core.c 161.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
131
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
132 133
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

134 135 136
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
137

P
Peter Zijlstra 已提交
138 139 140 141
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

142
/*
143
 * perf event paranoia level:
144 145
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
146
 *   1 - disallow cpu events for unpriv
147
 *   2 - disallow kernel profiling for unpriv
148
 */
149
int sysctl_perf_event_paranoid __read_mostly = 1;
150

151 152
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 154

/*
155
 * max perf event sample rate
156
 */
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
175

176
static atomic64_t perf_event_id;
177

178 179 180 181
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
182 183 184 185 186
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
187

188
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
189

190
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
191
{
192
	return "pmu";
T
Thomas Gleixner 已提交
193 194
}

195 196 197 198 199
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
200 201 202 203 204 205
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
222 223
#ifdef CONFIG_CGROUP_PERF

224 225 226 227 228
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
296 297
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
298
	/*
299 300
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
301
	 */
302
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
303 304
		return;

305 306 307 308 309 310
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
311 312 313
}

static inline void
314 315
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
316 317 318 319
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

320 321 322 323 324 325
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
326 327 328 329
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
330
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
372 373
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
374 375 376 377 378 379 380 381 382 383 384

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
385
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
386 387 388 389 390 391 392
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
393 394
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
395 396 397 398 399 400 401 402
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

403 404
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
405
{
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
428 429
}

430 431
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
432
{
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
467 468 469 470
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
471 472 473 474

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

475 476 477
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
478 479 480 481 482 483 484 485 486
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
487
out:
S
Stephane Eranian 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

562 563
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
564 565 566
{
}

567 568
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
569 570 571 572 573 574 575 576 577 578 579
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
580 581
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
612
void perf_pmu_disable(struct pmu *pmu)
613
{
P
Peter Zijlstra 已提交
614 615 616
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
617 618
}

P
Peter Zijlstra 已提交
619
void perf_pmu_enable(struct pmu *pmu)
620
{
P
Peter Zijlstra 已提交
621 622 623
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
624 625
}

626 627 628 629 630 631 632
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
633
static void perf_pmu_rotate_start(struct pmu *pmu)
634
{
P
Peter Zijlstra 已提交
635
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
636
	struct list_head *head = &__get_cpu_var(rotation_list);
637

638
	WARN_ON(!irqs_disabled());
639

640 641
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
642 643
}

644
static void get_ctx(struct perf_event_context *ctx)
645
{
646
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
647 648
}

649
static void put_ctx(struct perf_event_context *ctx)
650
{
651 652 653
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
654 655
		if (ctx->task)
			put_task_struct(ctx->task);
656
		kfree_rcu(ctx, rcu_head);
657
	}
658 659
}

660
static void unclone_ctx(struct perf_event_context *ctx)
661 662 663 664 665 666 667
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

690
/*
691
 * If we inherit events we want to return the parent event id
692 693
 * to userspace.
 */
694
static u64 primary_event_id(struct perf_event *event)
695
{
696
	u64 id = event->id;
697

698 699
	if (event->parent)
		id = event->parent->id;
700 701 702 703

	return id;
}

704
/*
705
 * Get the perf_event_context for a task and lock it.
706 707 708
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
709
static struct perf_event_context *
P
Peter Zijlstra 已提交
710
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
711
{
712
	struct perf_event_context *ctx;
713 714

	rcu_read_lock();
P
Peter Zijlstra 已提交
715
retry:
P
Peter Zijlstra 已提交
716
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
717 718 719 720
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
721
		 * perf_event_task_sched_out, though the
722 723 724 725 726 727
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
728
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
729
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
730
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
731 732
			goto retry;
		}
733 734

		if (!atomic_inc_not_zero(&ctx->refcount)) {
735
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
736 737
			ctx = NULL;
		}
738 739 740 741 742 743 744 745 746 747
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
748 749
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
750
{
751
	struct perf_event_context *ctx;
752 753
	unsigned long flags;

P
Peter Zijlstra 已提交
754
	ctx = perf_lock_task_context(task, ctxn, &flags);
755 756
	if (ctx) {
		++ctx->pin_count;
757
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
758 759 760 761
	}
	return ctx;
}

762
static void perf_unpin_context(struct perf_event_context *ctx)
763 764 765
{
	unsigned long flags;

766
	raw_spin_lock_irqsave(&ctx->lock, flags);
767
	--ctx->pin_count;
768
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
769 770
}

771 772 773 774 775 776 777 778 779 780 781
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

782 783 784
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
785 786 787 788

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

789 790 791
	return ctx ? ctx->time : 0;
}

792 793
/*
 * Update the total_time_enabled and total_time_running fields for a event.
794
 * The caller of this function needs to hold the ctx->lock.
795 796 797 798 799 800 801 802 803
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
804 805 806 807 808 809 810 811 812 813 814
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
815
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
816 817
	else if (ctx->is_active)
		run_end = ctx->time;
818 819 820 821
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
822 823 824 825

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
826
		run_end = perf_event_time(event);
827 828

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
829

830 831
}

832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

844 845 846 847 848 849 850 851 852
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

853
/*
854
 * Add a event from the lists for its context.
855 856
 * Must be called with ctx->mutex and ctx->lock held.
 */
857
static void
858
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
859
{
860 861
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
862 863

	/*
864 865 866
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
867
	 */
868
	if (event->group_leader == event) {
869 870
		struct list_head *list;

871 872 873
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

874 875
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
876
	}
P
Peter Zijlstra 已提交
877

878
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
879 880
		ctx->nr_cgroups++;

881
	list_add_rcu(&event->event_entry, &ctx->event_list);
882
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
883
		perf_pmu_rotate_start(ctx->pmu);
884 885
	ctx->nr_events++;
	if (event->attr.inherit_stat)
886
		ctx->nr_stat++;
887 888
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

961
	event->id_header_size = size;
962 963
}

964 965
static void perf_group_attach(struct perf_event *event)
{
966
	struct perf_event *group_leader = event->group_leader, *pos;
967

P
Peter Zijlstra 已提交
968 969 970 971 972 973
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

974 975 976 977 978 979 980 981 982 983 984
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
985 986 987 988 989

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
990 991
}

992
/*
993
 * Remove a event from the lists for its context.
994
 * Must be called with ctx->mutex and ctx->lock held.
995
 */
996
static void
997
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
998
{
999
	struct perf_cpu_context *cpuctx;
1000 1001 1002 1003
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1004
		return;
1005 1006 1007

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1008
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1009
		ctx->nr_cgroups--;
1010 1011 1012 1013 1014 1015 1016 1017 1018
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1019

1020 1021
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1022
		ctx->nr_stat--;
1023

1024
	list_del_rcu(&event->event_entry);
1025

1026 1027
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1028

1029
	update_group_times(event);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1040 1041
}

1042
static void perf_group_detach(struct perf_event *event)
1043 1044
{
	struct perf_event *sibling, *tmp;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1061
		goto out;
1062 1063 1064 1065
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1066

1067
	/*
1068 1069
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1070
	 * to whatever list we are on.
1071
	 */
1072
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1073 1074
		if (list)
			list_move_tail(&sibling->group_entry, list);
1075
		sibling->group_leader = sibling;
1076 1077 1078

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1079
	}
1080 1081 1082 1083 1084 1085

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1086 1087
}

1088 1089 1090
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1091 1092
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1093 1094
}

1095 1096
static void
event_sched_out(struct perf_event *event,
1097
		  struct perf_cpu_context *cpuctx,
1098
		  struct perf_event_context *ctx)
1099
{
1100
	u64 tstamp = perf_event_time(event);
1101 1102 1103 1104 1105 1106 1107 1108 1109
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1110
		delta = tstamp - event->tstamp_stopped;
1111
		event->tstamp_running += delta;
1112
		event->tstamp_stopped = tstamp;
1113 1114
	}

1115
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1116
		return;
1117

1118 1119 1120 1121
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1122
	}
1123
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1124
	event->pmu->del(event, 0);
1125
	event->oncpu = -1;
1126

1127
	if (!is_software_event(event))
1128 1129
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1130
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1131 1132 1133
		cpuctx->exclusive = 0;
}

1134
static void
1135
group_sched_out(struct perf_event *group_event,
1136
		struct perf_cpu_context *cpuctx,
1137
		struct perf_event_context *ctx)
1138
{
1139
	struct perf_event *event;
1140
	int state = group_event->state;
1141

1142
	event_sched_out(group_event, cpuctx, ctx);
1143 1144 1145 1146

	/*
	 * Schedule out siblings (if any):
	 */
1147 1148
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1149

1150
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1151 1152 1153
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1154
/*
1155
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1156
 *
1157
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1158 1159
 * remove it from the context list.
 */
1160
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1161
{
1162 1163
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1164
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1165

1166
	raw_spin_lock(&ctx->lock);
1167 1168
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1169 1170 1171 1172
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1173
	raw_spin_unlock(&ctx->lock);
1174 1175

	return 0;
T
Thomas Gleixner 已提交
1176 1177 1178 1179
}


/*
1180
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1181
 *
1182
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1183
 * call when the task is on a CPU.
1184
 *
1185 1186
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1187 1188
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1189
 * When called from perf_event_exit_task, it's OK because the
1190
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1191
 */
1192
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1193
{
1194
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1195 1196
	struct task_struct *task = ctx->task;

1197 1198
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1199 1200
	if (!task) {
		/*
1201
		 * Per cpu events are removed via an smp call and
1202
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1203
		 */
1204
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1205 1206 1207 1208
		return;
	}

retry:
1209 1210
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1211

1212
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1213
	/*
1214 1215
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1216
	 */
1217
	if (ctx->is_active) {
1218
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1219 1220 1221 1222
		goto retry;
	}

	/*
1223 1224
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1225
	 */
1226
	list_del_event(event, ctx);
1227
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1228 1229
}

1230
/*
1231
 * Cross CPU call to disable a performance event
1232
 */
1233
static int __perf_event_disable(void *info)
1234
{
1235 1236
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1237
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1238 1239

	/*
1240 1241
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1242 1243 1244
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1245
	 */
1246
	if (ctx->task && cpuctx->task_ctx != ctx)
1247
		return -EINVAL;
1248

1249
	raw_spin_lock(&ctx->lock);
1250 1251

	/*
1252
	 * If the event is on, turn it off.
1253 1254
	 * If it is in error state, leave it in error state.
	 */
1255
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1256
		update_context_time(ctx);
S
Stephane Eranian 已提交
1257
		update_cgrp_time_from_event(event);
1258 1259 1260
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1261
		else
1262 1263
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1264 1265
	}

1266
	raw_spin_unlock(&ctx->lock);
1267 1268

	return 0;
1269 1270 1271
}

/*
1272
 * Disable a event.
1273
 *
1274 1275
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1276
 * remains valid.  This condition is satisifed when called through
1277 1278 1279 1280
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1281
 * is the current context on this CPU and preemption is disabled,
1282
 * hence we can't get into perf_event_task_sched_out for this context.
1283
 */
1284
void perf_event_disable(struct perf_event *event)
1285
{
1286
	struct perf_event_context *ctx = event->ctx;
1287 1288 1289 1290
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1291
		 * Disable the event on the cpu that it's on
1292
		 */
1293
		cpu_function_call(event->cpu, __perf_event_disable, event);
1294 1295 1296
		return;
	}

P
Peter Zijlstra 已提交
1297
retry:
1298 1299
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1300

1301
	raw_spin_lock_irq(&ctx->lock);
1302
	/*
1303
	 * If the event is still active, we need to retry the cross-call.
1304
	 */
1305
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1306
		raw_spin_unlock_irq(&ctx->lock);
1307 1308 1309 1310 1311
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1312 1313 1314 1315 1316 1317 1318
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1319 1320 1321
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1322
	}
1323
	raw_spin_unlock_irq(&ctx->lock);
1324 1325
}

S
Stephane Eranian 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1361 1362 1363 1364
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1365
static int
1366
event_sched_in(struct perf_event *event,
1367
		 struct perf_cpu_context *cpuctx,
1368
		 struct perf_event_context *ctx)
1369
{
1370 1371
	u64 tstamp = perf_event_time(event);

1372
	if (event->state <= PERF_EVENT_STATE_OFF)
1373 1374
		return 0;

1375
	event->state = PERF_EVENT_STATE_ACTIVE;
1376
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1388 1389 1390 1391 1392
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1393
	if (event->pmu->add(event, PERF_EF_START)) {
1394 1395
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1396 1397 1398
		return -EAGAIN;
	}

1399
	event->tstamp_running += tstamp - event->tstamp_stopped;
1400

S
Stephane Eranian 已提交
1401
	perf_set_shadow_time(event, ctx, tstamp);
1402

1403
	if (!is_software_event(event))
1404
		cpuctx->active_oncpu++;
1405 1406
	ctx->nr_active++;

