core.c 177.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148

P
Peter Zijlstra 已提交
149 150 151 152
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

153
/*
154
 * perf event paranoia level:
155 156
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
157
 *   1 - disallow cpu events for unpriv
158
 *   2 - disallow kernel profiling for unpriv
159
 */
160
int sysctl_perf_event_paranoid __read_mostly = 1;
161

162 163
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 165

/*
166
 * max perf event sample rate
167
 */
P
Peter Zijlstra 已提交
168 169 170 171 172
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

173 174
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
188

189
static atomic64_t perf_event_id;
190

191 192 193 194
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
195 196 197 198 199
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
200

201 202 203
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

204
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
205

206
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
207
{
208
	return "pmu";
T
Thomas Gleixner 已提交
209 210
}

211 212 213 214 215
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
216 217 218 219 220 221
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
238 239
#ifdef CONFIG_CGROUP_PERF

240 241 242 243 244 245 246 247 248 249 250
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
251
	struct perf_cgroup_info	__percpu *info;
252 253
};

254 255 256 257 258
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
288 289
}

290
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
291
{
292
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
341 342
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
343
	/*
344 345
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
346
	 */
347
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
348 349
		return;

350 351 352 353 354 355
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
356 357 358
}

static inline void
359 360
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
361 362 363 364
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

365 366 367 368 369 370
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
371 372 373 374
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
375
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
408 409
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
410 411 412 413 414 415 416 417 418

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
419 420
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
421 422 423 424 425 426 427 428 429 430 431

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
432
				WARN_ON_ONCE(cpuctx->cgrp);
433 434 435 436
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
437 438 439 440
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
441 442
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
443 444 445 446 447 448 449 450
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

451 452
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
453
{
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
476 477
}

478 479
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
480
{
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
499 500 501 502 503 504 505 506
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
507 508
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
509

510
	if (!f.file)
S
Stephane Eranian 已提交
511 512
		return -EBADF;

513
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
514 515 516 517
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
518 519 520 521

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

522
	/* must be done before we fput() the file */
523 524 525 526 527
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
528

S
Stephane Eranian 已提交
529 530 531 532 533 534 535 536 537
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
538
out:
539
	fdput(f);
S
Stephane Eranian 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

613 614
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
615 616 617
{
}

618 619
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
620 621 622 623 624 625 626 627 628 629 630
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
631 632
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
726
	int timer;
727 728 729 730 731

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

732 733 734 735 736 737 738 739 740
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
763
void perf_pmu_disable(struct pmu *pmu)
764
{
P
Peter Zijlstra 已提交
765 766 767
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
768 769
}

P
Peter Zijlstra 已提交
770
void perf_pmu_enable(struct pmu *pmu)
771
{
P
Peter Zijlstra 已提交
772 773 774
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
775 776
}

777 778 779 780 781 782 783
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
784
static void perf_pmu_rotate_start(struct pmu *pmu)
785
{
P
Peter Zijlstra 已提交
786
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
787
	struct list_head *head = &__get_cpu_var(rotation_list);
788

789
	WARN_ON(!irqs_disabled());
790

791 792
	if (list_empty(&cpuctx->rotation_list)) {
		int was_empty = list_empty(head);
793
		list_add(&cpuctx->rotation_list, head);
794 795 796
		if (was_empty)
			tick_nohz_full_kick();
	}
797 798
}

799
static void get_ctx(struct perf_event_context *ctx)
800
{
801
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
802 803
}

804
static void put_ctx(struct perf_event_context *ctx)
805
{
806 807 808
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
809 810
		if (ctx->task)
			put_task_struct(ctx->task);
811
		kfree_rcu(ctx, rcu_head);
812
	}
813 814
}

815
static void unclone_ctx(struct perf_event_context *ctx)
816 817 818 819 820 821 822
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

845
/*
846
 * If we inherit events we want to return the parent event id
847 848
 * to userspace.
 */
849
static u64 primary_event_id(struct perf_event *event)
850
{
851
	u64 id = event->id;
852

853 854
	if (event->parent)
		id = event->parent->id;
855 856 857 858

	return id;
}

859
/*
860
 * Get the perf_event_context for a task and lock it.
861 862 863
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
864
static struct perf_event_context *
P
Peter Zijlstra 已提交
865
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
866
{
867
	struct perf_event_context *ctx;
868 869

	rcu_read_lock();
P
Peter Zijlstra 已提交
870
retry:
P
Peter Zijlstra 已提交
871
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
872 873 874 875
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
876
		 * perf_event_task_sched_out, though the
877 878 879 880 881 882
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
883
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
884
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
885
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
886 887
			goto retry;
		}
888 889

		if (!atomic_inc_not_zero(&ctx->refcount)) {
890
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
891 892
			ctx = NULL;
		}
893 894 895 896 897 898 899 900 901 902
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
903 904
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
905
{
906
	struct perf_event_context *ctx;
907 908
	unsigned long flags;

P
Peter Zijlstra 已提交
909
	ctx = perf_lock_task_context(task, ctxn, &flags);
910 911
	if (ctx) {
		++ctx->pin_count;
912
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
913 914 915 916
	}
	return ctx;
}

917
static void perf_unpin_context(struct perf_event_context *ctx)
918 919 920
{
	unsigned long flags;

921
	raw_spin_lock_irqsave(&ctx->lock, flags);
922
	--ctx->pin_count;
923
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
924 925
}

926 927 928 929 930 931 932 933 934 935 936
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

937 938 939
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
940 941 942 943

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

944 945 946
	return ctx ? ctx->time : 0;
}

947 948
/*
 * Update the total_time_enabled and total_time_running fields for a event.
949
 * The caller of this function needs to hold the ctx->lock.
950 951 952 953 954 955 956 957 958
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
959 960 961 962 963 964 965 966 967 968 969
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
970
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
971 972
	else if (ctx->is_active)
		run_end = ctx->time;
973 974 975 976
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
977 978 979 980

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
981
		run_end = perf_event_time(event);
982 983

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
984

985 986
}

987 988 989 990 991 992 993 994 995 996 997 998
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

999 1000 1001 1002 1003 1004 1005 1006 1007
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1008
/*
1009
 * Add a event from the lists for its context.
1010 1011
 * Must be called with ctx->mutex and ctx->lock held.
 */
1012
static void
1013
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1014
{
1015 1016
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1017 1018

	/*
1019 1020 1021
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1022
	 */
1023
	if (event->group_leader == event) {
1024 1025
		struct list_head *list;

1026 1027 1028
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1029 1030
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1031
	}
P
Peter Zijlstra 已提交
1032

1033
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1034 1035
		ctx->nr_cgroups++;

1036 1037 1038
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1039
	list_add_rcu(&event->event_entry, &ctx->event_list);
1040
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1041
		perf_pmu_rotate_start(ctx->pmu);
1042 1043
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1044
		ctx->nr_stat++;
1045 1046
}

J
Jiri Olsa 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1095 1096 1097 1098 1099 1100
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1101 1102 1103
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1104 1105 1106
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1107 1108 1109
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1110 1111 1112 1113 1114 1115 1116 1117 1118
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1134
	event->id_header_size = size;
1135 1136
}

1137 1138
static void perf_group_attach(struct perf_event *event)
{
1139
	struct perf_event *group_leader = event->group_leader, *pos;
1140

P
Peter Zijlstra 已提交
1141 1142 1143 1144 1145 1146
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1158 1159 1160 1161 1162

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1163 1164
}

1165
/*
1166
 * Remove a event from the lists for its context.
1167
 * Must be called with ctx->mutex and ctx->lock held.
1168
 */
1169
static void
1170
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1171
{
1172
	struct perf_cpu_context *cpuctx;
1173 1174 1175 1176
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1177
		return;
1178 1179 1180

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1181
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1182
		ctx->nr_cgroups--;
1183 1184 1185 1186 1187 1188 1189 1190 1191
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1192

1193 1194 1195
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1196 1197
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1198
		ctx->nr_stat--;
1199

1200
	list_del_rcu(&event->event_entry);
1201

1202 1203
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1204

1205
	update_group_times(event);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1216 1217
}

1218
static void perf_group_detach(struct perf_event *event)
1219 1220
{
	struct perf_event *sibling, *tmp;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1237
		goto out;
1238 1239 1240 1241
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1242

1243
	/*
1244 1245
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1246
	 * to whatever list we are on.
1247
	 */
1248
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1249 1250
		if (list)
			list_move_tail(&sibling->group_entry, list);
1251
		sibling->group_leader = sibling;
1252 1253 1254

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1255
	}
1256 1257 1258 1259 1260 1261

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1262 1263
}

1264 1265 1266
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1267 1268
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1269 1270
}

1271 1272
static void
event_sched_out(struct perf_event *event,
1273
		  struct perf_cpu_context *cpuctx,
1274
		  struct perf_event_context *ctx)
1275
{
1276
	u64 tstamp = perf_event_time(event);
1277 1278 1279 1280 1281 1282 1283 1284 1285
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1286
		delta = tstamp - event->tstamp_stopped;
1287
		event->tstamp_running += delta;
1288
		event->tstamp_stopped = tstamp;
1289 1290
	}

1291
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1292
		return;
1293

1294 1295 1296 1297
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1298
	}
1299
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1300
	event->pmu->del(event, 0);
1301
	event->oncpu = -1;
1302

1303
	if (!is_software_event(event))
1304 1305
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1306 1307
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1308
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1309 1310 1311
		cpuctx->exclusive = 0;
}

1312
static void
1313
group_sched_out(struct perf_event *group_event,
1314
		struct perf_cpu_context *cpuctx,
1315
		struct perf_event_context *ctx)
1316
{
1317
	struct perf_event *event;
1318
	int state = group_event->state;
1319

1320
	event_sched_out(group_event, cpuctx, ctx);
1321 1322 1323 1324

	/*
	 * Schedule out siblings (if any):
	 */
1325 1326
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1327

1328
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1329 1330 1331
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1332
/*
1333
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1334
 *
1335
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1336 1337
 * remove it from the context list.
 */
1338
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1339
{
1340 1341
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1342
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1343

1344
	raw_spin_lock(&ctx->lock);
1345 1346
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1347 1348 1349 1350
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1351
	raw_spin_unlock(&ctx->lock);
1352 1353

	return 0;
T
Thomas Gleixner 已提交
1354 1355 1356 1357
}


/*
1358
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1359
 *
1360
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1361
 * call when the task is on a CPU.
1362
 *
1363 1364
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1365 1366
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1367
 * When called from perf_event_exit_task, it's OK because the
1368
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1369
 */
1370
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1371
{
1372
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1373 1374
	struct task_struct *task = ctx->task;

1375 1376
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1377 1378
	if (!task) {
		/*
1379
		 * Per cpu events are removed via an smp call and
1380
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1381
		 */
1382
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1383 1384 1385 1386
		return;
	}

retry:
1387 1388
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1389

1390
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1391
	/*
1392 1393
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1394
	 */
1395
	if (ctx->is_active) {
1396
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1397 1398 1399 1400
		goto retry;
	}

	/*
1401 1402
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1403
	 */
1404
	list_del_event(event, ctx);
1405
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1406 1407
}

1408
/*
1409
 * Cross CPU call to disable a performance event
1410
 */
1411
int __perf_event_disable(void *info)
1412
{
1413 1414
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1415
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1416 1417

	/*
1418 1419
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1420 1421 1422
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1423
	 */
1424
	if (ctx->task && cpuctx->task_ctx != ctx)
1425
		return -EINVAL;
1426

1427
	raw_spin_lock(&ctx->lock);
1428 1429

	/*
1430
	 * If the event is on, turn it off.
1431 1432
	 * If it is in error state, leave it in error state.
	 */
1433
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1434
		update_context_time(ctx);
S
Stephane Eranian 已提交
1435
		update_cgrp_time_from_event(event);
1436 1437 1438
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1439
		else
1440 1441
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1442 1443
	}

1444
	raw_spin_unlock(&ctx->lock);
1445 1446

	return 0;
1447 1448 1449
}

/*
1450
 * Disable a event.
1451
 *
1452 1453
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1454
 * remains valid.  This condition is satisifed when called through
1455 1456 1457 1458
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1459
 * is the current context on this CPU and preemption is disabled,
1460
 * hence we can't get into perf_event_task_sched_out for this context.
1461
 */
1462
void perf_event_disable(struct perf_event *event)
1463
{
1464
	struct perf_event_context *ctx = event->ctx;
1465 1466 1467 1468
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1469
		 * Disable the event on the cpu that it's on
1470
		 */
1471
		cpu_function_call(event->cpu, __perf_event_disable, event);
1472 1473 1474
		return;
	}

P
Peter Zijlstra 已提交
1475
retry:
1476 1477
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1478

1479
	raw_spin_lock_irq(&ctx->lock);
1480
	/*
1481
	 * If the event is still active, we need to retry the cross-call.
1482
	 */
1483
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1484
		raw_spin_unlock_irq(&ctx->lock);
1485 1486 1487 1488 1489
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1490 1491 1492 1493 1494 1495 1496
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1497 1498 1499
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1500
	}
1501
	raw_spin_unlock_irq(&ctx->lock);
1502
}
1503
EXPORT_SYMBOL_GPL(perf_event_disable);
1504

S
Stephane Eranian 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1540 1541 1542 1543
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1544
static int
1545
event_sched_in(struct perf_event *event,
1546
		 struct perf_cpu_context *cpuctx,
1547
		 struct perf_event_context *ctx)
1548
{
1549 1550
	u64 tstamp = perf_event_time(event);

