijlstra 已提交
574
void perf_pmu_enable(struct pmu *pmu)
575
{
P
Peter Zijlstra 已提交
576 577 578
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
579 580
}

581 582 583 584 585 586 587
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
588
static void perf_pmu_rotate_start(struct pmu *pmu)
589
{
P
Peter Zijlstra 已提交
590
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
591
	struct list_head *head = &__get_cpu_var(rotation_list);
592

593
	WARN_ON(!irqs_disabled());
594

595 596
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
597 598
}

599
static void get_ctx(struct perf_event_context *ctx)
600
{
601
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
602 603
}

604
static void put_ctx(struct perf_event_context *ctx)
605
{
606 607 608
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
609 610
		if (ctx->task)
			put_task_struct(ctx->task);
611
		kfree_rcu(ctx, rcu_head);
612
	}
613 614
}

615
static void unclone_ctx(struct perf_event_context *ctx)
616 617 618 619 620 621 622
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

645
/*
646
 * If we inherit events we want to return the parent event id
647 648
 * to userspace.
 */
649
static u64 primary_event_id(struct perf_event *event)
650
{
651
	u64 id = event->id;
652

653 654
	if (event->parent)
		id = event->parent->id;
655 656 657 658

	return id;
}

659
/*
660
 * Get the perf_event_context for a task and lock it.
661 662 663
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
664
static struct perf_event_context *
P
Peter Zijlstra 已提交
665
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
666
{
667
	struct perf_event_context *ctx;
668 669

	rcu_read_lock();
P
Peter Zijlstra 已提交
670
retry:
P
Peter Zijlstra 已提交
671
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
672 673 674 675
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
676
		 * perf_event_task_sched_out, though the
677 678 679 680 681 682
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
683
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
684
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
685
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
686 687
			goto retry;
		}
688 689

		if (!atomic_inc_not_zero(&ctx->refcount)) {
690
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
691 692
			ctx = NULL;
		}
693 694 695 696 697 698 699 700 701 702
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
703 704
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
705
{
706
	struct perf_event_context *ctx;
707 708
	unsigned long flags;

P
Peter Zijlstra 已提交
709
	ctx = perf_lock_task_context(task, ctxn, &flags);
710 711
	if (ctx) {
		++ctx->pin_count;
712
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
713 714 715 716
	}
	return ctx;
}

717
static void perf_unpin_context(struct perf_event_context *ctx)
718 719 720
{
	unsigned long flags;

721
	raw_spin_lock_irqsave(&ctx->lock, flags);
722
	--ctx->pin_count;
723
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

737 738 739
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
740 741 742 743

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

744 745 746
	return ctx ? ctx->time : 0;
}

747 748 749 750 751 752 753 754 755 756 757
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
758 759 760 761 762 763 764 765 766 767 768
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
769
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
770 771
	else if (ctx->is_active)
		run_end = ctx->time;
772 773 774 775
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
776 777 778 779

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
780
		run_end = perf_event_time(event);
781 782

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
783

784 785
}

786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

798 799 800 801 802 803 804 805 806
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

807
/*
808
 * Add a event from the lists for its context.
809 810
 * Must be called with ctx->mutex and ctx->lock held.
 */
811
static void
812
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
813
{
814 815
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
816 817

	/*
818 819 820
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
821
	 */
822
	if (event->group_leader == event) {
823 824
		struct list_head *list;

825 826 827
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

828 829
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
830
	}
P
Peter Zijlstra 已提交
831

832
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
833 834
		ctx->nr_cgroups++;

835
	list_add_rcu(&event->event_entry, &ctx->event_list);
836
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
837
		perf_pmu_rotate_start(ctx->pmu);
838 839
	ctx->nr_events++;
	if (event->attr.inherit_stat)
840
		ctx->nr_stat++;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

915
	event->id_header_size = size;
916 917
}

918 919
static void perf_group_attach(struct perf_event *event)
{
920
	struct perf_event *group_leader = event->group_leader, *pos;
921

P
Peter Zijlstra 已提交
922 923 924 925 926 927
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

928 929 930 931 932 933 934 935 936 937 938
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
939 940 941 942 943

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
944 945
}

946
/*
947
 * Remove a event from the lists for its context.
948
 * Must be called with ctx->mutex and ctx->lock held.
949
 */
950
static void
951
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
952
{
953
	struct perf_cpu_context *cpuctx;
954 955 956 957
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
958
		return;
959 960 961

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

962
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
963
		ctx->nr_cgroups--;
964 965 966 967 968 969 970 971 972
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
973

974 975
	ctx->nr_events--;
	if (event->attr.inherit_stat)
976
		ctx->nr_stat--;
977

978
	list_del_rcu(&event->event_entry);
979

980 981
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
982

983
	update_group_times(event);
984 985 986 987 988 989 990 991 992 993

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
994 995
}

996
static void perf_group_detach(struct perf_event *event)
997 998
{
	struct perf_event *sibling, *tmp;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1015
		goto out;
1016 1017 1018 1019
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1020

1021
	/*
1022 1023
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1024
	 * to whatever list we are on.
1025
	 */
1026
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1027 1028
		if (list)
			list_move_tail(&sibling->group_entry, list);
1029
		sibling->group_leader = sibling;
1030 1031 1032

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1033
	}
1034 1035 1036 1037 1038 1039

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1040 1041
}

1042 1043 1044
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1045 1046
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1047 1048
}

1049 1050
static void
event_sched_out(struct perf_event *event,
1051
		  struct perf_cpu_context *cpuctx,
1052
		  struct perf_event_context *ctx)
1053
{
1054
	u64 tstamp = perf_event_time(event);
1055 1056 1057 1058 1059 1060 1061 1062 1063
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1064
		delta = tstamp - event->tstamp_stopped;
1065
		event->tstamp_running += delta;
1066
		event->tstamp_stopped = tstamp;
1067 1068
	}

1069
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1070
		return;
1071

1072 1073 1074 1075
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1076
	}
1077
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1078
	event->pmu->del(event, 0);
1079
	event->oncpu = -1;
1080

1081
	if (!is_software_event(event))
1082 1083
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1084
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1085 1086 1087
		cpuctx->exclusive = 0;
}

1088
static void
1089
group_sched_out(struct perf_event *group_event,
1090
		struct perf_cpu_context *cpuctx,
1091
		struct perf_event_context *ctx)
1092
{
1093
	struct perf_event *event;
1094
	int state = group_event->state;
1095

1096
	event_sched_out(group_event, cpuctx, ctx);
1097 1098 1099 1100

	/*
	 * Schedule out siblings (if any):
	 */
1101 1102
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1103

1104
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1105 1106 1107
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1108
/*
1109
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1110
 *
1111
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1112 1113
 * remove it from the context list.
 */
1114
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1115
{
1116 1117
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1118
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1119

1120
	raw_spin_lock(&ctx->lock);
1121 1122
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1123
	raw_spin_unlock(&ctx->lock);
1124 1125

	return 0;
T
Thomas Gleixner 已提交
1126 1127 1128 1129
}


/*
1130
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1131
 *
1132
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1133
 * call when the task is on a CPU.
1134
 *
1135 1136
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1137 1138
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1139
 * When called from perf_event_exit_task, it's OK because the
1140
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1141
 */
1142
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1143
{
1144
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1145 1146
	struct task_struct *task = ctx->task;

1147 1148
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1149 1150
	if (!task) {
		/*
1151
		 * Per cpu events are removed via an smp call and
1152
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1153
		 */
1154
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1155 1156 1157 1158
		return;
	}

retry:
1159 1160
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1161

1162
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1163
	/*
1164 1165
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1166
	 */
1167
	if (ctx->is_active) {
1168
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1169 1170 1171 1172
		goto retry;
	}

	/*
1173 1174
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1175
	 */
1176
	list_del_event(event, ctx);
1177
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1178 1179
}

1180
/*
1181
 * Cross CPU call to disable a performance event
1182
 */
1183
static int __perf_event_disable(void *info)
1184
{
1185 1186
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1187
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188 1189

	/*
1190 1191
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1192 1193 1194
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1195
	 */
1196
	if (ctx->task && cpuctx->task_ctx != ctx)
1197
		return -EINVAL;
1198

1199
	raw_spin_lock(&ctx->lock);
1200 1201

	/*
1202
	 * If the event is on, turn it off.
1203 1204
	 * If it is in error state, leave it in error state.
	 */
1205
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1206
		update_context_time(ctx);
S
Stephane Eranian 已提交
1207
		update_cgrp_time_from_event(event);
1208 1209 1210
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1211
		else
1212 1213
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1214 1215
	}

1216
	raw_spin_unlock(&ctx->lock);
1217 1218

	return 0;
1219 1220 1221
}

/*
1222
 * Disable a event.
1223
 *
1224 1225
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1226
 * remains valid.  This condition is satisifed when called through
1227 1228 1229 1230
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1231
 * is the current context on this CPU and preemption is disabled,
1232
 * hence we can't get into perf_event_task_sched_out for this context.
1233
 */
1234
void perf_event_disable(struct perf_event *event)
1235
{
1236
	struct perf_event_context *ctx = event->ctx;
1237 1238 1239 1240
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1241
		 * Disable the event on the cpu that it's on
1242
		 */
1243
		cpu_function_call(event->cpu, __perf_event_disable, event);
1244 1245 1246
		return;
	}

P
Peter Zijlstra 已提交
1247
retry:
1248 1249
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1250

1251
	raw_spin_lock_irq(&ctx->lock);
1252
	/*
1253
	 * If the event is still active, we need to retry the cross-call.
1254
	 */
1255
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1256
		raw_spin_unlock_irq(&ctx->lock);
1257 1258 1259 1260 1261
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1262 1263 1264 1265 1266 1267 1268
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1269 1270 1271
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1272
	}
1273
	raw_spin_unlock_irq(&ctx->lock);
1274 1275
}

S
Stephane Eranian 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1311 1312 1313 1314
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1315
static int
1316
event_sched_in(struct perf_event *event,
1317
		 struct perf_cpu_context *cpuctx,
1318
		 struct perf_event_context *ctx)
1319
{
1320 1321
	u64 tstamp = perf_event_time(event);

1322
	if (event->state <= PERF_EVENT_STATE_OFF)
1323 1324
		return 0;

1325
	event->state = PERF_EVENT_STATE_ACTIVE;
1326
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1338 1339 1340 1341 1342
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1343
	if (event->pmu->add(event, PERF_EF_START)) {
1344 1345
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1346 1347 1348
		return -EAGAIN;
	}

1349
	event->tstamp_running += tstamp - event->tstamp_stopped;
1350

S
Stephane Eranian 已提交
1351
	perf_set_shadow_time(event, ctx, tstamp);
1352

1353
	if (!is_software_event(event))
1354
		cpuctx->active_oncpu++;
1355 1356
	ctx->nr_active++;

1357
	if (event->attr.exclusive)
1358 1359
		cpuctx->exclusive = 1;

1360 1361 1362
	return 0;
}

1363
static int
1364
group_sched_in(struct perf_event *group_event,
1365
	       struct perf_cpu_context *cpuctx,
1366
	       struct perf_event_context *ctx)
1367
{
1368
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1369
	struct pmu *pmu = group_event->pmu;
1370 1371
	u64 now = ctx->time;
	bool simulate = false;
1372

1373
	if (group_event->state == PERF_EVENT_STATE_OFF)
1374 1375
		return 0;

P
Peter Zijlstra 已提交
1376
	pmu->start_txn(pmu);
1377

1378
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1379
		pmu->cancel_txn(pmu);
1380
		return -EAGAIN;
1381
	}
1382 1383 1384 1385

	/*
	 * Schedule in siblings as one group (if any):
	 */
1386
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1387
		if (event_sched_in(event, cpuctx, ctx)) {
1388
			partial_group = event;
1389 1390 1391 1392
			goto group_error;
		}
	}

1393
	if (!pmu->commit_txn(pmu))
1394
		return 0;
1395

1396 1397 1398 1399
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1410
	 */
1411 1412
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1413 1414 1415 1416 1417 1418 1419 1420
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1421
	}
1422
	event_sched_out(group_event, cpuctx, ctx);
1423

P
Peter Zijlstra 已提交
1424
	pmu->cancel_txn(pmu);
1425

1426 1427 1428
	return -EAGAIN;
}

1429
/*
1430
 * Work out whether we can put this event group on the CPU now.
1431
 */
1432
static int group_can_go_on(struct perf_event *event,
1433 1434 1435 1436
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1437
	 * Groups consisting entirely of software events can always go on.
1438
	 */
1439
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1440 1441 1442
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1443
	 * events can go on.
1444 1445 1446 1447 1448
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1449
	 * events on the CPU, it can't go on.
1450
	 */
1451
	if (event->attr.exclusive && cpuctx->active_oncpu)
1452 1453 1454 1455 1456 1457 1458 1459
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1460 1461
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1462
{
1463 1464
	u64 tstamp = perf_event_time(event);

1465
	list_add_event(event, ctx);
1466
	perf_group_attach(event);
1467 1468 1469
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1470 1471
}

S
Stephane Eranian 已提交
1472 1473
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *tsk);
1474

T
Thomas Gleixner 已提交
1475
/*
1476
 * Cross CPU call to install and enable a performance event
1477 1478
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1479
 */
1480
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1481
{
1482 1483 1484
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1485
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1486
	int err;
T
Thomas Gleixner 已提交
1487 1488