1407
	if (event->attr.exclusive)
1408 1409
		cpuctx->exclusive = 1;

1410 1411 1412
	return 0;
}

1413
static int
1414
group_sched_in(struct perf_event *group_event,
1415
	       struct perf_cpu_context *cpuctx,
1416
	       struct perf_event_context *ctx)
1417
{
1418
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1419
	struct pmu *pmu = group_event->pmu;
1420 1421
	u64 now = ctx->time;
	bool simulate = false;
1422

1423
	if (group_event->state == PERF_EVENT_STATE_OFF)
1424 1425
		return 0;

P
Peter Zijlstra 已提交
1426
	pmu->start_txn(pmu);
1427

1428
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1429
		pmu->cancel_txn(pmu);
1430
		return -EAGAIN;
1431
	}
1432 1433 1434 1435

	/*
	 * Schedule in siblings as one group (if any):
	 */
1436
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1437
		if (event_sched_in(event, cpuctx, ctx)) {
1438
			partial_group = event;
1439 1440 1441 1442
			goto group_error;
		}
	}

1443
	if (!pmu->commit_txn(pmu))
1444
		return 0;
1445

1446 1447 1448 1449
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1460
	 */
1461 1462
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1463 1464 1465 1466 1467 1468 1469 1470
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1471
	}
1472
	event_sched_out(group_event, cpuctx, ctx);
1473

P
Peter Zijlstra 已提交
1474
	pmu->cancel_txn(pmu);
1475

1476 1477 1478
	return -EAGAIN;
}

1479
/*
1480
 * Work out whether we can put this event group on the CPU now.
1481
 */
1482
static int group_can_go_on(struct perf_event *event,
1483 1484 1485 1486
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1487
	 * Groups consisting entirely of software events can always go on.
1488
	 */
1489
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1490 1491 1492
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1493
	 * events can go on.
1494 1495 1496 1497 1498
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1499
	 * events on the CPU, it can't go on.
1500
	 */
1501
	if (event->attr.exclusive && cpuctx->active_oncpu)
1502 1503 1504 1505 1506 1507 1508 1509
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1510 1511
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1512
{
1513 1514
	u64 tstamp = perf_event_time(event);

1515
	list_add_event(event, ctx);
1516
	perf_group_attach(event);
1517 1518 1519
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1520 1521
}

1522 1523 1524 1525 1526 1527
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1541
/*
1542
 * Cross CPU call to install and enable a performance event
1543 1544
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1545
 */
1546
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1547
{
1548 1549
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1550
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1551 1552 1553
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1554
	perf_ctx_lock(cpuctx, task_ctx);
1555
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1556 1557

	/*
1558
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1559
	 */
1560
	if (task_ctx)
1561
		task_ctx_sched_out(task_ctx);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1576 1577
		task = task_ctx->task;
	}
1578

1579
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1580

1581
	update_context_time(ctx);
S
Stephane Eranian 已提交
1582 1583 1584 1585 1586 1587
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1588

1589
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1590

1591
	/*
1592
	 * Schedule everything back in
1593
	 */
1594
	perf_event_sched_in(cpuctx, task_ctx, task);
1595 1596 1597

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1598 1599

	return 0;
T
Thomas Gleixner 已提交
1600 1601 1602
}

/*
1603
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1604
 *
1605 1606
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1607
 *
1608
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1609 1610 1611 1612
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1613 1614
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1615 1616 1617 1618
			int cpu)
{
	struct task_struct *task = ctx->task;

1619 1620
	lockdep_assert_held(&ctx->mutex);

1621 1622
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1623 1624
	if (!task) {
		/*
1625
		 * Per cpu events are installed via an smp call and
1626
		 * the install is always successful.
T
Thomas Gleixner 已提交
1627
		 */
1628
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1629 1630 1631 1632
		return;
	}

retry:
1633 1634
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1635

1636
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1637
	/*
1638 1639
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1640
	 */
1641
	if (ctx->is_active) {
1642
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1643 1644 1645 1646
		goto retry;
	}

	/*
1647 1648
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1649
	 */
1650
	add_event_to_ctx(event, ctx);
1651
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1652 1653
}

1654
/*
1655
 * Put a event into inactive state and update time fields.
1656 1657 1658 1659 1660 1661
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1662 1663
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1664
{
1665
	struct perf_event *sub;
1666
	u64 tstamp = perf_event_time(event);
1667

1668
	event->state = PERF_EVENT_STATE_INACTIVE;
1669
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1670
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1671 1672
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1673
	}
1674 1675
}

1676
/*
1677
 * Cross CPU call to enable a performance event
1678
 */
1679
static int __perf_event_enable(void *info)
1680
{
1681 1682 1683
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1684
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1685
	int err;
1686

1687 1688
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1689

1690
	raw_spin_lock(&ctx->lock);
1691
	update_context_time(ctx);
1692

1693
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1694
		goto unlock;
S
Stephane Eranian 已提交
1695 1696 1697 1698

	/*
	 * set current task's cgroup time reference point
	 */
1699
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1700

1701
	__perf_event_mark_enabled(event, ctx);
1702

S
Stephane Eranian 已提交
1703 1704 1705
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1706
		goto unlock;
S
Stephane Eranian 已提交
1707
	}
1708

1709
	/*
1710
	 * If the event is in a group and isn't the group leader,
1711
	 * then don't put it on unless the group is on.
1712
	 */
1713
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1714
		goto unlock;
1715

1716
	if (!group_can_go_on(event, cpuctx, 1)) {
1717
		err = -EEXIST;
1718
	} else {
1719
		if (event == leader)
1720
			err = group_sched_in(event, cpuctx, ctx);
1721
		else
1722
			err = event_sched_in(event, cpuctx, ctx);
1723
	}
1724 1725 1726

	if (err) {
		/*
1727
		 * If this event can't go on and it's part of a
1728 1729
		 * group, then the whole group has to come off.
		 */
1730
		if (leader != event)
1731
			group_sched_out(leader, cpuctx, ctx);
1732
		if (leader->attr.pinned) {
1733
			update_group_times(leader);
1734
			leader->state = PERF_EVENT_STATE_ERROR;
1735
		}
1736 1737
	}

P
Peter Zijlstra 已提交
1738
unlock:
1739
	raw_spin_unlock(&ctx->lock);
1740 1741

	return 0;
1742 1743 1744
}

/*
1745
 * Enable a event.
1746
 *
1747 1748
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1749
 * remains valid.  This condition is satisfied when called through
1750 1751
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1752
 */
1753
void perf_event_enable(struct perf_event *event)
1754
{
1755
	struct perf_event_context *ctx = event->ctx;
1756 1757 1758 1759
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1760
		 * Enable the event on the cpu that it's on
1761
		 */
1762
		cpu_function_call(event->cpu, __perf_event_enable, event);
1763 1764 1765
		return;
	}

1766
	raw_spin_lock_irq(&ctx->lock);
1767
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1768 1769 1770
		goto out;

	/*
1771 1772
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1773 1774 1775 1776
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1777 1778
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1779

P
Peter Zijlstra 已提交
1780
retry:
1781 1782 1783 1784 1785
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1786
	raw_spin_unlock_irq(&ctx->lock);
1787 1788 1789

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1790

1791
	raw_spin_lock_irq(&ctx->lock);
1792 1793

	/*
1794
	 * If the context is active and the event is still off,
1795 1796
	 * we need to retry the cross-call.
	 */
1797 1798 1799 1800 1801 1802
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1803
		goto retry;
1804
	}
1805

P
Peter Zijlstra 已提交
1806
out:
1807
	raw_spin_unlock_irq(&ctx->lock);
1808 1809
}

1810
int perf_event_refresh(struct perf_event *event, int refresh)
1811
{
1812
	/*
1813
	 * not supported on inherited events
1814
	 */
1815
	if (event->attr.inherit || !is_sampling_event(event))
1816 1817
		return -EINVAL;

1818 1819
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1820 1821

	return 0;
1822
}
1823
EXPORT_SYMBOL_GPL(perf_event_refresh);
1824

1825 1826 1827
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1828
{
1829
	struct perf_event *event;
1830
	int is_active = ctx->is_active;
1831

1832
	ctx->is_active &= ~event_type;
1833
	if (likely(!ctx->nr_events))
1834 1835
		return;

1836
	update_context_time(ctx);
S
Stephane Eranian 已提交
1837
	update_cgrp_time_from_cpuctx(cpuctx);
1838
	if (!ctx->nr_active)
1839
		return;
1840

P
Peter Zijlstra 已提交
1841
	perf_pmu_disable(ctx->pmu);
1842
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1843 1844
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1845
	}
1846

1847
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1848
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1849
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1850
	}
P
Peter Zijlstra 已提交
1851
	perf_pmu_enable(ctx->pmu);
1852 1853
}

1854 1855 1856
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1857 1858 1859 1860
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1861
 * in them directly with an fd; we can only enable/disable all
1862
 * events via prctl, or enable/disable all events in a family
1863 1864
 * via ioctl, which will have the same effect on both contexts.
 */
1865 1866
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1867 1868
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1869
		&& ctx1->parent_gen == ctx2->parent_gen
1870
		&& !ctx1->pin_count && !ctx2->pin_count;
1871 1872
}

1873 1874
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1875 1876 1877
{
	u64 value;

1878
	if (!event->attr.inherit_stat)
1879 1880 1881
		return;

	/*
1882
	 * Update the event value, we cannot use perf_event_read()
1883 1884
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1885
	 * we know the event must be on the current CPU, therefore we
1886 1887
	 * don't need to use it.
	 */
1888 1889
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1890 1891
		event->pmu->read(event);
		/* fall-through */
1892

1893 1894
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1895 1896 1897 1898 1899 1900 1901
		break;

	default:
		break;
	}

	/*
1902
	 * In order to keep per-task stats reliable we need to flip the event
1903 1904
	 * values when we flip the contexts.
	 */
1905 1906 1907
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1908

1909 1910
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1911

1912
	/*
1913
	 * Since we swizzled the values, update the user visible data too.
1914
	 */
1915 1916
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1917 1918 1919 1920 1921
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1922 1923
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1924
{
1925
	struct perf_event *event, *next_event;
1926 1927 1928 1929

	if (!ctx->nr_stat)
		return;

1930 1931
	update_context_time(ctx);

1932 1933
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1934

1935 1936
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1937

1938 1939
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1940

1941
		__perf_event_sync_stat(event, next_event);
1942

1943 1944
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1945 1946 1947
	}
}

1948 1949
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1950
{
P
Peter Zijlstra 已提交
1951
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1952 1953
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1954
	struct perf_cpu_context *cpuctx;
1955
	int do_switch = 1;
T
Thomas Gleixner 已提交
1956

P
Peter Zijlstra 已提交
1957 1958
	if (likely(!ctx))
		return;
1959

P
Peter Zijlstra 已提交
1960 1961
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1962 1963
		return;

1964 1965
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1966
	next_ctx = next->perf_event_ctxp[ctxn];
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1978 1979
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1980
		if (context_equiv(ctx, next_ctx)) {
1981 1982
			/*
			 * XXX do we need a memory barrier of sorts
1983
			 * wrt to rcu_dereference() of perf_event_ctxp
1984
			 */
P
Peter Zijlstra 已提交
1985 1986
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1987 1988 1989
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1990

1991
			perf_event_sync_stat(ctx, next_ctx);
1992
		}
1993 1994
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1995
	}
1996
	rcu_read_unlock();
1997

1998
	if (do_switch) {
1999
		raw_spin_lock(&ctx->lock);
2000
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2001
		cpuctx->task_ctx = NULL;
2002
		raw_spin_unlock(&ctx->lock);
2003
	}
T
Thomas Gleixner 已提交
2004 2005
}

P
Peter Zijlstra 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2020 2021
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2022 2023 2024 2025 2026
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2027 2028 2029 2030 2031 2032 2033

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2034
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2035 2036
}

2037
static void task_ctx_sched_out(struct perf_event_context *ctx)
2038
{
P
Peter Zijlstra 已提交
2039
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2040

2041 2042
	if (!cpuctx->task_ctx)
		return;
2043 2044 2045 2046

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2047
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2048 2049 2050
	cpuctx->task_ctx = NULL;
}

2051 2052 2053 2054 2055 2056 2057
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2058 2059
}

2060
static void
2061
ctx_pinned_sched_in(struct perf_event_context *ctx,
2062
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2063
{
2064
	struct perf_event *event;
T
Thomas Gleixner 已提交
2065

2066 2067
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2068
			continue;
2069
		if (!event_filter_match(event))
2070 2071
			continue;