1551
	if (event->state <= PERF_EVENT_STATE_OFF)
1552 1553
		return 0;

1554
	event->state = PERF_EVENT_STATE_ACTIVE;
1555
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1567 1568 1569 1570 1571
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1572
	if (event->pmu->add(event, PERF_EF_START)) {
1573 1574
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1575 1576 1577
		return -EAGAIN;
	}

1578
	event->tstamp_running += tstamp - event->tstamp_stopped;
1579

S
Stephane Eranian 已提交
1580
	perf_set_shadow_time(event, ctx, tstamp);
1581

1582
	if (!is_software_event(event))
1583
		cpuctx->active_oncpu++;
1584
	ctx->nr_active++;
1585 1586
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1587

1588
	if (event->attr.exclusive)
1589 1590
		cpuctx->exclusive = 1;

1591 1592 1593
	return 0;
}

1594
static int
1595
group_sched_in(struct perf_event *group_event,
1596
	       struct perf_cpu_context *cpuctx,
1597
	       struct perf_event_context *ctx)
1598
{
1599
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1600
	struct pmu *pmu = group_event->pmu;
1601 1602
	u64 now = ctx->time;
	bool simulate = false;
1603

1604
	if (group_event->state == PERF_EVENT_STATE_OFF)
1605 1606
		return 0;

P
Peter Zijlstra 已提交
1607
	pmu->start_txn(pmu);
1608

1609
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1610
		pmu->cancel_txn(pmu);
1611
		perf_cpu_hrtimer_restart(cpuctx);
1612
		return -EAGAIN;
1613
	}
1614 1615 1616 1617

	/*
	 * Schedule in siblings as one group (if any):
	 */
1618
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1619
		if (event_sched_in(event, cpuctx, ctx)) {
1620
			partial_group = event;
1621 1622 1623 1624
			goto group_error;
		}
	}

1625
	if (!pmu->commit_txn(pmu))
1626
		return 0;
1627

1628 1629 1630 1631
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1642
	 */
1643 1644
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1645 1646 1647 1648 1649 1650 1651 1652
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1653
	}
1654
	event_sched_out(group_event, cpuctx, ctx);
1655

P
Peter Zijlstra 已提交
1656
	pmu->cancel_txn(pmu);
1657

1658 1659
	perf_cpu_hrtimer_restart(cpuctx);

1660 1661 1662
	return -EAGAIN;
}

1663
/*
1664
 * Work out whether we can put this event group on the CPU now.
1665
 */
1666
static int group_can_go_on(struct perf_event *event,
1667 1668 1669 1670
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1671
	 * Groups consisting entirely of software events can always go on.
1672
	 */
1673
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1674 1675 1676
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1677
	 * events can go on.
1678 1679 1680 1681 1682
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1683
	 * events on the CPU, it can't go on.
1684
	 */
1685
	if (event->attr.exclusive && cpuctx->active_oncpu)
1686 1687 1688 1689 1690 1691 1692 1693
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1694 1695
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1696
{
1697 1698
	u64 tstamp = perf_event_time(event);

1699
	list_add_event(event, ctx);
1700
	perf_group_attach(event);
1701 1702 1703
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1704 1705
}

1706 1707 1708 1709 1710 1711
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1725
/*
1726
 * Cross CPU call to install and enable a performance event
1727 1728
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1729
 */
1730
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1731
{
1732 1733
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1734
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1735 1736 1737
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1738
	perf_ctx_lock(cpuctx, task_ctx);
1739
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1740 1741

	/*
1742
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1743
	 */
1744
	if (task_ctx)
1745
		task_ctx_sched_out(task_ctx);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1760 1761
		task = task_ctx->task;
	}
1762

1763
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1764

1765
	update_context_time(ctx);
S
Stephane Eranian 已提交
1766 1767 1768 1769 1770 1771
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1772

1773
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1774

1775
	/*
1776
	 * Schedule everything back in
1777
	 */
1778
	perf_event_sched_in(cpuctx, task_ctx, task);
1779 1780 1781

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1782 1783

	return 0;
T
Thomas Gleixner 已提交
1784 1785 1786
}

/*
1787
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1788
 *
1789 1790
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1791
 *
1792
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1793 1794 1795 1796
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1797 1798
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1799 1800 1801 1802
			int cpu)
{
	struct task_struct *task = ctx->task;

1803 1804
	lockdep_assert_held(&ctx->mutex);

1805
	event->ctx = ctx;
1806 1807
	if (event->cpu != -1)
		event->cpu = cpu;
1808

T
Thomas Gleixner 已提交
1809 1810
	if (!task) {
		/*
1811
		 * Per cpu events are installed via an smp call and
1812
		 * the install is always successful.
T
Thomas Gleixner 已提交
1813
		 */
1814
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1815 1816 1817 1818
		return;
	}

retry:
1819 1820
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1821

1822
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1823
	/*
1824 1825
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1826
	 */
1827
	if (ctx->is_active) {
1828
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1829 1830 1831 1832
		goto retry;
	}

	/*
1833 1834
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1835
	 */
1836
	add_event_to_ctx(event, ctx);
1837
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1838 1839
}

1840
/*
1841
 * Put a event into inactive state and update time fields.
1842 1843 1844 1845 1846 1847
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1848
static void __perf_event_mark_enabled(struct perf_event *event)
1849
{
1850
	struct perf_event *sub;
1851
	u64 tstamp = perf_event_time(event);
1852

1853
	event->state = PERF_EVENT_STATE_INACTIVE;
1854
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1855
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1856 1857
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1858
	}
1859 1860
}

1861
/*
1862
 * Cross CPU call to enable a performance event
1863
 */
1864
static int __perf_event_enable(void *info)
1865
{
1866 1867 1868
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1869
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1870
	int err;
1871

1872 1873
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1874

1875
	raw_spin_lock(&ctx->lock);
1876
	update_context_time(ctx);
1877

1878
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1879
		goto unlock;
S
Stephane Eranian 已提交
1880 1881 1882 1883

	/*
	 * set current task's cgroup time reference point
	 */
1884
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1885

1886
	__perf_event_mark_enabled(event);
1887

S
Stephane Eranian 已提交
1888 1889 1890
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1891
		goto unlock;
S
Stephane Eranian 已提交
1892
	}
1893

1894
	/*
1895
	 * If the event is in a group and isn't the group leader,
1896
	 * then don't put it on unless the group is on.
1897
	 */
1898
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1899
		goto unlock;
1900

1901
	if (!group_can_go_on(event, cpuctx, 1)) {
1902
		err = -EEXIST;
1903
	} else {
1904
		if (event == leader)
1905
			err = group_sched_in(event, cpuctx, ctx);
1906
		else
1907
			err = event_sched_in(event, cpuctx, ctx);
1908
	}
1909 1910 1911

	if (err) {
		/*
1912
		 * If this event can't go on and it's part of a
1913 1914
		 * group, then the whole group has to come off.
		 */
1915
		if (leader != event) {
1916
			group_sched_out(leader, cpuctx, ctx);
1917 1918
			perf_cpu_hrtimer_restart(cpuctx);
		}
1919
		if (leader->attr.pinned) {
1920
			update_group_times(leader);
1921
			leader->state = PERF_EVENT_STATE_ERROR;
1922
		}
1923 1924
	}

P
Peter Zijlstra 已提交
1925
unlock:
1926
	raw_spin_unlock(&ctx->lock);
1927 1928

	return 0;
1929 1930 1931
}

/*
1932
 * Enable a event.
1933
 *
1934 1935
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1936
 * remains valid.  This condition is satisfied when called through
1937 1938
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1939
 */
1940
void perf_event_enable(struct perf_event *event)
1941
{
1942
	struct perf_event_context *ctx = event->ctx;
1943 1944 1945 1946
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1947
		 * Enable the event on the cpu that it's on
1948
		 */
1949
		cpu_function_call(event->cpu, __perf_event_enable, event);
1950 1951 1952
		return;
	}

1953
	raw_spin_lock_irq(&ctx->lock);
1954
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1955 1956 1957
		goto out;

	/*
1958 1959
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1960 1961 1962 1963
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1964 1965
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1966

P
Peter Zijlstra 已提交
1967
retry:
1968
	if (!ctx->is_active) {
1969
		__perf_event_mark_enabled(event);
1970 1971 1972
		goto out;
	}

1973
	raw_spin_unlock_irq(&ctx->lock);
1974 1975 1976

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1977

1978
	raw_spin_lock_irq(&ctx->lock);
1979 1980

	/*
1981
	 * If the context is active and the event is still off,
1982 1983
	 * we need to retry the cross-call.
	 */
1984 1985 1986 1987 1988 1989
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1990
		goto retry;
1991
	}
1992

P
Peter Zijlstra 已提交
1993
out:
1994
	raw_spin_unlock_irq(&ctx->lock);
1995
}
1996
EXPORT_SYMBOL_GPL(perf_event_enable);
1997

1998
int perf_event_refresh(struct perf_event *event, int refresh)
1999
{
2000
	/*
2001
	 * not supported on inherited events
2002
	 */
2003
	if (event->attr.inherit || !is_sampling_event(event))
2004 2005
		return -EINVAL;

2006 2007
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2008 2009

	return 0;
2010
}
2011
EXPORT_SYMBOL_GPL(perf_event_refresh);
2012

2013 2014 2015
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2016
{
2017
	struct perf_event *event;
2018
	int is_active = ctx->is_active;
2019

2020
	ctx->is_active &= ~event_type;
2021
	if (likely(!ctx->nr_events))
2022 2023
		return;

2024
	update_context_time(ctx);
S
Stephane Eranian 已提交
2025
	update_cgrp_time_from_cpuctx(cpuctx);
2026
	if (!ctx->nr_active)
2027
		return;
2028

P
Peter Zijlstra 已提交
2029
	perf_pmu_disable(ctx->pmu);
2030
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2031 2032
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2033
	}
2034

2035
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2036
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2037
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2038
	}
P
Peter Zijlstra 已提交
2039
	perf_pmu_enable(ctx->pmu);
2040 2041
}

2042 2043 2044
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2045 2046 2047 2048
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2049
 * in them directly with an fd; we can only enable/disable all
2050
 * events via prctl, or enable/disable all events in a family
2051 2052
 * via ioctl, which will have the same effect on both contexts.
 */
2053 2054
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2055 2056
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2057
		&& ctx1->parent_gen == ctx2->parent_gen
2058
		&& !ctx1->pin_count && !ctx2->pin_count;
2059 2060
}

2061 2062
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2063 2064 2065
{
	u64 value;

2066
	if (!event->attr.inherit_stat)
2067 2068 2069
		return;

	/*
2070
	 * Update the event value, we cannot use perf_event_read()
2071 2072
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2073
	 * we know the event must be on the current CPU, therefore we
2074 2075
	 * don't need to use it.
	 */
2076 2077
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2078 2079
		event->pmu->read(event);
		/* fall-through */
2080

2081 2082
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2083 2084 2085 2086 2087 2088 2089
		break;

	default:
		break;
	}

	/*
2090
	 * In order to keep per-task stats reliable we need to flip the event
2091 2092
	 * values when we flip the contexts.
	 */
2093 2094 2095
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2096

2097 2098
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2099

2100
	/*
2101
	 * Since we swizzled the values, update the user visible data too.
2102
	 */
2103 2104
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2105 2106 2107 2108 2109
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2110 2111
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2112
{
2113
	struct perf_event *event, *next_event;
2114 2115 2116 2117

	if (!ctx->nr_stat)
		return;

2118 2119
	update_context_time(ctx);

2120 2121
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2122

2123 2124
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2125

2126 2127
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2128

2129
		__perf_event_sync_stat(event, next_event);
2130

2131 2132
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2133 2134 2135
	}
}

2136 2137
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2138
{
P
Peter Zijlstra 已提交
2139
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2140 2141
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2142
	struct perf_cpu_context *cpuctx;
2143
	int do_switch = 1;
T
Thomas Gleixner 已提交
2144

P
Peter Zijlstra 已提交
2145 2146
	if (likely(!ctx))
		return;
2147

P
Peter Zijlstra 已提交
2148 2149
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2150 2151
		return;

2152 2153
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2154
	next_ctx = next->perf_event_ctxp[ctxn];
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2166 2167
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2168
		if (context_equiv(ctx, next_ctx)) {
2169 2170
			/*
			 * XXX do we need a memory barrier of sorts
2171
			 * wrt to rcu_dereference() of perf_event_ctxp
2172
			 */
P
Peter Zijlstra 已提交
2173 2174
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2175 2176 2177
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2178

2179
			perf_event_sync_stat(ctx, next_ctx);
2180
		}
2181 2182
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2183
	}
2184
	rcu_read_unlock();
2185

2186
	if (do_switch) {
2187
		raw_spin_lock(&ctx->lock);
2188
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2189
		cpuctx->task_ctx = NULL;
2190
		raw_spin_unlock(&ctx->lock);
2191
	}
T
Thomas Gleixner 已提交
2192 2193
}

P
Peter Zijlstra 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2208 2209
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2210 2211 2212 2213 2214
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2215 2216 2217 2218 2219 2220 2221

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2222
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2223 2224
}

2225
static void task_ctx_sched_out(struct perf_event_context *ctx)
2226
{
P
Peter Zijlstra 已提交
2227
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2228