	/*
1489 1490 1491
	 * In case we're installing a new context to an already running task,
	 * could also happen before perf_event_task_sched_in() on architectures
	 * which do context switches with IRQs enabled.
T
Thomas Gleixner 已提交
1492
	 */
1493
	if (ctx->task && !cpuctx->task_ctx)
S
Stephane Eranian 已提交
1494
		perf_event_context_sched_in(ctx, ctx->task);
T
Thomas Gleixner 已提交
1495

1496
	raw_spin_lock(&ctx->lock);
1497
	ctx->is_active = 1;
1498
	update_context_time(ctx);
S
Stephane Eranian 已提交
1499 1500 1501 1502 1503 1504
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1505

1506
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1507

1508
	if (!event_filter_match(event))
1509 1510
		goto unlock;

1511
	/*
1512
	 * Don't put the event on if it is disabled or if
1513 1514
	 * it is in a group and the group isn't on.
	 */
1515 1516
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1517 1518
		goto unlock;

1519
	/*
1520 1521 1522
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
1523
	 */
1524
	if (!group_can_go_on(event, cpuctx, 1))
1525 1526
		err = -EEXIST;
	else
1527
		err = event_sched_in(event, cpuctx, ctx);
1528

1529 1530
	if (err) {
		/*
1531
		 * This event couldn't go on.  If it is in a group
1532
		 * then we have to pull the whole group off.
1533
		 * If the event group is pinned then put it in error state.
1534
		 */
1535
		if (leader != event)
1536
			group_sched_out(leader, cpuctx, ctx);
1537
		if (leader->attr.pinned) {
1538
			update_group_times(leader);
1539
			leader->state = PERF_EVENT_STATE_ERROR;
1540
		}
1541
	}
T
Thomas Gleixner 已提交
1542

P
Peter Zijlstra 已提交
1543
unlock:
1544
	raw_spin_unlock(&ctx->lock);
1545 1546

	return 0;
T
Thomas Gleixner 已提交
1547 1548 1549
}

/*
1550
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1551
 *
1552 1553
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1554
 *
1555
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1556 1557 1558 1559
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1560 1561
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1562 1563 1564 1565
			int cpu)
{
	struct task_struct *task = ctx->task;

1566 1567
	lockdep_assert_held(&ctx->mutex);

1568 1569
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1570 1571
	if (!task) {
		/*
1572
		 * Per cpu events are installed via an smp call and
1573
		 * the install is always successful.
T
Thomas Gleixner 已提交
1574
		 */
1575
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1576 1577 1578 1579
		return;
	}

retry:
1580 1581
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1582

1583
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1584
	/*
1585 1586
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1587
	 */
1588
	if (ctx->is_active) {
1589
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1590 1591 1592 1593
		goto retry;
	}

	/*
1594 1595
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1596
	 */
1597
	add_event_to_ctx(event, ctx);
1598
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1599 1600
}

1601
/*
1602
 * Put a event into inactive state and update time fields.
1603 1604 1605 1606 1607 1608
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1609 1610
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1611
{
1612
	struct perf_event *sub;
1613
	u64 tstamp = perf_event_time(event);
1614

1615
	event->state = PERF_EVENT_STATE_INACTIVE;
1616
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1617
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1618 1619
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1620
	}
1621 1622
}

1623
/*
1624
 * Cross CPU call to enable a performance event
1625
 */
1626
static int __perf_event_enable(void *info)
1627
{
1628 1629 1630
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1631
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1632
	int err;
1633

1634 1635
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1636

1637
	raw_spin_lock(&ctx->lock);
1638
	update_context_time(ctx);
1639

1640
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1641
		goto unlock;
S
Stephane Eranian 已提交
1642 1643 1644 1645

	/*
	 * set current task's cgroup time reference point
	 */
1646
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1647

1648
	__perf_event_mark_enabled(event, ctx);
1649

S
Stephane Eranian 已提交
1650 1651 1652
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1653
		goto unlock;
S
Stephane Eranian 已提交
1654
	}
1655

1656
	/*
1657
	 * If the event is in a group and isn't the group leader,
1658
	 * then don't put it on unless the group is on.
1659
	 */
1660
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1661
		goto unlock;
1662

1663
	if (!group_can_go_on(event, cpuctx, 1)) {
1664
		err = -EEXIST;
1665
	} else {
1666
		if (event == leader)
1667
			err = group_sched_in(event, cpuctx, ctx);
1668
		else
1669
			err = event_sched_in(event, cpuctx, ctx);
1670
	}
1671 1672 1673

	if (err) {
		/*
1674
		 * If this event can't go on and it's part of a
1675 1676
		 * group, then the whole group has to come off.
		 */
1677
		if (leader != event)
1678
			group_sched_out(leader, cpuctx, ctx);
1679
		if (leader->attr.pinned) {
1680
			update_group_times(leader);
1681
			leader->state = PERF_EVENT_STATE_ERROR;
1682
		}
1683 1684
	}

P
Peter Zijlstra 已提交
1685
unlock:
1686
	raw_spin_unlock(&ctx->lock);
1687 1688

	return 0;
1689 1690 1691
}

/*
1692
 * Enable a event.
1693
 *
1694 1695
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1696
 * remains valid.  This condition is satisfied when called through
1697 1698
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1699
 */
1700
void perf_event_enable(struct perf_event *event)
1701
{
1702
	struct perf_event_context *ctx = event->ctx;
1703 1704 1705 1706
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1707
		 * Enable the event on the cpu that it's on
1708
		 */
1709
		cpu_function_call(event->cpu, __perf_event_enable, event);
1710 1711 1712
		return;
	}

1713
	raw_spin_lock_irq(&ctx->lock);
1714
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1715 1716 1717
		goto out;

	/*
1718 1719
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1720 1721 1722 1723
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1724 1725
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1726

P
Peter Zijlstra 已提交
1727
retry:
1728 1729 1730 1731 1732
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1733
	raw_spin_unlock_irq(&ctx->lock);
1734 1735 1736

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1737

1738
	raw_spin_lock_irq(&ctx->lock);
1739 1740

	/*
1741
	 * If the context is active and the event is still off,
1742 1743
	 * we need to retry the cross-call.
	 */
1744 1745 1746 1747 1748 1749
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1750
		goto retry;
1751
	}
1752

P
Peter Zijlstra 已提交
1753
out:
1754
	raw_spin_unlock_irq(&ctx->lock);
1755 1756
}

1757
static int perf_event_refresh(struct perf_event *event, int refresh)
1758
{
1759
	/*
1760
	 * not supported on inherited events
1761
	 */
1762
	if (event->attr.inherit || !is_sampling_event(event))
1763 1764
		return -EINVAL;

1765 1766
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1767 1768

	return 0;
1769 1770
}

1771 1772 1773
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1774
{
1775
	struct perf_event *event;
1776

1777
	ctx->is_active = 0;
1778
	if (likely(!ctx->nr_events))
1779 1780
		return;

1781
	update_context_time(ctx);
S
Stephane Eranian 已提交
1782
	update_cgrp_time_from_cpuctx(cpuctx);
1783
	if (!ctx->nr_active)
1784
		return;
1785

P
Peter Zijlstra 已提交
1786
	perf_pmu_disable(ctx->pmu);
P
Peter Zijlstra 已提交
1787
	if (event_type & EVENT_PINNED) {
1788 1789
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1790
	}
1791

P
Peter Zijlstra 已提交
1792
	if (event_type & EVENT_FLEXIBLE) {
1793
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1794
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1795
	}
P
Peter Zijlstra 已提交
1796
	perf_pmu_enable(ctx->pmu);
1797 1798
}

1799 1800 1801
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1802 1803 1804 1805
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1806
 * in them directly with an fd; we can only enable/disable all
1807
 * events via prctl, or enable/disable all events in a family
1808 1809
 * via ioctl, which will have the same effect on both contexts.
 */
1810 1811
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1812 1813
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1814
		&& ctx1->parent_gen == ctx2->parent_gen
1815
		&& !ctx1->pin_count && !ctx2->pin_count;
1816 1817
}

1818 1819
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1820 1821 1822
{
	u64 value;

1823
	if (!event->attr.inherit_stat)
1824 1825 1826
		return;

	/*
1827
	 * Update the event value, we cannot use perf_event_read()
1828 1829
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1830
	 * we know the event must be on the current CPU, therefore we
1831 1832
	 * don't need to use it.
	 */
1833 1834
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1835 1836
		event->pmu->read(event);
		/* fall-through */
1837

1838 1839
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1840 1841 1842 1843 1844 1845 1846
		break;

	default:
		break;
	}

	/*
1847
	 * In order to keep per-task stats reliable we need to flip the event
1848 1849
	 * values when we flip the contexts.
	 */
1850 1851 1852
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1853

1854 1855
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1856

1857
	/*
1858
	 * Since we swizzled the values, update the user visible data too.
1859
	 */
1860 1861
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1862 1863 1864 1865 1866
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1867 1868
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1869
{
1870
	struct perf_event *event, *next_event;
1871 1872 1873 1874

	if (!ctx->nr_stat)
		return;

1875 1876
	update_context_time(ctx);

1877 1878
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1879

1880 1881
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1882

1883 1884
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1885

1886
		__perf_event_sync_stat(event, next_event);
1887

1888 1889
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1890 1891 1892
	}
}

1893 1894
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1895
{
P
Peter Zijlstra 已提交
1896
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1897 1898
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1899
	struct perf_cpu_context *cpuctx;
1900
	int do_switch = 1;
T
Thomas Gleixner 已提交
1901

P
Peter Zijlstra 已提交
1902 1903
	if (likely(!ctx))
		return;
1904

P
Peter Zijlstra 已提交
1905 1906
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1907 1908
		return;

1909 1910
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1911
	next_ctx = next->perf_event_ctxp[ctxn];
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1923 1924
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1925
		if (context_equiv(ctx, next_ctx)) {
1926 1927
			/*
			 * XXX do we need a memory barrier of sorts
1928
			 * wrt to rcu_dereference() of perf_event_ctxp
1929
			 */
P
Peter Zijlstra 已提交
1930 1931
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1932 1933 1934
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1935

1936
			perf_event_sync_stat(ctx, next_ctx);
1937
		}
1938 1939
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1940
	}
1941
	rcu_read_unlock();
1942

1943
	if (do_switch) {
1944
		raw_spin_lock(&ctx->lock);
1945
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1946
		cpuctx->task_ctx = NULL;
1947
		raw_spin_unlock(&ctx->lock);
1948
	}
T
Thomas Gleixner 已提交
1949 1950
}

P
Peter Zijlstra 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1965 1966
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1967 1968 1969 1970 1971
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1972 1973 1974 1975 1976 1977 1978 1979

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1980 1981
}

1982
static void task_ctx_sched_out(struct perf_event_context *ctx)
1983
{
P
Peter Zijlstra 已提交
1984
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1985

1986 1987
	if (!cpuctx->task_ctx)
		return;
1988 1989 1990 1991

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1992
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1993 1994 1995
	cpuctx->task_ctx = NULL;
}

1996 1997 1998 1999 2000 2001 2002
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2003 2004
}

2005
static void
2006
ctx_pinned_sched_in(struct perf_event_context *ctx,
2007
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2008
{
2009
	struct perf_event *event;
T
Thomas Gleixner 已提交
2010

2011 2012
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2013
			continue;
2014
		if (!event_filter_match(event))
2015 2016
			continue;

S
Stephane Eranian 已提交
2017 2018 2019 2020
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2021
		if (group_can_go_on(event, cpuctx, 1))
2022
			group_sched_in(event, cpuctx, ctx);
2023 2024 2025 2026 2027

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2028 2029 2030
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2031
		}
2032
	}
2033 2034 2035 2036
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2037
		      struct perf_cpu_context *cpuctx)
2038 2039 2040
{
	struct perf_event *event;
	int can_add_hw = 1;
2041

2042 2043 2044
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2045
			continue;
2046 2047
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2048
		 * of events:
2049
		 */
2050
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2051 2052
			continue;

S
Stephane Eranian 已提交
2053 2054 2055 2056
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2057
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2058
			if (group_sched_in(event, cpuctx, ctx))
2059
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2060
		}
T
Thomas Gleixner 已提交
2061
	}
2062 2063 2064 2065 2066
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2067 2068
	     enum event_type_t event_type,
	     struct task_struct *task)
2069
{
S
Stephane Eranian 已提交
2070 2071
	u64 now;

2072 2073
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
2074
		return;
2075

S
Stephane Eranian 已提交
2076 2077
	now = perf_clock();
	ctx->timestamp = now;
2078
	perf_cgroup_set_timestamp(task, ctx);
2079 2080 2081 2082 2083
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
2084
		ctx_pinned_sched_in(ctx, cpuctx);
2085 2086 2087

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
2088
		ctx_flexible_sched_in(ctx, cpuctx);
2089 2090
}

2091
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2092 2093
			     enum event_type_t event_type,
			     struct task_struct *task)
2094 2095 2096
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2097
	ctx_sched_in(ctx, cpuctx, event_type, task);
2098 2099
}

S
Stephane Eranian 已提交
2100 2101
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2102
{
P
Peter Zijlstra 已提交
2103
	struct perf_cpu_context *cpuctx;
2104