S
Stephane Eranian 已提交
2072 2073 2074 2075
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2076
		if (group_can_go_on(event, cpuctx, 1))
2077
			group_sched_in(event, cpuctx, ctx);
2078 2079 2080 2081 2082

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2083 2084 2085
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2086
		}
2087
	}
2088 2089 2090 2091
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2092
		      struct perf_cpu_context *cpuctx)
2093 2094 2095
{
	struct perf_event *event;
	int can_add_hw = 1;
2096

2097 2098 2099
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2100
			continue;
2101 2102
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2103
		 * of events:
2104
		 */
2105
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2106 2107
			continue;

S
Stephane Eranian 已提交
2108 2109 2110 2111
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2112
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2113
			if (group_sched_in(event, cpuctx, ctx))
2114
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2115
		}
T
Thomas Gleixner 已提交
2116
	}
2117 2118 2119 2120 2121
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2122 2123
	     enum event_type_t event_type,
	     struct task_struct *task)
2124
{
S
Stephane Eranian 已提交
2125
	u64 now;
2126
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2127

2128
	ctx->is_active |= event_type;
2129
	if (likely(!ctx->nr_events))
2130
		return;
2131

S
Stephane Eranian 已提交
2132 2133
	now = perf_clock();
	ctx->timestamp = now;
2134
	perf_cgroup_set_timestamp(task, ctx);
2135 2136 2137 2138
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2139
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2140
		ctx_pinned_sched_in(ctx, cpuctx);
2141 2142

	/* Then walk through the lower prio flexible groups */
2143
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2144
		ctx_flexible_sched_in(ctx, cpuctx);
2145 2146
}

2147
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2148 2149
			     enum event_type_t event_type,
			     struct task_struct *task)
2150 2151 2152
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2153
	ctx_sched_in(ctx, cpuctx, event_type, task);
2154 2155
}

S
Stephane Eranian 已提交
2156 2157
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2158
{
P
Peter Zijlstra 已提交
2159
	struct perf_cpu_context *cpuctx;
2160

P
Peter Zijlstra 已提交
2161
	cpuctx = __get_cpu_context(ctx);
2162 2163 2164
	if (cpuctx->task_ctx == ctx)
		return;

2165
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2166
	perf_pmu_disable(ctx->pmu);
2167 2168 2169 2170 2171 2172 2173
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2174
	perf_event_sched_in(cpuctx, ctx, task);
2175

2176 2177
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2178

2179 2180 2181
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2182 2183 2184 2185
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2186
	perf_pmu_rotate_start(ctx->pmu);
2187 2188
}

P
Peter Zijlstra 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2200 2201
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2211
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2212
	}
S
Stephane Eranian 已提交
2213 2214 2215 2216 2217 2218
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2219
		perf_cgroup_sched_in(prev, task);
2220 2221
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2249
#define REDUCE_FLS(a, b)		\
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2289 2290 2291
	if (!divisor)
		return dividend;

2292 2293 2294 2295
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2296
{
2297
	struct hw_perf_event *hwc = &event->hw;
2298
	s64 period, sample_period;
2299 2300
	s64 delta;

2301
	period = perf_calculate_period(event, nsec, count);
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2312

2313
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2314
		event->pmu->stop(event, PERF_EF_UPDATE);
2315
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2316
		event->pmu->start(event, PERF_EF_RELOAD);
2317
	}
2318 2319
}

2320
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2321
{
2322 2323
	struct perf_event *event;
	struct hw_perf_event *hwc;
2324 2325
	u64 interrupts, now;
	s64 delta;
2326

2327
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2328
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2329 2330
			continue;

2331
		if (!event_filter_match(event))
2332 2333
			continue;

2334
		hwc = &event->hw;
2335 2336 2337

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2338

2339
		/*
2340
		 * unthrottle events on the tick
2341
		 */
2342
		if (interrupts == MAX_INTERRUPTS) {
2343
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2344
			event->pmu->start(event, 0);
2345 2346
		}

2347
		if (!event->attr.freq || !event->attr.sample_freq)
2348 2349
			continue;

2350
		event->pmu->read(event);
2351
		now = local64_read(&event->count);
2352 2353
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2354

2355
		if (delta > 0)
2356
			perf_adjust_period(event, period, delta);
2357 2358 2359
	}
}

2360
/*
2361
 * Round-robin a context's events:
2362
 */
2363
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2364
{
2365 2366 2367 2368 2369 2370
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2371 2372
}

2373
/*
2374 2375 2376
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2377
 */
2378
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2379
{
2380
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2381
	struct perf_event_context *ctx = NULL;
2382
	int rotate = 0, remove = 1;
2383

2384
	if (cpuctx->ctx.nr_events) {
2385
		remove = 0;
2386 2387 2388
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2389

P
Peter Zijlstra 已提交
2390
	ctx = cpuctx->task_ctx;
2391
	if (ctx && ctx->nr_events) {
2392
		remove = 0;
2393 2394 2395
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2396

2397
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2398
	perf_pmu_disable(cpuctx->ctx.pmu);
2399
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2400
	if (ctx)
2401
		perf_ctx_adjust_freq(ctx, interval);
2402

2403
	if (!rotate)
2404
		goto done;
2405

2406
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2407
	if (ctx)
2408
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2409

2410
	rotate_ctx(&cpuctx->ctx);
2411 2412
	if (ctx)
		rotate_ctx(ctx);
2413

2414
	perf_event_sched_in(cpuctx, ctx, current);
2415 2416

done:
2417 2418 2419
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2420
	perf_pmu_enable(cpuctx->ctx.pmu);
2421
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2422 2423 2424 2425 2426 2427
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2428

2429 2430 2431 2432 2433 2434 2435
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2436 2437
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2453
/*
2454
 * Enable all of a task's events that have been marked enable-on-exec.
2455 2456
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2457
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2458
{
2459
	struct perf_event *event;
2460 2461
	unsigned long flags;
	int enabled = 0;
2462
	int ret;
2463 2464

	local_irq_save(flags);
2465
	if (!ctx || !ctx->nr_events)
2466 2467
		goto out;

2468 2469 2470 2471 2472 2473 2474
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2475
	perf_cgroup_sched_out(current, NULL);
2476

2477
	raw_spin_lock(&ctx->lock);
2478
	task_ctx_sched_out(ctx);
2479

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2490 2491 2492
	}

	/*
2493
	 * Unclone this context if we enabled any event.
2494
	 */
2495 2496
	if (enabled)
		unclone_ctx(ctx);
2497

2498
	raw_spin_unlock(&ctx->lock);
2499

2500 2501 2502
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2503
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2504
out:
2505 2506 2507
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2508
/*
2509
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2510
 */
2511
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2512
{
2513 2514
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2515
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2516

2517 2518 2519 2520
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2521 2522
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2523 2524 2525 2526
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2527
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2528
	if (ctx->is_active) {
2529
		update_context_time(ctx);
S
Stephane Eranian 已提交
2530 2531
		update_cgrp_time_from_event(event);
	}
2532
	update_event_times(event);
2533 2534
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2535
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2536 2537
}

P
Peter Zijlstra 已提交
2538 2539
static inline u64 perf_event_count(struct perf_event *event)
{
2540
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2541 2542
}

2543
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2544 2545
{
	/*
2546 2547
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2548
	 */
2549 2550 2551 2552
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2553 2554 2555
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2556
		raw_spin_lock_irqsave(&ctx->lock, flags);
2557 2558 2559 2560 2561
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2562
		if (ctx->is_active) {
2563
			update_context_time(ctx);
S
Stephane Eranian 已提交
2564 2565
			update_cgrp_time_from_event(event);
		}
2566
		update_event_times(event);
2567
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2568 2569
	}

P
Peter Zijlstra 已提交
2570
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2571 2572
}

2573
/*
2574
 * Callchain support
2575
 */
2576 2577 2578 2579 2580 2581

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2582
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2583 2584 2585 2586 2587 2588 2589
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2590 2591 2592
{
}

2593 2594
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2595
{
2596
}
T
Thomas Gleixner 已提交
2597

2598 2599 2600 2601
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2602

2603
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2604

2605 2606
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2607

2608 2609
	kfree(entries);
}
T
Thomas Gleixner 已提交
2610

2611 2612 2613
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2614

2615 2616 2617 2618
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2619

2620 2621 2622 2623 2624
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2625

2626
	/*
2627 2628 2629
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2630
	 */
2631
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2632

2633 2634 2635
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2636

2637
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2638

2639 2640 2641 2642 2643
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2644 2645
	}

2646
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2647

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2782
/*
2783
 * Initialize the perf_event context in a task_struct:
2784
 */
2785
static void __perf_event_init_context(struct perf_event_context *ctx)
2786
{
2787
	raw_spin_lock_init(&ctx->lock);
2788
	mutex_init(&ctx->mutex);
2789 2790
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2791 2792
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2808
	}
2809 2810 2811
	ctx->pmu = pmu;

	return ctx;
2812 2813
}

2814 2815 2816 2817 2818
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2819 2820

	rcu_read_lock();
2821
	if (!vpid)
T
Thomas Gleixner 已提交
2822 2823
		task = current;
	else
2824
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2825 2826 2827 2828 2829 2830 2831 2832
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2833 2834 2835 2836
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2837 2838 2839 2840 2841 2842 2843
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2844 2845 2846
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2847
static struct perf_event_context *
M
Matt Helsley 已提交
2848
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2849
{
2850
	struct perf_event_context *ctx;
2851
	struct perf_cpu_context *cpuctx;
2852
	unsigned long flags;
P
Peter Zijlstra 已提交
2853
	int ctxn, err;
T
Thomas Gleixner 已提交
2854

2855
	if (!task) {
2856
		/* Must be root to operate on a CPU event: */
2857
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2858 2859 2860
			return ERR_PTR(-EACCES);

		/*
2861
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2862 2863 2864
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2865
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2866 2867
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2868
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2869
		ctx = &cpuctx->ctx;
2870
		get_ctx(ctx);
2871
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2872 2873 2874 2875

		return ctx;
	}

P
Peter Zijlstra 已提交
2876 2877 2878 2879 2880
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2881
retry:
P
Peter Zijlstra 已提交
2882
	ctx = perf_lock_task_context(task, ctxn, &flags);
2883
	if (ctx) {
2884
		unclone_ctx(ctx);
2885
		++ctx->pin_count;
2886
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2887
	} else {
2888
		ctx = alloc_perf_context(pmu, task);
2889 2890 2891
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2892

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2903
		else {
2904
			get_ctx(ctx);
2905
			++ctx->pin_count;
2906
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2907
		}
2908 2909 2910
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2911
			put_ctx(ctx);
2912 2913 2914 2915

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2916 2917 2918
		}
	}

T
Thomas Gleixner 已提交
2919
	return ctx;
2920

P
Peter Zijlstra 已提交
2921
errout:
2922
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2923 2924
}

L
Li Zefan 已提交
2925 2926
static void perf_event_free_filter(struct perf_event *event);

2927
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2928
{
2929
	struct perf_event *event;
P
Peter Zijlstra 已提交
2930

2931 2932 2933
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2934
	perf_event_free_filter(event);
2935
	kfree(event);
P
Peter Zijlstra 已提交
2936 2937
}

2938
static void ring_buffer_put(struct ring_buffer *rb);
2939

2940
static void free_event(struct perf_event *event)
2941
{
2942
	irq_work_sync(&event->pending);
2943

2944
	if (!event->parent) {
2945
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2946
			jump_label_dec(&perf_sched_events);
2947
		if (event->attr.mmap || event->attr.mmap_data)
2948 2949 2950 2951 2952
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2953 2954
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2955 2956 2957 2958
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2959
	}
2960

2961 2962 2963
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2964 2965
	}

S
Stephane Eranian 已提交
2966 2967 2968
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2969 2970
	if (event->destroy)
		event->destroy(event);
2971

P
Peter Zijlstra 已提交
2972 2973 2974
	if (event->ctx)
		put_ctx(event->ctx);

2975
	call_rcu(&event->rcu_head, free_event_rcu);
2976 2977
}

2978
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2979
{
2980
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2981

2982
	WARN_ON_ONCE(ctx->parent_ctx);
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2996
	raw_spin_lock_irq(&ctx->lock);
2997
	perf_group_detach(event);
2998
	raw_spin_unlock_irq(&ctx->lock);
2999
	perf_remove_from_context(event);
3000
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3001

3002
	free_event(event);
T
Thomas Gleixner 已提交
3003 3004 3005

	return 0;
}
3006
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3007

3008 3009 3010 3011
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
3012
{
3013
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3014
	struct task_struct *owner;
3015

3016
	file->private_data = NULL;
3017

P
Peter Zijlstra 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3051
	return perf_event_release_kernel(event);
3052 3053
}

3054
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3055
{
3056
	struct perf_event *child;
3057 3058
	u64 total = 0;