2229 2230
	if (!cpuctx->task_ctx)
		return;
2231 2232 2233 2234

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2235
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2236 2237 2238
	cpuctx->task_ctx = NULL;
}

2239 2240 2241 2242 2243 2244 2245
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2246 2247
}

2248
static void
2249
ctx_pinned_sched_in(struct perf_event_context *ctx,
2250
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2251
{
2252
	struct perf_event *event;
T
Thomas Gleixner 已提交
2253

2254 2255
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2256
			continue;
2257
		if (!event_filter_match(event))
2258 2259
			continue;

S
Stephane Eranian 已提交
2260 2261 2262 2263
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2264
		if (group_can_go_on(event, cpuctx, 1))
2265
			group_sched_in(event, cpuctx, ctx);
2266 2267 2268 2269 2270

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2271 2272 2273
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2274
		}
2275
	}
2276 2277 2278 2279
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2280
		      struct perf_cpu_context *cpuctx)
2281 2282 2283
{
	struct perf_event *event;
	int can_add_hw = 1;
2284

2285 2286 2287
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2288
			continue;
2289 2290
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2291
		 * of events:
2292
		 */
2293
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2294 2295
			continue;

S
Stephane Eranian 已提交
2296 2297 2298 2299
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2300
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2301
			if (group_sched_in(event, cpuctx, ctx))
2302
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2303
		}
T
Thomas Gleixner 已提交
2304
	}
2305 2306 2307 2308 2309
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2310 2311
	     enum event_type_t event_type,
	     struct task_struct *task)
2312
{
S
Stephane Eranian 已提交
2313
	u64 now;
2314
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2315

2316
	ctx->is_active |= event_type;
2317
	if (likely(!ctx->nr_events))
2318
		return;
2319

S
Stephane Eranian 已提交
2320 2321
	now = perf_clock();
	ctx->timestamp = now;
2322
	perf_cgroup_set_timestamp(task, ctx);
2323 2324 2325 2326
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2327
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2328
		ctx_pinned_sched_in(ctx, cpuctx);
2329 2330

	/* Then walk through the lower prio flexible groups */
2331
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2332
		ctx_flexible_sched_in(ctx, cpuctx);
2333 2334
}

2335
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2336 2337
			     enum event_type_t event_type,
			     struct task_struct *task)
2338 2339 2340
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2341
	ctx_sched_in(ctx, cpuctx, event_type, task);
2342 2343
}

S
Stephane Eranian 已提交
2344 2345
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2346
{
P
Peter Zijlstra 已提交
2347
	struct perf_cpu_context *cpuctx;
2348

P
Peter Zijlstra 已提交
2349
	cpuctx = __get_cpu_context(ctx);
2350 2351 2352
	if (cpuctx->task_ctx == ctx)
		return;

2353
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2354
	perf_pmu_disable(ctx->pmu);
2355 2356 2357 2358 2359 2360 2361
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2362 2363
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2364

2365 2366
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2367 2368 2369
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2370 2371 2372 2373
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2374
	perf_pmu_rotate_start(ctx->pmu);
2375 2376
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2448 2449
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2459
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2460
	}
S
Stephane Eranian 已提交
2461 2462 2463 2464 2465 2466
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2467
		perf_cgroup_sched_in(prev, task);
2468 2469 2470 2471

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2472 2473
}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2501
#define REDUCE_FLS(a, b)		\
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2541 2542 2543
	if (!divisor)
		return dividend;

2544 2545 2546
	return div64_u64(dividend, divisor);
}

2547 2548 2549
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2550
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2551
{
2552
	struct hw_perf_event *hwc = &event->hw;
2553
	s64 period, sample_period;
2554 2555
	s64 delta;

2556
	period = perf_calculate_period(event, nsec, count);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2567

2568
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2569 2570 2571
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2572
		local64_set(&hwc->period_left, 0);
2573 2574 2575

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2576
	}
2577 2578
}

2579 2580 2581 2582 2583 2584 2585
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2586
{
2587 2588
	struct perf_event *event;
	struct hw_perf_event *hwc;
2589
	u64 now, period = TICK_NSEC;
2590
	s64 delta;
2591

2592 2593 2594 2595 2596 2597
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2598 2599
		return;

2600
	raw_spin_lock(&ctx->lock);
2601
	perf_pmu_disable(ctx->pmu);
2602

2603
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2604
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2605 2606
			continue;

2607
		if (!event_filter_match(event))
2608 2609
			continue;

2610
		hwc = &event->hw;
2611

2612 2613
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2614
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2615
			event->pmu->start(event, 0);
2616 2617
		}

2618
		if (!event->attr.freq || !event->attr.sample_freq)
2619 2620
			continue;

2621 2622 2623 2624 2625
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2626
		now = local64_read(&event->count);
2627 2628
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2629

2630 2631 2632
		/*
		 * restart the event
		 * reload only if value has changed
2633 2634 2635
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2636
		 */
2637
		if (delta > 0)
2638
			perf_adjust_period(event, period, delta, false);
2639 2640

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2641
	}
2642

2643
	perf_pmu_enable(ctx->pmu);
2644
	raw_spin_unlock(&ctx->lock);
2645 2646
}

2647
/*
2648
 * Round-robin a context's events:
2649
 */
2650
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2651
{
2652 2653 2654 2655 2656 2657
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2658 2659
}

2660
/*
2661 2662 2663
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2664
 */
2665
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2666
{
P
Peter Zijlstra 已提交
2667
	struct perf_event_context *ctx = NULL;
2668
	int rotate = 0, remove = 1;
2669

2670
	if (cpuctx->ctx.nr_events) {
2671
		remove = 0;
2672 2673 2674
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2675

P
Peter Zijlstra 已提交
2676
	ctx = cpuctx->task_ctx;
2677
	if (ctx && ctx->nr_events) {
2678
		remove = 0;
2679 2680 2681
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2682

2683
	if (!rotate)
2684 2685
		goto done;

2686
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2687
	perf_pmu_disable(cpuctx->ctx.pmu);
2688

2689 2690 2691
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2692

2693 2694 2695
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2696

2697
	perf_event_sched_in(cpuctx, ctx, current);
2698

2699 2700
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2701
done:
2702 2703
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2704 2705

	return rotate;
2706 2707
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
	if (list_empty(&__get_cpu_var(rotation_list)))
		return true;
	else
		return false;
}
#endif

2718 2719 2720 2721
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2722 2723
	struct perf_event_context *ctx;
	int throttled;
2724

2725 2726
	WARN_ON(!irqs_disabled());

2727 2728 2729
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2730
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2731 2732 2733 2734 2735 2736
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2737
	}
T
Thomas Gleixner 已提交
2738 2739
}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2750
	__perf_event_mark_enabled(event);
2751 2752 2753 2754

	return 1;
}

2755
/*
2756
 * Enable all of a task's events that have been marked enable-on-exec.
2757 2758
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2759
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2760
{
2761
	struct perf_event *event;
2762 2763
	unsigned long flags;
	int enabled = 0;
2764
	int ret;
2765 2766

	local_irq_save(flags);
2767
	if (!ctx || !ctx->nr_events)
2768 2769
		goto out;

2770 2771 2772 2773 2774 2775 2776
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2777
	perf_cgroup_sched_out(current, NULL);
2778

2779
	raw_spin_lock(&ctx->lock);
2780
	task_ctx_sched_out(ctx);
2781

2782
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2783 2784 2785
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2786 2787 2788
	}

	/*
2789
	 * Unclone this context if we enabled any event.
2790
	 */
2791 2792
	if (enabled)
		unclone_ctx(ctx);
2793

2794
	raw_spin_unlock(&ctx->lock);
2795

2796 2797 2798
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2799
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2800
out:
2801 2802 2803
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2804
/*
2805
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2806
 */
2807
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2808
{
2809 2810
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2811
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2812

2813 2814 2815 2816
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2817 2818
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2819 2820 2821 2822
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2823
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2824
	if (ctx->is_active) {
2825
		update_context_time(ctx);
S
Stephane Eranian 已提交
2826 2827
		update_cgrp_time_from_event(event);
	}
2828
	update_event_times(event);
2829 2830
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2831
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2832 2833
}

P
Peter Zijlstra 已提交
2834 2835
static inline u64 perf_event_count(struct perf_event *event)
{
2836
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2837 2838
}

2839
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2840 2841
{
	/*
2842 2843
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2844
	 */
2845 2846 2847 2848
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2849 2850 2851
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2852
		raw_spin_lock_irqsave(&ctx->lock, flags);
2853 2854 2855 2856 2857
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2858
		if (ctx->is_active) {
2859
			update_context_time(ctx);
S
Stephane Eranian 已提交
2860 2861
			update_cgrp_time_from_event(event);
		}
2862
		update_event_times(event);
2863
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2864 2865
	}

P
Peter Zijlstra 已提交
2866
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2867 2868
}

2869
/*
2870
 * Initialize the perf_event context in a task_struct:
2871
 */
2872
static void __perf_event_init_context(struct perf_event_context *ctx)
2873
{
2874
	raw_spin_lock_init(&ctx->lock);
2875
	mutex_init(&ctx->mutex);
2876 2877
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2878 2879
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2895
	}
2896 2897 2898
	ctx->pmu = pmu;

	return ctx;
2899 2900
}

2901 2902 2903 2904 2905
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2906 2907

	rcu_read_lock();
2908
	if (!vpid)
T
Thomas Gleixner 已提交
2909 2910
		task = current;
	else
2911
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2912 2913 2914 2915 2916 2917 2918 2919
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2920 2921 2922 2923
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2924 2925 2926 2927 2928 2929 2930
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2931 2932 2933
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2934
static struct perf_event_context *
M
Matt Helsley 已提交
2935
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2936
{
2937
	struct perf_event_context *ctx;
2938
	struct perf_cpu_context *cpuctx;
2939
	unsigned long flags;
P
Peter Zijlstra 已提交
2940
	int ctxn, err;
T
Thomas Gleixner 已提交
2941

2942
	if (!task) {
2943
		/* Must be root to operate on a CPU event: */
2944
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2945 2946 2947
			return ERR_PTR(-EACCES);

		/*
2948
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2949 2950 2951
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2952
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2953 2954
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2955
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2956
		ctx = &cpuctx->ctx;
2957
		get_ctx(ctx);
2958
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2959 2960 2961 2962

		return ctx;
	}

P
Peter Zijlstra 已提交
2963 2964 2965 2966 2967
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2968
retry:
P
Peter Zijlstra 已提交
2969
	ctx = perf_lock_task_context(task, ctxn, &flags);
2970
	if (ctx) {
2971
		unclone_ctx(ctx);
2972
		++ctx->pin_count;
2973
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2974
	} else {
2975
		ctx = alloc_perf_context(pmu, task);
2976 2977 2978
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2990
		else {
2991
			get_ctx(ctx);
2992
			++ctx->pin_count;
2993
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2994
		}
2995 2996 2997
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2998
			put_ctx(ctx);
2999 3000 3001 3002

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3003 3004 3005
		}
	}

T
Thomas Gleixner 已提交
3006
	return ctx;
3007

P
Peter Zijlstra 已提交
3008
errout:
3009
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3010 3011
}

L
Li Zefan 已提交
3012 3013
static void perf_event_free_filter(struct perf_event *event);

3014
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3015
{
3016
	struct perf_event *event;
P
Peter Zijlstra 已提交
3017

3018 3019 3020
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3021
	perf_event_free_filter(event);
3022
	kfree(event);
P
Peter Zijlstra 已提交
3023 3024
}

3025
static void ring_buffer_put(struct ring_buffer *rb);
3026

3027
static void free_event(struct perf_event *event)
3028
{
3029
	irq_work_sync(&event->pending);
3030

3031
	if (!event->parent) {
3032
		if (event->attach_state & PERF_ATTACH_TASK)
3033
			static_key_slow_dec_deferred(&perf_sched_events);
3034
		if (event->attr.mmap || event->attr.mmap_data)
3035 3036 3037 3038 3039
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
3040 3041
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3042 3043
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3044
			static_key_slow_dec_deferred(&perf_sched_events);
3045
		}
3046 3047 3048 3049 3050 3051 3052 3053

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
3054
	}
3055

3056 3057 3058
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
3059 3060
	}

S
Stephane Eranian 已提交
3061 3062 3063
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3064 3065
	if (event->destroy)
		event->destroy(event);
3066

P
Peter Zijlstra 已提交
3067 3068 3069
	if (event->ctx)
		put_ctx(event->ctx);

3070
	call_rcu(&event->rcu_head, free_event_rcu);
3071 3072
}

3073
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3074
{
3075
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3076

3077
	WARN_ON_ONCE(ctx->parent_ctx);
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3091
	raw_spin_lock_irq(&ctx->lock);
3092
	perf_group_detach(event);
3093
	raw_spin_unlock_irq(&ctx->lock);
3094
	perf_remove_from_context(event);
3095
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3096

3097
	free_event(event);
T
Thomas Gleixner 已提交
3098 3099 3100

	return 0;
}
3101
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3102

3103 3104 3105
/*
 * Called when the last reference to the file is gone.
 */
3106
static void put_event(struct perf_event *event)
3107
{
P
Peter Zijlstra 已提交
3108
	struct task_struct *owner;
3109

3110 3111
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3112

P
Peter Zijlstra 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3146 3147 3148 3149 3150 3151 3152
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3153 3154
}

3155
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3156
{
3157
	struct perf_event *child;
3158 3159
	u64 total = 0;