P
Peter Zijlstra 已提交
2105
	cpuctx = __get_cpu_context(ctx);
2106 2107 2108
	if (cpuctx->task_ctx == ctx)
		return;

2109
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2110
	perf_pmu_disable(ctx->pmu);
2111 2112 2113 2114 2115 2116 2117
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

S
Stephane Eranian 已提交
2118 2119 2120
	ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2121 2122

	cpuctx->task_ctx = ctx;
2123

2124 2125 2126
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2127 2128 2129 2130
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2131
	perf_pmu_rotate_start(ctx->pmu);
2132 2133
}

P
Peter Zijlstra 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2145
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2155
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2156
	}
S
Stephane Eranian 已提交
2157 2158 2159 2160 2161 2162 2163
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2193
#define REDUCE_FLS(a, b)		\
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2233 2234 2235
	if (!divisor)
		return dividend;

2236 2237 2238 2239
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2240
{
2241
	struct hw_perf_event *hwc = &event->hw;
2242
	s64 period, sample_period;
2243 2244
	s64 delta;

2245
	period = perf_calculate_period(event, nsec, count);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2256

2257
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2258
		event->pmu->stop(event, PERF_EF_UPDATE);
2259
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2260
		event->pmu->start(event, PERF_EF_RELOAD);
2261
	}
2262 2263
}

2264
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2265
{
2266 2267
	struct perf_event *event;
	struct hw_perf_event *hwc;
2268 2269
	u64 interrupts, now;
	s64 delta;
2270

2271
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2272
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2273 2274
			continue;

2275
		if (!event_filter_match(event))
2276 2277
			continue;

2278
		hwc = &event->hw;
2279 2280 2281

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2282

2283
		/*
2284
		 * unthrottle events on the tick
2285
		 */
2286
		if (interrupts == MAX_INTERRUPTS) {
2287
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2288
			event->pmu->start(event, 0);
2289 2290
		}

2291
		if (!event->attr.freq || !event->attr.sample_freq)
2292 2293
			continue;

2294
		event->pmu->read(event);
2295
		now = local64_read(&event->count);
2296 2297
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2298

2299
		if (delta > 0)
2300
			perf_adjust_period(event, period, delta);
2301 2302 2303
	}
}

2304
/*
2305
 * Round-robin a context's events:
2306
 */
2307
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2308
{
2309 2310 2311 2312 2313 2314
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2315 2316
}

2317
/*
2318 2319 2320
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2321
 */
2322
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2323
{
2324
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2325
	struct perf_event_context *ctx = NULL;
2326
	int rotate = 0, remove = 1;
2327

2328
	if (cpuctx->ctx.nr_events) {
2329
		remove = 0;
2330 2331 2332
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2333

P
Peter Zijlstra 已提交
2334
	ctx = cpuctx->task_ctx;
2335
	if (ctx && ctx->nr_events) {
2336
		remove = 0;
2337 2338 2339
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2340

2341
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2342
	perf_pmu_disable(cpuctx->ctx.pmu);
2343
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2344
	if (ctx)
2345
		perf_ctx_adjust_freq(ctx, interval);
2346

2347
	if (!rotate)
2348
		goto done;
2349

2350
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2351
	if (ctx)
2352
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2353

2354
	rotate_ctx(&cpuctx->ctx);
2355 2356
	if (ctx)
		rotate_ctx(ctx);
2357

S
Stephane Eranian 已提交
2358
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2359
	if (ctx)
2360
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, current);
2361 2362

done:
2363 2364 2365
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2366
	perf_pmu_enable(cpuctx->ctx.pmu);
2367
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2368 2369 2370 2371 2372 2373
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2374

2375 2376 2377 2378 2379 2380 2381
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2382 2383
}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2399
/*
2400
 * Enable all of a task's events that have been marked enable-on-exec.
2401 2402
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2403
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2404
{
2405
	struct perf_event *event;
2406 2407
	unsigned long flags;
	int enabled = 0;
2408
	int ret;
2409 2410

	local_irq_save(flags);
2411
	if (!ctx || !ctx->nr_events)
2412 2413
		goto out;

2414 2415 2416 2417 2418 2419 2420 2421
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
2422

2423
	raw_spin_lock(&ctx->lock);
2424
	task_ctx_sched_out(ctx);
2425

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2436 2437 2438
	}

	/*
2439
	 * Unclone this context if we enabled any event.
2440
	 */
2441 2442
	if (enabled)
		unclone_ctx(ctx);
2443

2444
	raw_spin_unlock(&ctx->lock);
2445

2446 2447 2448
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2449
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2450
out:
2451 2452 2453
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2454
/*
2455
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2456
 */
2457
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2458
{
2459 2460
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2461
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2462

2463 2464 2465 2466
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2467 2468
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2469 2470 2471 2472
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2473
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2474
	if (ctx->is_active) {
2475
		update_context_time(ctx);
S
Stephane Eranian 已提交
2476 2477
		update_cgrp_time_from_event(event);
	}
2478
	update_event_times(event);
2479 2480
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2481
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2482 2483
}

P
Peter Zijlstra 已提交
2484 2485
static inline u64 perf_event_count(struct perf_event *event)
{
2486
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2487 2488
}

2489
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2490 2491
{
	/*
2492 2493
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2494
	 */
2495 2496 2497 2498
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2499 2500 2501
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2502
		raw_spin_lock_irqsave(&ctx->lock, flags);
2503 2504 2505 2506 2507
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2508
		if (ctx->is_active) {
2509
			update_context_time(ctx);
S
Stephane Eranian 已提交
2510 2511
			update_cgrp_time_from_event(event);
		}
2512
		update_event_times(event);
2513
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2514 2515
	}

P
Peter Zijlstra 已提交
2516
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2517 2518
}

2519
/*
2520
 * Callchain support
2521
 */
2522 2523 2524 2525 2526 2527

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2528
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2529 2530 2531 2532 2533 2534 2535
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2536 2537 2538
{
}

2539 2540
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2541
{
2542
}
T
Thomas Gleixner 已提交
2543

2544 2545 2546 2547
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2548

2549
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2550

2551 2552
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2553

2554 2555
	kfree(entries);
}
T
Thomas Gleixner 已提交
2556

2557 2558 2559
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2560

2561 2562 2563 2564
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2565

2566 2567 2568 2569 2570
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2571

2572
	/*
2573 2574 2575
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2576
	 */
2577
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2578

2579 2580 2581
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2582

2583
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2584

2585 2586 2587 2588 2589
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2590 2591
	}

2592
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2593

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2728
/*
2729
 * Initialize the perf_event context in a task_struct:
2730
 */
2731
static void __perf_event_init_context(struct perf_event_context *ctx)
2732
{
2733
	raw_spin_lock_init(&ctx->lock);
2734
	mutex_init(&ctx->mutex);
2735 2736
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2737 2738
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2754
	}
2755 2756 2757
	ctx->pmu = pmu;

	return ctx;
2758 2759
}

2760 2761 2762 2763 2764
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2765 2766

	rcu_read_lock();
2767
	if (!vpid)
T
Thomas Gleixner 已提交
2768 2769
		task = current;
	else
2770
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2771 2772 2773 2774 2775 2776 2777 2778
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2779 2780 2781 2782
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2783 2784 2785 2786 2787 2788 2789
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2790 2791 2792
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2793
static struct perf_event_context *
M
Matt Helsley 已提交
2794
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2795
{
2796
	struct perf_event_context *ctx;
2797
	struct perf_cpu_context *cpuctx;
2798
	unsigned long flags;
P
Peter Zijlstra 已提交
2799
	int ctxn, err;
T
Thomas Gleixner 已提交
2800

2801
	if (!task) {
2802
		/* Must be root to operate on a CPU event: */
2803
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2804 2805 2806
			return ERR_PTR(-EACCES);

		/*
2807
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2808 2809 2810
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2811
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2812 2813
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2814
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2815
		ctx = &cpuctx->ctx;
2816
		get_ctx(ctx);
2817
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2818 2819 2820 2821

		return ctx;
	}

P
Peter Zijlstra 已提交
2822 2823 2824 2825 2826
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2827
retry:
P
Peter Zijlstra 已提交
2828
	ctx = perf_lock_task_context(task, ctxn, &flags);
2829
	if (ctx) {
2830
		unclone_ctx(ctx);
2831
		++ctx->pin_count;
2832
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2833
	} else {
2834
		ctx = alloc_perf_context(pmu, task);
2835 2836 2837
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2838

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2849
		else {
2850
			get_ctx(ctx);
2851
			++ctx->pin_count;
2852
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2853
		}
2854 2855 2856
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2857
			put_ctx(ctx);
2858 2859 2860 2861

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2862 2863 2864
		}
	}

T
Thomas Gleixner 已提交
2865
	return ctx;
2866

P
Peter Zijlstra 已提交
2867
errout:
2868
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2869 2870
}

L
Li Zefan 已提交
2871 2872
static void perf_event_free_filter(struct perf_event *event);

2873
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2874
{
2875
	struct perf_event *event;
P
Peter Zijlstra 已提交
2876

2877 2878 2879
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2880
	perf_event_free_filter(event);
2881
	kfree(event);
P
Peter Zijlstra 已提交
2882 2883
}

2884
static void perf_buffer_put(struct perf_buffer *buffer);
2885

2886
static void free_event(struct perf_event *event)
2887
{
2888
	irq_work_sync(&event->pending);
2889

2890
	if (!event->parent) {
2891
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2892
			jump_label_dec(&perf_sched_events);
2893
		if (event->attr.mmap || event->attr.mmap_data)
2894 2895 2896 2897 2898
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2899 2900
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2901 2902 2903 2904
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2905
	}
2906

2907 2908 2909
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2910 2911
	}

S
Stephane Eranian 已提交
2912 2913 2914
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2915 2916
	if (event->destroy)
		event->destroy(event);
2917

P
Peter Zijlstra 已提交
2918 2919 2920
	if (event->ctx)
		put_ctx(event->ctx);

2921
	call_rcu(&event->rcu_head, free_event_rcu);
2922 2923
}

2924
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2925
{
2926
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2927

2928 2929 2930 2931 2932 2933
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2934
	WARN_ON_ONCE(ctx->parent_ctx);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2948
	raw_spin_lock_irq(&ctx->lock);
2949
	perf_group_detach(event);
2950 2951
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2952
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2953

2954
	free_event(event);
T
Thomas Gleixner 已提交
2955 2956 2957

	return 0;
}
2958
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2959

2960 2961 2962 2963
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2964
{
2965
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2966
	struct task_struct *owner;
2967

2968
	file->private_data = NULL;
2969

P
Peter Zijlstra 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3003
	return perf_event_release_kernel(event);
3004 3005
}

3006
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3007
{
3008
	struct perf_event *child;
3009 3010
	u64 total = 0;

3011 3012 3013
	*enabled = 0;
	*running = 0;

3014
	mutex_lock(&event->child_mutex);
3015
	total += perf_event_read(event);
3016 3017 3018 3019 3020 3021
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3022
		total += perf_event_read(child);
3023 3024 3025
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3026
	mutex_unlock(&event->child_mutex);
3027 3028 3029

	return total;
}
3030
EXPORT_SYMBOL_GPL(perf_event_read_value);
3031

3032
static int perf_event_read_group(struct perf_event *event,
3033 3034
				   u64 read_format, char __user *buf)
{
3035
	struct perf_event *leader = event->group_leader, *sub;
3036 3037
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3038
	u64 values[5];
3039
	u64 count, enabled, running;
3040

3041
	mutex_lock(&ctx->mutex);
3042
	count = perf_event_read_value(leader, &enabled, &running);
3043 3044

	values[n++] = 1 + leader->nr_siblings;
3045 3046 3047 3048
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3049 3050 3051
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3052 3053 3054 3055

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3056
		goto unlock;
3057

3058
	ret = size;
3059

3060
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3061
		n = 0;
3062

3063
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3064 3065 3066 3067 3068
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3069
		if (copy_to_user(buf + ret, values, size)) {
3070 3071 3072
			ret = -EFAULT;
			goto unlock;
		}
3073 3074

		ret += size;
3075
	}
3076 3077
unlock:
	mutex_unlock(&ctx->mutex);
3078

3079
	return ret;
3080 3081
}

3082
static int perf_event_read_one(struct perf_event *event,
3083 3084
				 u64 read_format, char __user *buf)
{
3085
	u64 enabled, running;
3086 3087 3088
	u64 values[4];
	int n = 0;

3089 3090 3091 3092 3093
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3094
	if (read_format & PERF_FORMAT_ID)
3095
		values[n++] = primary_event_id(event);
3096 3097 3098 3099 3100 3101 3102

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3103
/*
3104
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3105 3106
 */
static ssize_t
3107
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3108
{
3109
	u64 read_format = event->attr.read_format;
3110
	int ret;
T
Thomas Gleixner 已提交
3111

3112
	/*
3113
	 * Return end-of-file for a read on a event that is in
3114 3115 3116
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3117
	if (event->state == PERF_EVENT_STATE_ERROR)
3118 3119
		return 0;

3120
	if (count < event->read_size)
3121 3122
		return -ENOSPC;

3123
	WARN_ON_ONCE(event->ctx->parent_ctx);
3124
	if (read_format & PERF_FORMAT_GROUP)
3125
		ret = perf_event_read_group(event, read_format, buf);
3126
	else
3127
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3128