3059 3060 3061
	*enabled = 0;
	*running = 0;

3062
	mutex_lock(&event->child_mutex);
3063
	total += perf_event_read(event);
3064 3065 3066 3067 3068 3069
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3070
		total += perf_event_read(child);
3071 3072 3073
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3074
	mutex_unlock(&event->child_mutex);
3075 3076 3077

	return total;
}
3078
EXPORT_SYMBOL_GPL(perf_event_read_value);
3079

3080
static int perf_event_read_group(struct perf_event *event,
3081 3082
				   u64 read_format, char __user *buf)
{
3083
	struct perf_event *leader = event->group_leader, *sub;
3084 3085
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3086
	u64 values[5];
3087
	u64 count, enabled, running;
3088

3089
	mutex_lock(&ctx->mutex);
3090
	count = perf_event_read_value(leader, &enabled, &running);
3091 3092

	values[n++] = 1 + leader->nr_siblings;
3093 3094 3095 3096
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3097 3098 3099
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3100 3101 3102 3103

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3104
		goto unlock;
3105

3106
	ret = size;
3107

3108
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3109
		n = 0;
3110

3111
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3112 3113 3114 3115 3116
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3117
		if (copy_to_user(buf + ret, values, size)) {
3118 3119 3120
			ret = -EFAULT;
			goto unlock;
		}
3121 3122

		ret += size;
3123
	}
3124 3125
unlock:
	mutex_unlock(&ctx->mutex);
3126

3127
	return ret;
3128 3129
}

3130
static int perf_event_read_one(struct perf_event *event,
3131 3132
				 u64 read_format, char __user *buf)
{
3133
	u64 enabled, running;
3134 3135 3136
	u64 values[4];
	int n = 0;

3137 3138 3139 3140 3141
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3142
	if (read_format & PERF_FORMAT_ID)
3143
		values[n++] = primary_event_id(event);
3144 3145 3146 3147 3148 3149 3150

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3151
/*
3152
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3153 3154
 */
static ssize_t
3155
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3156
{
3157
	u64 read_format = event->attr.read_format;
3158
	int ret;
T
Thomas Gleixner 已提交
3159

3160
	/*
3161
	 * Return end-of-file for a read on a event that is in
3162 3163 3164
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3165
	if (event->state == PERF_EVENT_STATE_ERROR)
3166 3167
		return 0;

3168
	if (count < event->read_size)
3169 3170
		return -ENOSPC;

3171
	WARN_ON_ONCE(event->ctx->parent_ctx);
3172
	if (read_format & PERF_FORMAT_GROUP)
3173
		ret = perf_event_read_group(event, read_format, buf);
3174
	else
3175
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3176

3177
	return ret;
T
Thomas Gleixner 已提交
3178 3179 3180 3181 3182
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3183
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3184

3185
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3186 3187 3188 3189
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3190
	struct perf_event *event = file->private_data;
3191
	struct ring_buffer *rb;
3192
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3193 3194

	rcu_read_lock();
3195 3196 3197
	rb = rcu_dereference(event->rb);
	if (rb)
		events = atomic_xchg(&rb->poll, 0);
P
Peter Zijlstra 已提交
3198
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3199

3200
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3201 3202 3203 3204

	return events;
}

3205
static void perf_event_reset(struct perf_event *event)
3206
{
3207
	(void)perf_event_read(event);
3208
	local64_set(&event->count, 0);
3209
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3210 3211
}

3212
/*
3213 3214 3215 3216
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3217
 */
3218 3219
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3220
{
3221
	struct perf_event *child;
P
Peter Zijlstra 已提交
3222

3223 3224 3225 3226
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3227
		func(child);
3228
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3229 3230
}

3231 3232
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3233
{
3234 3235
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3236

3237 3238
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3239
	event = event->group_leader;
3240

3241 3242 3243 3244
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3245
	mutex_unlock(&ctx->mutex);
3246 3247
}

3248
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3249
{
3250
	struct perf_event_context *ctx = event->ctx;
3251 3252 3253
	int ret = 0;
	u64 value;

3254
	if (!is_sampling_event(event))
3255 3256
		return -EINVAL;

3257
	if (copy_from_user(&value, arg, sizeof(value)))
3258 3259 3260 3261 3262
		return -EFAULT;

	if (!value)
		return -EINVAL;

3263
	raw_spin_lock_irq(&ctx->lock);
3264 3265
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3266 3267 3268 3269
			ret = -EINVAL;
			goto unlock;
		}

3270
		event->attr.sample_freq = value;
3271
	} else {
3272 3273
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3274 3275
	}
unlock:
3276
	raw_spin_unlock_irq(&ctx->lock);
3277 3278 3279 3280

	return ret;
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3302
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3303

3304 3305
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3306 3307
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3308
	u32 flags = arg;
3309 3310

	switch (cmd) {
3311 3312
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3313
		break;
3314 3315
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3316
		break;
3317 3318
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3319
		break;
P
Peter Zijlstra 已提交
3320

3321 3322
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3323

3324 3325
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3326

3327
	case PERF_EVENT_IOC_SET_OUTPUT:
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3345

L
Li Zefan 已提交
3346 3347 3348
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3349
	default:
P
Peter Zijlstra 已提交
3350
		return -ENOTTY;
3351
	}
P
Peter Zijlstra 已提交
3352 3353

	if (flags & PERF_IOC_FLAG_GROUP)
3354
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3355
	else
3356
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3357 3358

	return 0;
3359 3360
}

3361
int perf_event_task_enable(void)
3362
{
3363
	struct perf_event *event;
3364

3365 3366 3367 3368
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3369 3370 3371 3372

	return 0;
}

3373
int perf_event_task_disable(void)
3374
{
3375
	struct perf_event *event;
3376

3377 3378 3379 3380
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3381 3382 3383 3384

	return 0;
}

3385 3386
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3387 3388
#endif

3389
static int perf_event_index(struct perf_event *event)
3390
{
P
Peter Zijlstra 已提交
3391 3392 3393
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3394
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3395 3396
		return 0;

3397
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3398 3399
}

3400
static void calc_timer_values(struct perf_event *event,
3401 3402
				u64 *enabled,
				u64 *running)
3403 3404 3405 3406 3407 3408 3409 3410 3411
{
	u64 now, ctx_time;

	now = perf_clock();
	ctx_time = event->shadow_ctx_time + now;
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3412 3413 3414 3415 3416
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3417
void perf_event_update_userpage(struct perf_event *event)
3418
{
3419
	struct perf_event_mmap_page *userpg;
3420
	struct ring_buffer *rb;
3421
	u64 enabled, running;
3422 3423

	rcu_read_lock();
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
	calc_timer_values(event, &enabled, &running);
3434 3435
	rb = rcu_dereference(event->rb);
	if (!rb)
3436 3437
		goto unlock;

3438
	userpg = rb->user_page;
3439

3440 3441 3442 3443 3444
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3445
	++userpg->lock;
3446
	barrier();
3447
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3448
	userpg->offset = perf_event_count(event);
3449
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3450
		userpg->offset -= local64_read(&event->hw.prev_count);
3451

3452
	userpg->time_enabled = enabled +
3453
			atomic64_read(&event->child_total_time_enabled);
3454

3455
	userpg->time_running = running +
3456
			atomic64_read(&event->child_total_time_running);
3457

3458
	barrier();
3459
	++userpg->lock;
3460
	preempt_enable();
3461
unlock:
3462
	rcu_read_unlock();
3463 3464
}

3465 3466 3467
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3468
	struct ring_buffer *rb;
3469 3470 3471 3472 3473 3474 3475 3476 3477
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3478 3479
	rb = rcu_dereference(event->rb);
	if (!rb)
3480 3481 3482 3483 3484
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3485
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3500
static void rb_free_rcu(struct rcu_head *rcu_head)
3501
{
3502
	struct ring_buffer *rb;
3503

3504 3505
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3506 3507
}

3508
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3509
{
3510
	struct ring_buffer *rb;
3511

3512
	rcu_read_lock();
3513 3514 3515 3516
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3517 3518 3519
	}
	rcu_read_unlock();

3520
	return rb;
3521 3522
}

3523
static void ring_buffer_put(struct ring_buffer *rb)
3524
{
3525
	if (!atomic_dec_and_test(&rb->refcount))
3526
		return;
3527

3528
	call_rcu(&rb->rcu_head, rb_free_rcu);
3529 3530 3531 3532
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3533
	struct perf_event *event = vma->vm_file->private_data;
3534

3535
	atomic_inc(&event->mmap_count);
3536 3537 3538 3539
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3540
	struct perf_event *event = vma->vm_file->private_data;
3541

3542
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3543
		unsigned long size = perf_data_size(event->rb);
3544
		struct user_struct *user = event->mmap_user;
3545
		struct ring_buffer *rb = event->rb;
3546

3547
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3548
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3549
		rcu_assign_pointer(event->rb, NULL);
3550
		mutex_unlock(&event->mmap_mutex);
3551

3552
		ring_buffer_put(rb);
3553
		free_uid(user);
3554
	}
3555 3556
}

3557
static const struct vm_operations_struct perf_mmap_vmops = {
3558 3559 3560 3561
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3562 3563 3564 3565
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3566
	struct perf_event *event = file->private_data;
3567
	unsigned long user_locked, user_lock_limit;
3568
	struct user_struct *user = current_user();
3569
	unsigned long locked, lock_limit;
3570
	struct ring_buffer *rb;
3571 3572
	unsigned long vma_size;
	unsigned long nr_pages;
3573
	long user_extra, extra;
3574
	int ret = 0, flags = 0;
3575

3576 3577 3578
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3579
	 * same rb.
3580 3581 3582 3583
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3584
	if (!(vma->vm_flags & VM_SHARED))
3585
		return -EINVAL;
3586 3587 3588 3589

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3590
	/*
3591
	 * If we have rb pages ensure they're a power-of-two number, so we
3592 3593 3594
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3595 3596
		return -EINVAL;

3597
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3598 3599
		return -EINVAL;

3600 3601
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3602

3603 3604
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3605 3606 3607
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3608
		else
3609 3610 3611 3612
			ret = -EINVAL;
		goto unlock;
	}

3613
	user_extra = nr_pages + 1;
3614
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3615 3616 3617 3618 3619 3620

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3621
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3622

3623 3624 3625
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3626

3627
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3628
	lock_limit >>= PAGE_SHIFT;
3629
	locked = vma->vm_mm->pinned_vm + extra;
3630

3631 3632
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3633 3634 3635
		ret = -EPERM;
		goto unlock;
	}
3636

3637
	WARN_ON(event->rb);
3638

3639
	if (vma->vm_flags & VM_WRITE)
3640
		flags |= RING_BUFFER_WRITABLE;
3641

3642 3643 3644 3645
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3646
	if (!rb) {
3647
		ret = -ENOMEM;
3648
		goto unlock;
3649
	}
3650
	rcu_assign_pointer(event->rb, rb);
3651

3652 3653 3654
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3655
	vma->vm_mm->pinned_vm += event->mmap_locked;
3656

3657
unlock:
3658 3659
	if (!ret)
		atomic_inc(&event->mmap_count);
3660
	mutex_unlock(&event->mmap_mutex);
3661 3662 3663

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3664 3665

	return ret;
3666 3667
}

P
Peter Zijlstra 已提交
3668 3669 3670
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3671
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3672 3673 3674
	int retval;

	mutex_lock(&inode->i_mutex);
3675
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3676 3677 3678 3679 3680 3681 3682 3683
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3684
static const struct file_operations perf_fops = {
3685
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3686 3687 3688
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3689 3690
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3691
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3692
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3693 3694
};

3695
/*
3696
 * Perf event wakeup
3697 3698 3699 3700 3701
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3702
void perf_event_wakeup(struct perf_event *event)
3703
{
3704
	wake_up_all(&event->waitq);
3705

3706 3707 3708
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3709
	}
3710 3711
}

3712
static void perf_pending_event(struct irq_work *entry)
3713
{
3714 3715
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3716

3717 3718 3719
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3720 3721
	}

3722 3723 3724
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3725 3726 3727
	}
}

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3749 3750 3751
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3779 3780 3781
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3808 3809 3810
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3811 3812 3813 3814 3815
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3816
static void perf_output_read_one(struct perf_output_handle *handle,
3817 3818
				 struct perf_event *event,
				 u64 enabled, u64 running)
3819
{
3820
	u64 read_format = event->attr.read_format;
3821 3822 3823
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3824
	values[n++] = perf_event_count(event);
3825
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3826
		values[n++] = enabled +
3827
			atomic64_read(&event->child_total_time_enabled);
3828 3829
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3830
		values[n++] = running +
3831
			atomic64_read(&event->child_total_time_running);
3832 3833
	}
	if (read_format & PERF_FORMAT_ID)
3834
		values[n++] = primary_event_id(event);
3835