3160 3161 3162
	*enabled = 0;
	*running = 0;

3163
	mutex_lock(&event->child_mutex);
3164
	total += perf_event_read(event);
3165 3166 3167 3168 3169 3170
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3171
		total += perf_event_read(child);
3172 3173 3174
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3175
	mutex_unlock(&event->child_mutex);
3176 3177 3178

	return total;
}
3179
EXPORT_SYMBOL_GPL(perf_event_read_value);
3180

3181
static int perf_event_read_group(struct perf_event *event,
3182 3183
				   u64 read_format, char __user *buf)
{
3184
	struct perf_event *leader = event->group_leader, *sub;
3185 3186
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3187
	u64 values[5];
3188
	u64 count, enabled, running;
3189

3190
	mutex_lock(&ctx->mutex);
3191
	count = perf_event_read_value(leader, &enabled, &running);
3192 3193

	values[n++] = 1 + leader->nr_siblings;
3194 3195 3196 3197
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3198 3199 3200
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3201 3202 3203 3204

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3205
		goto unlock;
3206

3207
	ret = size;
3208

3209
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3210
		n = 0;
3211

3212
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3213 3214 3215 3216 3217
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3218
		if (copy_to_user(buf + ret, values, size)) {
3219 3220 3221
			ret = -EFAULT;
			goto unlock;
		}
3222 3223

		ret += size;
3224
	}
3225 3226
unlock:
	mutex_unlock(&ctx->mutex);
3227

3228
	return ret;
3229 3230
}

3231
static int perf_event_read_one(struct perf_event *event,
3232 3233
				 u64 read_format, char __user *buf)
{
3234
	u64 enabled, running;
3235 3236 3237
	u64 values[4];
	int n = 0;

3238 3239 3240 3241 3242
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3243
	if (read_format & PERF_FORMAT_ID)
3244
		values[n++] = primary_event_id(event);
3245 3246 3247 3248 3249 3250 3251

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3252
/*
3253
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3254 3255
 */
static ssize_t
3256
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3257
{
3258
	u64 read_format = event->attr.read_format;
3259
	int ret;
T
Thomas Gleixner 已提交
3260

3261
	/*
3262
	 * Return end-of-file for a read on a event that is in
3263 3264 3265
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3266
	if (event->state == PERF_EVENT_STATE_ERROR)
3267 3268
		return 0;

3269
	if (count < event->read_size)
3270 3271
		return -ENOSPC;

3272
	WARN_ON_ONCE(event->ctx->parent_ctx);
3273
	if (read_format & PERF_FORMAT_GROUP)
3274
		ret = perf_event_read_group(event, read_format, buf);
3275
	else
3276
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3277

3278
	return ret;
T
Thomas Gleixner 已提交
3279 3280 3281 3282 3283
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3284
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3285

3286
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3287 3288 3289 3290
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3291
	struct perf_event *event = file->private_data;
3292
	struct ring_buffer *rb;
3293
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3294

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3312
	rcu_read_lock();
3313
	rb = rcu_dereference(event->rb);
3314 3315
	if (rb) {
		ring_buffer_attach(event, rb);
3316
		events = atomic_xchg(&rb->poll, 0);
3317
	}
P
Peter Zijlstra 已提交
3318
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3319

3320 3321
	mutex_unlock(&event->mmap_mutex);

3322
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3323 3324 3325 3326

	return events;
}

3327
static void perf_event_reset(struct perf_event *event)
3328
{
3329
	(void)perf_event_read(event);
3330
	local64_set(&event->count, 0);
3331
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3332 3333
}

3334
/*
3335 3336 3337 3338
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3339
 */
3340 3341
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3342
{
3343
	struct perf_event *child;
P
Peter Zijlstra 已提交
3344

3345 3346 3347 3348
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3349
		func(child);
3350
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3351 3352
}

3353 3354
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3355
{
3356 3357
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3358

3359 3360
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3361
	event = event->group_leader;
3362

3363 3364
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3365
		perf_event_for_each_child(sibling, func);
3366
	mutex_unlock(&ctx->mutex);
3367 3368
}

3369
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3370
{
3371
	struct perf_event_context *ctx = event->ctx;
3372 3373 3374
	int ret = 0;
	u64 value;

3375
	if (!is_sampling_event(event))
3376 3377
		return -EINVAL;

3378
	if (copy_from_user(&value, arg, sizeof(value)))
3379 3380 3381 3382 3383
		return -EFAULT;

	if (!value)
		return -EINVAL;

3384
	raw_spin_lock_irq(&ctx->lock);
3385 3386
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3387 3388 3389 3390
			ret = -EINVAL;
			goto unlock;
		}

3391
		event->attr.sample_freq = value;
3392
	} else {
3393 3394
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3395 3396
	}
unlock:
3397
	raw_spin_unlock_irq(&ctx->lock);
3398 3399 3400 3401

	return ret;
}

3402 3403
static const struct file_operations perf_fops;

3404
static inline int perf_fget_light(int fd, struct fd *p)
3405
{
3406 3407 3408
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3409

3410 3411 3412
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3413
	}
3414 3415
	*p = f;
	return 0;
3416 3417 3418 3419
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3420
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3421

3422 3423
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3424 3425
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3426
	u32 flags = arg;
3427 3428

	switch (cmd) {
3429 3430
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3431
		break;
3432 3433
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3434
		break;
3435 3436
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3437
		break;
P
Peter Zijlstra 已提交
3438

3439 3440
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3441

3442 3443
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3444

3445
	case PERF_EVENT_IOC_SET_OUTPUT:
3446 3447 3448
	{
		int ret;
		if (arg != -1) {
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3459 3460 3461
		}
		return ret;
	}
3462

L
Li Zefan 已提交
3463 3464 3465
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3466
	default:
P
Peter Zijlstra 已提交
3467
		return -ENOTTY;
3468
	}
P
Peter Zijlstra 已提交
3469 3470

	if (flags & PERF_IOC_FLAG_GROUP)
3471
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3472
	else
3473
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3474 3475

	return 0;
3476 3477
}

3478
int perf_event_task_enable(void)
3479
{
3480
	struct perf_event *event;
3481

3482 3483 3484 3485
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3486 3487 3488 3489

	return 0;
}

3490
int perf_event_task_disable(void)
3491
{
3492
	struct perf_event *event;
3493

3494 3495 3496 3497
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3498 3499 3500 3501

	return 0;
}

3502
static int perf_event_index(struct perf_event *event)
3503
{
P
Peter Zijlstra 已提交
3504 3505 3506
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3507
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3508 3509
		return 0;

3510
	return event->pmu->event_idx(event);
3511 3512
}

3513
static void calc_timer_values(struct perf_event *event,
3514
				u64 *now,
3515 3516
				u64 *enabled,
				u64 *running)
3517
{
3518
	u64 ctx_time;
3519

3520 3521
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3522 3523 3524 3525
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3526
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3527 3528 3529
{
}

3530 3531 3532 3533 3534
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3535
void perf_event_update_userpage(struct perf_event *event)
3536
{
3537
	struct perf_event_mmap_page *userpg;
3538
	struct ring_buffer *rb;
3539
	u64 enabled, running, now;
3540 3541

	rcu_read_lock();
3542 3543 3544 3545 3546 3547 3548 3549 3550
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3551
	calc_timer_values(event, &now, &enabled, &running);
3552 3553
	rb = rcu_dereference(event->rb);
	if (!rb)
3554 3555
		goto unlock;

3556
	userpg = rb->user_page;
3557

3558 3559 3560 3561 3562
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3563
	++userpg->lock;
3564
	barrier();
3565
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3566
	userpg->offset = perf_event_count(event);
3567
	if (userpg->index)
3568
		userpg->offset -= local64_read(&event->hw.prev_count);
3569

3570
	userpg->time_enabled = enabled +
3571
			atomic64_read(&event->child_total_time_enabled);
3572

3573
	userpg->time_running = running +
3574
			atomic64_read(&event->child_total_time_running);
3575

3576
	arch_perf_update_userpage(userpg, now);
3577

3578
	barrier();
3579
	++userpg->lock;
3580
	preempt_enable();
3581
unlock:
3582
	rcu_read_unlock();
3583 3584
}

3585 3586 3587
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3588
	struct ring_buffer *rb;
3589 3590 3591 3592 3593 3594 3595 3596 3597
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3598 3599
	rb = rcu_dereference(event->rb);
	if (!rb)
3600 3601 3602 3603 3604
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3605
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3657 3658 3659 3660
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3661
		wake_up_all(&event->waitq);
3662 3663

unlock:
3664 3665 3666
	rcu_read_unlock();
}

3667
static void rb_free_rcu(struct rcu_head *rcu_head)
3668
{
3669
	struct ring_buffer *rb;
3670

3671 3672
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3673 3674
}

3675
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3676
{
3677
	struct ring_buffer *rb;
3678

3679
	rcu_read_lock();
3680 3681 3682 3683
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3684 3685 3686
	}
	rcu_read_unlock();

3687
	return rb;
3688 3689
}

3690
static void ring_buffer_put(struct ring_buffer *rb)
3691
{
3692 3693 3694
	struct perf_event *event, *n;
	unsigned long flags;

3695
	if (!atomic_dec_and_test(&rb->refcount))
3696
		return;
3697

3698 3699 3700 3701 3702 3703 3704
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3705
	call_rcu(&rb->rcu_head, rb_free_rcu);
3706 3707 3708 3709
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3710
	struct perf_event *event = vma->vm_file->private_data;
3711

3712
	atomic_inc(&event->mmap_count);
3713 3714 3715 3716
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3717
	struct perf_event *event = vma->vm_file->private_data;
3718

3719
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3720
		unsigned long size = perf_data_size(event->rb);
3721
		struct user_struct *user = event->mmap_user;
3722
		struct ring_buffer *rb = event->rb;
3723

3724
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3725
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3726
		rcu_assign_pointer(event->rb, NULL);
3727
		ring_buffer_detach(event, rb);
3728
		mutex_unlock(&event->mmap_mutex);
3729

3730
		ring_buffer_put(rb);
3731
		free_uid(user);
3732
	}
3733 3734
}

3735
static const struct vm_operations_struct perf_mmap_vmops = {
3736 3737 3738 3739
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3740 3741 3742 3743
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3744
	struct perf_event *event = file->private_data;
3745
	unsigned long user_locked, user_lock_limit;
3746
	struct user_struct *user = current_user();
3747
	unsigned long locked, lock_limit;
3748
	struct ring_buffer *rb;
3749 3750
	unsigned long vma_size;
	unsigned long nr_pages;
3751
	long user_extra, extra;
3752
	int ret = 0, flags = 0;
3753

3754 3755 3756
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3757
	 * same rb.
3758 3759 3760 3761
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3762
	if (!(vma->vm_flags & VM_SHARED))
3763
		return -EINVAL;
3764 3765 3766 3767

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3768
	/*
3769
	 * If we have rb pages ensure they're a power-of-two number, so we
3770 3771 3772
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3773 3774
		return -EINVAL;

3775
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3776 3777
		return -EINVAL;

3778 3779
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3780

3781 3782
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3783 3784 3785
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3786
		else
3787 3788 3789 3790
			ret = -EINVAL;
		goto unlock;
	}

3791
	user_extra = nr_pages + 1;
3792
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3793 3794 3795 3796 3797 3798

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3799
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3800

3801 3802 3803
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3804

3805
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3806
	lock_limit >>= PAGE_SHIFT;
3807
	locked = vma->vm_mm->pinned_vm + extra;
3808

3809 3810
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3811 3812 3813
		ret = -EPERM;
		goto unlock;
	}
3814

3815
	WARN_ON(event->rb);
3816

3817
	if (vma->vm_flags & VM_WRITE)
3818
		flags |= RING_BUFFER_WRITABLE;
3819

3820 3821 3822 3823
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3824
	if (!rb) {
3825
		ret = -ENOMEM;
3826
		goto unlock;
3827
	}
3828
	rcu_assign_pointer(event->rb, rb);
3829

3830 3831 3832
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3833
	vma->vm_mm->pinned_vm += event->mmap_locked;
3834

3835 3836
	perf_event_update_userpage(event);

3837
unlock:
3838 3839
	if (!ret)
		atomic_inc(&event->mmap_count);
3840
	mutex_unlock(&event->mmap_mutex);
3841

3842
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3843
	vma->vm_ops = &perf_mmap_vmops;
3844 3845

	return ret;
3846 3847
}

P
Peter Zijlstra 已提交
3848 3849
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3850
	struct inode *inode = file_inode(filp);
3851
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3852 3853 3854
	int retval;

	mutex_lock(&inode->i_mutex);
3855
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3856 3857 3858 3859 3860 3861 3862 3863
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3864
static const struct file_operations perf_fops = {
3865
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3866 3867 3868
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3869 3870
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3871
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3872
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3873 3874
};

3875
/*
3876
 * Perf event wakeup
3877 3878 3879 3880 3881
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3882
void perf_event_wakeup(struct perf_event *event)
3883
{
3884
	ring_buffer_wakeup(event);
3885

3886 3887 3888
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3889
	}
3890 3891
}

3892
static void perf_pending_event(struct irq_work *entry)
3893
{
3894 3895
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3896

3897 3898 3899
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3900 3901
	}

3902 3903 3904
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3905 3906 3907
	}
}