3129
	return ret;
T
Thomas Gleixner 已提交
3130 3131 3132 3133 3134
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3135
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3136

3137
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3138 3139 3140 3141
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3142
	struct perf_event *event = file->private_data;
3143
	struct perf_buffer *buffer;
3144
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3145 3146

	rcu_read_lock();
3147 3148 3149
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3150
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3151

3152
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3153 3154 3155 3156

	return events;
}

3157
static void perf_event_reset(struct perf_event *event)
3158
{
3159
	(void)perf_event_read(event);
3160
	local64_set(&event->count, 0);
3161
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3162 3163
}

3164
/*
3165 3166 3167 3168
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3169
 */
3170 3171
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3172
{
3173
	struct perf_event *child;
P
Peter Zijlstra 已提交
3174

3175 3176 3177 3178
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3179
		func(child);
3180
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3181 3182
}

3183 3184
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3185
{
3186 3187
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3188

3189 3190
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3191
	event = event->group_leader;
3192

3193 3194 3195 3196
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3197
	mutex_unlock(&ctx->mutex);
3198 3199
}

3200
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3201
{
3202
	struct perf_event_context *ctx = event->ctx;
3203 3204 3205
	int ret = 0;
	u64 value;

3206
	if (!is_sampling_event(event))
3207 3208
		return -EINVAL;

3209
	if (copy_from_user(&value, arg, sizeof(value)))
3210 3211 3212 3213 3214
		return -EFAULT;

	if (!value)
		return -EINVAL;

3215
	raw_spin_lock_irq(&ctx->lock);
3216 3217
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3218 3219 3220 3221
			ret = -EINVAL;
			goto unlock;
		}

3222
		event->attr.sample_freq = value;
3223
	} else {
3224 3225
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3226 3227
	}
unlock:
3228
	raw_spin_unlock_irq(&ctx->lock);
3229 3230 3231 3232

	return ret;
}

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3254
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3255

3256 3257
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3258 3259
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3260
	u32 flags = arg;
3261 3262

	switch (cmd) {
3263 3264
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3265
		break;
3266 3267
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3268
		break;
3269 3270
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3271
		break;
P
Peter Zijlstra 已提交
3272

3273 3274
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3275

3276 3277
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3278

3279
	case PERF_EVENT_IOC_SET_OUTPUT:
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3297

L
Li Zefan 已提交
3298 3299 3300
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3301
	default:
P
Peter Zijlstra 已提交
3302
		return -ENOTTY;
3303
	}
P
Peter Zijlstra 已提交
3304 3305

	if (flags & PERF_IOC_FLAG_GROUP)
3306
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3307
	else
3308
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3309 3310

	return 0;
3311 3312
}

3313
int perf_event_task_enable(void)
3314
{
3315
	struct perf_event *event;
3316

3317 3318 3319 3320
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3321 3322 3323 3324

	return 0;
}

3325
int perf_event_task_disable(void)
3326
{
3327
	struct perf_event *event;
3328

3329 3330 3331 3332
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3333 3334 3335 3336

	return 0;
}

3337 3338
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3339 3340
#endif

3341
static int perf_event_index(struct perf_event *event)
3342
{
P
Peter Zijlstra 已提交
3343 3344 3345
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3346
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3347 3348
		return 0;

3349
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3350 3351
}

3352 3353 3354 3355 3356
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3357
void perf_event_update_userpage(struct perf_event *event)
3358
{
3359
	struct perf_event_mmap_page *userpg;
3360
	struct perf_buffer *buffer;
3361 3362

	rcu_read_lock();
3363 3364
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3365 3366
		goto unlock;

3367
	userpg = buffer->user_page;
3368

3369 3370 3371 3372 3373
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3374
	++userpg->lock;
3375
	barrier();
3376
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3377
	userpg->offset = perf_event_count(event);
3378
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3379
		userpg->offset -= local64_read(&event->hw.prev_count);
3380

3381 3382
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3383

3384 3385
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3386

3387
	barrier();
3388
	++userpg->lock;
3389
	preempt_enable();
3390
unlock:
3391
	rcu_read_unlock();
3392 3393
}

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3413
#ifndef CONFIG_PERF_USE_VMALLOC
3414

3415 3416 3417
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3418

3419
static struct page *
3420
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3421
{
3422
	if (pgoff > buffer->nr_pages)
3423
		return NULL;
3424

3425
	if (pgoff == 0)
3426
		return virt_to_page(buffer->user_page);
3427

3428
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3429 3430
}

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3444
static struct perf_buffer *
3445
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3446
{
3447
	struct perf_buffer *buffer;
3448 3449 3450
	unsigned long size;
	int i;

3451
	size = sizeof(struct perf_buffer);
3452 3453
	size += nr_pages * sizeof(void *);

3454 3455
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3456 3457
		goto fail;

3458
	buffer->user_page = perf_mmap_alloc_page(cpu);
3459
	if (!buffer->user_page)
3460 3461 3462
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3463
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3464
		if (!buffer->data_pages[i])
3465 3466 3467
			goto fail_data_pages;
	}

3468
	buffer->nr_pages = nr_pages;
3469

3470 3471
	perf_buffer_init(buffer, watermark, flags);

3472
	return buffer;
3473 3474 3475

fail_data_pages:
	for (i--; i >= 0; i--)
3476
		free_page((unsigned long)buffer->data_pages[i]);
3477

3478
	free_page((unsigned long)buffer->user_page);
3479 3480

fail_user_page:
3481
	kfree(buffer);
3482 3483

fail:
3484
	return NULL;
3485 3486
}

3487 3488
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3489
	struct page *page = virt_to_page((void *)addr);
3490 3491 3492 3493 3494

	page->mapping = NULL;
	__free_page(page);
}

3495
static void perf_buffer_free(struct perf_buffer *buffer)
3496 3497 3498
{
	int i;

3499 3500 3501 3502
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3503 3504
}

3505
static inline int page_order(struct perf_buffer *buffer)
3506 3507 3508 3509
{
	return 0;
}

3510 3511 3512 3513 3514 3515 3516 3517
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3518
static inline int page_order(struct perf_buffer *buffer)
3519
{
3520
	return buffer->page_order;
3521 3522
}

3523
static struct page *
3524
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3525
{
3526
	if (pgoff > (1UL << page_order(buffer)))
3527 3528
		return NULL;

3529
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3530 3531 3532 3533 3534 3535 3536 3537 3538
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3539
static void perf_buffer_free_work(struct work_struct *work)
3540
{
3541
	struct perf_buffer *buffer;
3542 3543 3544
	void *base;
	int i, nr;

3545 3546
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3547

3548
	base = buffer->user_page;
3549 3550 3551 3552
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3553
	kfree(buffer);
3554 3555
}

3556
static void perf_buffer_free(struct perf_buffer *buffer)
3557
{
3558
	schedule_work(&buffer->work);
3559 3560
}

3561
static struct perf_buffer *
3562
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3563
{
3564
	struct perf_buffer *buffer;
3565 3566 3567
	unsigned long size;
	void *all_buf;

3568
	size = sizeof(struct perf_buffer);
3569 3570
	size += sizeof(void *);

3571 3572
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3573 3574
		goto fail;

3575
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3576 3577 3578 3579 3580

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3581 3582 3583 3584
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3585

3586 3587
	perf_buffer_init(buffer, watermark, flags);

3588
	return buffer;
3589 3590

fail_all_buf:
3591
	kfree(buffer);
3592 3593 3594 3595 3596 3597 3598

fail:
	return NULL;
}

#endif

3599
static unsigned long perf_data_size(struct perf_buffer *buffer)
3600
{
3601
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3602 3603
}

3604 3605 3606
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3607
	struct perf_buffer *buffer;
3608 3609 3610 3611 3612 3613 3614 3615 3616
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3617 3618
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3619 3620 3621 3622 3623
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3624
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3639
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3640
{
3641
	struct perf_buffer *buffer;
3642

3643 3644
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3645 3646
}

3647
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3648
{
3649
	struct perf_buffer *buffer;
3650

3651
	rcu_read_lock();
3652 3653 3654 3655
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3656 3657 3658
	}
	rcu_read_unlock();

3659
	return buffer;
3660 3661
}

3662
static void perf_buffer_put(struct perf_buffer *buffer)
3663
{
3664
	if (!atomic_dec_and_test(&buffer->refcount))
3665
		return;
3666

3667
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3668 3669 3670 3671
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3672
	struct perf_event *event = vma->vm_file->private_data;
3673

3674
	atomic_inc(&event->mmap_count);
3675 3676 3677 3678
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3679
	struct perf_event *event = vma->vm_file->private_data;
3680

3681
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3682
		unsigned long size = perf_data_size(event->buffer);
3683
		struct user_struct *user = event->mmap_user;
3684
		struct perf_buffer *buffer = event->buffer;
3685

3686
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3687
		vma->vm_mm->locked_vm -= event->mmap_locked;
3688
		rcu_assign_pointer(event->buffer, NULL);
3689
		mutex_unlock(&event->mmap_mutex);
3690

3691
		perf_buffer_put(buffer);
3692
		free_uid(user);
3693
	}
3694 3695
}

3696
static const struct vm_operations_struct perf_mmap_vmops = {
3697 3698 3699 3700
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3701 3702 3703 3704
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3705
	struct perf_event *event = file->private_data;
3706
	unsigned long user_locked, user_lock_limit;
3707
	struct user_struct *user = current_user();
3708
	unsigned long locked, lock_limit;
3709
	struct perf_buffer *buffer;
3710 3711
	unsigned long vma_size;
	unsigned long nr_pages;
3712
	long user_extra, extra;
3713
	int ret = 0, flags = 0;
3714

3715 3716 3717 3718 3719 3720 3721 3722
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3723
	if (!(vma->vm_flags & VM_SHARED))
3724
		return -EINVAL;
3725 3726 3727 3728

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3729
	/*
3730
	 * If we have buffer pages ensure they're a power-of-two number, so we
3731 3732 3733
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3734 3735
		return -EINVAL;

3736
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3737 3738
		return -EINVAL;

3739 3740
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3741

3742 3743
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3744 3745 3746
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3747
		else
3748 3749 3750 3751
			ret = -EINVAL;
		goto unlock;
	}

3752
	user_extra = nr_pages + 1;
3753
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3754 3755 3756 3757 3758 3759

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3760
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3761

3762 3763 3764
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3765

3766
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3767
	lock_limit >>= PAGE_SHIFT;
3768
	locked = vma->vm_mm->locked_vm + extra;
3769

3770 3771
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3772 3773 3774
		ret = -EPERM;
		goto unlock;
	}
3775

3776
	WARN_ON(event->buffer);
3777

3778 3779 3780 3781 3782
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3783
	if (!buffer) {
3784
		ret = -ENOMEM;
3785
		goto unlock;
3786
	}
3787
	rcu_assign_pointer(event->buffer, buffer);
3788

3789 3790 3791 3792 3793
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3794
unlock:
3795 3796
	if (!ret)
		atomic_inc(&event->mmap_count);
3797
	mutex_unlock(&event->mmap_mutex);
3798 3799 3800

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3801 3802

	return ret;
3803 3804
}

P
Peter Zijlstra 已提交
3805 3806 3807
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3808
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3809 3810 3811
	int retval;

	mutex_lock(&inode->i_mutex);
3812
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3813 3814 3815 3816 3817 3818 3819 3820
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3821
static const struct file_operations perf_fops = {
3822
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3823 3824 3825
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3826 3827
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3828
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3829
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3830 3831
};

3832
/*
3833
 * Perf event wakeup
3834 3835 3836 3837 3838
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3839
void perf_event_wakeup(struct perf_event *event)
3840
{
3841
	wake_up_all(&event->waitq);
3842

3843 3844 3845
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3846
	}
3847 3848
}

3849
static void perf_pending_event(struct irq_work *entry)
3850
{
3851 3852
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3853

3854 3855 3856
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3857 3858
	}

3859 3860 3861
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3862 3863 3864
	}
}

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3886 3887 3888
/*
 * Output
 */
3889
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3890
			      unsigned long offset, unsigned long head)
3891 3892 3893
{
	unsigned long mask;

3894
	if (!buffer->writable)
3895 3896
		return true;

3897
	mask = perf_data_size(buffer) - 1;
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3908
static void perf_output_wakeup(struct perf_output_handle *handle)
3909
{
3910
	atomic_set(&handle->buffer->poll, POLL_IN);
3911

3912
	if (handle->nmi) {
3913
		handle->event->pending_wakeup = 1;
3914
		irq_work_queue(&handle->event->pending);
3915
	} else
3916
		perf_event_wakeup(handle->event);
3917 3918
}

3919
/*
3920
 * We need to ensure a later event_id doesn't publish a head when a former
3921
 * event isn't done writing. However since we need to deal with NMIs we
3922 3923 3924
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3925
 * event completes.
3926
 */
3927
static void perf_output_get_handle(struct perf_output_handle *handle)
3928
{
3929
	struct perf_buffer *buffer = handle->buffer;
3930

3931
	preempt_disable();
3932 3933
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3934 3935
}