3836
	__output_copy(handle, values, n * sizeof(u64));
3837 3838 3839
}

/*
3840
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3841 3842
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3843 3844
			    struct perf_event *event,
			    u64 enabled, u64 running)
3845
{
3846 3847
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3848 3849 3850 3851 3852 3853
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3854
		values[n++] = enabled;
3855 3856

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3857
		values[n++] = running;
3858

3859
	if (leader != event)
3860 3861
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3862
	values[n++] = perf_event_count(leader);
3863
	if (read_format & PERF_FORMAT_ID)
3864
		values[n++] = primary_event_id(leader);
3865

3866
	__output_copy(handle, values, n * sizeof(u64));
3867

3868
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3869 3870
		n = 0;

3871
		if (sub != event)
3872 3873
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3874
		values[n++] = perf_event_count(sub);
3875
		if (read_format & PERF_FORMAT_ID)
3876
			values[n++] = primary_event_id(sub);
3877

3878
		__output_copy(handle, values, n * sizeof(u64));
3879 3880 3881
	}
}

3882 3883 3884
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3885
static void perf_output_read(struct perf_output_handle *handle,
3886
			     struct perf_event *event)
3887
{
3888
	u64 enabled = 0, running = 0;
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3900 3901
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
		calc_timer_values(event, &enabled, &running);
3902

3903
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3904
		perf_output_read_group(handle, event, enabled, running);
3905
	else
3906
		perf_output_read_one(handle, event, enabled, running);
3907 3908
}

3909 3910 3911
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3912
			struct perf_event *event)
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3943
		perf_output_read(handle, event);
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3954
			__output_copy(handle, data->callchain, size);
3955 3956 3957 3958 3959 3960 3961 3962 3963
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3964 3965
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3991 3992 3993 3994
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3995
			 struct perf_event *event,
3996
			 struct pt_regs *regs)
3997
{
3998
	u64 sample_type = event->attr.sample_type;
3999

4000
	header->type = PERF_RECORD_SAMPLE;
4001
	header->size = sizeof(*header) + event->header_size;
4002 4003 4004

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4005

4006
	__perf_event_header__init_id(header, data, event);
4007

4008
	if (sample_type & PERF_SAMPLE_IP)
4009 4010
		data->ip = perf_instruction_pointer(regs);

4011
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4012
		int size = 1;
4013

4014 4015 4016 4017 4018 4019
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4020 4021
	}

4022
	if (sample_type & PERF_SAMPLE_RAW) {
4023 4024 4025 4026 4027 4028 4029 4030
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4031
		header->size += size;
4032
	}
4033
}
4034

4035
static void perf_event_output(struct perf_event *event,
4036 4037 4038 4039 4040
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4041

4042 4043 4044
	/* protect the callchain buffers */
	rcu_read_lock();

4045
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4046

4047
	if (perf_output_begin(&handle, event, header.size))
4048
		goto exit;
4049

4050
	perf_output_sample(&handle, &header, data, event);
4051

4052
	perf_output_end(&handle);
4053 4054 4055

exit:
	rcu_read_unlock();
4056 4057
}

4058
/*
4059
 * read event_id
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4070
perf_event_read_event(struct perf_event *event,
4071 4072 4073
			struct task_struct *task)
{
	struct perf_output_handle handle;
4074
	struct perf_sample_data sample;
4075
	struct perf_read_event read_event = {
4076
		.header = {
4077
			.type = PERF_RECORD_READ,
4078
			.misc = 0,
4079
			.size = sizeof(read_event) + event->read_size,
4080
		},
4081 4082
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4083
	};
4084
	int ret;
4085

4086
	perf_event_header__init_id(&read_event.header, &sample, event);
4087
	ret = perf_output_begin(&handle, event, read_event.header.size);
4088 4089 4090
	if (ret)
		return;

4091
	perf_output_put(&handle, read_event);
4092
	perf_output_read(&handle, event);
4093
	perf_event__output_id_sample(event, &handle, &sample);
4094

4095 4096 4097
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4098
/*
P
Peter Zijlstra 已提交
4099 4100
 * task tracking -- fork/exit
 *
4101
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4102 4103
 */

P
Peter Zijlstra 已提交
4104
struct perf_task_event {
4105
	struct task_struct		*task;
4106
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4107 4108 4109 4110 4111 4112

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4113 4114
		u32				tid;
		u32				ptid;
4115
		u64				time;
4116
	} event_id;
P
Peter Zijlstra 已提交
4117 4118
};

4119
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4120
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4121 4122
{
	struct perf_output_handle handle;
4123
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4124
	struct task_struct *task = task_event->task;
4125
	int ret, size = task_event->event_id.header.size;
4126

4127
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4128

4129
	ret = perf_output_begin(&handle, event,
4130
				task_event->event_id.header.size);
4131
	if (ret)
4132
		goto out;
P
Peter Zijlstra 已提交
4133

4134 4135
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4136

4137 4138
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4139

4140
	perf_output_put(&handle, task_event->event_id);
4141

4142 4143
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4144
	perf_output_end(&handle);
4145 4146
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4147 4148
}

4149
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4150
{
P
Peter Zijlstra 已提交
4151
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4152 4153
		return 0;

4154
	if (!event_filter_match(event))
4155 4156
		return 0;

4157 4158
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4159 4160 4161 4162 4163
		return 1;

	return 0;
}

4164
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4165
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4166
{
4167
	struct perf_event *event;
P
Peter Zijlstra 已提交
4168

4169 4170 4171
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4172 4173 4174
	}
}

4175
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4176 4177
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4178
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4179
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4180
	int ctxn;
P
Peter Zijlstra 已提交
4181

4182
	rcu_read_lock();
P
Peter Zijlstra 已提交
4183
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4184
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4185 4186
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4187
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4188 4189 4190 4191 4192

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4193
				goto next;
P
Peter Zijlstra 已提交
4194 4195 4196 4197
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4198 4199
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4200
	}
P
Peter Zijlstra 已提交
4201 4202 4203
	rcu_read_unlock();
}

4204 4205
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4206
			      int new)
P
Peter Zijlstra 已提交
4207
{
P
Peter Zijlstra 已提交
4208
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4209

4210 4211 4212
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4213 4214
		return;

P
Peter Zijlstra 已提交
4215
	task_event = (struct perf_task_event){
4216 4217
		.task	  = task,
		.task_ctx = task_ctx,
4218
		.event_id    = {
P
Peter Zijlstra 已提交
4219
			.header = {
4220
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4221
				.misc = 0,
4222
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4223
			},
4224 4225
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4226 4227
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4228
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4229 4230 4231
		},
	};

4232
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4233 4234
}

4235
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4236
{
4237
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4238 4239
}

4240 4241 4242 4243 4244
/*
 * comm tracking
 */

struct perf_comm_event {
4245 4246
	struct task_struct	*task;
	char			*comm;
4247 4248 4249 4250 4251 4252 4253
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4254
	} event_id;
4255 4256
};

4257
static void perf_event_comm_output(struct perf_event *event,
4258 4259 4260
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4261
	struct perf_sample_data sample;
4262
	int size = comm_event->event_id.header.size;
4263 4264 4265 4266
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4267
				comm_event->event_id.header.size);
4268 4269

	if (ret)
4270
		goto out;
4271

4272 4273
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4274

4275
	perf_output_put(&handle, comm_event->event_id);
4276
	__output_copy(&handle, comm_event->comm,
4277
				   comm_event->comm_size);
4278 4279 4280

	perf_event__output_id_sample(event, &handle, &sample);

4281
	perf_output_end(&handle);
4282 4283
out:
	comm_event->event_id.header.size = size;
4284 4285
}

4286
static int perf_event_comm_match(struct perf_event *event)
4287
{
P
Peter Zijlstra 已提交
4288
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4289 4290
		return 0;

4291
	if (!event_filter_match(event))
4292 4293
		return 0;

4294
	if (event->attr.comm)
4295 4296 4297 4298 4299
		return 1;

	return 0;
}

4300
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4301 4302
				  struct perf_comm_event *comm_event)
{
4303
	struct perf_event *event;
4304

4305 4306 4307
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4308 4309 4310
	}
}

4311
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4312 4313
{
	struct perf_cpu_context *cpuctx;
4314
	struct perf_event_context *ctx;
4315
	char comm[TASK_COMM_LEN];
4316
	unsigned int size;
P
Peter Zijlstra 已提交
4317
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4318
	int ctxn;
4319

4320
	memset(comm, 0, sizeof(comm));
4321
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4322
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4323 4324 4325 4326

	comm_event->comm = comm;
	comm_event->comm_size = size;

4327
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4328
	rcu_read_lock();
P
Peter Zijlstra 已提交
4329
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4330
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4331 4332
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4333
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4334 4335 4336

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4337
			goto next;
P
Peter Zijlstra 已提交
4338 4339 4340 4341

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4342 4343
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4344
	}
4345
	rcu_read_unlock();
4346 4347
}

4348
void perf_event_comm(struct task_struct *task)
4349
{
4350
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4351 4352
	struct perf_event_context *ctx;
	int ctxn;
4353

P
Peter Zijlstra 已提交
4354 4355 4356 4357
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4358

P
Peter Zijlstra 已提交
4359 4360
		perf_event_enable_on_exec(ctx);
	}
4361

4362
	if (!atomic_read(&nr_comm_events))
4363
		return;
4364

4365
	comm_event = (struct perf_comm_event){
4366
		.task	= task,
4367 4368
		/* .comm      */
		/* .comm_size */
4369
		.event_id  = {
4370
			.header = {
4371
				.type = PERF_RECORD_COMM,
4372 4373 4374 4375 4376
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4377 4378 4379
		},
	};

4380
	perf_event_comm_event(&comm_event);
4381 4382
}

4383 4384 4385 4386 4387
/*
 * mmap tracking
 */

struct perf_mmap_event {
4388 4389 4390 4391
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4392 4393 4394 4395 4396 4397 4398 4399 4400

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4401
	} event_id;
4402 4403
};

4404
static void perf_event_mmap_output(struct perf_event *event,
4405 4406 4407
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4408
	struct perf_sample_data sample;
4409
	int size = mmap_event->event_id.header.size;
4410
	int ret;
4411

4412 4413
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4414
				mmap_event->event_id.header.size);
4415
	if (ret)
4416
		goto out;
4417

4418 4419
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4420

4421
	perf_output_put(&handle, mmap_event->event_id);
4422
	__output_copy(&handle, mmap_event->file_name,
4423
				   mmap_event->file_size);
4424 4425 4426

	perf_event__output_id_sample(event, &handle, &sample);

4427
	perf_output_end(&handle);
4428 4429
out:
	mmap_event->event_id.header.size = size;
4430 4431
}

4432
static int perf_event_mmap_match(struct perf_event *event,
4433 4434
				   struct perf_mmap_event *mmap_event,
				   int executable)
4435
{
P
Peter Zijlstra 已提交
4436
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4437 4438
		return 0;

4439
	if (!event_filter_match(event))
4440 4441
		return 0;

4442 4443
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4444 4445 4446 4447 4448
		return 1;

	return 0;
}

4449
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4450 4451
				  struct perf_mmap_event *mmap_event,
				  int executable)
4452
{
4453
	struct perf_event *event;
4454

4455
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4456
		if (perf_event_mmap_match(event, mmap_event, executable))
4457
			perf_event_mmap_output(event, mmap_event);
4458 4459 4460
	}
}

4461
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4462 4463
{
	struct perf_cpu_context *cpuctx;
4464
	struct perf_event_context *ctx;
4465 4466
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4467 4468 4469
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4470
	const char *name;
P
Peter Zijlstra 已提交
4471
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4472
	int ctxn;
4473

4474 4475
	memset(tmp, 0, sizeof(tmp));

4476
	if (file) {
4477
		/*
4478
		 * d_path works from the end of the rb backwards, so we
4479 4480 4481 4482
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4483 4484 4485 4486
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4487
		name = d_path(&file->f_path, buf, PATH_MAX);
4488 4489 4490 4491 4492
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4493 4494 4495
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4496
			goto got_name;
4497
		}
4498 4499 4500 4501

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4502 4503 4504 4505 4506 4507 4508 4509
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4510 4511
		}

4512 4513 4514 4515 4516
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4517
	size = ALIGN(strlen(name)+1, sizeof(u64));
4518 4519 4520 4521

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4522
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4523

4524
	rcu_read_lock();
P
Peter Zijlstra 已提交
4525
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4526
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4527 4528
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4529 4530
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4531 4532 4533

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4534
			goto next;
P
Peter Zijlstra 已提交
4535 4536 4537 4538 4539 4540

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4541 4542
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4543
	}
4544 4545
	rcu_read_unlock();