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4055 4056 4057
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4085 4086 4087
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4114 4115 4116
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4117 4118 4119 4120 4121
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4122
static void perf_output_read_one(struct perf_output_handle *handle,
4123 4124
				 struct perf_event *event,
				 u64 enabled, u64 running)
4125
{
4126
	u64 read_format = event->attr.read_format;
4127 4128 4129
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4130
	values[n++] = perf_event_count(event);
4131
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4132
		values[n++] = enabled +
4133
			atomic64_read(&event->child_total_time_enabled);
4134 4135
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4136
		values[n++] = running +
4137
			atomic64_read(&event->child_total_time_running);
4138 4139
	}
	if (read_format & PERF_FORMAT_ID)
4140
		values[n++] = primary_event_id(event);
4141

4142
	__output_copy(handle, values, n * sizeof(u64));
4143 4144 4145
}

/*
4146
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4147 4148
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4149 4150
			    struct perf_event *event,
			    u64 enabled, u64 running)
4151
{
4152 4153
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4154 4155 4156 4157 4158 4159
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4160
		values[n++] = enabled;
4161 4162

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4163
		values[n++] = running;
4164

4165
	if (leader != event)
4166 4167
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4168
	values[n++] = perf_event_count(leader);
4169
	if (read_format & PERF_FORMAT_ID)
4170
		values[n++] = primary_event_id(leader);
4171

4172
	__output_copy(handle, values, n * sizeof(u64));
4173

4174
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4175 4176
		n = 0;

4177
		if (sub != event)
4178 4179
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4180
		values[n++] = perf_event_count(sub);
4181
		if (read_format & PERF_FORMAT_ID)
4182
			values[n++] = primary_event_id(sub);
4183

4184
		__output_copy(handle, values, n * sizeof(u64));
4185 4186 4187
	}
}

4188 4189 4190
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4191
static void perf_output_read(struct perf_output_handle *handle,
4192
			     struct perf_event *event)
4193
{
4194
	u64 enabled = 0, running = 0, now;
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4206
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4207
		calc_timer_values(event, &now, &enabled, &running);
4208

4209
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4210
		perf_output_read_group(handle, event, enabled, running);
4211
	else
4212
		perf_output_read_one(handle, event, enabled, running);
4213 4214
}

4215 4216 4217
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4218
			struct perf_event *event)
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4249
		perf_output_read(handle, event);
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4260
			__output_copy(handle, data->callchain, size);
4261 4262 4263 4264 4265 4266 4267 4268 4269
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4270 4271
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4332 4333 4334 4335 4336

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
A
Andi Kleen 已提交
4337 4338 4339

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4340 4341 4342

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4343 4344 4345 4346
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4347
			 struct perf_event *event,
4348
			 struct pt_regs *regs)
4349
{
4350
	u64 sample_type = event->attr.sample_type;
4351

4352
	header->type = PERF_RECORD_SAMPLE;
4353
	header->size = sizeof(*header) + event->header_size;
4354 4355 4356

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4357

4358
	__perf_event_header__init_id(header, data, event);
4359

4360
	if (sample_type & PERF_SAMPLE_IP)
4361 4362
		data->ip = perf_instruction_pointer(regs);

4363
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4364
		int size = 1;
4365

4366
		data->callchain = perf_callchain(event, regs);
4367 4368 4369 4370 4371

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4372 4373
	}

4374
	if (sample_type & PERF_SAMPLE_RAW) {
4375 4376 4377 4378 4379 4380 4381 4382
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4383
		header->size += size;
4384
	}
4385 4386 4387 4388 4389 4390 4391 4392 4393

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4437
}
4438

4439
static void perf_event_output(struct perf_event *event,
4440 4441 4442 4443 4444
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4445

4446 4447 4448
	/* protect the callchain buffers */
	rcu_read_lock();

4449
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4450

4451
	if (perf_output_begin(&handle, event, header.size))
4452
		goto exit;
4453

4454
	perf_output_sample(&handle, &header, data, event);
4455

4456
	perf_output_end(&handle);
4457 4458 4459

exit:
	rcu_read_unlock();
4460 4461
}

4462
/*
4463
 * read event_id
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4474
perf_event_read_event(struct perf_event *event,
4475 4476 4477
			struct task_struct *task)
{
	struct perf_output_handle handle;
4478
	struct perf_sample_data sample;
4479
	struct perf_read_event read_event = {
4480
		.header = {
4481
			.type = PERF_RECORD_READ,
4482
			.misc = 0,
4483
			.size = sizeof(read_event) + event->read_size,
4484
		},
4485 4486
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4487
	};
4488
	int ret;
4489

4490
	perf_event_header__init_id(&read_event.header, &sample, event);
4491
	ret = perf_output_begin(&handle, event, read_event.header.size);
4492 4493 4494
	if (ret)
		return;

4495
	perf_output_put(&handle, read_event);
4496
	perf_output_read(&handle, event);
4497
	perf_event__output_id_sample(event, &handle, &sample);
4498

4499 4500 4501
	perf_output_end(&handle);
}

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_match_cb match,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		if (match(event, data))
			output(event, data);
	}
}

static void
perf_event_aux(perf_event_aux_match_cb match,
	       perf_event_aux_output_cb output,
	       void *data,
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_aux_ctx(ctx, match, output, data);
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
		perf_event_aux_ctx(task_ctx, match, output, data);
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4560
/*
P
Peter Zijlstra 已提交
4561 4562
 * task tracking -- fork/exit
 *
4563
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4564 4565
 */

P
Peter Zijlstra 已提交
4566
struct perf_task_event {
4567
	struct task_struct		*task;
4568
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4569 4570 4571 4572 4573 4574

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4575 4576
		u32				tid;
		u32				ptid;
4577
		u64				time;
4578
	} event_id;
P
Peter Zijlstra 已提交
4579 4580
};

4581
static void perf_event_task_output(struct perf_event *event,
4582
				   void *data)
P
Peter Zijlstra 已提交
4583
{
4584
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4585
	struct perf_output_handle handle;
4586
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4587
	struct task_struct *task = task_event->task;
4588
	int ret, size = task_event->event_id.header.size;
4589

4590
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4591

4592
	ret = perf_output_begin(&handle, event,
4593
				task_event->event_id.header.size);
4594
	if (ret)
4595
		goto out;
P
Peter Zijlstra 已提交
4596

4597 4598
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4599

4600 4601
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4602

4603
	perf_output_put(&handle, task_event->event_id);
4604

4605 4606
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4607
	perf_output_end(&handle);
4608 4609
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4610 4611
}

4612 4613
static int perf_event_task_match(struct perf_event *event,
				 void *data __maybe_unused)
P
Peter Zijlstra 已提交
4614
{
4615 4616
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
P
Peter Zijlstra 已提交
4617 4618
}

4619 4620
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4621
			      int new)
P
Peter Zijlstra 已提交
4622
{
P
Peter Zijlstra 已提交
4623
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4624

4625 4626 4627
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4628 4629
		return;

P
Peter Zijlstra 已提交
4630
	task_event = (struct perf_task_event){
4631 4632
		.task	  = task,
		.task_ctx = task_ctx,
4633
		.event_id    = {
P
Peter Zijlstra 已提交
4634
			.header = {
4635
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4636
				.misc = 0,
4637
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4638
			},
4639 4640
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4641 4642
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4643
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4644 4645 4646
		},
	};

4647 4648 4649 4650
	perf_event_aux(perf_event_task_match,
		       perf_event_task_output,
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4651 4652
}

4653
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4654
{
4655
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4656 4657
}

4658 4659 4660 4661 4662
/*
 * comm tracking
 */

struct perf_comm_event {
4663 4664
	struct task_struct	*task;
	char			*comm;
4665 4666 4667 4668 4669 4670 4671
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4672
	} event_id;
4673 4674
};

4675
static void perf_event_comm_output(struct perf_event *event,
4676
				   void *data)
4677
{
4678
	struct perf_comm_event *comm_event = data;
4679
	struct perf_output_handle handle;
4680
	struct perf_sample_data sample;
4681
	int size = comm_event->event_id.header.size;
4682 4683 4684 4685
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4686
				comm_event->event_id.header.size);
4687 4688

	if (ret)
4689
		goto out;
4690

4691 4692
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4693

4694
	perf_output_put(&handle, comm_event->event_id);
4695
	__output_copy(&handle, comm_event->comm,
4696
				   comm_event->comm_size);
4697 4698 4699

	perf_event__output_id_sample(event, &handle, &sample);

4700
	perf_output_end(&handle);
4701 4702
out:
	comm_event->event_id.header.size = size;
4703 4704
}

4705 4706
static int perf_event_comm_match(struct perf_event *event,
				 void *data __maybe_unused)
4707
{
4708
	return event->attr.comm;
4709 4710
}

4711
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4712
{
4713
	char comm[TASK_COMM_LEN];
4714 4715
	unsigned int size;

4716
	memset(comm, 0, sizeof(comm));
4717
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4718
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4719 4720 4721 4722

	comm_event->comm = comm;
	comm_event->comm_size = size;

4723
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4724

4725 4726 4727 4728
	perf_event_aux(perf_event_comm_match,
		       perf_event_comm_output,
		       comm_event,
		       NULL);
4729 4730
}

4731
void perf_event_comm(struct task_struct *task)
4732
{
4733
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4734 4735
	struct perf_event_context *ctx;
	int ctxn;
4736

4737
	rcu_read_lock();
P
Peter Zijlstra 已提交
4738 4739 4740 4741
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4742

P
Peter Zijlstra 已提交
4743 4744
		perf_event_enable_on_exec(ctx);
	}
4745
	rcu_read_unlock();
4746

4747
	if (!atomic_read(&nr_comm_events))
4748
		return;
4749

4750
	comm_event = (struct perf_comm_event){
4751
		.task	= task,
4752 4753
		/* .comm      */
		/* .comm_size */
4754
		.event_id  = {
4755
			.header = {
4756
				.type = PERF_RECORD_COMM,
4757 4758 4759 4760 4761
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4762 4763 4764
		},
	};

4765
	perf_event_comm_event(&comm_event);
4766 4767
}

4768 4769 4770 4771 4772
/*
 * mmap tracking
 */

struct perf_mmap_event {
4773 4774 4775 4776
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4777 4778 4779 4780 4781 4782 4783 4784 4785

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4786
	} event_id;
4787 4788
};

4789
static void perf_event_mmap_output(struct perf_event *event,
4790
				   void *data)
4791
{
4792
	struct perf_mmap_event *mmap_event = data;
4793
	struct perf_output_handle handle;
4794
	struct perf_sample_data sample;
4795
	int size = mmap_event->event_id.header.size;
4796
	int ret;
4797

4798 4799
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4800
				mmap_event->event_id.header.size);
4801
	if (ret)
4802
		goto out;
4803

4804 4805
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4806

4807
	perf_output_put(&handle, mmap_event->event_id);
4808
	__output_copy(&handle, mmap_event->file_name,
4809
				   mmap_event->file_size);
4810 4811 4812

	perf_event__output_id_sample(event, &handle, &sample);

4813
	perf_output_end(&handle);
4814 4815
out:
	mmap_event->event_id.header.size = size;
4816 4817
}

4818
static int perf_event_mmap_match(struct perf_event *event,
4819
				 void *data)
4820
{
4821 4822 4823
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;
4824

4825 4826
	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
4827 4828
}

4829
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4830
{
4831 4832
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4833 4834 4835
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4836
	const char *name;
4837

4838 4839
	memset(tmp, 0, sizeof(tmp));

4840
	if (file) {
4841
		/*
4842
		 * d_path works from the end of the rb backwards, so we
4843 4844 4845 4846
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4847 4848 4849 4850
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4851
		name = d_path(&file->f_path, buf, PATH_MAX);
4852 4853 4854 4855 4856
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4857 4858
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4859 4860
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
4861
			goto got_name;
4862
		}
4863 4864 4865 4866

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4867 4868 4869 4870 4871 4872 4873 4874
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4875 4876
		}

4877 4878 4879 4880 4881
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4882
	size = ALIGN(strlen(name)+1, sizeof(u64));
4883 4884 4885 4886

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4887 4888 4889
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

4890
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4891

4892 4893 4894 4895
	perf_event_aux(perf_event_mmap_match,
		       perf_event_mmap_output,
		       mmap_event,
		       NULL);
4896

4897 4898 4899
	kfree(buf);
}

4900
void perf_event_mmap(struct vm_area_struct *vma)
4901
{
4902 4903
	struct perf_mmap_event mmap_event;

4904
	if (!atomic_read(&nr_mmap_events))
4905 4906 4907
		return;

	mmap_event = (struct perf_mmap_event){
4908
		.vma	= vma,
4909 4910
		/* .file_name */
		/* .file_size */
4911
		.event_id  = {
4912
			.header = {
4913
				.type = PERF_RECORD_MMAP,
4914
				.misc = PERF_RECORD_MISC_USER,
4915 4916 4917 4918
				/* .size */
			},
			/* .pid */
			/* .tid */
4919 4920
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4921
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4922 4923 4924
		},
	};

4925
	perf_event_mmap_event(&mmap_event);
4926 4927
}

4928 4929 4930 4931
/*
 * IRQ throttle logging
 */

4932
static void perf_log_throttle(struct perf_event *event, int enable)
4933 4934
{
	struct perf_output_handle handle;
4935
	struct perf_sample_data sample;
4936 4937 4938 4939 4940
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4941
		u64				id;
4942
		u64				stream_id;
4943 4944
	} throttle_event = {
		.header = {
4945
			.type = PERF_RECORD_THROTTLE,
4946 4947 4948
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4949
		.time		= perf_clock(),
4950 4951
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4952 4953
	};