3936
static void perf_output_put_handle(struct perf_output_handle *handle)
3937
{
3938
	struct perf_buffer *buffer = handle->buffer;
3939
	unsigned long head;
3940 3941

again:
3942
	head = local_read(&buffer->head);
3943 3944

	/*
3945
	 * IRQ/NMI can happen here, which means we can miss a head update.
3946 3947
	 */

3948
	if (!local_dec_and_test(&buffer->nest))
3949
		goto out;
3950 3951

	/*
3952
	 * Publish the known good head. Rely on the full barrier implied
3953
	 * by atomic_dec_and_test() order the buffer->head read and this
3954
	 * write.
3955
	 */
3956
	buffer->user_page->data_head = head;
3957

3958 3959
	/*
	 * Now check if we missed an update, rely on the (compiler)
3960
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3961
	 */
3962 3963
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3964 3965 3966
		goto again;
	}

3967
	if (handle->wakeup != local_read(&buffer->wakeup))
3968
		perf_output_wakeup(handle);
3969

P
Peter Zijlstra 已提交
3970
out:
3971
	preempt_enable();
3972 3973
}

3974
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3975
		      const void *buf, unsigned int len)
3976
{
3977
	do {
3978
		unsigned long size = min_t(unsigned long, handle->size, len);
3979 3980 3981 3982 3983

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3984
		buf += size;
3985 3986
		handle->size -= size;
		if (!handle->size) {
3987
			struct perf_buffer *buffer = handle->buffer;
3988

3989
			handle->page++;
3990 3991 3992
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3993 3994
		}
	} while (len);
3995 3996
}

3997 3998 3999
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4064
int perf_output_begin(struct perf_output_handle *handle,
4065
		      struct perf_event *event, unsigned int size,
4066
		      int nmi, int sample)
4067
{
4068
	struct perf_buffer *buffer;
4069
	unsigned long tail, offset, head;
4070
	int have_lost;
4071
	struct perf_sample_data sample_data;
4072 4073 4074 4075 4076
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4077

4078
	rcu_read_lock();
4079
	/*
4080
	 * For inherited events we send all the output towards the parent.
4081
	 */
4082 4083
	if (event->parent)
		event = event->parent;
4084

4085 4086
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4087 4088
		goto out;

4089
	handle->buffer	= buffer;
4090
	handle->event	= event;
4091 4092
	handle->nmi	= nmi;
	handle->sample	= sample;
4093

4094
	if (!buffer->nr_pages)
4095
		goto out;
4096

4097
	have_lost = local_read(&buffer->lost);
4098 4099 4100 4101 4102 4103
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4104

4105
	perf_output_get_handle(handle);
4106

4107
	do {
4108 4109 4110 4111 4112
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4113
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4114
		smp_rmb();
4115
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4116
		head += size;
4117
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4118
			goto fail;
4119
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4120

4121 4122
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4123

4124 4125 4126 4127
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4128
	handle->addr += handle->size;
4129
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4130

4131
	if (have_lost) {
4132
		lost_event.header.type = PERF_RECORD_LOST;
4133
		lost_event.header.misc = 0;
4134
		lost_event.id          = event->id;
4135
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4136 4137

		perf_output_put(handle, lost_event);
4138
		perf_event__output_id_sample(event, handle, &sample_data);
4139 4140
	}

4141
	return 0;
4142

4143
fail:
4144
	local_inc(&buffer->lost);
4145
	perf_output_put_handle(handle);
4146 4147
out:
	rcu_read_unlock();
4148

4149 4150
	return -ENOSPC;
}
4151

4152
void perf_output_end(struct perf_output_handle *handle)
4153
{
4154
	struct perf_event *event = handle->event;
4155
	struct perf_buffer *buffer = handle->buffer;
4156

4157
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4158

4159
	if (handle->sample && wakeup_events) {
4160
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4161
		if (events >= wakeup_events) {
4162 4163
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4164
		}
4165 4166
	}

4167
	perf_output_put_handle(handle);
4168
	rcu_read_unlock();
4169 4170
}

4171
static void perf_output_read_one(struct perf_output_handle *handle,
4172 4173
				 struct perf_event *event,
				 u64 enabled, u64 running)
4174
{
4175
	u64 read_format = event->attr.read_format;
4176 4177 4178
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4179
	values[n++] = perf_event_count(event);
4180
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4181
		values[n++] = enabled +
4182
			atomic64_read(&event->child_total_time_enabled);
4183 4184
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4185
		values[n++] = running +
4186
			atomic64_read(&event->child_total_time_running);
4187 4188
	}
	if (read_format & PERF_FORMAT_ID)
4189
		values[n++] = primary_event_id(event);
4190 4191 4192 4193 4194

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4195
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4196 4197
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4198 4199
			    struct perf_event *event,
			    u64 enabled, u64 running)
4200
{
4201 4202
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4203 4204 4205 4206 4207 4208
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4209
		values[n++] = enabled;
4210 4211

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4212
		values[n++] = running;
4213

4214
	if (leader != event)
4215 4216
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4217
	values[n++] = perf_event_count(leader);
4218
	if (read_format & PERF_FORMAT_ID)
4219
		values[n++] = primary_event_id(leader);
4220 4221 4222

	perf_output_copy(handle, values, n * sizeof(u64));

4223
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4224 4225
		n = 0;

4226
		if (sub != event)
4227 4228
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4229
		values[n++] = perf_event_count(sub);
4230
		if (read_format & PERF_FORMAT_ID)
4231
			values[n++] = primary_event_id(sub);
4232 4233 4234 4235 4236

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4237 4238 4239
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4240
static void perf_output_read(struct perf_output_handle *handle,
4241
			     struct perf_event *event)
4242
{
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4262
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4263
		perf_output_read_group(handle, event, enabled, running);
4264
	else
4265
		perf_output_read_one(handle, event, enabled, running);
4266 4267
}

4268 4269 4270
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4271
			struct perf_event *event)
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4302
		perf_output_read(handle, event);
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4340
			 struct perf_event *event,
4341
			 struct pt_regs *regs)
4342
{
4343
	u64 sample_type = event->attr.sample_type;
4344

4345
	header->type = PERF_RECORD_SAMPLE;
4346
	header->size = sizeof(*header) + event->header_size;
4347 4348 4349

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4350

4351
	__perf_event_header__init_id(header, data, event);
4352

4353
	if (sample_type & PERF_SAMPLE_IP)
4354 4355
		data->ip = perf_instruction_pointer(regs);

4356
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4357
		int size = 1;
4358

4359 4360 4361 4362 4363 4364
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4365 4366
	}

4367
	if (sample_type & PERF_SAMPLE_RAW) {
4368 4369 4370 4371 4372 4373 4374 4375
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4376
		header->size += size;
4377
	}
4378
}
4379

4380
static void perf_event_output(struct perf_event *event, int nmi,
4381 4382 4383 4384 4385
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4386

4387 4388 4389
	/* protect the callchain buffers */
	rcu_read_lock();

4390
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4391

4392
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4393
		goto exit;
4394

4395
	perf_output_sample(&handle, &header, data, event);
4396

4397
	perf_output_end(&handle);
4398 4399 4400

exit:
	rcu_read_unlock();
4401 4402
}

4403
/*
4404
 * read event_id
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4415
perf_event_read_event(struct perf_event *event,
4416 4417 4418
			struct task_struct *task)
{
	struct perf_output_handle handle;
4419
	struct perf_sample_data sample;
4420
	struct perf_read_event read_event = {
4421
		.header = {
4422
			.type = PERF_RECORD_READ,
4423
			.misc = 0,
4424
			.size = sizeof(read_event) + event->read_size,
4425
		},
4426 4427
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4428
	};
4429
	int ret;
4430

4431
	perf_event_header__init_id(&read_event.header, &sample, event);
4432
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4433 4434 4435
	if (ret)
		return;

4436
	perf_output_put(&handle, read_event);
4437
	perf_output_read(&handle, event);
4438
	perf_event__output_id_sample(event, &handle, &sample);
4439

4440 4441 4442
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4443
/*
P
Peter Zijlstra 已提交
4444 4445
 * task tracking -- fork/exit
 *
4446
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4447 4448
 */

P
Peter Zijlstra 已提交
4449
struct perf_task_event {
4450
	struct task_struct		*task;
4451
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4452 4453 4454 4455 4456 4457

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4458 4459
		u32				tid;
		u32				ptid;
4460
		u64				time;
4461
	} event_id;
P
Peter Zijlstra 已提交
4462 4463
};

4464
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4465
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4466 4467
{
	struct perf_output_handle handle;
4468
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4469
	struct task_struct *task = task_event->task;
4470
	int ret, size = task_event->event_id.header.size;
4471

4472
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4473

4474 4475
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4476
	if (ret)
4477
		goto out;
P
Peter Zijlstra 已提交
4478

4479 4480
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4481

4482 4483
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4484

4485
	perf_output_put(&handle, task_event->event_id);
4486

4487 4488
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4489
	perf_output_end(&handle);
4490 4491
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4492 4493
}

4494
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4495
{
P
Peter Zijlstra 已提交
4496
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4497 4498
		return 0;

4499
	if (!event_filter_match(event))
4500 4501
		return 0;

4502 4503
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4504 4505 4506 4507 4508
		return 1;

	return 0;
}

4509
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4510
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4511
{
4512
	struct perf_event *event;
P
Peter Zijlstra 已提交
4513

4514 4515 4516
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4517 4518 4519
	}
}

4520
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4521 4522
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4523
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4524
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4525
	int ctxn;
P
Peter Zijlstra 已提交
4526

4527
	rcu_read_lock();
P
Peter Zijlstra 已提交
4528
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4529
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4530 4531
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4532
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4533 4534 4535 4536 4537

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4538
				goto next;
P
Peter Zijlstra 已提交
4539 4540 4541 4542
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4543 4544
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4545
	}
P
Peter Zijlstra 已提交
4546 4547 4548
	rcu_read_unlock();
}

4549 4550
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4551
			      int new)
P
Peter Zijlstra 已提交
4552
{
P
Peter Zijlstra 已提交
4553
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4554

4555 4556 4557
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4558 4559
		return;

P
Peter Zijlstra 已提交
4560
	task_event = (struct perf_task_event){
4561 4562
		.task	  = task,
		.task_ctx = task_ctx,
4563
		.event_id    = {
P
Peter Zijlstra 已提交
4564
			.header = {
4565
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4566
				.misc = 0,
4567
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4568
			},
4569 4570
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4571 4572
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4573
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4574 4575 4576
		},
	};

4577
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4578 4579
}

4580
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4581
{
4582
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4583 4584
}

4585 4586 4587 4588 4589
/*
 * comm tracking
 */

struct perf_comm_event {
4590 4591
	struct task_struct	*task;
	char			*comm;
4592 4593 4594 4595 4596 4597 4598
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4599
	} event_id;
4600 4601
};

4602
static void perf_event_comm_output(struct perf_event *event,
4603 4604 4605
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4606
	struct perf_sample_data sample;
4607
	int size = comm_event->event_id.header.size;
4608 4609 4610 4611 4612
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4613 4614

	if (ret)
4615
		goto out;
4616

4617 4618
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4619

4620
	perf_output_put(&handle, comm_event->event_id);
4621 4622
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4623 4624 4625

	perf_event__output_id_sample(event, &handle, &sample);

4626
	perf_output_end(&handle);
4627 4628
out:
	comm_event->event_id.header.size = size;
4629 4630
}

4631
static int perf_event_comm_match(struct perf_event *event)
4632
{
P
Peter Zijlstra 已提交
4633
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4634 4635
		return 0;

4636
	if (!event_filter_match(event))
4637 4638
		return 0;

4639
	if (event->attr.comm)
4640 4641 4642 4643 4644
		return 1;

	return 0;
}

4645
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4646 4647
				  struct perf_comm_event *comm_event)
{
4648
	struct perf_event *event;
4649

4650 4651 4652
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4653 4654 4655
	}
}

4656
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4657 4658
{
	struct perf_cpu_context *cpuctx;
4659
	struct perf_event_context *ctx;
4660
	char comm[TASK_COMM_LEN];
4661
	unsigned int size;
P
Peter Zijlstra 已提交
4662
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4663
	int ctxn;
4664

4665
	memset(comm, 0, sizeof(comm));
4666
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4667
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4668 4669 4670 4671

	comm_event->comm = comm;
	comm_event->comm_size = size;

4672
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4673
	rcu_read_lock();
P
Peter Zijlstra 已提交
4674
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4675
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4676 4677
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4678
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4679 4680 4681

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4682
			goto next;
P
Peter Zijlstra 已提交
4683 4684 4685 4686

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4687 4688
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4689
	}
4690
	rcu_read_unlock();
4691 4692
}

4693
void perf_event_comm(struct task_struct *task)
4694
{
4695
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4696 4697
	struct perf_event_context *ctx;
	int ctxn;
4698

P
Peter Zijlstra 已提交
4699 4700 4701 4702
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4703

P
Peter Zijlstra 已提交
4704 4705
		perf_event_enable_on_exec(ctx);
	}
4706

4707
	if (!atomic_read(&nr_comm_events))
4708
		return;
4709

4710
	comm_event = (struct perf_comm_event){
4711
		.task	= task,
4712 4713
		/* .comm      */
		/* .comm_size */
4714
		.event_id  = {
4715
			.header = {
4716
				.type = PERF_RECORD_COMM,
4717 4718 4719 4720 4721
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4722 4723 4724
		},
	};