4546 4547 4548
	kfree(buf);
}

4549
void perf_event_mmap(struct vm_area_struct *vma)
4550
{
4551 4552
	struct perf_mmap_event mmap_event;

4553
	if (!atomic_read(&nr_mmap_events))
4554 4555 4556
		return;

	mmap_event = (struct perf_mmap_event){
4557
		.vma	= vma,
4558 4559
		/* .file_name */
		/* .file_size */
4560
		.event_id  = {
4561
			.header = {
4562
				.type = PERF_RECORD_MMAP,
4563
				.misc = PERF_RECORD_MISC_USER,
4564 4565 4566 4567
				/* .size */
			},
			/* .pid */
			/* .tid */
4568 4569
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4570
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4571 4572 4573
		},
	};

4574
	perf_event_mmap_event(&mmap_event);
4575 4576
}

4577 4578 4579 4580
/*
 * IRQ throttle logging
 */

4581
static void perf_log_throttle(struct perf_event *event, int enable)
4582 4583
{
	struct perf_output_handle handle;
4584
	struct perf_sample_data sample;
4585 4586 4587 4588 4589
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4590
		u64				id;
4591
		u64				stream_id;
4592 4593
	} throttle_event = {
		.header = {
4594
			.type = PERF_RECORD_THROTTLE,
4595 4596 4597
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4598
		.time		= perf_clock(),
4599 4600
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4601 4602
	};

4603
	if (enable)
4604
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4605

4606 4607 4608
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4609
				throttle_event.header.size);
4610 4611 4612 4613
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4614
	perf_event__output_id_sample(event, &handle, &sample);
4615 4616 4617
	perf_output_end(&handle);
}

4618
/*
4619
 * Generic event overflow handling, sampling.
4620 4621
 */

4622
static int __perf_event_overflow(struct perf_event *event,
4623 4624
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4625
{
4626 4627
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4628 4629
	int ret = 0;

4630 4631 4632 4633 4634 4635 4636
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4637 4638 4639 4640
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4641 4642
			ret = 1;
		}
P
Peter Zijlstra 已提交
4643 4644
	} else
		hwc->interrupts++;
4645

4646
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4647
		u64 now = perf_clock();
4648
		s64 delta = now - hwc->freq_time_stamp;
4649

4650
		hwc->freq_time_stamp = now;
4651

4652 4653
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4654 4655
	}

4656 4657
	/*
	 * XXX event_limit might not quite work as expected on inherited
4658
	 * events
4659 4660
	 */

4661 4662
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4663
		ret = 1;
4664
		event->pending_kill = POLL_HUP;
4665 4666
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4667 4668
	}

4669
	if (event->overflow_handler)
4670
		event->overflow_handler(event, data, regs);
4671
	else
4672
		perf_event_output(event, data, regs);
4673

P
Peter Zijlstra 已提交
4674
	if (event->fasync && event->pending_kill) {
4675 4676
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4677 4678
	}

4679
	return ret;
4680 4681
}

4682
int perf_event_overflow(struct perf_event *event,
4683 4684
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4685
{
4686
	return __perf_event_overflow(event, 1, data, regs);
4687 4688
}

4689
/*
4690
 * Generic software event infrastructure
4691 4692
 */

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4704
/*
4705 4706
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4707 4708 4709 4710
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4711
static u64 perf_swevent_set_period(struct perf_event *event)
4712
{
4713
	struct hw_perf_event *hwc = &event->hw;
4714 4715 4716 4717 4718
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4719 4720

again:
4721
	old = val = local64_read(&hwc->period_left);
4722 4723
	if (val < 0)
		return 0;
4724

4725 4726 4727
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4728
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4729
		goto again;
4730

4731
	return nr;
4732 4733
}

4734
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4735
				    struct perf_sample_data *data,
4736
				    struct pt_regs *regs)
4737
{
4738
	struct hw_perf_event *hwc = &event->hw;
4739
	int throttle = 0;
4740

4741
	data->period = event->hw.last_period;
4742 4743
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4744

4745 4746
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4747

4748
	for (; overflow; overflow--) {
4749
		if (__perf_event_overflow(event, throttle,
4750
					    data, regs)) {
4751 4752 4753 4754 4755 4756
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4757
		throttle = 1;
4758
	}
4759 4760
}

P
Peter Zijlstra 已提交
4761
static void perf_swevent_event(struct perf_event *event, u64 nr,
4762
			       struct perf_sample_data *data,
4763
			       struct pt_regs *regs)
4764
{
4765
	struct hw_perf_event *hwc = &event->hw;
4766

4767
	local64_add(nr, &event->count);
4768

4769 4770 4771
	if (!regs)
		return;

4772
	if (!is_sampling_event(event))
4773
		return;
4774

4775
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4776
		return perf_swevent_overflow(event, 1, data, regs);
4777

4778
	if (local64_add_negative(nr, &hwc->period_left))
4779
		return;
4780

4781
	perf_swevent_overflow(event, 0, data, regs);
4782 4783
}

4784 4785 4786
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4787
	if (event->hw.state & PERF_HES_STOPPED)
4788
		return 1;
P
Peter Zijlstra 已提交
4789

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4801
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4802
				enum perf_type_id type,
L
Li Zefan 已提交
4803 4804 4805
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4806
{
4807
	if (event->attr.type != type)
4808
		return 0;
4809

4810
	if (event->attr.config != event_id)
4811 4812
		return 0;

4813 4814
	if (perf_exclude_event(event, regs))
		return 0;
4815 4816 4817 4818

	return 1;
}

4819 4820 4821 4822 4823 4824 4825
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4826 4827
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4828
{
4829 4830 4831 4832
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4833

4834 4835
/* For the read side: events when they trigger */
static inline struct hlist_head *
4836
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4837 4838
{
	struct swevent_hlist *hlist;
4839

4840
	hlist = rcu_dereference(swhash->swevent_hlist);
4841 4842 4843
	if (!hlist)
		return NULL;

4844 4845 4846 4847 4848
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4849
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4860
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4861 4862 4863 4864 4865
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4866 4867 4868
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4869
				    u64 nr,
4870 4871
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4872
{
4873
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4874
	struct perf_event *event;
4875 4876
	struct hlist_node *node;
	struct hlist_head *head;
4877

4878
	rcu_read_lock();
4879
	head = find_swevent_head_rcu(swhash, type, event_id);
4880 4881 4882 4883
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4884
		if (perf_swevent_match(event, type, event_id, data, regs))
4885
			perf_swevent_event(event, nr, data, regs);
4886
	}
4887 4888
end:
	rcu_read_unlock();
4889 4890
}

4891
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4892
{
4893
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4894

4895
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4896
}
I
Ingo Molnar 已提交
4897
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4898

4899
inline void perf_swevent_put_recursion_context(int rctx)
4900
{
4901
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4902

4903
	put_recursion_context(swhash->recursion, rctx);
4904
}
4905

4906
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4907
{
4908
	struct perf_sample_data data;
4909 4910
	int rctx;

4911
	preempt_disable_notrace();
4912 4913 4914
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4915

4916
	perf_sample_data_init(&data, addr);
4917

4918
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4919 4920

	perf_swevent_put_recursion_context(rctx);
4921
	preempt_enable_notrace();
4922 4923
}

4924
static void perf_swevent_read(struct perf_event *event)
4925 4926 4927
{
}

P
Peter Zijlstra 已提交
4928
static int perf_swevent_add(struct perf_event *event, int flags)
4929
{
4930
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4931
	struct hw_perf_event *hwc = &event->hw;
4932 4933
	struct hlist_head *head;

4934
	if (is_sampling_event(event)) {
4935
		hwc->last_period = hwc->sample_period;
4936
		perf_swevent_set_period(event);
4937
	}
4938

P
Peter Zijlstra 已提交
4939 4940
	hwc->state = !(flags & PERF_EF_START);

4941
	head = find_swevent_head(swhash, event);
4942 4943 4944 4945 4946
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4947 4948 4949
	return 0;
}

P
Peter Zijlstra 已提交
4950
static void perf_swevent_del(struct perf_event *event, int flags)
4951
{
4952
	hlist_del_rcu(&event->hlist_entry);
4953 4954
}

P
Peter Zijlstra 已提交
4955
static void perf_swevent_start(struct perf_event *event, int flags)
4956
{
P
Peter Zijlstra 已提交
4957
	event->hw.state = 0;
4958
}
I
Ingo Molnar 已提交
4959

P
Peter Zijlstra 已提交
4960
static void perf_swevent_stop(struct perf_event *event, int flags)
4961
{
P
Peter Zijlstra 已提交
4962
	event->hw.state = PERF_HES_STOPPED;
4963 4964
}

4965 4966
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4967
swevent_hlist_deref(struct swevent_htable *swhash)
4968
{
4969 4970
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4971 4972
}

4973
static void swevent_hlist_release(struct swevent_htable *swhash)
4974
{
4975
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4976

4977
	if (!hlist)
4978 4979
		return;

4980
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4981
	kfree_rcu(hlist, rcu_head);
4982 4983 4984 4985
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4986
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4987

4988
	mutex_lock(&swhash->hlist_mutex);
4989

4990 4991
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4992

4993
	mutex_unlock(&swhash->hlist_mutex);
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5011
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5012 5013
	int err = 0;

5014
	mutex_lock(&swhash->hlist_mutex);
5015

5016
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5017 5018 5019 5020 5021 5022 5023
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5024
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5025
	}
5026
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5027
exit:
5028
	mutex_unlock(&swhash->hlist_mutex);
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5052
fail:
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5063
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5064

5065 5066 5067
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5068

5069 5070
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5071
	jump_label_dec(&perf_swevent_enabled[event_id]);
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5091
	if (event_id >= PERF_COUNT_SW_MAX)
5092 5093 5094 5095 5096 5097 5098 5099 5100
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5101
		jump_label_inc(&perf_swevent_enabled[event_id]);
5102 5103 5104 5105 5106 5107 5108
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5109
	.task_ctx_nr	= perf_sw_context,
5110

5111
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5112 5113 5114 5115
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5116 5117 5118
	.read		= perf_swevent_read,
};

5119 5120
#ifdef CONFIG_EVENT_TRACING

5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5135 5136
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5137 5138 5139 5140
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5141 5142 5143 5144 5145 5146 5147 5148 5149
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5150
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5151 5152
{
	struct perf_sample_data data;
5153 5154 5155
	struct perf_event *event;
	struct hlist_node *node;

5156 5157 5158 5159 5160 5161 5162 5163
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5164 5165
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5166
			perf_swevent_event(event, count, &data, regs);
5167
	}
5168 5169

	perf_swevent_put_recursion_context(rctx);
5170 5171 5172
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5173
static void tp_perf_event_destroy(struct perf_event *event)
5174
{
5175
	perf_trace_destroy(event);
5176 5177
}

5178
static int perf_tp_event_init(struct perf_event *event)
5179
{
5180 5181
	int err;

5182 5183 5184
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5185 5186
	err = perf_trace_init(event);
	if (err)
5187
		return err;
5188

5189
	event->destroy = tp_perf_event_destroy;
5190

5191 5192 5193 5194
	return 0;
}

static struct pmu perf_tracepoint = {
5195 5196
	.task_ctx_nr	= perf_sw_context,

5197
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5198 5199 5200 5201
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5202 5203 5204 5205 5206
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5207
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5208
}
L
Li Zefan 已提交
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5233
#else
L
Li Zefan 已提交
5234

5235
static inline void perf_tp_register(void)
5236 5237
{
}
L
Li Zefan 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5248
#endif /* CONFIG_EVENT_TRACING */
5249

5250
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5251
void perf_bp_event(struct perf_event *bp, void *data)
5252
{
5253 5254 5255
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5256
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5257

P
Peter Zijlstra 已提交
5258
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5259
		perf_swevent_event(bp, 1, &sample, regs);
5260 5261 5262
}
#endif

5263 5264 5265
/*
 * hrtimer based swevent callback
 */
5266

5267
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5268
{
5269 5270 5271 5272 5273
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5274

5275
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5276 5277 5278 5279

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5280
	event->pmu->read(event);
5281

5282 5283 5284 5285 5286 5287
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
5288
			if (perf_event_overflow(event, &data, regs))
5289 5290
				ret = HRTIMER_NORESTART;
	}
5291

5292 5293
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5294

5295
	return ret;
5296 5297
}

5298
static void perf_swevent_start_hrtimer(struct perf_event *event)
5299
{
5300
	struct hw_perf_event *hwc = &event->hw;
5301 5302 5303 5304
	s64 period;

	if (!is_sampling_event(event))
		return;
5305

5306 5307 5308 5309
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5310

5311 5312 5313 5314 5315
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5316
				ns_to_ktime(period), 0,
5317
				HRTIMER_MODE_REL_PINNED, 0);
5318
}
5319 5320