4954
	if (enable)
4955
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4956

4957 4958 4959
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4960
				throttle_event.header.size);
4961 4962 4963 4964
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4965
	perf_event__output_id_sample(event, &handle, &sample);
4966 4967 4968
	perf_output_end(&handle);
}

4969
/*
4970
 * Generic event overflow handling, sampling.
4971 4972
 */

4973
static int __perf_event_overflow(struct perf_event *event,
4974 4975
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4976
{
4977 4978
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4979
	u64 seq;
4980 4981
	int ret = 0;

4982 4983 4984 4985 4986 4987 4988
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4989 4990 4991 4992 4993 4994 4995 4996 4997
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4998 4999
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5000 5001
			ret = 1;
		}
5002
	}
5003

5004
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5005
		u64 now = perf_clock();
5006
		s64 delta = now - hwc->freq_time_stamp;
5007

5008
		hwc->freq_time_stamp = now;
5009

5010
		if (delta > 0 && delta < 2*TICK_NSEC)
5011
			perf_adjust_period(event, delta, hwc->last_period, true);
5012 5013
	}

5014 5015
	/*
	 * XXX event_limit might not quite work as expected on inherited
5016
	 * events
5017 5018
	 */

5019 5020
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5021
		ret = 1;
5022
		event->pending_kill = POLL_HUP;
5023 5024
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5025 5026
	}

5027
	if (event->overflow_handler)
5028
		event->overflow_handler(event, data, regs);
5029
	else
5030
		perf_event_output(event, data, regs);
5031

P
Peter Zijlstra 已提交
5032
	if (event->fasync && event->pending_kill) {
5033 5034
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5035 5036
	}

5037
	return ret;
5038 5039
}

5040
int perf_event_overflow(struct perf_event *event,
5041 5042
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5043
{
5044
	return __perf_event_overflow(event, 1, data, regs);
5045 5046
}

5047
/*
5048
 * Generic software event infrastructure
5049 5050
 */

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5062
/*
5063 5064
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5065 5066 5067 5068
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5069
u64 perf_swevent_set_period(struct perf_event *event)
5070
{
5071
	struct hw_perf_event *hwc = &event->hw;
5072 5073 5074 5075 5076
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5077 5078

again:
5079
	old = val = local64_read(&hwc->period_left);
5080 5081
	if (val < 0)
		return 0;
5082

5083 5084 5085
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5086
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5087
		goto again;
5088

5089
	return nr;
5090 5091
}

5092
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5093
				    struct perf_sample_data *data,
5094
				    struct pt_regs *regs)
5095
{
5096
	struct hw_perf_event *hwc = &event->hw;
5097
	int throttle = 0;
5098

5099 5100
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5101

5102 5103
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5104

5105
	for (; overflow; overflow--) {
5106
		if (__perf_event_overflow(event, throttle,
5107
					    data, regs)) {
5108 5109 5110 5111 5112 5113
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5114
		throttle = 1;
5115
	}
5116 5117
}

P
Peter Zijlstra 已提交
5118
static void perf_swevent_event(struct perf_event *event, u64 nr,
5119
			       struct perf_sample_data *data,
5120
			       struct pt_regs *regs)
5121
{
5122
	struct hw_perf_event *hwc = &event->hw;
5123

5124
	local64_add(nr, &event->count);
5125

5126 5127 5128
	if (!regs)
		return;

5129
	if (!is_sampling_event(event))
5130
		return;
5131

5132 5133 5134 5135 5136 5137
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5138
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5139
		return perf_swevent_overflow(event, 1, data, regs);
5140

5141
	if (local64_add_negative(nr, &hwc->period_left))
5142
		return;
5143

5144
	perf_swevent_overflow(event, 0, data, regs);
5145 5146
}

5147 5148 5149
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5150
	if (event->hw.state & PERF_HES_STOPPED)
5151
		return 1;
P
Peter Zijlstra 已提交
5152

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5164
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5165
				enum perf_type_id type,
L
Li Zefan 已提交
5166 5167 5168
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5169
{
5170
	if (event->attr.type != type)
5171
		return 0;
5172

5173
	if (event->attr.config != event_id)
5174 5175
		return 0;

5176 5177
	if (perf_exclude_event(event, regs))
		return 0;
5178 5179 5180 5181

	return 1;
}

5182 5183 5184 5185 5186 5187 5188
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5189 5190
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5191
{
5192 5193 5194 5195
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5196

5197 5198
/* For the read side: events when they trigger */
static inline struct hlist_head *
5199
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5200 5201
{
	struct swevent_hlist *hlist;
5202

5203
	hlist = rcu_dereference(swhash->swevent_hlist);
5204 5205 5206
	if (!hlist)
		return NULL;

5207 5208 5209 5210 5211
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5212
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5223
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5224 5225 5226 5227 5228
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5229 5230 5231
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5232
				    u64 nr,
5233 5234
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5235
{
5236
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5237
	struct perf_event *event;
5238
	struct hlist_head *head;
5239

5240
	rcu_read_lock();
5241
	head = find_swevent_head_rcu(swhash, type, event_id);
5242 5243 5244
	if (!head)
		goto end;

5245
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5246
		if (perf_swevent_match(event, type, event_id, data, regs))
5247
			perf_swevent_event(event, nr, data, regs);
5248
	}
5249 5250
end:
	rcu_read_unlock();
5251 5252
}

5253
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5254
{
5255
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5256

5257
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5258
}
I
Ingo Molnar 已提交
5259
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5260

5261
inline void perf_swevent_put_recursion_context(int rctx)
5262
{
5263
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5264

5265
	put_recursion_context(swhash->recursion, rctx);
5266
}
5267

5268
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5269
{
5270
	struct perf_sample_data data;
5271 5272
	int rctx;

5273
	preempt_disable_notrace();
5274 5275 5276
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5277

5278
	perf_sample_data_init(&data, addr, 0);
5279

5280
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5281 5282

	perf_swevent_put_recursion_context(rctx);
5283
	preempt_enable_notrace();
5284 5285
}

5286
static void perf_swevent_read(struct perf_event *event)
5287 5288 5289
{
}

P
Peter Zijlstra 已提交
5290
static int perf_swevent_add(struct perf_event *event, int flags)
5291
{
5292
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5293
	struct hw_perf_event *hwc = &event->hw;
5294 5295
	struct hlist_head *head;

5296
	if (is_sampling_event(event)) {
5297
		hwc->last_period = hwc->sample_period;
5298
		perf_swevent_set_period(event);
5299
	}
5300

P
Peter Zijlstra 已提交
5301 5302
	hwc->state = !(flags & PERF_EF_START);

5303
	head = find_swevent_head(swhash, event);
5304 5305 5306 5307 5308
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5309 5310 5311
	return 0;
}

P
Peter Zijlstra 已提交
5312
static void perf_swevent_del(struct perf_event *event, int flags)
5313
{
5314
	hlist_del_rcu(&event->hlist_entry);
5315 5316
}

P
Peter Zijlstra 已提交
5317
static void perf_swevent_start(struct perf_event *event, int flags)
5318
{
P
Peter Zijlstra 已提交
5319
	event->hw.state = 0;
5320
}
I
Ingo Molnar 已提交
5321

P
Peter Zijlstra 已提交
5322
static void perf_swevent_stop(struct perf_event *event, int flags)
5323
{
P
Peter Zijlstra 已提交
5324
	event->hw.state = PERF_HES_STOPPED;
5325 5326
}

5327 5328
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5329
swevent_hlist_deref(struct swevent_htable *swhash)
5330
{
5331 5332
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5333 5334
}

5335
static void swevent_hlist_release(struct swevent_htable *swhash)
5336
{
5337
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5338

5339
	if (!hlist)
5340 5341
		return;

5342
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5343
	kfree_rcu(hlist, rcu_head);
5344 5345 5346 5347
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5348
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5349

5350
	mutex_lock(&swhash->hlist_mutex);
5351

5352 5353
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5354

5355
	mutex_unlock(&swhash->hlist_mutex);
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5373
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5374 5375
	int err = 0;

5376
	mutex_lock(&swhash->hlist_mutex);
5377

5378
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5379 5380 5381 5382 5383 5384 5385
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5386
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5387
	}
5388
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5389
exit:
5390
	mutex_unlock(&swhash->hlist_mutex);
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5414
fail:
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5425
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5426

5427 5428 5429
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5430

5431 5432
	WARN_ON(event->parent);

5433
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5434 5435 5436 5437 5438
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5439
	u64 event_id = event->attr.config;
5440 5441 5442 5443

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5444 5445 5446 5447 5448 5449
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5450 5451 5452 5453 5454 5455 5456 5457 5458
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5459
	if (event_id >= PERF_COUNT_SW_MAX)
5460 5461 5462 5463 5464 5465 5466 5467 5468
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5469
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5470 5471 5472 5473 5474 5475
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5476 5477 5478 5479 5480
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5481
static struct pmu perf_swevent = {
5482
	.task_ctx_nr	= perf_sw_context,
5483

5484
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5485 5486 5487 5488
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5489
	.read		= perf_swevent_read,
5490 5491

	.event_idx	= perf_swevent_event_idx,
5492 5493
};

5494 5495
#ifdef CONFIG_EVENT_TRACING

5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5510 5511
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5512 5513 5514 5515
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5516 5517 5518 5519 5520 5521 5522 5523 5524
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5525 5526
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5527 5528
{
	struct perf_sample_data data;
5529 5530
	struct perf_event *event;

5531 5532 5533 5534 5535
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5536
	perf_sample_data_init(&data, addr, 0);
5537 5538
	data.raw = &raw;

5539
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5540
		if (perf_tp_event_match(event, &data, regs))
5541
			perf_swevent_event(event, count, &data, regs);
5542
	}
5543

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5569
	perf_swevent_put_recursion_context(rctx);
5570 5571 5572
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5573
static void tp_perf_event_destroy(struct perf_event *event)
5574
{
5575
	perf_trace_destroy(event);
5576 5577
}

5578
static int perf_tp_event_init(struct perf_event *event)
5579
{
5580 5581
	int err;

5582 5583 5584
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5585 5586 5587 5588 5589 5590
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5591 5592
	err = perf_trace_init(event);
	if (err)
5593
		return err;
5594

5595
	event->destroy = tp_perf_event_destroy;
5596

5597 5598 5599 5600
	return 0;
}

static struct pmu perf_tracepoint = {
5601 5602
	.task_ctx_nr	= perf_sw_context,

5603
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5604 5605 5606 5607
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5608
	.read		= perf_swevent_read,
5609 5610

	.event_idx	= perf_swevent_event_idx,
5611 5612 5613 5614
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5615
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5616
}
L
Li Zefan 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5641
#else
L
Li Zefan 已提交
5642

5643
static inline void perf_tp_register(void)
5644 5645
{
}
L
Li Zefan 已提交
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5656
#endif /* CONFIG_EVENT_TRACING */
5657

5658
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5659
void perf_bp_event(struct perf_event *bp, void *data)
5660
{
5661 5662 5663
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5664
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5665

P
Peter Zijlstra 已提交
5666
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5667
		perf_swevent_event(bp, 1, &sample, regs);
5668 5669 5670
}
#endif

5671 5672 5673
/*
 * hrtimer based swevent callback
 */
5674

5675
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5676
{
5677 5678 5679 5680 5681
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5682

5683
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5684 5685 5686 5687

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5688
	event->pmu->read(event);
5689

5690
	perf_sample_data_init(&data, 0, event->hw.last_period);
5691 5692 5693
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5694
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5695
			if (__perf_event_overflow(event, 1, &data, regs))
5696 5697
				ret = HRTIMER_NORESTART;
	}
5698

5699 5700
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5701

5702
	return ret;
5703 5704
}

5705
static void perf_swevent_start_hrtimer(struct perf_event *event)
5706
{
5707
	struct hw_perf_event *hwc = &event->hw;
5708 5709 5710 5711
	s64 period;

	if (!is_sampling_event(event))
		return;
5712

5713 5714 5715 5716
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5717

5718 5719 5720 5721 5722
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5723
				ns_to_ktime(period), 0,
5724
				HRTIMER_MODE_REL_PINNED, 0);
5725
}
5726 5727

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5728
{
5729 5730
	struct hw_perf_event *hwc = &event->hw;

5731
	if (is_sampling_event(event)) {
5732
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5733
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5734 5735 5736

		hrtimer_cancel(&hwc->hrtimer);
	}
5737 5738
}

P
Peter Zijlstra 已提交
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5759
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5760 5761 5762 5763
		event->attr.freq = 0;
	}
}

5764 5765 5766 5767 5768
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5769
{
5770 5771 5772
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5773
	now = local_clock();
5774 5775
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5776 5777
}

P
Peter Zijlstra 已提交
5778
static void cpu_clock_event_start(struct perf_event *event, int flags)
5779
{
P
Peter Zijlstra 已提交
5780
	local64_set(&event->hw.prev_count, local_clock());
5781 5782 5783
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5784
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5785
{
5786 5787 5788
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5789

P
Peter Zijlstra 已提交
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5803 5804 5805 5806
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5807

5808 5809 5810 5811 5812 5813 5814 5815
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5816 5817 5818 5819 5820 5821
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5822 5823
	perf_swevent_init_hrtimer(event);