4725
	perf_event_comm_event(&comm_event);
4726 4727
}

4728 4729 4730 4731 4732
/*
 * mmap tracking
 */

struct perf_mmap_event {
4733 4734 4735 4736
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4737 4738 4739 4740 4741 4742 4743 4744 4745

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4746
	} event_id;
4747 4748
};

4749
static void perf_event_mmap_output(struct perf_event *event,
4750 4751 4752
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4753
	struct perf_sample_data sample;
4754
	int size = mmap_event->event_id.header.size;
4755
	int ret;
4756

4757 4758 4759
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4760
	if (ret)
4761
		goto out;
4762

4763 4764
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4765

4766
	perf_output_put(&handle, mmap_event->event_id);
4767 4768
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4769 4770 4771

	perf_event__output_id_sample(event, &handle, &sample);

4772
	perf_output_end(&handle);
4773 4774
out:
	mmap_event->event_id.header.size = size;
4775 4776
}

4777
static int perf_event_mmap_match(struct perf_event *event,
4778 4779
				   struct perf_mmap_event *mmap_event,
				   int executable)
4780
{
P
Peter Zijlstra 已提交
4781
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4782 4783
		return 0;

4784
	if (!event_filter_match(event))
4785 4786
		return 0;

4787 4788
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4789 4790 4791 4792 4793
		return 1;

	return 0;
}

4794
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4795 4796
				  struct perf_mmap_event *mmap_event,
				  int executable)
4797
{
4798
	struct perf_event *event;
4799

4800
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4801
		if (perf_event_mmap_match(event, mmap_event, executable))
4802
			perf_event_mmap_output(event, mmap_event);
4803 4804 4805
	}
}

4806
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4807 4808
{
	struct perf_cpu_context *cpuctx;
4809
	struct perf_event_context *ctx;
4810 4811
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4812 4813 4814
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4815
	const char *name;
P
Peter Zijlstra 已提交
4816
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4817
	int ctxn;
4818

4819 4820
	memset(tmp, 0, sizeof(tmp));

4821
	if (file) {
4822 4823 4824 4825 4826 4827
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4828 4829 4830 4831
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4832
		name = d_path(&file->f_path, buf, PATH_MAX);
4833 4834 4835 4836 4837
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4838 4839 4840
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4841
			goto got_name;
4842
		}
4843 4844 4845 4846

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4847 4848 4849 4850 4851 4852 4853 4854
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4855 4856
		}

4857 4858 4859 4860 4861
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4862
	size = ALIGN(strlen(name)+1, sizeof(u64));
4863 4864 4865 4866

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4867
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4868

4869
	rcu_read_lock();
P
Peter Zijlstra 已提交
4870
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4871
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4872 4873
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4874 4875
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4876 4877 4878

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4879
			goto next;
P
Peter Zijlstra 已提交
4880 4881 4882 4883 4884 4885

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4886 4887
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4888
	}
4889 4890
	rcu_read_unlock();

4891 4892 4893
	kfree(buf);
}

4894
void perf_event_mmap(struct vm_area_struct *vma)
4895
{
4896 4897
	struct perf_mmap_event mmap_event;

4898
	if (!atomic_read(&nr_mmap_events))
4899 4900 4901
		return;

	mmap_event = (struct perf_mmap_event){
4902
		.vma	= vma,
4903 4904
		/* .file_name */
		/* .file_size */
4905
		.event_id  = {
4906
			.header = {
4907
				.type = PERF_RECORD_MMAP,
4908
				.misc = PERF_RECORD_MISC_USER,
4909 4910 4911 4912
				/* .size */
			},
			/* .pid */
			/* .tid */
4913 4914
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4915
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4916 4917 4918
		},
	};

4919
	perf_event_mmap_event(&mmap_event);
4920 4921
}

4922 4923 4924 4925
/*
 * IRQ throttle logging
 */

4926
static void perf_log_throttle(struct perf_event *event, int enable)
4927 4928
{
	struct perf_output_handle handle;
4929
	struct perf_sample_data sample;
4930 4931 4932 4933 4934
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4935
		u64				id;
4936
		u64				stream_id;
4937 4938
	} throttle_event = {
		.header = {
4939
			.type = PERF_RECORD_THROTTLE,
4940 4941 4942
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4943
		.time		= perf_clock(),
4944 4945
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4946 4947
	};

4948
	if (enable)
4949
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4950

4951 4952 4953 4954
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4955 4956 4957 4958
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4959
	perf_event__output_id_sample(event, &handle, &sample);
4960 4961 4962
	perf_output_end(&handle);
}

4963
/*
4964
 * Generic event overflow handling, sampling.
4965 4966
 */

4967
static int __perf_event_overflow(struct perf_event *event, int nmi,
4968 4969
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4970
{
4971 4972
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4973 4974
	int ret = 0;

4975 4976 4977 4978 4979 4980 4981
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4982 4983 4984 4985
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4986 4987
			ret = 1;
		}
P
Peter Zijlstra 已提交
4988 4989
	} else
		hwc->interrupts++;
4990

4991
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4992
		u64 now = perf_clock();
4993
		s64 delta = now - hwc->freq_time_stamp;
4994

4995
		hwc->freq_time_stamp = now;
4996

4997 4998
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4999 5000
	}

5001 5002
	/*
	 * XXX event_limit might not quite work as expected on inherited
5003
	 * events
5004 5005
	 */

5006 5007
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5008
		ret = 1;
5009
		event->pending_kill = POLL_HUP;
5010
		if (nmi) {
5011
			event->pending_disable = 1;
5012
			irq_work_queue(&event->pending);
5013
		} else
5014
			perf_event_disable(event);
5015 5016
	}

5017 5018 5019 5020 5021
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

P
Peter Zijlstra 已提交
5022 5023 5024 5025 5026 5027 5028 5029
	if (event->fasync && event->pending_kill) {
		if (nmi) {
			event->pending_wakeup = 1;
			irq_work_queue(&event->pending);
		} else
			perf_event_wakeup(event);
	}

5030
	return ret;
5031 5032
}

5033
int perf_event_overflow(struct perf_event *event, int nmi,
5034 5035
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5036
{
5037
	return __perf_event_overflow(event, nmi, 1, data, regs);
5038 5039
}

5040
/*
5041
 * Generic software event infrastructure
5042 5043
 */

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5055
/*
5056 5057
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5058 5059 5060 5061
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5062
static u64 perf_swevent_set_period(struct perf_event *event)
5063
{
5064
	struct hw_perf_event *hwc = &event->hw;
5065 5066 5067 5068 5069
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5070 5071

again:
5072
	old = val = local64_read(&hwc->period_left);
5073 5074
	if (val < 0)
		return 0;
5075

5076 5077 5078
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5079
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5080
		goto again;
5081

5082
	return nr;
5083 5084
}

5085
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5086 5087
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5088
{
5089
	struct hw_perf_event *hwc = &event->hw;
5090
	int throttle = 0;
5091

5092
	data->period = event->hw.last_period;
5093 5094
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5095

5096 5097
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5098

5099
	for (; overflow; overflow--) {
5100
		if (__perf_event_overflow(event, nmi, throttle,
5101
					    data, regs)) {
5102 5103 5104 5105 5106 5107
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5108
		throttle = 1;
5109
	}
5110 5111
}

P
Peter Zijlstra 已提交
5112
static void perf_swevent_event(struct perf_event *event, u64 nr,
5113 5114
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5115
{
5116
	struct hw_perf_event *hwc = &event->hw;
5117

5118
	local64_add(nr, &event->count);
5119

5120 5121 5122
	if (!regs)
		return;

5123
	if (!is_sampling_event(event))
5124
		return;
5125

5126 5127 5128
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5129
	if (local64_add_negative(nr, &hwc->period_left))
5130
		return;
5131

5132
	perf_swevent_overflow(event, 0, nmi, data, regs);
5133 5134
}

5135 5136 5137
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5138
	if (event->hw.state & PERF_HES_STOPPED)
5139
		return 1;
P
Peter Zijlstra 已提交
5140

5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5152
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5153
				enum perf_type_id type,
L
Li Zefan 已提交
5154 5155 5156
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5157
{
5158
	if (event->attr.type != type)
5159
		return 0;
5160

5161
	if (event->attr.config != event_id)
5162 5163
		return 0;

5164 5165
	if (perf_exclude_event(event, regs))
		return 0;
5166 5167 5168 5169

	return 1;
}

5170 5171 5172 5173 5174 5175 5176
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5177 5178
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5179
{
5180 5181 5182 5183
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5184

5185 5186
/* For the read side: events when they trigger */
static inline struct hlist_head *
5187
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5188 5189
{
	struct swevent_hlist *hlist;
5190

5191
	hlist = rcu_dereference(swhash->swevent_hlist);
5192 5193 5194
	if (!hlist)
		return NULL;

5195 5196 5197 5198 5199
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5200
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5211
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5212 5213 5214 5215 5216
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5217 5218 5219 5220 5221 5222
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5223
{
5224
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5225
	struct perf_event *event;
5226 5227
	struct hlist_node *node;
	struct hlist_head *head;
5228

5229
	rcu_read_lock();
5230
	head = find_swevent_head_rcu(swhash, type, event_id);
5231 5232 5233 5234
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5235
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5236
			perf_swevent_event(event, nr, nmi, data, regs);
5237
	}
5238 5239
end:
	rcu_read_unlock();
5240 5241
}

5242
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5243
{
5244
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5245

5246
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5247
}
I
Ingo Molnar 已提交
5248
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5249

5250
inline void perf_swevent_put_recursion_context(int rctx)
5251
{
5252
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5253

5254
	put_recursion_context(swhash->recursion, rctx);
5255
}
5256

5257
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5258
			    struct pt_regs *regs, u64 addr)
5259
{
5260
	struct perf_sample_data data;
5261 5262
	int rctx;

5263
	preempt_disable_notrace();
5264 5265 5266
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5267

5268
	perf_sample_data_init(&data, addr);
5269

5270
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5271 5272

	perf_swevent_put_recursion_context(rctx);
5273
	preempt_enable_notrace();
5274 5275
}

5276
static void perf_swevent_read(struct perf_event *event)
5277 5278 5279
{
}

P
Peter Zijlstra 已提交
5280
static int perf_swevent_add(struct perf_event *event, int flags)
5281
{
5282
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5283
	struct hw_perf_event *hwc = &event->hw;
5284 5285
	struct hlist_head *head;

5286
	if (is_sampling_event(event)) {
5287
		hwc->last_period = hwc->sample_period;
5288
		perf_swevent_set_period(event);
5289
	}
5290

P
Peter Zijlstra 已提交
5291 5292
	hwc->state = !(flags & PERF_EF_START);

5293
	head = find_swevent_head(swhash, event);
5294 5295 5296 5297 5298
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5299 5300 5301
	return 0;
}

P
Peter Zijlstra 已提交
5302
static void perf_swevent_del(struct perf_event *event, int flags)
5303
{
5304
	hlist_del_rcu(&event->hlist_entry);
5305 5306
}

P
Peter Zijlstra 已提交
5307
static void perf_swevent_start(struct perf_event *event, int flags)
5308
{
P
Peter Zijlstra 已提交
5309
	event->hw.state = 0;
5310
}
I
Ingo Molnar 已提交
5311

P
Peter Zijlstra 已提交
5312
static void perf_swevent_stop(struct perf_event *event, int flags)
5313
{
P
Peter Zijlstra 已提交
5314
	event->hw.state = PERF_HES_STOPPED;
5315 5316
}

5317 5318
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5319
swevent_hlist_deref(struct swevent_htable *swhash)
5320
{
5321 5322
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5323 5324
}

5325
static void swevent_hlist_release(struct swevent_htable *swhash)
5326
{
5327
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5328

5329
	if (!hlist)
5330 5331
		return;

5332
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5333
	kfree_rcu(hlist, rcu_head);
5334 5335 5336 5337
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5338
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5339

5340
	mutex_lock(&swhash->hlist_mutex);
5341

5342 5343
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5344

5345
	mutex_unlock(&swhash->hlist_mutex);
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5363
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5364 5365
	int err = 0;

5366
	mutex_lock(&swhash->hlist_mutex);
5367

5368
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5369 5370 5371 5372 5373 5374 5375
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5376
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5377
	}
5378
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5379
exit:
5380
	mutex_unlock(&swhash->hlist_mutex);
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5404
fail:
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5415
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5416

5417 5418 5419
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5420

5421 5422
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5423
	jump_label_dec(&perf_swevent_enabled[event_id]);
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5443
	if (event_id >= PERF_COUNT_SW_MAX)
5444 5445 5446 5447 5448 5449 5450 5451 5452
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5453
		jump_label_inc(&perf_swevent_enabled[event_id]);
5454 5455 5456 5457 5458 5459 5460
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5461
	.task_ctx_nr	= perf_sw_context,
5462

5463
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5464 5465 5466 5467
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5468 5469 5470
	.read		= perf_swevent_read,
};

5471 5472
#ifdef CONFIG_EVENT_TRACING

5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5487 5488
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5489 5490 5491 5492
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5493 5494 5495 5496 5497 5498 5499 5500 5501
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5502
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5503 5504
{
	struct perf_sample_data data;
5505 5506 5507
	struct perf_event *event;
	struct hlist_node *node;