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5321
{
5322 5323
	struct hw_perf_event *hwc = &event->hw;

5324
	if (is_sampling_event(event)) {
5325
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5326
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5327 5328 5329

		hrtimer_cancel(&hwc->hrtimer);
	}
5330 5331
}

P
Peter Zijlstra 已提交
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5356 5357 5358 5359 5360
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5361
{
5362 5363 5364
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5365
	now = local_clock();
5366 5367
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5368 5369
}

P
Peter Zijlstra 已提交
5370
static void cpu_clock_event_start(struct perf_event *event, int flags)
5371
{
P
Peter Zijlstra 已提交
5372
	local64_set(&event->hw.prev_count, local_clock());
5373 5374 5375
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5376
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5377
{
5378 5379 5380
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5381

P
Peter Zijlstra 已提交
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5395 5396 5397 5398
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5399

5400 5401 5402 5403 5404 5405 5406 5407
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5408 5409
	perf_swevent_init_hrtimer(event);

5410
	return 0;
5411 5412
}

5413
static struct pmu perf_cpu_clock = {
5414 5415
	.task_ctx_nr	= perf_sw_context,

5416
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5417 5418 5419 5420
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5421 5422 5423 5424 5425 5426 5427 5428
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5429
{
5430 5431
	u64 prev;
	s64 delta;
5432

5433 5434 5435 5436
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5437

P
Peter Zijlstra 已提交
5438
static void task_clock_event_start(struct perf_event *event, int flags)
5439
{
P
Peter Zijlstra 已提交
5440
	local64_set(&event->hw.prev_count, event->ctx->time);
5441 5442 5443
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5444
static void task_clock_event_stop(struct perf_event *event, int flags)
5445 5446 5447
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5448 5449 5450 5451 5452 5453
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5454

P
Peter Zijlstra 已提交
5455 5456 5457 5458 5459 5460
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5461 5462 5463 5464
}

static void task_clock_event_read(struct perf_event *event)
{
5465 5466 5467
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5468 5469 5470 5471 5472

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5473
{
5474 5475 5476 5477 5478 5479
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5480 5481
	perf_swevent_init_hrtimer(event);

5482
	return 0;
L
Li Zefan 已提交
5483 5484
}

5485
static struct pmu perf_task_clock = {
5486 5487
	.task_ctx_nr	= perf_sw_context,

5488
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5489 5490 5491 5492
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5493 5494
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5495

P
Peter Zijlstra 已提交
5496
static void perf_pmu_nop_void(struct pmu *pmu)
5497 5498
{
}
L
Li Zefan 已提交
5499

P
Peter Zijlstra 已提交
5500
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5501
{
P
Peter Zijlstra 已提交
5502
	return 0;
L
Li Zefan 已提交
5503 5504
}

P
Peter Zijlstra 已提交
5505
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5506
{
P
Peter Zijlstra 已提交
5507
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5508 5509
}

P
Peter Zijlstra 已提交
5510 5511 5512 5513 5514
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5515

P
Peter Zijlstra 已提交
5516
static void perf_pmu_cancel_txn(struct pmu *pmu)
5517
{
P
Peter Zijlstra 已提交
5518
	perf_pmu_enable(pmu);
5519 5520
}

P
Peter Zijlstra 已提交
5521 5522 5523 5524 5525
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5526
{
P
Peter Zijlstra 已提交
5527
	struct pmu *pmu;
5528

P
Peter Zijlstra 已提交
5529 5530
	if (ctxn < 0)
		return NULL;
5531

P
Peter Zijlstra 已提交
5532 5533 5534 5535
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5536

P
Peter Zijlstra 已提交
5537
	return NULL;
5538 5539
}

5540
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5541
{
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5557

P
Peter Zijlstra 已提交
5558
	mutex_lock(&pmus_lock);
5559
	/*
P
Peter Zijlstra 已提交
5560
	 * Like a real lame refcount.
5561
	 */
5562 5563 5564
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5565
			goto out;
5566
		}
P
Peter Zijlstra 已提交
5567
	}
5568

5569
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5570 5571
out:
	mutex_unlock(&pmus_lock);
5572
}
P
Peter Zijlstra 已提交
5573
static struct idr pmu_idr;
5574

P
Peter Zijlstra 已提交
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5627
static struct lock_class_key cpuctx_mutex;
5628
static struct lock_class_key cpuctx_lock;
5629

P
Peter Zijlstra 已提交
5630
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5631
{
P
Peter Zijlstra 已提交
5632
	int cpu, ret;
5633

5634
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5635 5636 5637 5638
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5639

P
Peter Zijlstra 已提交
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5658 5659 5660 5661 5662 5663
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5664
skip_type:
P
Peter Zijlstra 已提交
5665 5666 5667
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5668

P
Peter Zijlstra 已提交
5669 5670
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5671
		goto free_dev;
5672

P
Peter Zijlstra 已提交
5673 5674 5675 5676
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5677
		__perf_event_init_context(&cpuctx->ctx);
5678
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5679
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5680
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5681
		cpuctx->ctx.pmu = pmu;
5682 5683
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5684
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5685
	}
5686

P
Peter Zijlstra 已提交
5687
got_cpu_context:
P
Peter Zijlstra 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5702
		}
5703
	}
5704

P
Peter Zijlstra 已提交
5705 5706 5707 5708 5709
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5710
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5711 5712
	ret = 0;
unlock:
5713 5714
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5715
	return ret;
P
Peter Zijlstra 已提交
5716

P
Peter Zijlstra 已提交
5717 5718 5719 5720
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5721 5722 5723 5724
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5725 5726 5727
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5728 5729
}

5730
void perf_pmu_unregister(struct pmu *pmu)
5731
{
5732 5733 5734
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5735

5736
	/*
P
Peter Zijlstra 已提交
5737 5738
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5739
	 */
5740
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5741
	synchronize_rcu();
5742

P
Peter Zijlstra 已提交
5743
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5744 5745
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5746 5747
	device_del(pmu->dev);
	put_device(pmu->dev);
5748
	free_pmu_context(pmu);
5749
}
5750

5751 5752 5753 5754
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5755
	int ret;
5756 5757

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5758 5759 5760 5761

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5762
	if (pmu) {
5763
		event->pmu = pmu;
5764 5765 5766
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5767
		goto unlock;
5768
	}
P
Peter Zijlstra 已提交
5769

5770
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5771
		event->pmu = pmu;
5772
		ret = pmu->event_init(event);
5773
		if (!ret)
P
Peter Zijlstra 已提交
5774
			goto unlock;
5775

5776 5777
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5778
			goto unlock;
5779
		}
5780
	}
P
Peter Zijlstra 已提交
5781 5782
	pmu = ERR_PTR(-ENOENT);
unlock:
5783
	srcu_read_unlock(&pmus_srcu, idx);
5784

5785
	return pmu;
5786 5787
}

T
Thomas Gleixner 已提交
5788
/*
5789
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5790
 */
5791
static struct perf_event *
5792
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5793 5794 5795
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5796 5797
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5798
{
P
Peter Zijlstra 已提交
5799
	struct pmu *pmu;
5800 5801
	struct perf_event *event;
	struct hw_perf_event *hwc;
5802
	long err;
T
Thomas Gleixner 已提交
5803

5804 5805 5806 5807 5808
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5809
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5810
	if (!event)
5811
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5812

5813
	/*
5814
	 * Single events are their own group leaders, with an
5815 5816 5817
	 * empty sibling list:
	 */
	if (!group_leader)
5818
		group_leader = event;
5819

5820 5821
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5822

5823 5824 5825 5826
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5827
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5828

5829
	mutex_init(&event->mmap_mutex);
5830

5831 5832 5833 5834 5835
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5836

5837
	event->parent		= parent_event;
5838

5839 5840
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5841

5842
	event->state		= PERF_EVENT_STATE_INACTIVE;
5843

5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5855
	if (!overflow_handler && parent_event) {
5856
		overflow_handler = parent_event->overflow_handler;
5857 5858
		context = parent_event->overflow_handler_context;
	}
5859

5860
	event->overflow_handler	= overflow_handler;
5861
	event->overflow_handler_context = context;
5862

5863
	if (attr->disabled)
5864
		event->state = PERF_EVENT_STATE_OFF;
5865

5866
	pmu = NULL;
5867

5868
	hwc = &event->hw;
5869
	hwc->sample_period = attr->sample_period;
5870
	if (attr->freq && attr->sample_freq)
5871
		hwc->sample_period = 1;
5872
	hwc->last_period = hwc->sample_period;
5873

5874
	local64_set(&hwc->period_left, hwc->sample_period);
5875

5876
	/*
5877
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5878
	 */
5879
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5880 5881
		goto done;

5882
	pmu = perf_init_event(event);
5883

5884 5885
done:
	err = 0;
5886
	if (!pmu)
5887
		err = -EINVAL;
5888 5889
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5890

5891
	if (err) {
5892 5893 5894
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5895
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5896
	}
5897

5898
	if (!event->parent) {
5899
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
5900
			jump_label_inc(&perf_sched_events);
5901
		if (event->attr.mmap || event->attr.mmap_data)
5902 5903 5904 5905 5906
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5907 5908 5909 5910 5911 5912 5913
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5914
	}
5915

5916
	return event;
T
Thomas Gleixner 已提交
5917 5918
}

5919 5920
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5921 5922
{
	u32 size;
5923
	int ret;
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5948 5949 5950
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5951 5952
	 */
	if (size > sizeof(*attr)) {
5953 5954 5955
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5956

5957 5958
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5959

5960
		for (; addr < end; addr++) {
5961 5962 5963 5964 5965 5966
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5967
		size = sizeof(*attr);
5968 5969 5970 5971 5972 5973
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5974
	if (attr->__reserved_1)
5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5992 5993
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5994
{
5995
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5996 5997
	int ret = -EINVAL;

5998
	if (!output_event)
5999 6000
		goto set;

6001 6002
	/* don't allow circular references */
	if (event == output_event)
6003 6004
		goto out;

6005 6006 6007 6008 6009 6010 6011
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6012
	 * If its not a per-cpu rb, it must be the same task.
6013 6014 6015 6016
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6017
set:
6018
	mutex_lock(&event->mmap_mutex);
6019 6020 6021
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6022

6023
	if (output_event) {
6024 6025 6026
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6027
			goto unlock;
6028 6029
	}

6030 6031
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6032
	ret = 0;
6033 6034 6035
unlock:
	mutex_unlock(&event->mmap_mutex);

6036 6037
	if (old_rb)
		ring_buffer_put(old_rb);
6038 6039 6040 6041
out:
	return ret;
}

T
Thomas Gleixner 已提交
6042
/**
6043
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6044
 *
6045
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6046
 * @pid:		target pid
I
Ingo Molnar 已提交
6047
 * @cpu:		target cpu
6048
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6049
 */
6050 6051
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6052
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6053
{
6054 6055
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6056 6057 6058
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6059
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6060
	struct task_struct *task = NULL;
6061
	struct pmu *pmu;
6062
	int event_fd;
6063
	int move_group = 0;
6064
	int fput_needed = 0;
6065
	int err;
T
Thomas Gleixner 已提交
6066

6067
	/* for future expandability... */
S
Stephane Eranian 已提交
6068
	if (flags & ~PERF_FLAG_ALL)
6069 6070
		return -EINVAL;

6071 6072 6073
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6074

6075 6076 6077 6078 6079
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6080
	if (attr.freq) {
6081
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6082 6083 6084
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6085 6086 6087 6088 6089 6090 6091 6092 6093
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6094 6095 6096 6097
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6098 6099 6100 6101
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6102
			goto err_fd;
6103 6104 6105 6106 6107 6108 6109 6110
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6111
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6112 6113 6114 6115 6116 6117 6118
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6119 6120
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6121 6122
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6123
		goto err_task;
6124 6125
	}

S
Stephane Eranian 已提交
6126 6127 6128 6129
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6130 6131 6132 6133 6134 6135 6136
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6137 6138
	}

6139 6140 6141 6142 6143
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6167 6168 6169 6170

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6171
	ctx = find_get_context(pmu, task, cpu);
6172 6173
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6174
		goto err_alloc;
6175 6176
	}

6177 6178 6179 6180 6181
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6182
	/*
6183
	 * Look up the group leader (we will attach this event to it):
6184
	 */
6185
	if (group_leader) {
6186
		err = -EINVAL;
6187 6188

		/*
I
Ingo Molnar 已提交
6189 6190 6191 6192
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6193
			goto err_context;
I
Ingo Molnar 已提交
6194 6195 6196
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6197
		 */
6198 6199 6200 6201 6202 6203 6204 6205
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6206 6207 6208
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6209
		if (attr.exclusive || attr.pinned)
6210
			goto err_context;
6211 6212 6213 6214 6215
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6216
			goto err_context;
6217
	}
T
Thomas Gleixner 已提交
6218