5824
	return 0;
5825 5826
}

5827
static struct pmu perf_cpu_clock = {
5828 5829
	.task_ctx_nr	= perf_sw_context,

5830
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5831 5832 5833 5834
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5835
	.read		= cpu_clock_event_read,
5836 5837

	.event_idx	= perf_swevent_event_idx,
5838 5839 5840 5841 5842 5843 5844
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5845
{
5846 5847
	u64 prev;
	s64 delta;
5848

5849 5850 5851 5852
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5853

P
Peter Zijlstra 已提交
5854
static void task_clock_event_start(struct perf_event *event, int flags)
5855
{
P
Peter Zijlstra 已提交
5856
	local64_set(&event->hw.prev_count, event->ctx->time);
5857 5858 5859
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5860
static void task_clock_event_stop(struct perf_event *event, int flags)
5861 5862 5863
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5864 5865 5866 5867 5868 5869
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5870

P
Peter Zijlstra 已提交
5871 5872 5873 5874 5875 5876
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5877 5878 5879 5880
}

static void task_clock_event_read(struct perf_event *event)
{
5881 5882 5883
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5884 5885 5886 5887 5888

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5889
{
5890 5891 5892 5893 5894 5895
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5896 5897 5898 5899 5900 5901
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5902 5903
	perf_swevent_init_hrtimer(event);

5904
	return 0;
L
Li Zefan 已提交
5905 5906
}

5907
static struct pmu perf_task_clock = {
5908 5909
	.task_ctx_nr	= perf_sw_context,

5910
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5911 5912 5913 5914
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5915
	.read		= task_clock_event_read,
5916 5917

	.event_idx	= perf_swevent_event_idx,
5918
};
L
Li Zefan 已提交
5919

P
Peter Zijlstra 已提交
5920
static void perf_pmu_nop_void(struct pmu *pmu)
5921 5922
{
}
L
Li Zefan 已提交
5923

P
Peter Zijlstra 已提交
5924
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5925
{
P
Peter Zijlstra 已提交
5926
	return 0;
L
Li Zefan 已提交
5927 5928
}

P
Peter Zijlstra 已提交
5929
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5930
{
P
Peter Zijlstra 已提交
5931
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5932 5933
}

P
Peter Zijlstra 已提交
5934 5935 5936 5937 5938
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5939

P
Peter Zijlstra 已提交
5940
static void perf_pmu_cancel_txn(struct pmu *pmu)
5941
{
P
Peter Zijlstra 已提交
5942
	perf_pmu_enable(pmu);
5943 5944
}

5945 5946 5947 5948 5949
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5950 5951 5952 5953 5954
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5955
{
P
Peter Zijlstra 已提交
5956
	struct pmu *pmu;
5957

P
Peter Zijlstra 已提交
5958 5959
	if (ctxn < 0)
		return NULL;
5960

P
Peter Zijlstra 已提交
5961 5962 5963 5964
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5965

P
Peter Zijlstra 已提交
5966
	return NULL;
5967 5968
}

5969
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5970
{
5971 5972 5973 5974 5975 5976 5977
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5978 5979
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5980 5981 5982 5983 5984 5985
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5986

P
Peter Zijlstra 已提交
5987
	mutex_lock(&pmus_lock);
5988
	/*
P
Peter Zijlstra 已提交
5989
	 * Like a real lame refcount.
5990
	 */
5991 5992 5993
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5994
			goto out;
5995
		}
P
Peter Zijlstra 已提交
5996
	}
5997

5998
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5999 6000
out:
	mutex_unlock(&pmus_lock);
6001
}
P
Peter Zijlstra 已提交
6002
static struct idr pmu_idr;
6003

P
Peter Zijlstra 已提交
6004 6005 6006 6007 6008 6009 6010 6011
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

#define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store)

P
Peter Zijlstra 已提交
6058
static struct device_attribute pmu_dev_attrs[] = {
6059 6060 6061
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6083
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6104
static struct lock_class_key cpuctx_mutex;
6105
static struct lock_class_key cpuctx_lock;
6106

P
Peter Zijlstra 已提交
6107
int perf_pmu_register(struct pmu *pmu, char *name, int type)
6108
{
P
Peter Zijlstra 已提交
6109
	int cpu, ret;
6110

6111
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6112 6113 6114 6115
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6116

P
Peter Zijlstra 已提交
6117 6118 6119 6120 6121 6122
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6123 6124 6125
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6126 6127 6128 6129 6130
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6131 6132 6133 6134 6135 6136
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6137
skip_type:
P
Peter Zijlstra 已提交
6138 6139 6140
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6141

W
Wei Yongjun 已提交
6142
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6143 6144
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6145
		goto free_dev;
6146

P
Peter Zijlstra 已提交
6147 6148 6149 6150
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6151
		__perf_event_init_context(&cpuctx->ctx);
6152
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6153
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6154
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6155
		cpuctx->ctx.pmu = pmu;
6156 6157 6158

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6159
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6160
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6161
	}
6162

P
Peter Zijlstra 已提交
6163
got_cpu_context:
P
Peter Zijlstra 已提交
6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6178
		}
6179
	}
6180

P
Peter Zijlstra 已提交
6181 6182 6183 6184 6185
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6186 6187 6188
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6189
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6190 6191
	ret = 0;
unlock:
6192 6193
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6194
	return ret;
P
Peter Zijlstra 已提交
6195

P
Peter Zijlstra 已提交
6196 6197 6198 6199
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6200 6201 6202 6203
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6204 6205 6206
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6207 6208
}

6209
void perf_pmu_unregister(struct pmu *pmu)
6210
{
6211 6212 6213
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6214

6215
	/*
P
Peter Zijlstra 已提交
6216 6217
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6218
	 */
6219
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6220
	synchronize_rcu();
6221

P
Peter Zijlstra 已提交
6222
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6223 6224
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6225 6226
	device_del(pmu->dev);
	put_device(pmu->dev);
6227
	free_pmu_context(pmu);
6228
}
6229

6230 6231 6232 6233
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6234
	int ret;
6235 6236

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6237 6238 6239 6240

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6241
	if (pmu) {
6242
		event->pmu = pmu;
6243 6244 6245
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6246
		goto unlock;
6247
	}
P
Peter Zijlstra 已提交
6248

6249
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6250
		event->pmu = pmu;
6251
		ret = pmu->event_init(event);
6252
		if (!ret)
P
Peter Zijlstra 已提交
6253
			goto unlock;
6254

6255 6256
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6257
			goto unlock;
6258
		}
6259
	}
P
Peter Zijlstra 已提交
6260 6261
	pmu = ERR_PTR(-ENOENT);
unlock:
6262
	srcu_read_unlock(&pmus_srcu, idx);
6263

6264
	return pmu;
6265 6266
}

T
Thomas Gleixner 已提交
6267
/*
6268
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6269
 */
6270
static struct perf_event *
6271
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6272 6273 6274
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6275 6276
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6277
{
P
Peter Zijlstra 已提交
6278
	struct pmu *pmu;
6279 6280
	struct perf_event *event;
	struct hw_perf_event *hwc;
6281
	long err;
T
Thomas Gleixner 已提交
6282

6283 6284 6285 6286 6287
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6288
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6289
	if (!event)
6290
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6291

6292
	/*
6293
	 * Single events are their own group leaders, with an
6294 6295 6296
	 * empty sibling list:
	 */
	if (!group_leader)
6297
		group_leader = event;
6298

6299 6300
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6301

6302 6303 6304
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6305 6306
	INIT_LIST_HEAD(&event->rb_entry);

6307
	init_waitqueue_head(&event->waitq);
6308
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6309

6310
	mutex_init(&event->mmap_mutex);
6311

6312
	atomic_long_set(&event->refcount, 1);
6313 6314 6315 6316 6317
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6318

6319
	event->parent		= parent_event;
6320

6321
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6322
	event->id		= atomic64_inc_return(&perf_event_id);
6323

6324
	event->state		= PERF_EVENT_STATE_INACTIVE;
6325

6326 6327
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6328 6329 6330

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6331 6332 6333 6334
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6335
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6336 6337 6338 6339
			event->hw.bp_target = task;
#endif
	}

6340
	if (!overflow_handler && parent_event) {
6341
		overflow_handler = parent_event->overflow_handler;
6342 6343
		context = parent_event->overflow_handler_context;
	}
6344

6345
	event->overflow_handler	= overflow_handler;
6346
	event->overflow_handler_context = context;
6347

J
Jiri Olsa 已提交
6348
	perf_event__state_init(event);
6349

6350
	pmu = NULL;
6351

6352
	hwc = &event->hw;
6353
	hwc->sample_period = attr->sample_period;
6354
	if (attr->freq && attr->sample_freq)
6355
		hwc->sample_period = 1;
6356
	hwc->last_period = hwc->sample_period;
6357

6358
	local64_set(&hwc->period_left, hwc->sample_period);
6359

6360
	/*
6361
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6362
	 */
6363
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6364 6365
		goto done;

6366
	pmu = perf_init_event(event);
6367

6368 6369
done:
	err = 0;
6370
	if (!pmu)
6371
		err = -EINVAL;
6372 6373
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6374

6375
	if (err) {
6376 6377 6378
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6379
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6380
	}
6381

6382
	if (!event->parent) {
6383
		if (event->attach_state & PERF_ATTACH_TASK)
6384
			static_key_slow_inc(&perf_sched_events.key);
6385
		if (event->attr.mmap || event->attr.mmap_data)
6386 6387 6388 6389 6390
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6391 6392 6393 6394 6395 6396 6397
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6398 6399 6400 6401 6402 6403
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6404
	}
6405

6406
	return event;
T
Thomas Gleixner 已提交
6407 6408
}

6409 6410
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6411 6412
{
	u32 size;
6413
	int ret;
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6438 6439 6440
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6441 6442
	 */
	if (size > sizeof(*attr)) {
6443 6444 6445
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6446

6447 6448
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6449

6450
		for (; addr < end; addr++) {
6451 6452 6453 6454 6455 6456
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6457
		size = sizeof(*attr);
6458 6459 6460 6461 6462 6463
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6464
	if (attr->__reserved_1)
6465 6466 6467 6468 6469 6470 6471 6472
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6507

6508
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6509
		ret = perf_reg_validate(attr->sample_regs_user);
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6528

6529 6530 6531 6532 6533 6534 6535 6536 6537
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6538 6539
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6540
{
6541
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6542 6543
	int ret = -EINVAL;

6544
	if (!output_event)
6545 6546
		goto set;

6547 6548
	/* don't allow circular references */
	if (event == output_event)
6549 6550
		goto out;

6551 6552 6553 6554 6555 6556 6557
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6558
	 * If its not a per-cpu rb, it must be the same task.
6559 6560 6561 6562
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6563
set:
6564
	mutex_lock(&event->mmap_mutex);
6565 6566 6567
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6568

6569
	if (output_event) {
6570 6571 6572
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6573
			goto unlock;
6574 6575
	}

6576 6577
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6578 6579
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6580
	ret = 0;
6581 6582 6583
unlock:
	mutex_unlock(&event->mmap_mutex);

6584 6585
	if (old_rb)
		ring_buffer_put(old_rb);
6586 6587 6588 6589
out:
	return ret;
}

T
Thomas Gleixner 已提交
6590
/**
6591
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6592
 *
6593
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6594
 * @pid:		target pid
I
Ingo Molnar 已提交
6595
 * @cpu:		target cpu
6596
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6597
 */
6598 6599
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6600
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6601
{
6602 6603
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6604 6605 6606
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6607
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6608
	struct task_struct *task = NULL;
6609
	struct pmu *pmu;
6610
	int event_fd;
6611
	int move_group = 0;
6612
	int err;
T
Thomas Gleixner 已提交
6613

6614
	/* for future expandability... */
S
Stephane Eranian 已提交
6615
	if (flags & ~PERF_FLAG_ALL)
6616 6617
		return -EINVAL;

6618 6619 6620
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6621

6622 6623 6624 6625 6626
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6627
	if (attr.freq) {
6628
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6629 6630 6631
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6641
	event_fd = get_unused_fd();
6642 6643 6644
	if (event_fd < 0)
		return event_fd;

6645
	if (group_fd != -1) {
6646 6647
		err = perf_fget_light(group_fd, &group);
		if (err)
6648
			goto err_fd;
6649
		group_leader = group.file->private_data;
6650 6651 6652 6653 6654 6655
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6656
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6657 6658 6659 6660 6661 6662 6663
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6664 6665
	get_online_cpus();

6666 6667
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6668 6669
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6670
		goto err_task;
6671 6672
	}

S
Stephane Eranian 已提交
6673 6674 6675 6676
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6677 6678 6679 6680 6681 6682
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6683
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6684 6685
	}

6686 6687 6688 6689 6690
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6714 6715 6716 6717

	/*
	 * Get the target context (task or percpu):
	 */
6718
	ctx = find_get_context(pmu, task, event->cpu);
6719 6720
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6721
		goto err_alloc;
6722 6723
	}

6724 6725 6726 6727 6728
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6729
	/*
6730
	 * Look up the group leader (we will attach this event to it):
6731
	 */
6732
	if (group_leader) {
6733
		err = -EINVAL;
6734 6735

		/*
I
Ingo Molnar 已提交
6736 6737 6738 6739
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6740
			goto err_context;
I
Ingo Molnar 已提交
6741 6742 6743
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6744
		 */
6745 6746 6747 6748 6749 6750 6751 6752
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6753 6754 6755
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6756
		if (attr.exclusive || attr.pinned)
6757
			goto err_context;
6758 6759 6760 6761 6762
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6763
			goto err_context;
6764
	}
T
Thomas Gleixner 已提交
6765