5508 5509 5510 5511 5512 5513 5514 5515
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5516 5517
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5518
			perf_swevent_event(event, count, 1, &data, regs);
5519
	}
5520 5521

	perf_swevent_put_recursion_context(rctx);
5522 5523 5524
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5525
static void tp_perf_event_destroy(struct perf_event *event)
5526
{
5527
	perf_trace_destroy(event);
5528 5529
}

5530
static int perf_tp_event_init(struct perf_event *event)
5531
{
5532 5533
	int err;

5534 5535 5536
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5537 5538
	err = perf_trace_init(event);
	if (err)
5539
		return err;
5540

5541
	event->destroy = tp_perf_event_destroy;
5542

5543 5544 5545 5546
	return 0;
}

static struct pmu perf_tracepoint = {
5547 5548
	.task_ctx_nr	= perf_sw_context,

5549
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5550 5551 5552 5553
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5554 5555 5556 5557 5558
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5559
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5560
}
L
Li Zefan 已提交
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5585
#else
L
Li Zefan 已提交
5586

5587
static inline void perf_tp_register(void)
5588 5589
{
}
L
Li Zefan 已提交
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5600
#endif /* CONFIG_EVENT_TRACING */
5601

5602
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5603
void perf_bp_event(struct perf_event *bp, void *data)
5604
{
5605 5606 5607
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5608
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5609

P
Peter Zijlstra 已提交
5610 5611
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5612 5613 5614
}
#endif

5615 5616 5617
/*
 * hrtimer based swevent callback
 */
5618

5619
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5620
{
5621 5622 5623 5624 5625
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5626

5627
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5628 5629 5630 5631

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5632
	event->pmu->read(event);
5633

5634 5635 5636 5637 5638 5639 5640 5641 5642
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5643

5644 5645
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5646

5647
	return ret;
5648 5649
}

5650
static void perf_swevent_start_hrtimer(struct perf_event *event)
5651
{
5652
	struct hw_perf_event *hwc = &event->hw;
5653 5654 5655 5656
	s64 period;

	if (!is_sampling_event(event))
		return;
5657

5658 5659 5660 5661
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5662

5663 5664 5665 5666 5667
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5668
				ns_to_ktime(period), 0,
5669
				HRTIMER_MODE_REL_PINNED, 0);
5670
}
5671 5672

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5673
{
5674 5675
	struct hw_perf_event *hwc = &event->hw;

5676
	if (is_sampling_event(event)) {
5677
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5678
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5679 5680 5681

		hrtimer_cancel(&hwc->hrtimer);
	}
5682 5683
}

P
Peter Zijlstra 已提交
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5708 5709 5710 5711 5712
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5713
{
5714 5715 5716
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5717
	now = local_clock();
5718 5719
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5720 5721
}

P
Peter Zijlstra 已提交
5722
static void cpu_clock_event_start(struct perf_event *event, int flags)
5723
{
P
Peter Zijlstra 已提交
5724
	local64_set(&event->hw.prev_count, local_clock());
5725 5726 5727
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5728
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5729
{
5730 5731 5732
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5733

P
Peter Zijlstra 已提交
5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5747 5748 5749 5750
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5751

5752 5753 5754 5755 5756 5757 5758 5759
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5760 5761
	perf_swevent_init_hrtimer(event);

5762
	return 0;
5763 5764
}

5765
static struct pmu perf_cpu_clock = {
5766 5767
	.task_ctx_nr	= perf_sw_context,

5768
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5769 5770 5771 5772
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5773 5774 5775 5776 5777 5778 5779 5780
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5781
{
5782 5783
	u64 prev;
	s64 delta;
5784

5785 5786 5787 5788
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5789

P
Peter Zijlstra 已提交
5790
static void task_clock_event_start(struct perf_event *event, int flags)
5791
{
P
Peter Zijlstra 已提交
5792
	local64_set(&event->hw.prev_count, event->ctx->time);
5793 5794 5795
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5796
static void task_clock_event_stop(struct perf_event *event, int flags)
5797 5798 5799
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5800 5801 5802 5803 5804 5805
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5806

P
Peter Zijlstra 已提交
5807 5808 5809 5810 5811 5812
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5813 5814 5815 5816
}

static void task_clock_event_read(struct perf_event *event)
{
5817 5818 5819
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5820 5821 5822 5823 5824

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5825
{
5826 5827 5828 5829 5830 5831
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5832 5833
	perf_swevent_init_hrtimer(event);

5834
	return 0;
L
Li Zefan 已提交
5835 5836
}

5837
static struct pmu perf_task_clock = {
5838 5839
	.task_ctx_nr	= perf_sw_context,

5840
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5841 5842 5843 5844
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5845 5846
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5847

P
Peter Zijlstra 已提交
5848
static void perf_pmu_nop_void(struct pmu *pmu)
5849 5850
{
}
L
Li Zefan 已提交
5851

P
Peter Zijlstra 已提交
5852
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5853
{
P
Peter Zijlstra 已提交
5854
	return 0;
L
Li Zefan 已提交
5855 5856
}

P
Peter Zijlstra 已提交
5857
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5858
{
P
Peter Zijlstra 已提交
5859
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5860 5861
}

P
Peter Zijlstra 已提交
5862 5863 5864 5865 5866
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5867

P
Peter Zijlstra 已提交
5868
static void perf_pmu_cancel_txn(struct pmu *pmu)
5869
{
P
Peter Zijlstra 已提交
5870
	perf_pmu_enable(pmu);
5871 5872
}

P
Peter Zijlstra 已提交
5873 5874 5875 5876 5877
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5878
{
P
Peter Zijlstra 已提交
5879
	struct pmu *pmu;
5880

P
Peter Zijlstra 已提交
5881 5882
	if (ctxn < 0)
		return NULL;
5883

P
Peter Zijlstra 已提交
5884 5885 5886 5887
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5888

P
Peter Zijlstra 已提交
5889
	return NULL;
5890 5891
}

5892
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5893
{
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5909

P
Peter Zijlstra 已提交
5910
	mutex_lock(&pmus_lock);
5911
	/*
P
Peter Zijlstra 已提交
5912
	 * Like a real lame refcount.
5913
	 */
5914 5915 5916
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5917
			goto out;
5918
		}
P
Peter Zijlstra 已提交
5919
	}
5920

5921
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5922 5923
out:
	mutex_unlock(&pmus_lock);
5924
}
P
Peter Zijlstra 已提交
5925
static struct idr pmu_idr;
5926

P
Peter Zijlstra 已提交
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5979
static struct lock_class_key cpuctx_mutex;
5980
static struct lock_class_key cpuctx_lock;
5981

P
Peter Zijlstra 已提交
5982
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5983
{
P
Peter Zijlstra 已提交
5984
	int cpu, ret;
5985

5986
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5987 5988 5989 5990
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5991

P
Peter Zijlstra 已提交
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6010 6011 6012 6013 6014 6015
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6016
skip_type:
P
Peter Zijlstra 已提交
6017 6018 6019
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6020

P
Peter Zijlstra 已提交
6021 6022
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6023
		goto free_dev;
6024

P
Peter Zijlstra 已提交
6025 6026 6027 6028
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6029
		__perf_event_init_context(&cpuctx->ctx);
6030
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6031
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6032
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6033
		cpuctx->ctx.pmu = pmu;
6034 6035
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6036
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6037
	}
6038

P
Peter Zijlstra 已提交
6039
got_cpu_context:
P
Peter Zijlstra 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6054
		}
6055
	}
6056

P
Peter Zijlstra 已提交
6057 6058 6059 6060 6061
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6062
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6063 6064
	ret = 0;
unlock:
6065 6066
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6067
	return ret;
P
Peter Zijlstra 已提交
6068

P
Peter Zijlstra 已提交
6069 6070 6071 6072
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6073 6074 6075 6076
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6077 6078 6079
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6080 6081
}

6082
void perf_pmu_unregister(struct pmu *pmu)
6083
{
6084 6085 6086
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6087

6088
	/*
P
Peter Zijlstra 已提交
6089 6090
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6091
	 */
6092
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6093
	synchronize_rcu();
6094

P
Peter Zijlstra 已提交
6095
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6096 6097
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6098 6099
	device_del(pmu->dev);
	put_device(pmu->dev);
6100
	free_pmu_context(pmu);
6101
}
6102

6103 6104 6105 6106
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6107
	int ret;
6108 6109

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6110 6111 6112 6113

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6114 6115 6116 6117
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6118
		goto unlock;
6119
	}
P
Peter Zijlstra 已提交
6120

6121
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6122
		ret = pmu->event_init(event);
6123
		if (!ret)
P
Peter Zijlstra 已提交
6124
			goto unlock;
6125

6126 6127
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6128
			goto unlock;
6129
		}
6130
	}
P
Peter Zijlstra 已提交
6131 6132
	pmu = ERR_PTR(-ENOENT);
unlock:
6133
	srcu_read_unlock(&pmus_srcu, idx);
6134

6135
	return pmu;
6136 6137
}

T
Thomas Gleixner 已提交
6138
/*
6139
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6140
 */
6141
static struct perf_event *
6142
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6143 6144 6145 6146
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6147
{
P
Peter Zijlstra 已提交
6148
	struct pmu *pmu;
6149 6150
	struct perf_event *event;
	struct hw_perf_event *hwc;
6151
	long err;
T
Thomas Gleixner 已提交
6152

6153 6154 6155 6156 6157
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6158
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6159
	if (!event)
6160
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6161

6162
	/*
6163
	 * Single events are their own group leaders, with an
6164 6165 6166
	 * empty sibling list:
	 */
	if (!group_leader)
6167
		group_leader = event;
6168

6169 6170
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6171

6172 6173 6174 6175
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6176
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6177

6178
	mutex_init(&event->mmap_mutex);
6179

6180 6181 6182 6183 6184
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6185

6186
	event->parent		= parent_event;
6187

6188 6189
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6190

6191
	event->state		= PERF_EVENT_STATE_INACTIVE;
6192

6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6204 6205
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6206

6207
	event->overflow_handler	= overflow_handler;
6208

6209
	if (attr->disabled)
6210
		event->state = PERF_EVENT_STATE_OFF;
6211

6212
	pmu = NULL;
6213

6214
	hwc = &event->hw;
6215
	hwc->sample_period = attr->sample_period;
6216
	if (attr->freq && attr->sample_freq)
6217
		hwc->sample_period = 1;
6218
	hwc->last_period = hwc->sample_period;
6219

6220
	local64_set(&hwc->period_left, hwc->sample_period);
6221

6222
	/*
6223
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6224
	 */
6225
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6226 6227
		goto done;

6228
	pmu = perf_init_event(event);
6229

6230 6231
done:
	err = 0;
6232
	if (!pmu)
6233
		err = -EINVAL;
6234 6235
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6236

6237
	if (err) {
6238 6239 6240
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6241
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6242
	}
6243

6244
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6245

6246
	if (!event->parent) {
6247
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6248
			jump_label_inc(&perf_sched_events);
6249
		if (event->attr.mmap || event->attr.mmap_data)
6250 6251 6252 6253 6254
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6255 6256 6257 6258 6259 6260 6261
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6262
	}
6263

6264
	return event;
T
Thomas Gleixner 已提交
6265 6266
}

6267 6268
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6269 6270
{
	u32 size;
6271
	int ret;
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6296 6297 6298
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6299 6300
	 */
	if (size > sizeof(*attr)) {
6301 6302 6303
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6304

6305 6306
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6307

6308
		for (; addr < end; addr++) {
6309 6310 6311 6312 6313 6314
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6315
		size = sizeof(*attr);
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6329
	if (attr->__reserved_1)
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6347 6348
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6349
{
6350
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6351 6352
	int ret = -EINVAL;

6353
	if (!output_event)
6354 6355
		goto set;

6356 6357
	/* don't allow circular references */
	if (event == output_event)
6358 6359
		goto out;

6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6372
set:
6373
	mutex_lock(&event->mmap_mutex);
6374 6375 6376
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6377

6378 6379
	if (output_event) {
		/* get the buffer we want to redirect to */
6380 6381
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6382
			goto unlock;
6383 6384
	}

6385 6386
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6387
	ret = 0;
6388 6389 6390
unlock:
	mutex_unlock(&event->mmap_mutex);

6391 6392
	if (old_buffer)
		perf_buffer_put(old_buffer);
6393 6394 6395 6396
out:
	return ret;
}

T
Thomas Gleixner 已提交
6397
/**
6398
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6399
 *
6400
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6401
 * @pid:		target pid
I
Ingo Molnar 已提交
6402
 * @cpu:		target cpu
6403
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6404
 */
6405 6406
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6407
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6408
{
6409 6410
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6411 6412 6413
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6414
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6415
	struct task_struct *task = NULL;
6416
	struct pmu *pmu;
6417
	int event_fd;
6418
	int move_group = 0;
6419
	int fput_needed = 0;
6420
	int err;
T
Thomas Gleixner 已提交
6421

6422
	/* for future expandability... */
S
Stephane Eranian 已提交
6423
	if (flags & ~PERF_FLAG_ALL)
6424 6425
		return -EINVAL;