6219 6220 6221
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6222
		goto err_context;
6223
	}
6224

6225 6226 6227 6228
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6229
		perf_remove_from_context(group_leader);
6230 6231
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6232
			perf_remove_from_context(sibling);
6233 6234 6235 6236
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6237
	}
6238

6239
	event->filp = event_file;
6240
	WARN_ON_ONCE(ctx->parent_ctx);
6241
	mutex_lock(&ctx->mutex);
6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6253
	perf_install_in_context(ctx, event, cpu);
6254
	++ctx->generation;
6255
	perf_unpin_context(ctx);
6256
	mutex_unlock(&ctx->mutex);
6257

6258
	event->owner = current;
P
Peter Zijlstra 已提交
6259

6260 6261 6262
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6263

6264 6265 6266 6267
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6268
	perf_event__id_header_size(event);
6269

6270 6271 6272 6273 6274 6275
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6276 6277 6278
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6279

6280
err_context:
6281
	perf_unpin_context(ctx);
6282
	put_ctx(ctx);
6283
err_alloc:
6284
	free_event(event);
P
Peter Zijlstra 已提交
6285 6286 6287
err_task:
	if (task)
		put_task_struct(task);
6288
err_group_fd:
6289
	fput_light(group_file, fput_needed);
6290 6291
err_fd:
	put_unused_fd(event_fd);
6292
	return err;
T
Thomas Gleixner 已提交
6293 6294
}

6295 6296 6297 6298 6299
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6300
 * @task: task to profile (NULL for percpu)
6301 6302 6303
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6304
				 struct task_struct *task,
6305 6306
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6307 6308
{
	struct perf_event_context *ctx;
6309
	struct perf_event *event;
6310
	int err;
6311

6312 6313 6314
	/*
	 * Get the target context (task or percpu):
	 */
6315

6316 6317
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6318 6319 6320 6321
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6322

M
Matt Helsley 已提交
6323
	ctx = find_get_context(event->pmu, task, cpu);
6324 6325
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6326
		goto err_free;
6327
	}
6328 6329 6330 6331 6332 6333

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6334
	perf_unpin_context(ctx);
6335 6336 6337 6338
	mutex_unlock(&ctx->mutex);

	return event;

6339 6340 6341
err_free:
	free_event(event);
err:
6342
	return ERR_PTR(err);
6343
}
6344
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6345

6346
static void sync_child_event(struct perf_event *child_event,
6347
			       struct task_struct *child)
6348
{
6349
	struct perf_event *parent_event = child_event->parent;
6350
	u64 child_val;
6351

6352 6353
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6354

P
Peter Zijlstra 已提交
6355
	child_val = perf_event_count(child_event);
6356 6357 6358 6359

	/*
	 * Add back the child's count to the parent's count:
	 */
6360
	atomic64_add(child_val, &parent_event->child_count);
6361 6362 6363 6364
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6365 6366

	/*
6367
	 * Remove this event from the parent's list
6368
	 */
6369 6370 6371 6372
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6373 6374

	/*
6375
	 * Release the parent event, if this was the last
6376 6377
	 * reference to it.
	 */
6378
	fput(parent_event->filp);
6379 6380
}

6381
static void
6382 6383
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6384
			 struct task_struct *child)
6385
{
6386 6387 6388 6389 6390
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6391

6392
	perf_remove_from_context(child_event);
6393

6394
	/*
6395
	 * It can happen that the parent exits first, and has events
6396
	 * that are still around due to the child reference. These
6397
	 * events need to be zapped.
6398
	 */
6399
	if (child_event->parent) {
6400 6401
		sync_child_event(child_event, child);
		free_event(child_event);
6402
	}
6403 6404
}

P
Peter Zijlstra 已提交
6405
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6406
{
6407 6408
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6409
	unsigned long flags;
6410

P
Peter Zijlstra 已提交
6411
	if (likely(!child->perf_event_ctxp[ctxn])) {
6412
		perf_event_task(child, NULL, 0);
6413
		return;
P
Peter Zijlstra 已提交
6414
	}
6415

6416
	local_irq_save(flags);
6417 6418 6419 6420 6421 6422
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6423
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6424 6425 6426

	/*
	 * Take the context lock here so that if find_get_context is
6427
	 * reading child->perf_event_ctxp, we wait until it has
6428 6429
	 * incremented the context's refcount before we do put_ctx below.
	 */
6430
	raw_spin_lock(&child_ctx->lock);
6431
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6432
	child->perf_event_ctxp[ctxn] = NULL;
6433 6434 6435
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6436
	 * the events from it.
6437 6438
	 */
	unclone_ctx(child_ctx);
6439
	update_context_time(child_ctx);
6440
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6441 6442

	/*
6443 6444 6445
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6446
	 */
6447
	perf_event_task(child, child_ctx, 0);
6448

6449 6450 6451
	/*
	 * We can recurse on the same lock type through:
	 *
6452 6453 6454
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6455 6456 6457 6458 6459
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6460
	mutex_lock(&child_ctx->mutex);
6461

6462
again:
6463 6464 6465 6466 6467
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6468
				 group_entry)
6469
		__perf_event_exit_task(child_event, child_ctx, child);
6470 6471

	/*
6472
	 * If the last event was a group event, it will have appended all
6473 6474 6475
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6476 6477
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6478
		goto again;
6479 6480 6481 6482

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6483 6484
}

P
Peter Zijlstra 已提交
6485 6486 6487 6488 6489
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6490
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6491 6492
	int ctxn;

P
Peter Zijlstra 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6508 6509 6510 6511
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6526
	perf_group_detach(event);
6527 6528 6529 6530
	list_del_event(event, ctx);
	free_event(event);
}

6531 6532
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6533
 * perf_event_init_task below, used by fork() in case of fail.
6534
 */
6535
void perf_event_free_task(struct task_struct *task)
6536
{
P
Peter Zijlstra 已提交
6537
	struct perf_event_context *ctx;
6538
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6539
	int ctxn;
6540

P
Peter Zijlstra 已提交
6541 6542 6543 6544
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6545

P
Peter Zijlstra 已提交
6546
		mutex_lock(&ctx->mutex);
6547
again:
P
Peter Zijlstra 已提交
6548 6549 6550
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6551

P
Peter Zijlstra 已提交
6552 6553 6554
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6555

P
Peter Zijlstra 已提交
6556 6557 6558
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6559

P
Peter Zijlstra 已提交
6560
		mutex_unlock(&ctx->mutex);
6561

P
Peter Zijlstra 已提交
6562 6563
		put_ctx(ctx);
	}
6564 6565
}

6566 6567 6568 6569 6570 6571 6572 6573
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6586
	unsigned long flags;
P
Peter Zijlstra 已提交
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6599
					   child,
P
Peter Zijlstra 已提交
6600
					   group_leader, parent_event,
6601
				           NULL, NULL);
P
Peter Zijlstra 已提交
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6628 6629
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6630

6631 6632 6633 6634
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6635
	perf_event__id_header_size(child_event);
6636

P
Peter Zijlstra 已提交
6637 6638 6639
	/*
	 * Link it up in the child's context:
	 */
6640
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6641
	add_event_to_ctx(child_event, child_ctx);
6642
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6684 6685 6686 6687 6688
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6689
		   struct task_struct *child, int ctxn,
6690 6691 6692
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6693
	struct perf_event_context *child_ctx;
6694 6695 6696 6697

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6698 6699
	}

6700
	child_ctx = child->perf_event_ctxp[ctxn];
6701 6702 6703 6704 6705 6706 6707
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6708

6709
		child_ctx = alloc_perf_context(event->pmu, child);
6710 6711
		if (!child_ctx)
			return -ENOMEM;
6712

P
Peter Zijlstra 已提交
6713
		child->perf_event_ctxp[ctxn] = child_ctx;
6714 6715 6716 6717 6718 6719 6720 6721 6722
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6723 6724
}

6725
/*
6726
 * Initialize the perf_event context in task_struct
6727
 */
P
Peter Zijlstra 已提交
6728
int perf_event_init_context(struct task_struct *child, int ctxn)
6729
{
6730
	struct perf_event_context *child_ctx, *parent_ctx;
6731 6732
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6733
	struct task_struct *parent = current;
6734
	int inherited_all = 1;
6735
	unsigned long flags;
6736
	int ret = 0;
6737

P
Peter Zijlstra 已提交
6738
	if (likely(!parent->perf_event_ctxp[ctxn]))
6739 6740
		return 0;

6741
	/*
6742 6743
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6744
	 */
P
Peter Zijlstra 已提交
6745
	parent_ctx = perf_pin_task_context(parent, ctxn);
6746

6747 6748 6749 6750 6751 6752 6753
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6754 6755 6756 6757
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6758
	mutex_lock(&parent_ctx->mutex);
6759 6760 6761 6762 6763

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6764
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6765 6766
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6767 6768 6769
		if (ret)
			break;
	}
6770

6771 6772 6773 6774 6775 6776 6777 6778 6779
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6780
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6781 6782
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6783
		if (ret)
6784
			break;
6785 6786
	}

6787 6788 6789
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6790
	child_ctx = child->perf_event_ctxp[ctxn];
6791

6792
	if (child_ctx && inherited_all) {
6793 6794 6795
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6796 6797 6798
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6799
		 */
P
Peter Zijlstra 已提交
6800
		cloned_ctx = parent_ctx->parent_ctx;
6801 6802
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6803
			child_ctx->parent_gen = parent_ctx->parent_gen;
6804 6805 6806 6807 6808
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6809 6810
	}

P
Peter Zijlstra 已提交
6811
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6812
	mutex_unlock(&parent_ctx->mutex);
6813

6814
	perf_unpin_context(parent_ctx);
6815
	put_ctx(parent_ctx);
6816

6817
	return ret;
6818 6819
}

P
Peter Zijlstra 已提交
6820 6821 6822 6823 6824 6825 6826
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6827 6828 6829 6830
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6831 6832 6833 6834 6835 6836 6837 6838 6839
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6840 6841
static void __init perf_event_init_all_cpus(void)
{
6842
	struct swevent_htable *swhash;
6843 6844 6845
	int cpu;

	for_each_possible_cpu(cpu) {
6846 6847
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6848
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6849 6850 6851
	}
}

6852
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6853
{
P
Peter Zijlstra 已提交
6854
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6855

6856
	mutex_lock(&swhash->hlist_mutex);
6857
	if (swhash->hlist_refcount > 0) {
6858 6859
		struct swevent_hlist *hlist;

6860 6861 6862
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6863
	}
6864
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6865 6866
}

P
Peter Zijlstra 已提交
6867
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6868
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6869
{
6870 6871 6872 6873 6874 6875 6876
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6877
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6878
{
P
Peter Zijlstra 已提交
6879
	struct perf_event_context *ctx = __info;
6880
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6881

P
Peter Zijlstra 已提交
6882
	perf_pmu_rotate_stop(ctx->pmu);
6883

6884
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6885
		__perf_remove_from_context(event);
6886
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6887
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6888
}
P
Peter Zijlstra 已提交
6889 6890 6891 6892 6893 6894 6895 6896 6897

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6898
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6899 6900 6901 6902 6903 6904 6905 6906

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6907
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6908
{
6909
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6910

6911 6912 6913
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6914

P
Peter Zijlstra 已提交
6915
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6916 6917
}
#else
6918
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6919 6920
#endif

P
Peter Zijlstra 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6941 6942 6943 6944 6945
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

6946
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6947 6948

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6949
	case CPU_DOWN_FAILED:
6950
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6951 6952
		break;

P
Peter Zijlstra 已提交
6953
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6954
	case CPU_DOWN_PREPARE:
6955
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6956 6957 6958 6959 6960 6961 6962 6963 6964
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6965
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6966
{
6967 6968
	int ret;

P
Peter Zijlstra 已提交
6969 6970
	idr_init(&pmu_idr);

6971
	perf_event_init_all_cpus();
6972
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6973 6974 6975
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6976 6977
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6978
	register_reboot_notifier(&perf_reboot_notifier);
6979 6980 6981

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6982
}
P
Peter Zijlstra 已提交
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7011 7012 7013 7014 7015 7016 7017

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7018
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7048 7049
static void
perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
S
Stephane Eranian 已提交
7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7065
	perf_cgroup_attach_task(cgrp, task);
S
Stephane Eranian 已提交
7066 7067 7068
}

struct cgroup_subsys perf_subsys = {
7069 7070 7071 7072 7073
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7074
	.attach_task	= perf_cgroup_attach_task,
S
Stephane Eranian 已提交
7075 7076
};
#endif /* CONFIG_CGROUP_PERF */