6766 6767 6768
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6769
		goto err_context;
6770
	}
6771

6772 6773 6774 6775
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6776
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6777 6778 6779 6780 6781 6782 6783

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6784 6785
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6786
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6787
			perf_event__state_init(sibling);
6788 6789 6790 6791
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6792
	}
6793

6794
	WARN_ON_ONCE(ctx->parent_ctx);
6795
	mutex_lock(&ctx->mutex);
6796 6797

	if (move_group) {
6798
		synchronize_rcu();
6799
		perf_install_in_context(ctx, group_leader, event->cpu);
6800 6801 6802
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6803
			perf_install_in_context(ctx, sibling, event->cpu);
6804 6805 6806 6807
			get_ctx(ctx);
		}
	}

6808
	perf_install_in_context(ctx, event, event->cpu);
6809
	++ctx->generation;
6810
	perf_unpin_context(ctx);
6811
	mutex_unlock(&ctx->mutex);
6812

6813 6814
	put_online_cpus();

6815
	event->owner = current;
P
Peter Zijlstra 已提交
6816

6817 6818 6819
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6820

6821 6822 6823 6824
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6825
	perf_event__id_header_size(event);
6826

6827 6828 6829 6830 6831 6832
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6833
	fdput(group);
6834 6835
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6836

6837
err_context:
6838
	perf_unpin_context(ctx);
6839
	put_ctx(ctx);
6840
err_alloc:
6841
	free_event(event);
P
Peter Zijlstra 已提交
6842
err_task:
6843
	put_online_cpus();
P
Peter Zijlstra 已提交
6844 6845
	if (task)
		put_task_struct(task);
6846
err_group_fd:
6847
	fdput(group);
6848 6849
err_fd:
	put_unused_fd(event_fd);
6850
	return err;
T
Thomas Gleixner 已提交
6851 6852
}

6853 6854 6855 6856 6857
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6858
 * @task: task to profile (NULL for percpu)
6859 6860 6861
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6862
				 struct task_struct *task,
6863 6864
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6865 6866
{
	struct perf_event_context *ctx;
6867
	struct perf_event *event;
6868
	int err;
6869

6870 6871 6872
	/*
	 * Get the target context (task or percpu):
	 */
6873

6874 6875
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6876 6877 6878 6879
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6880

M
Matt Helsley 已提交
6881
	ctx = find_get_context(event->pmu, task, cpu);
6882 6883
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6884
		goto err_free;
6885
	}
6886 6887 6888 6889 6890

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6891
	perf_unpin_context(ctx);
6892 6893 6894 6895
	mutex_unlock(&ctx->mutex);

	return event;

6896 6897 6898
err_free:
	free_event(event);
err:
6899
	return ERR_PTR(err);
6900
}
6901
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6902

6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6936
static void sync_child_event(struct perf_event *child_event,
6937
			       struct task_struct *child)
6938
{
6939
	struct perf_event *parent_event = child_event->parent;
6940
	u64 child_val;
6941

6942 6943
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6944

P
Peter Zijlstra 已提交
6945
	child_val = perf_event_count(child_event);
6946 6947 6948 6949

	/*
	 * Add back the child's count to the parent's count:
	 */
6950
	atomic64_add(child_val, &parent_event->child_count);
6951 6952 6953 6954
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6955 6956

	/*
6957
	 * Remove this event from the parent's list
6958
	 */
6959 6960 6961 6962
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6963 6964

	/*
6965
	 * Release the parent event, if this was the last
6966 6967
	 * reference to it.
	 */
6968
	put_event(parent_event);
6969 6970
}

6971
static void
6972 6973
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6974
			 struct task_struct *child)
6975
{
6976 6977 6978 6979 6980
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6981

6982
	perf_remove_from_context(child_event);
6983

6984
	/*
6985
	 * It can happen that the parent exits first, and has events
6986
	 * that are still around due to the child reference. These
6987
	 * events need to be zapped.
6988
	 */
6989
	if (child_event->parent) {
6990 6991
		sync_child_event(child_event, child);
		free_event(child_event);
6992
	}
6993 6994
}

P
Peter Zijlstra 已提交
6995
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6996
{
6997 6998
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6999
	unsigned long flags;
7000

P
Peter Zijlstra 已提交
7001
	if (likely(!child->perf_event_ctxp[ctxn])) {
7002
		perf_event_task(child, NULL, 0);
7003
		return;
P
Peter Zijlstra 已提交
7004
	}
7005

7006
	local_irq_save(flags);
7007 7008 7009 7010 7011 7012
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7013
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7014 7015 7016

	/*
	 * Take the context lock here so that if find_get_context is
7017
	 * reading child->perf_event_ctxp, we wait until it has
7018 7019
	 * incremented the context's refcount before we do put_ctx below.
	 */
7020
	raw_spin_lock(&child_ctx->lock);
7021
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7022
	child->perf_event_ctxp[ctxn] = NULL;
7023 7024 7025
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7026
	 * the events from it.
7027 7028
	 */
	unclone_ctx(child_ctx);
7029
	update_context_time(child_ctx);
7030
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7031 7032

	/*
7033 7034 7035
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7036
	 */
7037
	perf_event_task(child, child_ctx, 0);
7038

7039 7040 7041
	/*
	 * We can recurse on the same lock type through:
	 *
7042 7043
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7044 7045
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7046 7047 7048
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7049
	mutex_lock(&child_ctx->mutex);
7050

7051
again:
7052 7053 7054 7055 7056
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7057
				 group_entry)
7058
		__perf_event_exit_task(child_event, child_ctx, child);
7059 7060

	/*
7061
	 * If the last event was a group event, it will have appended all
7062 7063 7064
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7065 7066
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7067
		goto again;
7068 7069 7070 7071

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7072 7073
}

P
Peter Zijlstra 已提交
7074 7075 7076 7077 7078
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7079
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7080 7081
	int ctxn;

P
Peter Zijlstra 已提交
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7097 7098 7099 7100
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7113
	put_event(parent);
7114

7115
	perf_group_detach(event);
7116 7117 7118 7119
	list_del_event(event, ctx);
	free_event(event);
}

7120 7121
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7122
 * perf_event_init_task below, used by fork() in case of fail.
7123
 */
7124
void perf_event_free_task(struct task_struct *task)
7125
{
P
Peter Zijlstra 已提交
7126
	struct perf_event_context *ctx;
7127
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7128
	int ctxn;
7129

P
Peter Zijlstra 已提交
7130 7131 7132 7133
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7134

P
Peter Zijlstra 已提交
7135
		mutex_lock(&ctx->mutex);
7136
again:
P
Peter Zijlstra 已提交
7137 7138 7139
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7140

P
Peter Zijlstra 已提交
7141 7142 7143
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7144

P
Peter Zijlstra 已提交
7145 7146 7147
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7148

P
Peter Zijlstra 已提交
7149
		mutex_unlock(&ctx->mutex);
7150

P
Peter Zijlstra 已提交
7151 7152
		put_ctx(ctx);
	}
7153 7154
}

7155 7156 7157 7158 7159 7160 7161 7162
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7175
	unsigned long flags;
P
Peter Zijlstra 已提交
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7188
					   child,
P
Peter Zijlstra 已提交
7189
					   group_leader, parent_event,
7190
				           NULL, NULL);
P
Peter Zijlstra 已提交
7191 7192
	if (IS_ERR(child_event))
		return child_event;
7193 7194 7195 7196 7197 7198

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7223 7224
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7225

7226 7227 7228 7229
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7230
	perf_event__id_header_size(child_event);
7231

P
Peter Zijlstra 已提交
7232 7233 7234
	/*
	 * Link it up in the child's context:
	 */
7235
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7236
	add_event_to_ctx(child_event, child_ctx);
7237
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7271 7272 7273 7274 7275
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7276
		   struct task_struct *child, int ctxn,
7277 7278 7279
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7280
	struct perf_event_context *child_ctx;
7281 7282 7283 7284

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7285 7286
	}

7287
	child_ctx = child->perf_event_ctxp[ctxn];
7288 7289 7290 7291 7292 7293 7294
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7295

7296
		child_ctx = alloc_perf_context(event->pmu, child);
7297 7298
		if (!child_ctx)
			return -ENOMEM;
7299

P
Peter Zijlstra 已提交
7300
		child->perf_event_ctxp[ctxn] = child_ctx;
7301 7302 7303 7304 7305 7306 7307 7308 7309
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7310 7311
}

7312
/*
7313
 * Initialize the perf_event context in task_struct
7314
 */
P
Peter Zijlstra 已提交
7315
int perf_event_init_context(struct task_struct *child, int ctxn)
7316
{
7317
	struct perf_event_context *child_ctx, *parent_ctx;
7318 7319
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7320
	struct task_struct *parent = current;
7321
	int inherited_all = 1;
7322
	unsigned long flags;
7323
	int ret = 0;
7324

P
Peter Zijlstra 已提交
7325
	if (likely(!parent->perf_event_ctxp[ctxn]))
7326 7327
		return 0;

7328
	/*
7329 7330
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7331
	 */
P
Peter Zijlstra 已提交
7332
	parent_ctx = perf_pin_task_context(parent, ctxn);
7333

7334 7335 7336 7337 7338 7339 7340
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7341 7342 7343 7344
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7345
	mutex_lock(&parent_ctx->mutex);
7346 7347 7348 7349 7350

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7351
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7352 7353
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7354 7355 7356
		if (ret)
			break;
	}
7357

7358 7359 7360 7361 7362 7363 7364 7365 7366
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7367
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7368 7369
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7370
		if (ret)
7371
			break;
7372 7373
	}

7374 7375 7376
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7377
	child_ctx = child->perf_event_ctxp[ctxn];
7378

7379
	if (child_ctx && inherited_all) {
7380 7381 7382
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7383 7384 7385
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7386
		 */
P
Peter Zijlstra 已提交
7387
		cloned_ctx = parent_ctx->parent_ctx;
7388 7389
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7390
			child_ctx->parent_gen = parent_ctx->parent_gen;
7391 7392 7393 7394 7395
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7396 7397
	}

P
Peter Zijlstra 已提交
7398
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7399
	mutex_unlock(&parent_ctx->mutex);
7400

7401
	perf_unpin_context(parent_ctx);
7402
	put_ctx(parent_ctx);
7403

7404
	return ret;
7405 7406
}

P
Peter Zijlstra 已提交
7407 7408 7409 7410 7411 7412 7413
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7414 7415 7416 7417
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7418 7419 7420 7421 7422 7423 7424 7425 7426
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7427 7428
static void __init perf_event_init_all_cpus(void)
{
7429
	struct swevent_htable *swhash;
7430 7431 7432
	int cpu;

	for_each_possible_cpu(cpu) {
7433 7434
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7435
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7436 7437 7438
	}
}

7439
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7440
{
P
Peter Zijlstra 已提交
7441
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7442

7443
	mutex_lock(&swhash->hlist_mutex);
7444
	if (swhash->hlist_refcount > 0) {
7445 7446
		struct swevent_hlist *hlist;

7447 7448 7449
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7450
	}
7451
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7452 7453
}

P
Peter Zijlstra 已提交
7454
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7455
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7456
{
7457 7458 7459 7460 7461 7462 7463
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7464
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7465
{
P
Peter Zijlstra 已提交
7466
	struct perf_event_context *ctx = __info;
7467
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7468

P
Peter Zijlstra 已提交
7469
	perf_pmu_rotate_stop(ctx->pmu);
7470

7471
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7472
		__perf_remove_from_context(event);
7473
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7474
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7475
}
P
Peter Zijlstra 已提交
7476 7477 7478 7479 7480 7481 7482 7483 7484

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7485
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7486 7487 7488 7489 7490 7491 7492 7493

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7494
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7495
{
7496
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7497

7498 7499 7500
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7501

P
Peter Zijlstra 已提交
7502
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7503 7504
}
#else
7505
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7506 7507
#endif

P
Peter Zijlstra 已提交
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7528 7529 7530 7531 7532
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7533
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7534 7535

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7536
	case CPU_DOWN_FAILED:
7537
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7538 7539
		break;

P
Peter Zijlstra 已提交
7540
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7541
	case CPU_DOWN_PREPARE:
7542
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7543 7544 7545 7546 7547 7548 7549 7550
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7551
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7552
{
7553 7554
	int ret;

P
Peter Zijlstra 已提交
7555 7556
	idr_init(&pmu_idr);

7557
	perf_event_init_all_cpus();
7558
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7559 7560 7561
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7562 7563
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7564
	register_reboot_notifier(&perf_reboot_notifier);
7565 7566 7567

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7568 7569 7570

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7571 7572 7573 7574 7575 7576 7577

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7578
}
P
Peter Zijlstra 已提交
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7607 7608

#ifdef CONFIG_CGROUP_PERF
7609
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7610 7611 7612
{
	struct perf_cgroup *jc;

7613
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7626
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7642
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7643
{
7644 7645 7646 7647
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7648 7649
}

7650 7651
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7652 7653 7654 7655 7656 7657 7658 7659 7660
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7661
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7662 7663 7664
}

struct cgroup_subsys perf_subsys = {
7665 7666
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7667 7668
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7669
	.exit		= perf_cgroup_exit,
7670
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7671 7672
};
#endif /* CONFIG_CGROUP_PERF */