6426 6427 6428
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6429

6430 6431 6432 6433 6434
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6435
	if (attr.freq) {
6436
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6437 6438 6439
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6440 6441 6442 6443 6444 6445 6446 6447 6448
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6449 6450 6451 6452
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6453 6454 6455 6456
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6457
			goto err_fd;
6458 6459 6460 6461 6462 6463 6464 6465
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6466
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6467 6468 6469 6470 6471 6472 6473
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6474
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6475 6476
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6477
		goto err_task;
6478 6479
	}

S
Stephane Eranian 已提交
6480 6481 6482 6483
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6484 6485 6486 6487 6488 6489 6490
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6491 6492
	}

6493 6494 6495 6496 6497
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6521 6522 6523 6524

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6525
	ctx = find_get_context(pmu, task, cpu);
6526 6527
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6528
		goto err_alloc;
6529 6530
	}

6531 6532 6533 6534 6535
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6536
	/*
6537
	 * Look up the group leader (we will attach this event to it):
6538
	 */
6539
	if (group_leader) {
6540
		err = -EINVAL;
6541 6542

		/*
I
Ingo Molnar 已提交
6543 6544 6545 6546
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6547
			goto err_context;
I
Ingo Molnar 已提交
6548 6549 6550
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6551
		 */
6552 6553 6554 6555 6556 6557 6558 6559
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6560 6561 6562
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6563
		if (attr.exclusive || attr.pinned)
6564
			goto err_context;
6565 6566 6567 6568 6569
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6570
			goto err_context;
6571
	}
T
Thomas Gleixner 已提交
6572

6573 6574 6575
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6576
		goto err_context;
6577
	}
6578

6579 6580 6581 6582
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6583
		perf_remove_from_context(group_leader);
6584 6585
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6586
			perf_remove_from_context(sibling);
6587 6588 6589 6590
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6591
	}
6592

6593
	event->filp = event_file;
6594
	WARN_ON_ONCE(ctx->parent_ctx);
6595
	mutex_lock(&ctx->mutex);
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6607
	perf_install_in_context(ctx, event, cpu);
6608
	++ctx->generation;
6609
	perf_unpin_context(ctx);
6610
	mutex_unlock(&ctx->mutex);
6611

6612
	event->owner = current;
P
Peter Zijlstra 已提交
6613

6614 6615 6616
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6617

6618 6619 6620 6621
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6622
	perf_event__id_header_size(event);
6623

6624 6625 6626 6627 6628 6629
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6630 6631 6632
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6633

6634
err_context:
6635
	perf_unpin_context(ctx);
6636
	put_ctx(ctx);
6637
err_alloc:
6638
	free_event(event);
P
Peter Zijlstra 已提交
6639 6640 6641
err_task:
	if (task)
		put_task_struct(task);
6642
err_group_fd:
6643
	fput_light(group_file, fput_needed);
6644 6645
err_fd:
	put_unused_fd(event_fd);
6646
	return err;
T
Thomas Gleixner 已提交
6647 6648
}

6649 6650 6651 6652 6653
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6654
 * @task: task to profile (NULL for percpu)
6655 6656 6657
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6658
				 struct task_struct *task,
6659
				 perf_overflow_handler_t overflow_handler)
6660 6661
{
	struct perf_event_context *ctx;
6662
	struct perf_event *event;
6663
	int err;
6664

6665 6666 6667
	/*
	 * Get the target context (task or percpu):
	 */
6668

6669
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6670 6671 6672 6673
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6674

M
Matt Helsley 已提交
6675
	ctx = find_get_context(event->pmu, task, cpu);
6676 6677
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6678
		goto err_free;
6679
	}
6680 6681 6682 6683 6684 6685

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6686
	perf_unpin_context(ctx);
6687 6688 6689 6690
	mutex_unlock(&ctx->mutex);

	return event;

6691 6692 6693
err_free:
	free_event(event);
err:
6694
	return ERR_PTR(err);
6695
}
6696
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6697

6698
static void sync_child_event(struct perf_event *child_event,
6699
			       struct task_struct *child)
6700
{
6701
	struct perf_event *parent_event = child_event->parent;
6702
	u64 child_val;
6703

6704 6705
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6706

P
Peter Zijlstra 已提交
6707
	child_val = perf_event_count(child_event);
6708 6709 6710 6711

	/*
	 * Add back the child's count to the parent's count:
	 */
6712
	atomic64_add(child_val, &parent_event->child_count);
6713 6714 6715 6716
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6717 6718

	/*
6719
	 * Remove this event from the parent's list
6720
	 */
6721 6722 6723 6724
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6725 6726

	/*
6727
	 * Release the parent event, if this was the last
6728 6729
	 * reference to it.
	 */
6730
	fput(parent_event->filp);
6731 6732
}

6733
static void
6734 6735
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6736
			 struct task_struct *child)
6737
{
6738 6739 6740 6741 6742
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6743

6744
	perf_remove_from_context(child_event);
6745

6746
	/*
6747
	 * It can happen that the parent exits first, and has events
6748
	 * that are still around due to the child reference. These
6749
	 * events need to be zapped.
6750
	 */
6751
	if (child_event->parent) {
6752 6753
		sync_child_event(child_event, child);
		free_event(child_event);
6754
	}
6755 6756
}

P
Peter Zijlstra 已提交
6757
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6758
{
6759 6760
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6761
	unsigned long flags;
6762

P
Peter Zijlstra 已提交
6763
	if (likely(!child->perf_event_ctxp[ctxn])) {
6764
		perf_event_task(child, NULL, 0);
6765
		return;
P
Peter Zijlstra 已提交
6766
	}
6767

6768
	local_irq_save(flags);
6769 6770 6771 6772 6773 6774
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6775
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6776 6777 6778

	/*
	 * Take the context lock here so that if find_get_context is
6779
	 * reading child->perf_event_ctxp, we wait until it has
6780 6781
	 * incremented the context's refcount before we do put_ctx below.
	 */
6782
	raw_spin_lock(&child_ctx->lock);
6783
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6784
	child->perf_event_ctxp[ctxn] = NULL;
6785 6786 6787
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6788
	 * the events from it.
6789 6790
	 */
	unclone_ctx(child_ctx);
6791
	update_context_time(child_ctx);
6792
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6793 6794

	/*
6795 6796 6797
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6798
	 */
6799
	perf_event_task(child, child_ctx, 0);
6800

6801 6802 6803
	/*
	 * We can recurse on the same lock type through:
	 *
6804 6805 6806
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6807 6808 6809 6810 6811
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6812
	mutex_lock(&child_ctx->mutex);
6813

6814
again:
6815 6816 6817 6818 6819
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6820
				 group_entry)
6821
		__perf_event_exit_task(child_event, child_ctx, child);
6822 6823

	/*
6824
	 * If the last event was a group event, it will have appended all
6825 6826 6827
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6828 6829
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6830
		goto again;
6831 6832 6833 6834

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6835 6836
}

P
Peter Zijlstra 已提交
6837 6838 6839 6840 6841
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6842
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6843 6844
	int ctxn;

P
Peter Zijlstra 已提交
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6860 6861 6862 6863
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6878
	perf_group_detach(event);
6879 6880 6881 6882
	list_del_event(event, ctx);
	free_event(event);
}

6883 6884
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6885
 * perf_event_init_task below, used by fork() in case of fail.
6886
 */
6887
void perf_event_free_task(struct task_struct *task)
6888
{
P
Peter Zijlstra 已提交
6889
	struct perf_event_context *ctx;
6890
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6891
	int ctxn;
6892

P
Peter Zijlstra 已提交
6893 6894 6895 6896
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6897

P
Peter Zijlstra 已提交
6898
		mutex_lock(&ctx->mutex);
6899
again:
P
Peter Zijlstra 已提交
6900 6901 6902
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6903

P
Peter Zijlstra 已提交
6904 6905 6906
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6907

P
Peter Zijlstra 已提交
6908 6909 6910
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6911

P
Peter Zijlstra 已提交
6912
		mutex_unlock(&ctx->mutex);
6913

P
Peter Zijlstra 已提交
6914 6915
		put_ctx(ctx);
	}
6916 6917
}

6918 6919 6920 6921 6922 6923 6924 6925
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6938
	unsigned long flags;
P
Peter Zijlstra 已提交
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6951
					   child,
P
Peter Zijlstra 已提交
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6981 6982 6983 6984
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6985
	perf_event__id_header_size(child_event);
6986

P
Peter Zijlstra 已提交
6987 6988 6989
	/*
	 * Link it up in the child's context:
	 */
6990
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6991
	add_event_to_ctx(child_event, child_ctx);
6992
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7034 7035 7036 7037 7038
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7039
		   struct task_struct *child, int ctxn,
7040 7041 7042
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7043
	struct perf_event_context *child_ctx;
7044 7045 7046 7047

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7048 7049
	}

7050
	child_ctx = child->perf_event_ctxp[ctxn];
7051 7052 7053 7054 7055 7056 7057
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7058

7059
		child_ctx = alloc_perf_context(event->pmu, child);
7060 7061
		if (!child_ctx)
			return -ENOMEM;
7062

P
Peter Zijlstra 已提交
7063
		child->perf_event_ctxp[ctxn] = child_ctx;
7064 7065 7066 7067 7068 7069 7070 7071 7072
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7073 7074
}

7075
/*
7076
 * Initialize the perf_event context in task_struct
7077
 */
P
Peter Zijlstra 已提交
7078
int perf_event_init_context(struct task_struct *child, int ctxn)
7079
{
7080
	struct perf_event_context *child_ctx, *parent_ctx;
7081 7082
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7083
	struct task_struct *parent = current;
7084
	int inherited_all = 1;
7085
	unsigned long flags;
7086
	int ret = 0;
7087

P
Peter Zijlstra 已提交
7088
	if (likely(!parent->perf_event_ctxp[ctxn]))
7089 7090
		return 0;

7091
	/*
7092 7093
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7094
	 */
P
Peter Zijlstra 已提交
7095
	parent_ctx = perf_pin_task_context(parent, ctxn);
7096

7097 7098 7099 7100 7101 7102 7103
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7104 7105 7106 7107
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7108
	mutex_lock(&parent_ctx->mutex);
7109 7110 7111 7112 7113

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7114
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7115 7116
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7117 7118 7119
		if (ret)
			break;
	}
7120

7121 7122 7123 7124 7125 7126 7127 7128 7129
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7130
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7131 7132
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7133
		if (ret)
7134
			break;
7135 7136
	}

7137 7138 7139
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7140
	child_ctx = child->perf_event_ctxp[ctxn];
7141

7142
	if (child_ctx && inherited_all) {
7143 7144 7145
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7146 7147 7148
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7149
		 */
P
Peter Zijlstra 已提交
7150
		cloned_ctx = parent_ctx->parent_ctx;
7151 7152
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7153
			child_ctx->parent_gen = parent_ctx->parent_gen;
7154 7155 7156 7157 7158
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7159 7160
	}

P
Peter Zijlstra 已提交
7161
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7162
	mutex_unlock(&parent_ctx->mutex);
7163

7164
	perf_unpin_context(parent_ctx);
7165
	put_ctx(parent_ctx);
7166

7167
	return ret;
7168 7169
}

P
Peter Zijlstra 已提交
7170 7171 7172 7173 7174 7175 7176
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7177 7178 7179 7180
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7181 7182 7183 7184 7185 7186 7187 7188 7189
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7190 7191
static void __init perf_event_init_all_cpus(void)
{
7192
	struct swevent_htable *swhash;
7193 7194 7195
	int cpu;

	for_each_possible_cpu(cpu) {
7196 7197
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7198
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7199 7200 7201
	}
}

7202
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7203
{
P
Peter Zijlstra 已提交
7204
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7205

7206 7207
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7208 7209
		struct swevent_hlist *hlist;

7210 7211 7212
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7213
	}
7214
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7215 7216
}

P
Peter Zijlstra 已提交
7217
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7218
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7219
{
7220 7221 7222 7223 7224 7225 7226
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7227
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7228
{
P
Peter Zijlstra 已提交
7229
	struct perf_event_context *ctx = __info;
7230
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7231

P
Peter Zijlstra 已提交
7232
	perf_pmu_rotate_stop(ctx->pmu);
7233

7234
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7235
		__perf_remove_from_context(event);
7236
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7237
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7238
}
P
Peter Zijlstra 已提交
7239 7240 7241 7242 7243 7244 7245 7246 7247

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7248
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7249 7250 7251 7252 7253 7254 7255 7256

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7257
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7258
{
7259
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7260

7261 7262 7263
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7264

P
Peter Zijlstra 已提交
7265
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7266 7267
}
#else
7268
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7269 7270
#endif

P
Peter Zijlstra 已提交
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7291 7292 7293 7294 7295
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7296
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7297 7298

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7299
	case CPU_DOWN_FAILED:
7300
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7301 7302
		break;

P
Peter Zijlstra 已提交
7303
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7304
	case CPU_DOWN_PREPARE:
7305
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7315
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7316
{
7317 7318
	int ret;

P
Peter Zijlstra 已提交
7319 7320
	idr_init(&pmu_idr);

7321
	perf_event_init_all_cpus();
7322
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7323 7324 7325
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7326 7327
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7328
	register_reboot_notifier(&perf_reboot_notifier);
7329 7330 7331

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7332
}
P
Peter Zijlstra 已提交
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7361 7362 7363 7364 7365 7366 7367

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7368
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
7433 7434 7435 7436 7437 7438
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7439 7440
};
#endif /* CONFIG_CGROUP_PERF */